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ABSTRACT 

Surveys of colonial-nesting waterbirds are necessary for assessing population trends, 

gaining insight into wetland ecosystem health, and even determining the impact of 

natural disasters and other environmental concerns.  The popularity of unmanned aerial 

systems (UAS) for use as a surveying tool has risen in the past decade, but little research 

has been conducted on the effectiveness of such technology.  I investigated visibility bias 

and disturbance impacts associated with using UAS to survey waterbird colonies in 

Texas, specifically in cypress-tupelo watershed and coastal island habitats.  I used a 

stratified random design to place four waterbird decoy types (black skimmers, terns, and 

white- and dark-plumaged herons) in each habitat and had six observers independently 

count decoys from aerial imagery taken with a consumer-grade UAS (DJI Phantom).  I 

used generalized linear mixed-effects models to estimate detection probabilities of each 

decoy type.  Black skimmers were the only decoy type at the dredge-spoil island to have 

a detection probability of significantly less than 100% (0.54 [0.44–0.63 CI], P ≤ 0.001).  

Detectability of both white- and dark-plumaged herons decreased considerably in the 

canopied cypress-tupelo habitat when compared to the dredge-spoil island (by 80 and 

84%, respectively).  In addition, for surveys in cypress-tupelo habitat where cloud cover 

was above 50%, detectability of white heron decoys decreased significantly by another 

20% (0.09 [0.03–0.34 CI], P = 0.007).  Detection rates varied among observers, but only 

significantly for models of white-plumaged herons (P = 0.022) and black skimmers (P = 

0.05).  Use of the double-sample method yielded biased-low abundance estimates for 



 xii 

white- and dark-plumaged herons in canopied sites, suggesting that habitat differences 

were a greater source of bias than observer error.  I investigated disturbance to waterbirds 

by setting up video cameras at the periphery of active nesting colonies while surveying 

with unmanned aircraft.  I tested the effects of two UAS platforms – and a range of 

altitudes flown between them – on the behavioral reactions exhibited in four active 

colonies in Texas.  Reactions were tallied in 1-minute sampling periods at each nesting 

colony, which were used to estimate generalized linear mixed-effects models for 

vigilance and flush behavior.  I found that the consumer-grade UAS (DJI Phantom) 

increased vigilance in mixed-species colonies for survey altitudes of 91, 61, and 46 m 

when compared to a baseline control.  Vigilant reactions were increased in magnitude by 

72, 119, and 118% for these altitudes, respectively.  Flush reactions were not influenced 

by either platform or any altitude flown.  Surveys with the fixed-wing UAS did not 

impact vigilance or flush behavior, likely because it was used at suggested altitudes of 

300 and 200 m and was hardly detectable from the ground.  My results suggest that 

managers should employ UAS surveys on clear days in high-visibility habitats, or 

otherwise use another survey method to supplement photographic counts obtained by 

UAS.  In addition, surveys should be flown between 46–91 m only when high resolution 

imagery is needed (e.g. for abundance estimates) to mitigate disturbance.  Even though 

the Phantom UAS caused increased vigilance, if surveys are done promptly and in back-

and-forth transects, the impact of this increased behavior is likely negligible especially 

when considering the much more harmful effects of ground-based survey methods. 
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I.  DETECTABILITY AND VISIBILITY BIASES ASSOCIATED WITH USING 

UNMANNED AIRCRAFT TO SURVEY COLONIAL WATERBIRDS  

Conservation of colonial nesting waterbirds is reliant on the ability to estimate changes in 

populations over time.  Surveys, conducted routinely throughout the spring and summer 

months, are employed to estimate the number of breeding pairs as well as identify species 

composition within nesting colonies.  Waterbird colony presence (i.e. species 

composition and abundance) is an indicator of ecosystem health (Temple and Wiens 

1989, Kushlan 1993, Kingsford 1999, Johnson and Krohn 2001, Smith 2002).  Kingsford 

(1999) proposed that because they forage on fish, plants, insects, and other biota, the 

presence of these birds may be a useful index in measuring the health of a wetland.  

Waterbird abundance can also provide insight into other regional and global 

environmental concerns, such as the effectiveness of restoring wetland habitat (Ma et al. 

2010), the effect of large-scale climatic events such as droughts or hurricanes (Leberg et 

al. 2007, Raynor et al. 2013), and the effects of human-caused disturbance such as oil 

spills and habitat loss (Paracuellos and Tellería 2004, Ma et al. 2010).  Moreover, reliable 

colony survey estimates are especially vital for species of concern, such as the reddish 

egret (Egretta rufescens), which is listed as state threatened in Texas and near-threatened 

by the International Union for Conservation of Nature (IUCN 2015), and the little blue 

heron (Egretta caerulea), whose population decline in the Southeastern U.S. has 

increasingly received attention (Hunter et al. 2006, Green et al. 2008, Rodgers and Smith 

2012). 

Long-term monitoring and estimation of breeding pairs can shed light on 

population trends, which can have implications on management decisions put forth in the 
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future (Wiens et al. 1986, Temple and Wiens 1989, Thomas 1996, Coulter and Frederick 

1997).  However, being able to detect individuals in a population is essential to 

constructing reliable estimates of abundance.  Imperfect detection has been recognized as 

problematic in multiple ecological systems, including the detectability of invasive plants 

(Regan et al. 2011), otter (Lontra canadensis) sign (Jeffress et al. 2011), and auditory 

counts of birds (Simons et al. 2007).  Most population indices are based on raw counts, 

which can be highly variable and subject to bias, so evaluating detection probability is 

necessary for obtaining accurate and precise estimates of abundance (Pollock and 

Kendall 1987). 

Three variables have an effect on detection probability: observer error, 

environmental conditions, and heterogeneity in animal behavior (Anderson 2001).  With 

regard to waterbird detectability, these variables are typically associated with visual 

surveys (e.g. from fixed-wing aircraft or via colony walk-through).  Aircraft surveys in 

particular can produce many potential sources of visibility bias, including visual 

occlusion of nests due to vegetative characteristics (Butler et al. 2007, Conroy et al. 

2008), differences in visibility due to aircraft type (Green et al. 2008, Koneff et al. 2008), 

and variability of counts among seat positions in the aircraft (Conroy et al. 2008).  Due to 

these causes of visibility bias, aerial surveys have been known to, sometimes 

significantly, underestimate numbers of nesting birds.  Frederick et al. (2003) found that, 

during a simulation of real-time aerial surveys, observers undercounted by a mean of 

29% when compared to true numbers of birds.  Although undercounting was common 

during the study, variability of count indices among and within observers was extreme 

and unpredictable even for experienced biologists.  Surveys from aircraft have 
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occasionally overestimated species like snowy egrets (Egretta thula), an error which is 

likely due to species misidentification (Kushlan 1979, Rodgers et al. 2005, Green et al. 

2008, Williams et al. 2008). 

Researchers have devised a multitude of ways to correct for bias and imperfect 

detection.  Double-count methods, for example, have been widely used to correct 

observer bias and provide estimates of true abundance (Cook and Jacobson 1979, Bayliss 

and Yeomans 1989, Graham and Bell 1989, Nichols 2000, Green et al. 2008).  These 

methods are related to the Lincoln-Peterson index for estimating abundance, where a 

detection by one observer represents a single capture and a detection by the second 

observer represents recapture (Seber 1982).  Sightability models, another common 

approach, offer a means of estimating abundance by quantifying different sources of 

visibility bias with regression-based modeling (e.g. canopy cover and aircraft speed; 

Caughley 1974).  Given the error associated with real-time aircraft surveys, some 

researchers have improved the detectability of waterbirds by using aerial photography.  

Both Bayliss and Yeomans (1990) and Frederick et al. (2003) observed a marked increase 

in detectability by using photographs, presumably because large and dense colonies are 

difficult to count from a moving aircraft.  Aerial photography, while more accurate than 

real-time surveys, is still subject to the same issues of observer error, environmental 

covariates, and species-specific behavior.  The accuracy of aerial photographic counts is 

likely dependent upon the situation in which they are being employed.  Photographs over 

dense canopy, for example, might yield more error-prone estimates because the observer 

can only see the colony from a single angle of approach. 
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Since traditional survey methodology is not without error, and there is lack of 

consensus over which method is best, new survey techniques are frequently tested in the 

field.  Unmanned aerial systems (UAS) have recently garnered attention in regards to 

wildlife surveying.  In previous studies, they have been used to census large colonies of 

common terns (Sterna hirundo, Chabot et al. 2015), detect roe deer (Capreolus 

capreolus) fawns in meadows with a thermal camera (Israel 2011), monitor breeding 

pairs of black-headed gulls (Chroicocephalus ridibundus, Sardá-palomera et al. 2012), 

and monitor the nesting status of hooded crows (Corvus cornix, Weissensteiner et al. 

2015).  Unmanned aircraft have a few key benefits that make this new technology 

appealing to surveying wildlife, such as suitability for fine spatial resolution (Bakó et al. 

2014), comparable coverage to traditional aerial surveys (Chabot et al. 2014, Bakó et al. 

2014), researcher safety, and ability to easily switch out sensors or payloads (Watts et al. 

2010).  In a spatial sense, there is potential for UAS to bridge the gap between ground 

surveys and traditional aerial surveys (Chabot et al. 2014).  While they may not have the 

vast range of manned aircraft (Kingsford 1999), they can certainly be applied to a variety 

of circumstances in the field (e.g. when a colony is inaccessible to ground observers, or 

when fine spatial scaling is needed).  Due to the recent popularity and availability of UAS 

among researchers, there is a clear need to study the ramifications of their use as a survey 

tool. 

My overall research objective was to quantify detection probability and sources of 

bias related to counting waterbirds from aerial imagery taken with an unmanned aircraft.  

In particular, I wanted to (1) estimate detectability of four unique waterbird species, (2) 
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identify sources of variation in detection, and (3) investigate observer error associated 

with imagery counts, as well as the accuracy of double-sample estimates. 

STUDY AREA 

There are four colonial nesting waterbird species currently listed as priority within the 

Monitoring, Evaluation, and Research Team (MERT) of the Gulf Coast Joint Venture 

(GCJV): reddish egret (Egretta rufescens), black skimmer (Rynchops niger), gull-billed 

tern (Gelochelidon nilotica), and little blue heron (Egretta caerulea).  I selected survey 

sites in Texas a priori to estimate the detectability of these 4 species in their respective 

nesting habitats.  The GCJV is one of 18 joint ventures in the continental US, and its 

coverage spans coastlines in Texas, Louisiana, Alabama, and Mississippi (Figure 1).  

Because of variability in nesting strata among these species, I chose study sites in two 

distinct regions of Texas: coastal islands in the lower Laguna Madre and forested 

wetlands in the lower Trinity River basin. 

     Lower Laguna Madre.–The Laguna Madre of Texas has a subhumid-to-semiarid 

subtropical climate, with extreme variability in precipitation (Fulbright et al. 1990).  

Geographically, it is a long and narrow hypersaline coastal lagoon that extends roughly 

185 km from Corpus Christi Bay to the southern tip of the state (Tunnel 2002).  The 

lagoon is split into two subunits – upper and lower – by a land-bridge that connects to the 

barrier island spit known as Padre Island (Tunnel 2002).  I utilized a colony site at East 

Flat Spoil island (EFS), which is situated within Kenedy County (Figure 2).  This small 

dredge-spoil island is 1.2 ha and is managed by Texas Audubon.  Vegetation on EFS is 

mostly comprised of low-lying, highly saline-tolerant species, like sea oxeye (Borrichia 

frutescens), shoregrass (Monanthochloe littoralis), sea purslane (Sesuvium 



 6 

portulacastrum), and turtleweed (Batis maritima).  The mix of vegetated area and bare 

ground attracts a diverse set of ground-nesting waterbirds to the island every year, 

including black skimmers, gull-billed terns, reddish egrets, great blue herons (Ardea 

herodius), royal terns (Thalasseus maximus), sandwich terns (Thalasseus sandvicensis), 

and laughing gulls (Leucophaeus atricilla). 

     Lower Trinity River basin.–The Trinity River basin (TRB) runs from North Texas – its 

headwaters just west of Fort Worth – all the way to the Galveston Bay system on the Gulf 

of Mexico (Dahm et al. 2011).  The lower portion of the basin has a humid subtropical 

climate, and is predominantly forested (Dahm et al. 2011).  Cypress-lined bayous in the 

lower Trinity watershed provide ideal habitat for canopy-nesting waterbird species, 

including the little blue heron.  Due to federal restrictions on UAS operation at the time 

of this study, I was unable to survey at colony sites within Trinity River NWR proper, 

and instead utilized a colony site on Josie lake adjacent to refuge property (Figure 2).  

The area is dominated by bald cypress trees (Taxodium ascendens), tupelo (Nyssa spp.), 

button bush (Cephalanthus occidentalis), and a diversity of bottomland hardwood 

species.  Many waterbird species use the lower TRB to nest and forage, including great 

egrets (Ardea alba), snowy egrets (Egretta thula), anhingas (Anhinga anhinga), cattle 

egrets (Bubulcus ibis), and little blue herons. 

METHODS 

UAS surveys were conducted between 0930 and 1630 hours on clear to cloudy days, with 

wind conditions ranging between 0–20.4 km/hour.  We flew surveys parallel to the 

ground in a back-and-forth transect pattern (East to West) to capture a series of 

overlapping photographs, which would later be processed into a single mosaicked, geo-
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referenced orthophoto (Bolstad 2016).  We used a consumer-grade UAS (Phantom 3, 

DJI, Shenzhen, Guangdong, China) that came equipped with a 12.4 mega-pixel RGB 

camera.  The Phantom is operated by a single technician, can be launched from almost 

any surface, and is flown via a minimalist ground station (remote control and iPad device 

[Apple Inc., Cupertino, CA]).  Recent software packages allow for autonomous flight 

(Ground Station Pro, DJI), but at the time of this study no such software was available.  

Thus, surveys were flown manually.  I flew surveys at an altitude of 61 m above ground 

level (AGL), which netted an image resolution of approximately 1.7 cm/pixel. 

UAS Surveys 

I used decoys to estimate detection probability and visibility bias of 4 wading bird 

groups: black skimmers, terns, white-plumaged herons, and dark-plumaged herons.  All 

decoys with the exception of black skimmers were constructed from plastic lawn 

flamingos.  I modified and painted plastic flamingos to reflect the size, shape, and 

plumage coloration of my target species (Green et al. 2005).  All 4 decoy types were 

utilized at EFS, but just dark- and white-plumaged herons at TRB.  So as not to coincide 

with the breeding season, I conducted surveys with decoy birds in September and 

November, 2016. 

 Prior to UAS decoy surveys, I selected old nest bowls for decoy placement by 

using a stratified random design (Altmann 1974).  I knew where each target species (or 

target group) nested based on imagery taken over active colonies earlier that same year, 

and, using this information I marked a random subset of nest bowls with nondescript 

tongue depressor sticks.  For each decoy type, I used a random azimuth and distance to 

select nest bowls, and a random number generator (uniform distribution) to select group 
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size.  At TRB, I only used white- and dark-plumaged heron types, so I did not stratify 

nest bowl selection based on species.  Rather, I randomized nest bowl selection based on 

height of the nest, because canopy closure can have an effect on detectability (Bayliss 

and Yeomans 1989, Rodgers et al. 2005, Pearse et al. 2008).  I used a random number 

generator of nest heights that ranged between 2–8 m, and selected nests (after walking a 

random azimuth and distance) that were closest to the selected height given by the 

number generator.  At each selected nest bowl, I recorded canopy cover (when 

applicable) with a spherical densiometer (Model A, Forestry Suppliers, Inc., Jackson, 

MS, USA) and marked its location with a high-accuracy GPS unit (Trimble GeoXT 3000, 

Sunnyvale, CA, USA).  I had 117 total nest bowls at EFS and 50 at TRB, and I randomly 

selected from these for decoy placement prior to each survey.  I positioned 4–5 ground 

control points (GCPs) at the perimeter of each decoy “colony” to aid in geo-referencing 

the mosaicked imagery (Bolstad 2016).  I estimated cloud cover (%) with a spherical 

densiometer at the take-off and landing site prior to surveys. 

Observer counts 

I created mosaicked images of each decoy “colony” with the photomerge feature in 

Adobe Photoshop (Adobe Systems, Inc., San Jose, CA, USA).  I then used ArcMap 10.4 

(Esri, Redlands, CA, USA) to geo-reference each image and overlay all nest bowl 

locations.  Due to issues with fully mosaicking the imagery taken at TRB, and because I 

wanted to standardize the photographs for observer counts, I split each randomized decoy 

“colony” into a set of 2000×1500-pixel photographs (Figure 3).  Thus, for each imagery 

quadrat, I had a known density of decoys, and, when pooled together, a known abundance 

for each UAS survey. 
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 I had 6 observers independently count decoys in each of the imagery quadrats, 

from the same computer and in the same order.  Observer count indices were done alone 

and without help, and so were assumed independent from one another.  I gave the same 

instructions to each observer, as well as a sample image to establish a “search image” of 

each decoy type (not used in analysis).  None of the 6 observers had prior experience 

counting birds from aerial photography, but 5 of the 6 had some experience with other 

avian survey methods (e.g. ground counts and auditory surveys).  Some loafing birds 

were captured in photographs, but were excluded from analysis because I had known 

locations for each decoy present.  Observers went through photographs in sequence, and 

using the paint tool in Photoshop, placed a color dot on each detected decoy (Figure 3).  

Different colors corresponded to different decoy types.  After all observers provided their 

respective count indices, I used the count function and image analysis function in Adobe 

Photoshop to tally observer counts (Chabot et al. 2015). 

Statistical analysis 

I modeled the detectability of each decoy type by using methods similar to Williams et al. 

(2008), where observer count indices were compared to corresponding known 

abundances.  I pooled image quadrat counts by survey to get a total index for each survey 

and to represent errors of omission and commission by each observer.  Pooling was also 

done to account for misidentification of decoy types, which meant that one decoy type 

was overcounted while another was undercounted.  I used generalized linear mixed-effect 

models (GLMMs) with a Poisson error distribution and log-link function to estimate 

detectability and test the effects of several environmental covariates (McCullagh and 

Nelder 1989).  Models with a negative binomial error distribution were also considered, 
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but were not used because over-dispersion was not present in the Poisson models.  I 

included observer as a random effect, and, to preserve correspondence among observer 

counts and the known decoy abundance, I modeled each survey as a random effect as 

well.  The basic model structure, without the addition of environmental covariates, has 

the form 

Yijk ~ Poisson(µijk) 

log(µijk)	= β0	+	β1xijk	+	ηj	+	εk 

where the response variable (Yijk) is the decoy count (indices and known abundances) for 

the ith sample unit at the jth survey and kth observer, β0 and β1 are regression coefficients, 

and xijk is an indicator variable for whether the count type is an observer index or a 

known abundance.  Known abundance was used as the reference (dummy) category.  ηj 

and εk represent the random effects of survey and observer, respectively.  Given this 

parameterization, the ratio of the mean count index to mean known abundance (the I:A 

mean ratio) is estimated by exponentiating the β1 coefficient (eβ1).  The I:A mean ratio 

estimates the percent “visual error” of decoy counts from aerial imagery, where a eβ1 

value of 0.98, for example, indicates that mean count indices underestimated the true 

number of decoys by 2%.  The value of 0.98, then, is an estimate of detection probability 

based on Lancia et al. (2005) 

p = c N 

where p is the estimated probability of detection, c represents the repeated sampling of 

indices, and N is the true abundance.  I expanded the basic model structure to include two 

environmental covariates: habitat type and cloud cover.  Both of these covariates were 

treated as categorical predictors in the model, with habitat type having two levels (spoil 



 11 

island and cypress-tupelo swamp) and cloud cover having two levels (0–50% and 51–

100%).  Spoil island and 0–50% were used as reference (dummy) categories for habitat 

type and cloud cover, respectively.  I investigated the effect of these covariates on 

detectability by including a full interaction term among count type, habitat type, and 

cloud cover.  This expanded model has structure 

Yijk ~ Poisson(µijk) 

log(µijk) = β0 + β1xijk + β2yijk + β3zijk + β4xijkyijk + β5xijkzijk  

+ β6yijkzijk + β7xijkyijkzijk + ηj + εk 

where β2–7 are additional regression coefficients, yijk is a categorical variable for habitat 

type, and zijk is a categorical variable for cloud cover.  Given this expanded 

parameterization, I estimated the effect of habitat type on detectability by examining the 

coefficients β1 and β4, where eβ1+	β4 is the I:A mean ratio (p) for cypress-tupelo habitat.  

In a similar fashion, I estimated the effect of cloud cover on detectability by eβ1+	β5 and 

the interaction between habitat type and cloud cover by eβ1+ β4 + β5 + β7 .  Interaction effects 

can be viewed as representing differences in p among levels of the predictors.  It should 

be noted that the effect of habitat type was only included for models of heron decoys. 

GLMMs were built and analyzed in the lme4 package for program R (R Version 

3.4.0, www.r-project.org, accessed 4 August 2017).  In GLMMs, random effects are 

assumed to be normally distributed (Pinheiro and Bates 2000, Bolker et al. 2009).  I 

created diagnostic plots of random effects to test for normality by using the “qqmath” 

function in R package lattice.  In addition, generalized linear models need to be checked 

for inflated variance (i.e. over-dispersion).  Over-dispersion was assessed with the 

following equation: 
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c	= D df 

where c is the dispersion parameter, D is the residual deviance, and df is the residual 

degrees of freedom.  When c is roughly equal to 1, there is considered to be little to no 

over-dispersion apparent in the model (Burnham and Anderson 2002).  I tested for 

significant inflated variance by using a Pearson chi-squared (χ2) test (McCullagh and 

Nelder 1989). 

To examine variability among observer counts, the expanded model was tested 

against a reduced model without the random effect of observer, by likelihood ratio test 

(LRT; Bolker et al. 2009).  The LRT is a conservative test, so I halved the P-value 

(Pinheiro and Bates 2000).  I then ran a model selection analysis to determine the 

influence of habitat type and cloud cover on detectability.  I used the chosen global model 

(with or sans the observer random effect) to estimate 6 candidate models, which included 

all possible interactive effects between count type (xijk) and the environmental covariates, 

as well as a null model.  Global models for skimmer and tern decoys did not include the 

effect of habitat type, so only 3 candidate models were estimated.  I selected the model 

with the lowest AIC when all other models had a ∆AIC > 2.00 (Akaike 1974, Burnham 

and Anderson 2002).  I used AIC instead of AICc (corrected for small sample size) 

because AICc requires estimating the degrees of freedom (df), for which there is no 

standard method in GLMMs (Bolker et al. 2009).  If models were competing (∆AIC ≤ 

2.00), I chose the most parsimonious.  I calculated marginal and conditional R2 values for 

each model to assess goodness-of-fit (Nakagawa and Schielzeth 2013).  Marginal R2 is a 

measure of fit (i.e. the proportion of variance explained by the model) for fixed-effects, 

while conditional R2 assesses fit for the fixed and random effects combined (Nakagawa 
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and Schielzeth 2013).  Inference of fixed-effect predictors in GLMMs can be challenging, 

so I followed guidelines by Bolker et al. (2009).  I specified a Laplace approximation for 

estimating model parameters, and used bootstrapped confidence intervals and Wald Z-

tests to test hypotheses of the fixed-effects.  I established the cut-off for statistical 

significance (α = 0.033) using false discovery rate (FDR) to correct for multiple 

comparisons (Benjamini and Hochberg 1995).  I used the “bootMer” function in R 

package lme4 to get parametric bootstrapped (PB) 96.7% confidence intervals for each 

model parameter, in which 200 iterations were specified.  If 96.7% CIs did not include 1 

(i.e., imperfect detection), I reported the corresponding z- and P-values from the Wald Z-

test.  I obtained bias correction factors by inverting the appropriate model coefficients 

(1 p) and their corresponding CIs. 

I further examined observer accuracy and variation by calculating the mean 

percent error (Frederick et al. 2003) for each observer and decoy type by 

i	–	a a  × 100, where i is the observer index count and a is the known abundance.  

Due to high variability among and within observers, I investigated using the double-

sample method for estimating abundance and correcting for observer bias.  I selected two 

observers at random for each decoy type in each habitat, and calculated an abundance 

estimate for each image (quadrat as the sample unit).  Estimates were calculated using 

Chapman (1951) 

N = 
n1	+	1 n2	+	1

m +	1  – 1 

where n1 is observer 1, n2 is observer 2, and m is the number of decoys counted by both 

observers.  I compared double-sample estimates to the known density of each image by 

linear regression in program R, where Chapman estimates were modeled as the response 
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and known density as the predictor.  Quadratic relationships between the Chapman 

estimate and known density were tested against a linear-only model by LRT.  I tested null 

hypotheses that the slope and intercept were equal to 1 and 0, respectively, which is the 

expected outcome if the double-sample method estimated true abundance as group size 

increases.  I reported R2 values for models with a single explanatory variable and R2
adj for 

models that included both the quadratic and linear terms.  Model residuals were checked 

for normality and homoscedasticity with diagnostic plots in R.  Models did not violate 

any assumptions, so no data transformations were conducted. 

RESULTS 

I conducted 12 total UAS surveys at EFS and TRB.  Detection probability across all 

decoy types ranged between 54–109% for EFS surveys (n = 5), and 9–29% for TRB 

surveys (n = 7).  Observers occasionally overcounted or falsely detected decoys, thus 

allowing for a possible detection probability above 100%.  Canopy cover at nests in the 

TRB ranged between 36.87–99.09%, and cloud cover during all flights at both EFS and 

TRB ranged between 0–100%. 

Visibility bias 

     Black skimmer decoys.–At EFS, black skimmers (n = 60) were the only decoy type 

with a detection probability significantly lower than 1 (eβ = 0.54; PB, 96.7% CI [0.44, 

0.63]; Wald, z = –7.425, P ≤ 0.001; Table 1).  The effect of cloud cover approached 

significance (Wald, z = –1.93, P = 0.054), but following parametric bootstrap of CIs, it 

was not influential on the detectability of skimmer decoys (PB, 96.7% CI [0.21, 1.03]).  

The random effect of observer was influential on the total explained variance of the 

global model for skimmers (LRT, χ1
2

 = 2.59, P = 0.050).  The global model, which 



 15 

contained an interaction between count type and cloud cover, was not significantly over-

dispersed and seemed to fit the data well (c = 1.13; Pearson, χ54
2 = 52.5, P = 0.531; R2

m = 

0.56, R2
c = 0.83).  I selected the global model based on AIC score. 

     Tern decoys.–Detectability of tern decoys (n = 60), gleaned from the 2nd best 

competing model, was not significantly different from 1 (eβ = 1.02; PB, 96.7% CI [0.90, 

1.15]; Wald, z = 0.356, P = 0.722).  Fixed effects, including that of count type, seemingly 

had no influence on tern decoy detection since the null model was selected.  The random 

effect of survey explained 92% of the variance in the null model.  Candidate models for 

tern decoy detection did not include a random effect for observer (LRT, χ1
2 = 0, P = 

0.500).  The global model was under-dispersed (c = 0.19; Pearson, χ54
2 = 10.4, P = 

1.000), and so was the selected (null) model (Table 2).  This level of under-dispersion, in 

addition to an estimated detection probability close to 100%, suggests that there was little 

variation in the ability of observers to correctly detect and identify nearly all tern decoys.  

Furthermore, there was no statistical difference between known abundances and observer 

counts. 

     White-plumaged heron decoys.–Detectability of white-plumaged heron decoys (n = 

144) differed drastically between sites and levels of cloud cover.  At EFS, detectability 

was not different from 1 (eβ = 1.09; PB, 96.7% CI [0.89, 1.31]; Wald, z = 1.095, P = 

0.274), but decreased significantly by 71% at TRB (eβ = 0.29; PB, 96.7% CI [0.18, 0.46]; 

Wald, z = –9.652, P ≤ 0.001).  Additionally, when cloud cover was >50% at TRB, white-

plumaged heron decoys had a detection probability of only 9%.  However, cloud cover 

was seemingly not influential on their detectability at EFS (PB, 96.7% CI [0.60, 1.21]; 

Wald, z = –1.31, P = 0.190).  The random effect of observer was influential on the 
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explained variance of the global model for white-plumaged heron decoys (LRT, χ1
2 = 

3.99, P = 0.022).  The global model was selected based on AIC score, and seemed to fit 

the data well with little over-dispersion (Table 2). 

     Dark-plumaged heron decoys.–Detectability of dark-plumaged decoys (n = 144) 

differed between sites, but was not affected by cloud cover.  At EFS, detection 

probability was 95%, which was not significantly different from 1 (PB, 96.7% CI [0.79, 

1.18]; Wald, z = –0.746, P = 0.456).  However, detectability of dark-plumaged heron 

decoys decreased markedly by 84% at TRB (eβ = 0.11; PB, 96.7% CI [0.06, 0.18]; Wald, 

z = –13.47, P ≤ 0.001).  The random effect of observer had no influence on the variance 

of the global model (LRT, χ1
2 = 0, P = 0.499), so a reduced model was used to build 

candidates for selection.  The global model was slightly under-dispersed and fit the data 

(c = 0.70; Pearson, χ134
2 = 110.72, P = 0.938; R2

m = 0.68, R2
c = 0.92).  The selected 

model, based on AIC score, was similar in fit (Table 2) and included the interaction 

between count type and habitat. 

Observer error 

With few exceptions, observers tended to undercount rather than overcount.  93.3% of 

photograph counts for black skimmers (n = 30) were undercounts and 0.7% were 

overcounts.  For tern counts (n = 30), 46.7% were undercounts and 33.3% overcounts.  

Observers undercounted white-plumaged heron decoys more often in photographic 

quadrats at TRB than EFS (90% and 43.3%, respectively; n = 72).  Similarly, dark-

plumaged heron indices (n = 72) were undercounts in 88.1% of quadrats at TRB and 

46.7% of quadrats at EFS.  Overcounts of white- and dark-plumaged heron decoys, 

however, occurred 16.2% and 9.5% more often at EFS than at TRB.  There was 
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noticeable variation among and within observers with regard to count error (Figure 4).  

However, of the four detectability models, only black skimmer and white-plumaged 

heron detection differed significantly among observers (LRTskimmer, χ1
2 = 2.59, P = 0.050; 

LRTheron, χ1
2 = 3.99, P = 0.022).  Of the 1,986 total decoys detected by observers, 37 

(1.86%) of these were misidentifications of decoy type.  

 I used linear regression to determine how well double-sample abundance 

estimates predicted known abundance for each decoy type at each site.  At EFS, known 

densities of tern and heron decoys explained >84% of the variation in Chapman 

estimates, based on coefficients of determination (Figure 5).  Black skimmer photograph 

(n = 18) density, however, explained less variation in Chapman estimates (R2 = 0.67, 

F1,16 = 31.91, P ≤ 0.001) and the slope was significantly different from 1, suggesting that 

estimates were biased low (β1 = 0.66, t = 5.65, P ≤ 0.001, 95% CI [0.42, 0.91]).  

Although 98.9% of the variance was explained by known density (R2
adj = 0.99, F2,23 = 

1134, P ≤ 0.001), tern decoy abundance estimates (n = 26) were biased low (β1 = 0.82, t 

= 15.70, P ≤ 0.001, 95% CI [0.71, 0.92]).  Tern estimates had a quadratic relationship to 

known density (LRT, F1 = 6.34, P = 0.019), indicating that abundance was overestimated 

for smaller group sizes (Figure 5).  For white-plumaged heron estimates at EFS (n = 26), 

the slope and intercept were not different from 1 and 0, respectively (β0 = 0.003, t = 

0.032, P = 0.974, 95% CI [–0.18, 0.18]; β1 = 0.97, t = 32.13, P ≤ 0.001, 95% CI [0.91, 

1.03]).  Similarly, dark-plumaged herons (n = 28) at EFS were estimated without 

significant bias (β0 = 0.14, t = 0.612, P = 0.546, 95% CI [–0.34, 0.63]; β1 = 0.96, t = 

11.93, P ≤ 0.001, 95% CI [0.79, 1.12]). 
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 At TRB, Chapman estimates for both heron decoy types had poor accuracy and 

precision.  For white-plumaged decoy photographs (n = 30), slope and intercept was 

significantly different from 1 and 0 (β0 = 1.72, t = 4.29, P = 0.002, 95% CI [0.90, 2.55]; 

β1 = –0.51, t = –1.54, P = 0.135, 95% CI [–1.19, 0.17]), and most of the variation in 

Chapman estimates were unexplained by known density (R2
adj = 0.167, F2,27 = 3.90, P = 

0.032).  There was a quadratic relationship between estimates of white herons and known 

abundance, indicating that estimates were biased high for small group sizes (LRT, F1 = 

4.33, P = 0.047).  Estimates of dark-plumaged herons at TRB (n = 19) had the poorest 

prediction of known density, with only 3.75% of the variation in Chapman estimates 

being explained by known numbers (F1,17 = 0.66, P = 0.427).  Estimates were biased 

significantly low for dark heron decoys (β1 = 0.07, t = 0.814, P = 0.427, 95% CI [–0.11, 

0.24]). 

DISCUSSION 

I found that photographic counts of white herons, dark herons, and tern spp. on a dredge-

spoil island showed no indications of imperfect detection.  This result can be extrapolated 

to include two of the three focal species (gull-billed terns and plumage dimorphic reddish 

egrets) that nest on islands similar to EFS.  Although white decoys had a detection 

probability slightly greater than 100%, this error was not significant for either terns or 

herons.  Overcounting of conspicuous white-plumaged species has been a source of bias 

in previous studies as well, but this has typically been attributed to species 

misidentification (Green et al. 2008, Williams et al. 2008).  Coinciding with my own 

results from the island site, both Sardà-Palomera et al. (2012) and Chabot et al. (2015) 

found that counts of nesting waterbirds from imagery taken with UAS were highly 
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accurate when compared to ground counts.  Although observers were able to detect and 

correctly identify these 3 decoy types at EFS, it is unknown whether this can translate 

into actual waterbird species identification.  Dulava et al. (2015) recommended an image 

resolution of approximately 5 mm/pixel in order to correctly identify waterfowl, which 

can be achieved with a 12 mega-pixel camera at an altitude >46 m.  At a survey altitude 

of 61 m, the best resolution I obtained was approximately 1.7 cm/pixel, although focal 

length of the camera may not have been optimal for this height.  Black skimmer decoys 

had a detection probability significantly less than 100% and a bias correction factor that 

would require a doubling of raw count indices.  This result is surprising, given that black 

skimmers should be easier to detect due to their high-contrast plumage amidst a sand or 

shell nesting substrate.  Chabot and Bird (2012) found high variability in Canada goose 

(Branta canadensis) detection, but low variation with snow geese (Chen caerulscens), 

which they attributed to the high contrast of a white-plumaged bird on a darker 

background.  My results suggest that the high contrast of black skimmers does not make 

them easier to detect from imagery.  A possible explanation for this is that observers 

could not decipher between skimmer decoys and shadows.  High-visibility nesting 

species (such as geese in the arctic tundra), although typically easier to detect from the air 

than other species, are not exempt from visibility biases that can affect population trend 

estimates (Walter and Rusch 1997). 

 Detectability of both white- and dark-plumaged birds in the forested wetland was 

biased significantly low, which coincides with similar studies that have investigated the 

effects of canopy cover on waterbird detection (Frederick et al. 2003, Williams et al. 

2008, Pearse et al. 2008).  Although I did not specifically include canopy cover in 
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detectability models (due to increased model complexity), it can be assumed that the low 

detection of decoys when compared to the island site was mostly due to the visual 

occlusion of nests.  Due to logistics, I was unable to create large and numerous decoy 

“colonies,” a limitation that could potentially explain the low detection probability of 

heron decoys in the cypress-tupelo habitat.  Small aggregations of waterbirds, for 

example, decrease group detection, but large aggregations increase count error (Laursen 

et al. 2008, Pearse et al. 2008, Williams et al. 2008).  Decoys were almost always placed 

in nests not at the top of the canopy, which is where larger species like great blue herons 

choose to nest (Rodgers et al. 2005).  Thus, my results for cypress-tupelo habitat should 

be interpreted as if decoys were surrogates for small-to-medium sized ardeids that 

typically nest within or underneath the canopy, such as little blue herons, snowy egrets, 

and cattle egrets.  Due to the low (almost zero) probability of detection I estimated for 

these groups, visibility bias correction factors for decoys in canopied sites should be 

interpreted with caution.  I do not recommend using correction factors as a means to 

estimate actual colony counts since my colony aggregations were so small, and probably 

poorly reflect the nature of surveying colonies of moderate-to-large size.  They were 

included, rather, to show the increase in visibility bias associated with different levels of 

covariates.  I included cloud cover as a covariate in the models because I assumed that 

light level might influence detectability of decoy birds.  Cloud cover has influenced 

detection of sea birds via boat surveys (Dixon 1977) and waterfowl during ground-based 

counts (Pagano and Arnold 2009), but there is not much literature on its impact during 

aerial surveys or photographic counts.  I found that cloud cover had a significant negative 

impact on the detection of white-plumaged heron decoys, but only at the canopied 



 21 

wetland habitat.  This suggests that natural light may play a role in the detectability of 

species that nest within canopy or vegetated structure, but its effect is marginal for sites 

that allow for high visibility of nests.  Conversely, cloud cover had no effect on dark-

plumaged decoy bias at the canopied site.  This could potentially be explained by the fact 

that dark heron detectability was close to zero (11%) among all indices, which would 

make it difficult to detect changes in effect size.  Further testing of this environmental 

covariate with a larger aggregation of birds (or decoys as surrogates) could potentially 

reveal a greater magnitude of influence.  It is interesting that cloud cover approached 

significance for negatively influencing the detectability of black skimmers, although this 

may have occurred by chance given the wide variability in confidence intervals (21–

103%).  It is possible that the loss of shadows (due to increased cloud cover) negatively 

affected the detection of skimmers, which would coincide with my previous allusion that 

observers may have had trouble deciphering between decoys and shadows.  I would have 

liked to test additional environmental variables in this study, but opted for simplicity in 

the model structure given my methods for analysis.  Angle of the sun, for example, has a 

substantial influence on the detectability of whooping cranes (Grus americana) during 

aircraft surveys, where detection probability increases three-fold when the sun is at the 

observer’s back (Strobel and Butler 2014).  Even though photographic counts can 

potentially mitigate the effects of sun glint and survey azimuth, it is possible that 

shadows can obscure nests at canopied sites, or even increase the detection rate of birds 

with low-contrast to their environment. 

 Observer variability was only significant for the detectability of black skimmers 

and white-plumaged herons.  Frederick et al. (2003) found that count bias varied greatly 
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among experienced biologists when trying to estimate the number of white alfalfa seeds 

in an aerial survey simulation, but that error was reduced by more than half when 

colonies were counted from photographs.  My results suggest that, even though aerial 

photography via UAS may reduce bias in certain instances, these counts are not exempt 

from individual observer bias.  Sources of variation for individual observers is difficult to 

quantify (Frederick et al. 2003), and thus it may be useful for managers to correct for 

photographic count bias on an individual level.  It should be noted, however, that my 

results suggest a tendency for observers to undercount white- and dark-plumaged herons 

in canopied habitat and overcount in a higher-visibility dredge-spoil island, potentially 

due to observers feeling more confident in detecting decoys unobscured by vegetation.  

Results from the double-sample experiment provided some insight into observer error 

and variation, especially with regard to tern decoys (Figure 5 [B]).  In contrast to the 

almost perfect detection of terns that was estimated via mixed-effects modeling, a 

randomly chosen pair of observer counts provided biased estimates of density when using 

the formula by Chapman (1951).  This bias suggested that, at least for those two 

observers, smaller aggregations of terns (i.e. groups of 0–5) were regularly overcounted.  

It is possible that the inclusion of zeros in the dataset (due to using quadrat as the sample 

unit) caused this result, but nonetheless it speaks to the variability among observers.  

Another way of saying this, would be that capture probability (i.e. detection) was 

heterogeneous among observers, which caused Chapman estimations to perform poorly 

(Menkens and Anderson 1988).  My results for the double-sample experiment also reveal 

that estimates of abundance can still be heavily biased after correcting for observer error.  

Following observer error correction, estimates of black skimmer, white heron, and dark 
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heron decoys were still biased significantly lower than 100% detection.  This suggests 

that, at least for heron decoys at TRB, visual occlusion of nests was a stronger source of 

bias than that of individual observer.  The Chapman estimator did seem to alleviate some 

bias for skimmer counts (0.54 detection probability compared to a Chapman regression 

slope of 0.66). 

 Overall, my results suggest that imagery taken with a UAS can be used to get 

unbiased abundance estimates for herons and terns that nest in high-visibility habitats like 

dredge-spoil islands.  Unfortunately, it seems that photographic counts provide biased 

estimates for black skimmers and herons that nest in cypress-tupelo habitat.  Observers 

varied in their ability to detect some decoy types, so it is important that bias-correcting 

factors be estimated at an individual level. 

MANAGEMENT IMPLICATIONS 

Unmanned aerial systems (UAS) are becoming increasingly popular among biologists 

and managers as a survey tool.  Their use, while beneficial in many ways, requires further 

study due to the importance of accurate and precise abundance estimates at both regional 

and global scales.  My results illustrate the need to employ adaptive management 

schemes when surveying colonial waterbirds from unmanned aircraft.  In areas where 

nest visibility is occluded, for example, expect that photographic counts of wading birds 

will be heavily biased low.  This could be remedied by supplementing UAS surveys with 

a perimeter or ground-based count of the colony, or even by using double-counts from 

ground observer and photograph observer.  To improve the accuracy of photographic 

counts, I suggest conducting UAS surveys on clear and sunny days, automating flight 

patterns, and using the double-sample method when possible.  In general, UAS show 
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promise as a survey tool for species that nest in high-visibility habitats.  I feel that their 

application can greatly benefit survey regimes, especially when terrain is difficult to 

traverse or when ground counts cause excess disturbance. 
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II.  DISTURBANCE TO COLONIAL WATERBIRDS CAUSED BY UNMANNED 

AIRCRAFT SURVEYS 

Colonial waterbirds are notably sensitive to human disturbance, in part because of their 

unique breeding biology and nesting behavior.  They congregate in groups during the 

breeding season to nest, such that a single disturbance event during this period can have 

negative impacts on multiple individual birds.  This has been a bane to waterbird 

biologists, given the importance of conducting long-term monitoring programs (Wiens et 

al. 1986, Temple and Wiens 1989, Coulter and Frederick 1997, Kingsford 1999).  Nisbet 

(2000) defined disturbance as any human activity that alters the behavior or physiology 

of one or more individuals of a breeding colony.  This altered state can be elicited by 

many different forms of intrusion, including that of vehicles, recreationists, and 

researchers.  Thus, monitoring schemes that mitigate the negative impacts of disturbance 

should be prioritized.  Breeding waterbirds have historically been surveyed using on-the-

ground bird counts, manned aircraft, or a combination of the two. 

 Investigator intrusions are those that involve walking near or through a nesting 

colony.  Ground counts are just one form of investigator intrusion, which involves 

walking within or around a breeding site and counting nests to get an estimate of adult 

pairs.  While typically regarded as the most accurate surveying technique, ground counts 

can cause significant disturbance (Kushlan 1979, Green et al. 2008).  Investigator 

intrusions cause waterbirds to flush, which can lead to nest abandonment, greater 

exposure to predation, nest failure from exposure to the elements, and spilled nest 

contents (Kury and Gochfeld 1975, Anderson and Keith 1980, Burger and Gochfeld 

1983).  There is considerable variation among species with how adverse effects of 
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disturbances are manifested.  Gulls, terns, skimmers, and alcids, for example, tend to 

have lowered reproductive success following investigator disturbance (Gillett et al. 1975, 

Anderson and Keith 1980, Burger 1981, Safina and Burger 1983, Nisbet 2000).  Yet, 

Goering and Cherry (1971) found that investigator disturbance did not adversely affect 

productivity in a mixed-species heronry.  Even if a breeding colony is initially tolerant of 

human intrusion, nests are more vulnerable to predation by gulls, corvids, and other 

opportunistic foragers (Tremblay and Ellison 1979, Carney and Sydeman 1999). 

The magnitude of adverse effects is likely dependent on specific survey 

methodology – entering a heronry to count nests is presumably more detrimental than 

establishing a buffer zone to count from the perimeter (Burger et al. 1995).  Frequency of 

visits can be a causative factor of disturbance as well, with some species being more 

sensitive to the occurrence of intrusions.  Increased frequency of researcher visits caused 

nest abandonment of newly constructed nests for black-crowned night herons (Nycticorax 

nycticorax) in Québec, Canada, but did not hinder the reproductive success of tricolored 

herons (Egretta tricolor) in the Florida everglades (Tremblay and Ellison 1979, Frederick 

and Collopy 1989).  In an extreme case, repeated nest checks of an Adélie penguin 

(Pygoscelis adeliae) colony decreased hatching success by 35% and chick survival by 

72% (Giese 1996).  In addition to the deleterious effects, investigator intrusions (e.g. 

ground counts) come with their own set of logistical constraints.  They are time-

consuming, laborious, costly, and hardly feasible for colonies of large size and scope. 

Aerial surveys, an alternative to ground monitoring, typically cause less 

disturbance to nesting waterbirds.  Kushlan (1979) concluded that fixed-wing aircraft and 

helicopter overflights did not disturb a heronry because birds returned to the nest within 5 



 27 

minutes of leaving.  In 90% of observations during flights as low as 60 m, birds either 

had no reaction or merely looked up.  Vigilance, however, is still considered to be a 

behavioral manifestation of disturbance (Nisbet 2000).  It is common for waterbirds to 

look up, scan more, or remain vigilant during aircraft overflights (Williams et al. 2007, 

DeRose-Wilson et al. 2015).  Increased vigilance does not necessarily cause a direct 

negative impact, but even this seemingly innocuous response to stimuli can divert time 

and energy away from activities that are needed to increase individual fitness (Gutzwiller 

et al. 1994, Verhulst and Oosterbeek 2001).  Some waterbird species (e.g. least tern 

[Sternula antillarum], common tern [Sterna hirundo], gull-billed tern [Gelochelidon 

nilotica], and black skimmer [Rynchops niger]) do not react noticeably to either civilian 

or military aircraft, and thus overflights do not detract from incubation behavior (Hillman 

et al. 2015).  This is not always the case, as Adélie penguins are more prone to abandon 

nests after helicopter and fixed-wing aircraft surveys (Culik et al. 1990). 

Since traditional survey methodology is not without its drawbacks, and there is 

lack of consensus over which method is best, new survey techniques are frequently tested 

in the field.  Unmanned aerial systems (UAS) have recently garnered attention in regards 

to wildlife surveying.  In previous studies, they have been used to census large colonies 

of common terns (Chabot et al. 2015), detect roe deer (Capreolus capreolus) fawns in 

meadows with a thermal camera (Israel 2011), monitor breeding pairs of black-headed 

gulls (Chroicocephalus ridibundus, Sardá-palomera et al. 2012), and monitor the nesting 

status of hooded crows (Corvus cornix, Weissensteiner et al. 2015).  Unmanned aircraft 

have a few key benefits that make this new technology appealing to wildlife researchers, 

such as suitability for fine spatial resolution (Bakó et al. 2014), comparable coverage to 
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traditional aerial surveys (Bakó et al. 2014), researcher safety, and ability to easily switch 

out sensors or payloads (Watts et al. 2010).  Perhaps the most important potential benefit 

of using UAS for surveying waterbirds is the reduction of disturbance when compared to 

other survey methods.  Carney and Sydeman (1999) proposed that smaller and quieter 

aircraft do not disturb colonially-nesting waterbirds as much, and this has been touched 

upon in subsequent publications concerning UAS (Jones et al. 2006, Chabot et al. 2015).  

Vas et al. (2015) and Dulava et al. (2015) are the only peer-reviewed publications to date 

that have specifically investigated waterbird disturbance caused by UAS, but neither 

study focused on the disturbance of waterbirds during the nesting season. 

Due to the recent popularity and availability of UAS among researchers and 

recreationists, there is a clear need to study the ramifications of their use.  Even though 

the technology is still in its infancy, the FAA forecasts that hobbyist UAS sales will 

likely more than triple over the next 5 years, from 1.1 million units in 2016 to over 3.5 

million units by 2021 (Lukacs and Bhadra 2017).  Commercial use of unmanned aircraft 

is a bourgeoning industry as well, with their use already in the fields of agriculture, 

photography, construction, real estate, delivery services, and utility inspections.  The 

commercial sector of unmanned aircraft is expected to grow tenfold by 2021, from 

42,000 units in 2016 to 420,000 (Lukacs and Bhadra 2017).  The speed at which UAS 

technology has grown presents a problem for regulatory agencies, including those that 

deal with wildlife-related restrictions (Harrington 2015).  Carney and Sydeman (1999) 

make note of 3 main categories of human disturbance: investigator, ecotourist (e.g. 

wildlife photography), and recreationist (e.g. beachgoers, anglers).  Unmanned aircraft 
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currently fit into all 3 of these categories, in addition to the potential impact caused by the 

commercial sector, which highlights the concern for proper protocols and regulations.  

 My overarching research objective was to evaluate the potential disturbance 

caused by unmanned aircraft when surveying nesting colonial waterbirds.  Specifically, I 

aimed to (1) compare behavioral effects caused by two types of UAS (a fixed-wing 

platform with enhanced capability for payload attachment, and an off-the-shelf 

quadcopter consumer grade model), (2) test the behavioral response for a variety of 

survey altitudes (at which fine-scale resolution could be achieved), and (3) evaluate 

disturbance for a host of waterbird species that nest in Texas, including species that are of 

priority concern to the Gulf Coast Joint Venture. 

STUDY AREA 

There are four colonial nesting waterbird species currently listed as priority within the 

Monitoring, Evaluation, and Research Team (MERT) of the Gulf Coast Joint Venture 

(GCJV): reddish egret (Egretta rufescens), black skimmer (Rynchops niger), gull-billed 

tern (Gelochelidon nilotica), and little blue heron (Egretta caerulea).  I selected nesting 

sites in Texas a priori for inclusion of these 4 species.  The GCJV is one of 18 joint 

ventures in the continental US, and its coverage spans coastlines in Texas, Louisiana, 

Alabama, and Mississippi (Figure 1).  Due to variability in nesting strata among these 

species, it was necessary to choose study sites in two distinct regions of Texas: coastal 

islands in the lower Laguna Madre and forested wetlands in the lower Trinity River 

basin.  I collected data at four waterbird nesting colonies during the nesting seasons 

occurring within May–June of 2016–2017.  Three of these colonies were mixed-species 
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(Green Island, East Flat Spoil, and a site on the lower Trinity River in 2016), and one was 

single-species (Trinity River site in 2017).  

Lower Laguna Madre 

The Laguna Madre of Texas has a subhumid-to-semiarid subtropical climate, with 

extreme variability in precipitation (Fulbright et al. 1990).  Average rainfall is between 

2.6–14 cm per month, with a minimum and maximum recorded annual precipitation of 

13.7 and 50.3 cm, respectively (Tunnel 2002).  Geographically, the Laguna Madre is a 

long and narrow hypersaline coastal lagoon that extends roughly 185 km from Corpus 

Christi Bay to the southern tip of the state (Tunnel 2002).  The lagoon is split into two 

subunits – upper and lower – by a land-bridge that connects to the barrier island spit 

known as Padre Island (Tunnel 2002).  I studied coastal waterbird colonies at Green 

Island and East Flat Spoil island, situated within Cameron and Kenedy Counties, 

respectively (Figure 6).  Both sites are managed by Texas Audubon. 

Green Island (GI), with an area of roughly 12 ha, is one of the few remaining 

naturally occurring islands on the Texas coastline.  It includes one of the largest breeding 

sites for the reddish egret and roseate spoonbill (Platelea ajaja), and is a popular hotspot 

for naturalists to see neotropical migrants and a host of breeding waterbirds (Pemberton 

1922).  Historically, the island supported ≥1,000 breeding pairs of reddish egrets (Wilson 

et al. 2012).  Support of an immense breeding colony is likely due to the island’s 

location, size, and dense vegetative structure.  GI is thick with native Tamaulipan 

thornscrub (e.g. huisache [Acacia farnesiana], honey mesquite [Prosopis glandulosa], 

and Texas ebony [Ebenopsis ebano]), shrubs (e.g. snake-eyes [Phaulothamnus 

spinescens]), and cacti (e.g. ladyfinger cactus [Echinocereus pentalophus] and Opuntia 
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spp.).  At GI, I collected data on six wading bird species: reddish egret, roseate spoonbill, 

black-crowned night heron, white ibis (Eudocimus albus), tricolored heron (Egretta 

tricolor), and great blue heron (Ardea herodias).  Tricolored herons and black-crowned 

night herons were not often seen, so they were excluded from analysis. 

East Flat Spoil (EFS) is a 1.2 ha dredge-spoil island situated just north of the 

Mansfield tidal inlet.  Vegetation on the island is mostly comprised of low-lying, highly 

saline-tolerant species, like sea oxeye (Borrichia frutescens), shoregrass (Monanthochloe 

littoralis), sea purslane (Sesuvium portulacastrum), and turtleweed (Batis maritima).  The 

mix of vegetated area and bare ground attracts a diverse set of ground-nesting waterbirds 

to the island every year.  At EFS I collected data on 5 waterbird species: reddish egret, 

black skimmer, great blue heron, royal tern (Thalasseus maximus), and laughing gull 

(Leucophaeus atricilla).  I also collected data on small terns that could not be positively 

identified during sample periods, but were assumed to be a mix of gull-billed terns, 

Forster’s terns (Sterna forsteri), and sandwich terns (Thalasseus sandivencis). 

Lower Trinity River Basin 

The Trinity River basin (TRB) runs from North Texas – its headwaters just west of Fort 

Worth – all the way to the Galveston Bay system on the Gulf of Mexico (Dahm et al. 

2011).  The lower portion of the basin has a humid subtropical climate, and is 

predominantly forested (Dahm et al. 2011).  Cypress-lined bayous in the lower Trinity 

watershed provide ideal habitat for canopy-nesting waterbird species, including the little 

blue heron.  Due to restrictions on UAS operation at the time of this study, I was unable 

to survey colonies at Trinity River NWR proper, and instead utilized colonies on Josie 

Lake adjacent to refuge property (Figure 6).  The area is dominated by bald cypress trees 
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(Taxodium ascendens), tupelo (Nyssa spp.), button bush (Cephalanthus occidentalis), and 

a diversity of bottomland hardwood species.   

 Many waterbird species use the lower TRB to nest and forage.  However, at the 

time of my study I was only able to gather behavioral data on four species in this region.  

One of my target species, the little blue heron, unfortunately did not nest at any colony 

sites in my study area like they had in previous years.  In 2016, I collected data on two 

species: great egret (Ardea alba) and snowy egret (Egretta thula).  Anhingas (Anhinga 

anhinga) and cattle egrets (Bubulcus ibis) also nested in this colony, however very few 

were observed during sample periods so were omitted from analyses.  In 2017, I collected 

data on a great egret colony that occupied the same site as the year prior. 

METHODS 

UAS surveys were conducted between 0900 and 1600 hours on clear to partly cloudy 

days, with wind conditions ranging between 2.5–23.1 km/hour.  I flew surveys parallel to 

the ground in a back-and-forth transect pattern, and did not approach birds from any other 

angle (Vas et al. 2015).  Strip transects allow for a series of overlapping photos to be 

captured, which can later be processed into a mosaicked, georeferenced orthophoto 

(Bolstad 2016).  A single georeferenced aerial photo is what managers would likely use 

to estimate the number of breeding adult birds in a colony, and I wanted my methods to 

reflect a workable model for using unmanned aircraft to survey waterbirds.  I tested two 

UAS platforms – a fixed-wing craft and a consumer-grade quadcopter – and flew a range 

of altitudes between them.  Length of surveys (for both UAS platforms) ranged between 

approximately 2–7 minutes, which was dependent on survey altitude and size of the site.   
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The fixed-wing, dubbed the Minion 2.0 (AggieAir, Utah State University, Logan, 

UT; Figure 3), is a lightweight (10.2 kg) platform with a 60-minute battery life and 

cruising speed of 80 km/hour.  It is launched via pneumatic rail, is capable of fully-

autonomous flight, and requires a crew of at least 3 on-the-ground technicians for safe 

operation.  Minion flights were pre-programmed the day prior to surveys.  The Minion is 

equipped with a 12 mega-pixel RGB camera (Lumenera Lt1265r, Lumenera, Ottawa, 

ON) and thermal infrared camera (ICI 9640, Infrared Cameras Inc., Beaumont, TX), 

although only the RGB camera was used for this study.  It was launched 8 km away from 

the nesting colony, brought to altitude, and flown 300 m above ground (AGL) for the first 

survey.  After a full survey at 300 m, it was programmed to drop in altitude away from 

the colony to 200 m AGL and complete another survey.  I selected these altitudes based 

on recommendations by the camera manufacturer and the developers of the platform, to 

obtain optimal resolution for imagery capture (4 cm/pixel when at 200 m AGL). 

I also flew surveys with a consumer-grade quadcopter UAS (Phantom 3 and 

Phantom 4, DJI, Shenzhen, Guangdong, China) that came equipped with a 12.4 mega-

pixel RGB camera.  The Phantom is operated by a single technician, can be launched 

from almost any surface, and is flown via a minimalist ground station (remote control and 

iPad device [Apple Inc., Cupertino, CA]).  Recent software packages allow for 

autonomous flight (Ground Station Pro, DJI), but only one survey in 2017 was conducted 

using such software.  Most surveys were flown manually, but still in back-and-forth 

transects.  I used the same flight procedure for the Phantom as for the Minion, except 

with a series of decreasing survey altitudes of 122, 91, 61, and 46 m AGL.  I chose these 

altitudes because it was expected that within this range I could get optimal resolution of 
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aerial photographs.  The Phantom was brought to altitude ³250 m away from the nesting 

colony.  Essentially, I wanted to compare the effect of each platform when flown at their 

respective optimal survey altitudes.   

Behavioral observations 

Behavioral observations can be used to quantify an animal’s biological response to 

stimuli (Altmann 1974, Clemmons and Buchholz 1997).  I placed 2–3 video cameras at 

the periphery of each nesting colony, with the exception of Green Island, to capture any 

behavioral changes that might occur during UAS overflights.  At GI, I positioned 

cameras in an established bird blind.  I placed cameras in areas with an open field of view 

and selected a random azimuth for adjusting position of the camera lens.  If camera frame 

happened to fall outside of the nesting colony or within the same subset of birds that 

another camera was recording, I selected a different azimuth.  It was assumed that camera 

setups (i.e. tripods) would not interfere with the behavior of nesting waterbirds, so they 

were placed 50–100 m away from the colony.  Set-back distances vary among waterbird 

species (Erwin et al. 1989), so all researchers retreated to ≥250 m away from the colony 

after video cameras were set to record.  I used a laser range finder to confirm distance 

(Nikon Aculon IK-714141, Nikon Inc., Tokyo, Japan).  I should not have created excess 

disturbance to the birds, as the farthest set-back distance found in the literature was 178 

m for black skimmers (Erwin et al. 1989).  I waited ≥20 minutes following video camera 

setup to commence surveys, which I assumed would allow birds to get back to a baseline 

level of disturbance prior to UAS surveys. 

 Scan sampling, an instantaneous behavioral observation of a group of animals, 

captures the behavior of the group by placing each potential behavior of an individual in 
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discrete categories (Altmann 1974).  I chose 5 behavioral categories a priori to assess the 

extent of disturbance caused by UAS, (1) no reaction, (2) vigilance, (3) wing flapping, (4) 

moving away from the nest, and (5) flush.  These categories are similar to what Giese and 

Riddle (1999) and Vas et al. (2015) used when measuring behavioral responses in 

emperor penguins (Aptenodytes forsteri) and 3 wader spp., respectively.  Since examining 

the minutia of waterbird nesting behavior was not the aim of this study, these categories 

were intentionally kept broad.  One caveat to category 5 is that I tallied birds flying 

through camera frame as well as flushing from a nest within frame.  I reasoned that if 

UAS surveys caused more birds to flush, there should be more birds flying within camera 

frame during those sample periods.  Video playback was observed without sound and 

without the aircraft in frame, so as not to bias observations when a flyover occurred (i.e., 

the observer was not privy to the occurrence of a survey).  One observer gathered data 

from video playback, to eliminate any variation that would arise among multiple 

observers.  Every minute, the observer slowed down video playback to one-third speed 

and tallied the behavior and species of each bird in frame for a total of 4 seconds.  If a 

bird exhibited more than one behavior during the sample period, the more severe 

behavioral reaction was recorded (e.g. if a bird was vigilant and then flushed, “flushed” 

was recorded). 

Statistical analysis 

All analyses were done in program R (R Version 3.4.0, www.r-project.org, accessed 14 

June 2017).  For each survey, I included sample periods that spanned 5 minutes before 

and after UAS overflights.  The effect of survey altitude on colony behavior could then 

be compared to a baseline (control), similar to methods used by Hillman et al. (2015).  
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Flight altitude was treated as a categorical variable with 8 levels, within which I included 

two additional levels representing pre- and post-flight sample periods.  I used the pre-

flight period as a reference (dummy variable) category to compare with the other 

treatment levels.  I only used experimental sample periods in which the aircraft was 

overhead of the colony; all other observations were omitted from analysis.  The 

coloniality of nesting waterbirds is known to have anti-predator advantages, so it stands 

to reason that birds often react to nearby conspecifics or heterospecifics (Rodgers and 

Smith 1995).  Thus, instead of analyzing behavior of focal individuals, I assessed the 

magnitude of behavioral changes within a colony.  I used the aforementioned categories 

of disturbance (2–5) that were tallied during each sample period as response variables, 

but only built 2 sets of models because of the rareness of some behaviors.  Vigilance and 

flush behaviors were modeled, and the rest were included as summary statistics.  Tallies 

were pooled between cameras, since there were 2–3 cameras used per colony.  Logistical 

constraints prevented us from using 3 cameras on certain colonies (i.e. vegetation 

obstructing view). 

Because of the likely variation between mixed-species waterbird colonies, I used 

a repeated measures study design where “colony” was considered a random effect.  I used 

generalized linear mixed models (GLMMs) with a Poisson error distribution and log-link 

function to accommodate a repeated measures design and count-metric response variable.  

Models with a negative binomial error distribution were also considered, but were not 

used because over-dispersion was not present in the Poisson models.  GLMMs were built 

and analyzed in the lme4 package for program R.  In GLMMs, random effects are 

assumed to be normally distributed (Pinheiro and Bates 2000, Bolker et al. 2009).  I 
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created diagnostic plots of random effects to test for normality by using the “qqmath” 

function in R package lattice. In addition, generalized linear models need to be checked 

for inflated variance (i.e. over-dispersion).  Over-dispersion was assessed with the 

following equation: 

c	= D df 

where c is the dispersion parameter, D is the residual deviance, and df is the residual 

degrees of freedom.  When c is roughly equal to 1, there is considered to be little to no 

over-dispersion apparent in the model (Burnham and Anderson 2002).  I tested for 

significant inflated variance by using a Pearson chi-squared (χ2) test (McCullagh and 

Nelder 1989).  Because samples were taken over a period of time (every minute), I tested 

for temporal autocorrelation of all selected models.  I used the “acf” function in R 

package stats to create diagnostic plots of the Pearson correlation coefficient (ρ), and if 

all lag periods were not significant (i.e. within 95% CIs) I considered observations to be 

independent (Venables and Ripley 2002).  Even so, I included a fixed-effect predictor for 

lag 1 autocorrelation in my global models, which was just each response observation 

lagged by 1. 

 I built a full model for each response variable (vigilance and flush) with structure: 

Yij ~ Poisson(µij) 

log(µij) = β0 + β1wij + β2xij + β3yij + β4zij + ηj	+	ηij	  

Where Yij is the count of behaviors observed, µij is the conditional mean, and β1–4 are 

fixed-effect coefficients for the ith sample period at the jth colony site.  Model predictors 

include wij = treatment levels, xij = platform, yij = colony size, and zij = lag 1.  The 

random effect of colony (η) has random terms for intercept and slope.  I chose to include 
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colony size as a predictor in the model due to previous research that suggests colony size 

influences disturbance of nesting birds (Rodgers and Smith 1995).  I used the total 

number of birds within camera frame as a surrogate for colony size. 

The full model was tested against a reduced random intercepts-only model by 

likelihood ratio test (LRT; Bolker et al. 2009).  The LRT is a conservative test, so I 

halved the P-value (Pinheiro and Bates 2000).  I then used that full or reduced model to 

estimate 16 candidates for selection.  I built candidate models with all possible 

combinations of the above fixed-effect predictors, including a null model, and selected 

the best model in this set with the lowest AIC when all other models had a ∆AIC > 2.00 

(Akaike 1974, Burnham and Anderson 2002).  I used AIC instead of AICc (corrected for 

small sample size) because AICc requires estimating the degrees of freedom (df), for 

which there is no standard method in GLMMs (Bolker et al. 2009).  If models were 

competing (∆AIC ≤ 2.00), I chose either the most parsimonious (i.e. with the fewest 

fixed-effect predictors), or a model with nonsignificant temporal autocorrelation and 

over-dispersion.  I calculated marginal and conditional R2 values for each model to assess 

goodness-of-fit (Nakagawa and Schielzeth 2013).  Marginal R2 is a measure of fit (i.e. the 

proportion of variance explained by the model) for fixed-effects, while conditional R2 

assesses fit for the fixed and random effects combined (Nakagawa and Schielzeth 2013).  

Inference of fixed-effect predictors in GLMMs can be challenging, so I followed 

guidelines by Bolker et al. (2009).  I specified a Laplace approximation for estimating 

model parameters, and used bootstrapped confidence intervals and Wald Z-tests to test 

hypotheses of the fixed-effects.  I established the cut-off for statistical significance (α = 

0.033) using false discovery rate (FDR) to correct for multiple comparisons (Benjamini 
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and Hochberg 1995).  I used the function “bootMer” in R package lme4 to get parametric 

bootstrapped (PB) 96.7% confidence intervals for each model parameter, in which 200 

iterations were specified.  If confidence intervals did not include 0, I deemed the 

parameter to have significant influence and reported z- and P-values from Wald-Z tests.  

To determine the influence of my predictors, I exponentiated the model coefficients, 

however, the exponentiated model coefficients are the influence of a predictor given all 

other parameters in the model are held constant, including random effects. 

RESULTS 

I had a total of n = 209 sample observations for 9 UAS overflights.  Only 1 successful 

Minion flight was conducted (at EFS), with 8 flights from the Phantom quadcopter.  Total 

number of birds in camera frame ranged from 18–139, and the number displaying a 

behavioral response ranged from 0–29.  There were no “dread” flights exhibited by 

nesting birds during UAS surveys. “Dreads” are when all or most individuals in a colony 

flush from the nest, circle, and then land (Palmer 1941, Erwin 1989).  For species pooled 

together, across all sample periods, and as a proportion of total birds in camera frame, a 

mean of 5.7% displayed vigilance, 0.7% walked off the nest, 2.4% flapped their wings, 

7.5% flushed, and 16.4% displayed 1 of the 4 behavioral responses.  It should be noted, 

however, that the low percentage of birds that walked off nest was likely due to this 

behavior being rare among herons.  Each species reacted differently to UAS flights in 

terms of behavioral reactions, with occasionally a noticeable positive trend in the 

magnitude of such reactions when decreasing survey altitudes (Figure 8–10).  For 

example, the proportion of laughing gulls that flushed appeared to increase as UAS 

surveys decreased in altitude (Figure 9 [D]).  And yet, other species like great blue herons 



 40 

did not exhibit flushing behavior often during any sample periods, but were generally 

more vigilant (Figure 8 [A, D]). 

Vigilance behavior 

My global model for vigilance (contained all 4 fixed predictors) included both random 

slopes and intercepts terms (LRT, χ2
2 = 4.88, P = 0.043).  It had low over-dispersion and 

seemed to fit the data well (c	=1.24; Pearson, χ195
2 = 205.66, P = 0.286).  Of my 16 

candidates based on the global model, a selection analysis yielded two competing models 

(∆AIC ≤ 2.00) for estimating the number of vigilant waterbirds (Table 3).  From these 

two I chose the most parsimonious, which included the predictors of treatment, total 

number of birds in camera frame, and lag 1.  The chosen model had nonsignificant over-

dispersion (Pearson, χ196
2 = 206.11, P = 0.296), with 51% of the variance explained by 

the fixed and random effects combined and 37% accounted for by the fixed effects alone.  

There was also evidence of variation among nesting colonies (SDintercept = 0.20, SDslope = 

0.24), but the magnitude of influence from some of the fixed effects outweighed this 

variation (Table 4).  My selected model did not have significant temporal autocorrelation 

(Pearson correlation coefficient, ρlag1 = 0.09). 

 Treatment levels were compared against a baseline control (the pre-flight period).  

Both of the Minion fixed-wing treatments had similar effects, with 18% decreased 

vigilance for 300 m and 7% decreased vigilance for 200 m.  Even though there was 

decreased vigilance during these periods when compared to the baseline, the influence 

was not significant for 300 or 200 m (Table 4).  For overflights with the Phantom 

quadcopter, there were marked differences in the magnitude of vigilance when compared 

to the pre-flight period.  Surveys at 122 m had a 43% increase in vigilant behavior, 
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however this increase was not significant following the FDR cutoff for α (PB, 96.7% CI 

[–0.01, 0.72]; Wald, z = 2.03, P = 0.042).  Quadcopter surveys at 91, 61, and 46 m all had 

a significant positive influence on waterbird vigilance when compared to the baseline 

control.  There was a 72% rate of increase in vigilance for 91 m surveys, a 119% increase 

for 61 m, and a 118% increase for 46 m (Table 4).  The post-flight period was also 

significantly different from the baseline, with a 53% increase of vigilance (PB, 96.7% CI 

[0.21, 0.80]; Wald, z = 2.692, P = 0.007). 

Lag 1 had a significant positive influence on vigilance by 5% for every one unit 

change, but visual inspection of diagnostic plots showed nonsignificant temporal 

autocorrelation in the model, so sample periods were assumed independent of one 

another.  Flush behavior increased by 1% for every one unit change in group size within 

camera frame. 

Flushing behavior 

The global model for flush reactions again contained the four predictor variables, but 

unlike the model for vigilance, was a reduced model with a random intercept-only term 

(LRT, χ2
2 = 0.36, P = 0.42).  It was slightly under-dispersed, but not significant enough to 

warrant concern (c	= 0.80; Pearson, χ197
2 = 166.65, P = 0.943).  I had four competing 

models, and selected the most parsimonious with nonsignificant temporal autocorrelation 

(Pearson correlation coefficient, ρlag1 = 0.10; Table 3).  Two of the four competing 

models did have temporal autocorrelation (P < 0.05), so it was assumed that sample 

periods in those model fits were not independent.  Fixed effects of lag 1 and total birds in 

frame were the only predictors included in the chosen model.  Like the global model, it 

was under-dispersed, but not significantly so (Pearson, χ205
2 = 174.26, P = 0.942).  Only 
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5.5% of the variance was explained by the fixed effects, but 89.7% of the variance was 

explained by fixed and random effects combined.  This indicated that the random effect 

of colony was highly influential on the magnitude of waterbird flushing behavior 

(SDintercept = 1.97, Figure 11). 

 Lag 1 did not have a significant effect on waterbird flushing behavior (PB, 96.7% 

CI [–0.40, 0.36]; Wald, z = 0.81, P = 0.417), and neither did the total number of birds in 

camera frame following the bootstrap of confidence intervals (PB, 96.7% CI [–0.74, 

1.18]).  Treatment was not included in any of the competing models, suggesting that 

survey altitude had no effect on flush behavior.  For the second-best model without 

significant temporal autocorrelation (Table 5), platform type increased flushing behavior 

by 16% when birds were subjected to the Phantom UAS (eβ = 1.16), but this effect was 

insignificant (PB, 96.7% CI [–0.84, 0.88]; Wald, z = 1.61, P = 0.108). 

DISCUSSION 

My research objectives were to (1) compare the influence of two UAS platforms on 

waterbird behavior, (2) test several altitudes between platforms, and (3) survey mixed-

species colonies in Texas.  For objective 1, I found that one platform influenced vigilant 

behavioral reactions while the other did not.  Both survey altitudes flown with the Minion 

had marginal effects on vigilance, while 3 of the 4 survey altitudes flown with the 

Phantom increased vigilance significantly.  Previous research suggests that smaller 

aircraft may mitigate behavioral responses and their effect thereof (Carney and Sydeman 

1999, Mulero-Pázmány et al. 2017).  This was not the case in my study, but this 

discrepancy is likely due to the influence of survey altitude.  The Minion, although a 

larger platform, is hardly detectable from 300 and 200 m, while the Phantom could be 
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easily heard and seen from 122 m.  Carney and Sydeman (1999) also make note of noise 

being a possible causative factor in disturbance.  At least for military overflights and 

manned aircraft surveys, fixed-wing aircraft evoke less of a behavioral response than 

rotary wing craft in most cases (Culik et al. 1990, Plumpton 2006, Carney and Sydeman 

1999).  This could be true for UAS as well, but the cause of this discrepancy has not been 

tested for unmanned aircraft. 

 Flush behavior, however, was not influenced by either platform.  In fact, the 

magnitude of flush behavior was largely determined by colony, as most of the variance in 

my model was explained by the random effect.  The dissimilarity between TRB 2017 and 

the other colonies should not be understated, because it could have greatly influenced 

model selection and inclusion of parameters.  TRB 2017 only had 24 adult great egrets 

nesting at the time of surveys, with flushing birds captured on video twice.  This is vastly 

different from both GI and EFS, which had an estimated >1,000 nesting birds at the time 

of surveys.  Still, there was no significant effect of platform on flush behavior, which is 

promising.  Sardà-Palomera et al. (2012) found similar results for black-headed gull 

(Chroicocephalus ridibundus) surveys at 30–40 m.  Surveys that are conducted below 30 

m, however, can cause nonbreeding waterbirds to flush from their roost (Dulava et al. 

2015).  Flushing from the nest during breeding season can spell disaster for waterbirds, as 

dense colonies are more prone to predation (Becker 1995, Brunton 1999).  Exposed nest 

contents are vulnerable to predators and ambient temperature, increasing the likelihood of 

failure and abandonment (Kury and Gochfeld 1975, Anderson and Keith 1980, Burger 

and Gochfeld 1983).  Results regarding the Minion fixed-wing UAS should be 

interpreted with caution because I only did a single overflight (at EFS), however I felt it 
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was important to include in the model even given the small sample size. 

 For objective 2, vigilance seemed to increase in magnitude as survey altitudes 

with the Phantom decreased, as evidenced by parameter coefficients.  Rümmler et al. 

(2015) found similar results when surveying a colony of Adélie penguins with an 

octocopter UAS, although surveys in their study ranged from 20–50 m.  While lower 

altitude surveys seem to increase vigilance, the actual effect of this behavioral response is 

not known.  If vigilance is prolonged, it could detract from normal nesting behavior 

enough to reduce individual fitness, but this has not been explicitly tested with regard to 

UAS surveys (Gutzwiller et al. 1994, Verhulst and Oosterbeek 2001).  The post-survey 

period, when compared to the baseline control, showed evidence of increased vigilance.  

This result suggests that vigilant responses were heightened up to 5 minutes after surveys 

were completed, but it is unknown how long this increased response lasted. 

In my selected vigilance model, there was an inverse correlation between slope 

and intercept variance (–0.45), which means vigilance behavior rates decreased across 

sample periods.  This suggests the possibility of short-term habituation to UAS surveys, 

even within a few hours of use, which coincides with observations made by Chabot et al. 

(2015) regarding UAS surveys of common terns.  Rümmler et al. (2015) concluded that 

habituation was not apparent during UAS surveys, although their study involved different 

colonial nesting species from this study.  Survey altitude also had no effect on flush 

behavior, suggesting that UAS surveys with the Phantom could be employed to gather 

high resolution imagery without immediate risk to nesting success, at least within the 

bounds of 46–122 m AGL. 

In regard to objective 3, species varied in how they reacted to unmanned aircraft 
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surveys.  Walking off the nest and wing flapping were not often seen among all species, 

but there seemed to be differences among species for flush behavior.  There was a clear 

increase in flushing behavior for laughing gulls, for example, so my results should be 

viewed and interpreted with caution.  Species were pooled due to logistical constraints as 

well as to increase statistical power, and so they reflect the nature of mixed-species 

waterbird colonies as a whole, not the idiosyncrasies of each species.  I acknowledge the 

need and importance of testing hypotheses within species mentioned, as it is possible that 

models did not detect differences due to pooling.  Habituation and tolerance varies among 

waterbird species, and responses to stimuli are species-specific (Mueller and Glass 1988, 

Nisbet 2000).  The deleterious effects (e.g. nest abandonment, adult mortality, and 

reduced reproduction) caused by a behavioral response is species-specific as well 

(Stillman et al. 2007, Hillman et al. 2015).  Breeding biology can dictate whether birds 

are prone to high disturbance, which can possibly explain the gradient of tolerance and 

habituation among species.  For example, herons are known to establish rookeries in 

highly urbanized areas, and can thus tolerate high anthropogenic disturbance (Parsons 

and Burger 1982, Parnell et al. 1988).  However, they are sensitive to disturbance during 

specific nesting phases and when people enter the colony (Parnell et al. 1988). 

Testing unmanned aircraft for use in wildlife research requires more extensive 

study.  The most important question to ask is what kind of effect an increased behavioral 

response has on individual fitness.  There are many facets to anthropogenic disturbance 

that were not included in this study, such as incubation phase.  At least with waterbird 

species, the egg-laying period (and early incubation phases) is when birds are most 

sensitive to disturbance (Hunt 1972, Gillet et al. 1975, Tremblay and Ellison 1979, Safina 
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and Burger 1983, Parnell et al. 1988).  However, this should be examined on a per-

species basis (Van de Voorde 2015).  Survey frequency should also be investigated, 

because this can discourage late-nesters from initiating in a colony (Tremblay and Ellison 

1979).  If unmanned aircraft were to be used in weekly or monthly monitoring schemes, 

frequency could be an important factor for managerial decisions.  Time length of survey 

can potentially have an effect on waterbird behavioral responses, although in this study 

no surveys lasted >7 minutes when the UAS was directly overhead of the nesting colony.  

Managers should be aware that surveys will last longer at larger sites in which low-

altitude flights are employed.  For small sites like EFS (1.2 ha), surveys lasted between 

2–4 minutes for altitudes of 46–122 m.  Survey time is also affected by the use of 

automated flight patterns when compared to manually-operated flights.  Automated 

flights had a noticeable increase in survey time.  For example, at TRB, the automated 

flight plan took 3.8 times as long (23 minutes, including all sample periods that were not 

overhead of the bird colony) than the manual flight (6 minutes). 

In summary, waterbird colonies show a significant increase in vigilant behavior 

when surveying with a Phantom UAS between 46–91 m.  The Minion fixed-wing UAS 

seemingly does not increase any behavioral reaction at its suggested survey altitudes, 

which is likely due to improbable detectability of the craft from ground level.  Severe 

behavioral reactions (i.e. flushing from the nest) are not increased for either platform and 

at any of the tested altitudes, which implies that UAS surveys do not impact the colony as 

much as on-the-ground transects.  More testing of flush reactions need to be conducted 

on a per-species basis, however, because my results suggest differentiation among 

species.  My methods could likely be applied in a similar manner to get flush initiation 
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distances (FID) for each species of interest, which would more accurately estimate 

disturbance magnitude of UAS.  Unmanned aircraft are becoming increasingly popular 

for recreation, research, ecotourism, and commercial purposes, which highlights the need 

to continue investigating their impact to wildlife. 

MANAGEMENT IMPLICATIONS 

The impact of increased vigilance was not tested in this study.  However, if waterbird 

surveys are conducted within a reasonable time frame and between 122–46 m with a 

quadcopter UAS, the impact of vigilance is likely negligible.  Surveying with a high-

altitude fixed-wing UAS could be employed without any worry of deleterious effects, but 

their use comes with logistical issues and data quality trade-offs (Appendix A).  The 

Minion needs one-quarter mile of takeoff and landing space, a crew of 3 technicians, and 

its cost at the time of this study was approximately 50,000USD.  In contrast, the Phantom 

quadcopter requires only one pilot, is flexible in terms of take-off and landing (I regularly 

initiated take-off from a boat), and is a fraction of the cost.  In addition, imagery 

resolution was far superior for the Phantom aircraft.  For the Phantom, survey altitudes at 

122, 91, 61, and 46 m yielded approximately 3.3, 2.5, 1.7, and 1.3 cm/pixel resolution, 

respectively, while Minion surveys yielded approximately 7.4 and 4.0 cm/pixel resolution 

for altitudes at 300 and 200 m.  To identify species from aerial imagery, however, a 

resolution of about 0.5 cm would be required (Dulava et al. 2015).  For monitoring efforts 

that wish to obtain abundance estimates, the authors recommend using unmanned aircraft 

similar to the Phantom, even given the propensity to increase vigilant behavior.  For 

recreational use, or in situations where fine-scale resolution is not necessary, I 

recommend overflights at ≥122 m to minimize disturbance. 
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Table 1.  Detection probability and bias correction factors of waterbird decoys. Data 

collected at East Flat Spoil and Trinity River basin, August and November 2016, Texas, 

USA. 

 
Decoy 

 
Habitat 

Clouds 
(%) 

 
   p (96.7% CI)a 

 
    zb 

 
      P 

Correction factorc       
(96.7% CI) 

 
Skimmer 

 
Spoil island 

 
0–100 

 
0.54 (0.44–0.63)* 

 
–7.425 

 
≤0.001 

 
1.85 (1.58–2.27) 

 
Tern 

 
Spoil island 

 
0–100 

 
1.02 (0.90–1.15) 

 
0.356 

 
0.722 

 
0.98 (0.87–1.11) 

 
White heron 

 
Spoil island  

 
0–100 

 
1.09 (0.89–1.31) 

 
1.095 

 
0.274 

 
0.92 (0.76–1.12) 

  
Cypress-tupelo 

 
0–50 

 
0.29 (0.18–0.46)* 

 
–9.652 

 
≤0.001 

 
3.45 (2.17–5.56) 

  
Cypress-tupelo 

 
51–100 

 
0.09 (0.03–0.34)* 

 
–2.688 

 
0.007 

 
11.11 (2.94–33.3) 

 
Dark heron 

 
Spoil island 

 
0–100 

 
0.95 (0.79–1.18) 

 
–0.746 

 
0.456 

 
1.05 (0.84–1.27) 

 
 

 
Cypress-tupelo 

 
0–100 

 
0.11 (0.06–0.18)* 

 
–13.47 

 
≤0.001 

 
9.09 (5.56–16.6) 

 
  a Detection probability, the ratio of the mean count index to mean decoy abundance, was 

estimated using GLMMs with a Poisson error distribution.  96.7% confidence intervals 

(CIs) estimated by parametric bootstrap (N = 200). 

  b z- and P-values obtained by Wald Z-tests. 

  c Visibility bias correction factors were obtained by 1 p. 

  * Detection probability is significantly different from 1 (i.e. imperfect detection), based 

on 96.7% CIs. 

 

 

 

 

 



 49 

Table 2.  Selected generalized linear mixed-effects regression models assessing ability of 

observers (N = 6) to estimate decoy counts from aerial imagery taken with unmanned 

aircraft.  Imagery collected August and November 2016, Texas, USA.  Includes 

competing models for each decoy type. 

Decoy type Modela K ∆AIC LLb R2
m R2

c c 
 
Skimmer 

 
log(µijk) = β0 + COUNT  

 
+ CLOUD  
 
+ COUNT×CLOUD  
 
+ ηj + εk 

 
6 

 
0.00 

 
–163.42 

 
0.56c 

 
0.83
d 

 
1.13e 

 
Tern 

 
log(µik) = β0   
 
+ εk 

 
2 

 
0.00 

 
–166.96 

 
0.00 

 
0.92 

 
0.20 

  
log(µik) = β0 + COUNT  

 
+ εk 

 
3 

 
1.87 

 
–166.89 

 
0.00 

 
0.92 

 
0.19 

 
White heron 

 
log(µijk) = β0 + COUNT  
 
+ CLOUD  
 
+ HABITAT 
 
+ COUNT×CLOUD  
 
+ COUNT×HABITAT  
 
+ CLOUD×HABITAT  
 
+ COUNT×CLOUD 
 
   ×HABITAT  
 
+ ηj + εk 

 
10 

 
0.00 

 
–364.52 

 
0.52 

 
0.89 

 
1.04 
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Table 2 continued. 
 
Decoy type Modela K ∆AIC LLb R2

m R2
c c 

 
Dark heron 

 
log(µik) = β0 + COUNT  
 
+ HABITAT  
 
+ COUNT×HABITAT  
 
+ εk 

 
5 

 
0.00 

 
–318.15 

 
0.66 

 
0.92 

 
0.70 

 
  a Models include predictors of (COUNT) an indicator variable designating the count 

type (known abundance or observer index), (CLOUD) cloud cover in two categories, and 

(HABITAT) habitat type (spoil island and cypress-tupelo swamp).  ηj and εk represent the 

random effects of survey and observer, respectively.  I tested a full model with both 

random effects against a reduced model without the observer effect by likelihood ratio 

test (LRT). 

  b Log-likelihood of the model.  

  c Marginal R2, the percent of variance explained by the fixed effects in the model.   

  d Conditional R2, the percent of variance explained by both the fixed effects and random 

effects (i.e. among-observer and among-colony) combined. 

  e Dispersion parameter. 
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Table 3.  Competing models for the magnitude of behavioral responses displayed in 

nesting waterbird colonies, as influenced by UAS surveys. Data collected in Texas, USA, 

2016–2017 (n = 209). 

Behavioral 
response 

 
Modela 

 
K 

 
∆AIC 

 
LLb 

 
R2

m 
 
R2

c 
 

c 
 
Vigilance 

 
log(µij) = β0 + AGL  
 
+ SIZE  
 
+ LAG 1  
 
+ ηj

 + ηij
c 

 
13 

 
0.00 

 
–393.87 

 
0.37d 

 
0.51e 

 
1.23f 

  
log(µij) = β0 + AGL  
 
+ PLATFORM  
 
+ SIZE  
 
+ LAG 1  
 
+ ηj

 + ηij 

 
14 

 
1.69 

 
–393.72 

 
0.36 

 
0.49 

 
1.24 

 
Flushing 

 
log(µij) = β0  
 
+ PLATFORM  
      
+ SIZE  
 
+ ηj 

 
4 

 
0.00 

 
–396.21 

 
0.08 

 
0.89 

 
0.82 

  
log(µij) = β0 + SIZE  
 
+ ηj 

 
3 

 
0.63 

 
–397.52 

 
0.05 

 
0.90 

 
0.82 
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Table 3 continued. 
 
Behavioral 
response 

 
Modela 

 
K 

 
∆AIC 

 
LLb 

 
R2

m 
 

R2
c 

 
c 

 
Flushing 

 
log(µij) = β0  
 
+ PLATFORM  
 
+ SIZE  
 
+ LAG 1  
 
+ ηj 

 
5 

 
1.39 

 
–395.90 

 
0.08d 

 
0.89e 

 
0.82f 

  
log(µij) = β0 + SIZE  
 
+ LAG 1  
 
+ ηj

c 

 
4 

 
1.98 

 
–397.19 

 
0.06 

 
0.90 

 
0.82 

 
  a Predictor variables are (AGL) survey altitudes, (PLATFORM) craft type, (SIZE) 

colony size, and (LAG 1) lagged response values by 1, for the ith sample period at the jth 

colony site.  AGL levels include categories for all survey altitudes, as well as for the pre- 

and post-flight period.  Random terms of (ηj) intercept and (ηij) slope for colony site are 

included in model statements.  

  b Log-likelihood of the model. 

  c The selected model. 

  d Marginal R2 describes the proportion of model variance explained by the fixed effects. 

  e Conditional R2 describes the proportion of model variance explained by the fixed and 

random effects combined. 

  f Dispersion parameter for the model. 
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Table 4.  Parameter estimates of the selected model for vigilance. Data collected in 

Texas, USA, 2016–2017.  Vigilant reactions were tallied in 4 waterbird colonies during 

surveys with a UAS. 

    Parameter        β eβ    96.7% CIa          zb            P 

      
     Intercept 

 
0.43c 

 
1.54d 

 
[–0.05–0.77] 

 
2.54 

 
0.011 

 
     300 me 

 
      –0.20 

 
0.82 

 
[–0.91–0.51] 

 
–0.656 

 
0.513 

      
     200 m 

 
      –0.07 

 
0.93 

 
[–0.90–0.57] 

 
–0.265 

 
0.791 

 
     122 m 

 
0.36 

 
1.44 

 
[–0.01–0.72] 

 
2.033 

 
0.042 

 
     91 m 

 
0.55 

 
1.72 

 
[0.19–0.93]* 

 
3.086 

 
0.002 

 
     61 m 

 
0.78 

 
2.19 

 
[0.55–1.13]* 

 
4.514 

 
≤0.001 

 
     46 m 

 
0.78 

 
2.18 

 
[0.52–1.16]* 

 
4.744 

 
≤0.001 

 
     Post-flight 

 
0.43 

 
1.54 

 
[0.21–0.80]* 

 
2.692 

 
0.007 

 
     Colony sizef 

 
0.01 

 
1.01 

 
[0.16–0.68]* 

 
3.799 

 
≤0.001 

     Lag 1         0.05 1.05 [0.01–0.21]* 
 

2.426 
 

0.015 
 

   
  a Parametric bootstrapped 96.7% confidence intervals of each parameter (N = 200). 

Estimates are significant if they do not include 0. 

  b z and P-values from Wald-Z tests. 

  c Parameter estimates for fixed effects, in log-odds.  

  d Exponentiated estimates, to reflect rate-ratios (e.g., a rate-ratio of 0.82 indicates an 

18% decrease). 

  e Survey altitudes and the post-flight treatment level.  Estimates reflect their influence 

on vigilance when compared to a baseline (pre-flight).  300 and 200 m surveys were 

flown with the Minion fixed-wing, 122–46 m surveys with the Phantom quadcopter. 
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  f Colony size and lag 1.  Parameter estimates reflect their influence on the number of 

vigilant birds. 
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Figure 1.  Map of the Gulf Coast Joint Venture (GCJV) region.  The GCJV spans 

coastlines in 4 states: (from left to right) Texas, Lousiana, Mississippi, and Alabama.   
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Figure 2.  Study sites where aerial imagery of decoy “colonies” was obtained.  Data 

collected August and November 2016, Texas, USA.  Trinity River NWR property is 

indicated by hash marks within Liberty County, with the Josie Lake site located just north 
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of the refuge in black.  East Flat Spoil island (EFS) is denoted in the inset map for 

Kenedy County. 
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Figure 3.  Subsection of imagery taken with a Phantom UAS (DJI, Shenzhen, 

Guangdong, China; 12.4 MP camera).  Imagery collected in 2016 at East Flat Spoil 

island, Texas, USA.  Imagery is shown in (A) raw form, and (B) after an observer 

counted decoys.  Dots indicate decoy detections, with each color representing a different 

decoy type (pink and blue dots represent white and dark herons, respectively, and yellow 

dots represent terns).  Aerial imagery resolution was approx. 1.7 cm/pixel. 
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Figure 4.  Mean percent error (± 1 SE) for six independent-observer counts of decoy 

abundance.  Observers (x-axis) estimated four unique decoy types in two distinct habitats.  

Decoy types at East Flat Spoil island included black skimmer (A), tern (B), white-

plumaged heron (C), and dark-plumaged heron (D).  Decoy types at Trinity River 

included white-plumaged heron (E), and dark-plumaged heron (F).  The dashed line 

demarcates a mean error of 0. 

A B C

D E F
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Figure 5.  Linear regressions illustrating the ability of Chapman (1951) abundance 

estimations to estimate decoy density from image quadrats.  Data collected August and 

November 2016, Texas, USA.  Decoy types at East Flat Spoil island include black 

y = 0.67 + 0.66x
R2 = 0.666

y = 0.14 + 0.96x
R2 = 0.846

y = 0.5 + 0.068x
R2 = 0.0375

y = 0.0028 + 0.97x
R2 = 0.975

y = 1.7 + 0.51x + 0.077x2

R2
adj = 0.167

y = 1.5 + 0.82x + 0.004x2

R2
adj = 0.989
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skimmer (A), tern (B), white-plumaged heron (C), and dark-plumaged heron (D).  Decoy 

types at Trinity River include white-plumaged heron (E), and dark-plumaged heron (F).  

The dashed line represents a slope equal to 1.  Adjusted R2 was reported for models that 

included the quadratic term (i.e. two model predictors). 
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Figure 6.  Sites in which UAS surveys were conducted over active waterbird colonies.  

Surveys took place May–June 2016 and May 2017, Texas, USA.  The colonies at East 
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Flat Spoil (EFS) and Green Island (GI) are labeled in the inset map for Kenedy and 

Cameron Counties, respectively.  Trinity River NWR property is indicated by hash marks 

within Liberty County, with the Josie Lake site just north of the refuge in black. 
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Figure 7.  The Minion 2.0 fixed-wing UAS.  Platform developed by AggieAir (Utah State 

University, Logan, UT, USA).  Pictured is the launching system (pneumatic rail) as well 

as the platform itself.  Surveys with the Minion were flown at 300 and 200 m. 

 

 
 
 
 
 
 
 
 
 



 66 

 
 

Figure 8.  Proportion of four heron species (x ± SE) in camera frame that exhibited a 

behavioral response in relation to treatment levels.  Data collected at Trinity River NWR, 

GI, and EFS, Texas, USA, 2016–2017.  Behaviors include vigilance (A), wing flapping 

(B), walking off nest (C), and flushing (D).  Treatment levels include pre- and post-flight 

periods, as well as survey altitudes from the Minion (300 and 200 m) and Phantom 

quadcopter (122–46 m).  Note that some species were not subjected to Minion surveys. 

A B

C D
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Figure 9.  Proportion of ground-nesting waterbirds (x ± SE) in camera frame that 

exhibited a behavioral response in relation to treatment levels.  Data collected at EFS, 

Texas, USA, 2016–2017.  Behaviors include vigilance (A), wing flapping (B), walking 

off nest (C), and flushing (D).  Treatment levels include pre- and post-flight periods, as 

well as survey altitudes that were flown with the Minion (300 and 200 m) and Phantom 

A B

C D
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(122–46 m).  Unidentified tern spp. were assumed to be a mix of gull-billed, sandwich, 

and Forster’s terns. 
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Figure 10.  Proportion of roseate spoonbill and white ibis (x ± SE) in camera frame that 

exhibited a behavioral response in relation to treatment levels.  Data collected at GI, 

Texas, USA, 2016–2017.  Behaviors include vigilance (A), wing flapping (B), walking 

off nest (C), and flushing (D).  Treatment levels include the pre- and post-flight periods, 

as well as survey altitudes that were flown with the Phantom (122–46 m). 

 

A B

C D
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Figure 11.  Conditional modes for the random effect of colony, represented for the 

selected flush behavior model.  Colonies include Green Island, East Flat Spoil, Trinity 

River basin in 2016, and Trinity River basin in 2017.  Note the extreme variability in the 

number of birds that flushed within the Trinity River basin (TRB) colony in 2017, as well 

as the variation among TRB 2017 and the other 3 colonies (R2
m = 0.06, R2

c = 0.90, 

SDintercept = 1.97). 
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APPENDIX A 

Below is a summary of positive and negative attributes for two UAS platforms when 

surveying colonial waterbirds.  Overall, the lightweight consumer-grade UAS (Phantom 3 

and 4, DJI, Shenzhen, Guangdong, China) outperformed the custom-built fixed-wing 

(AggieAir, Utah State University, Logan, UT, USA) in applications for surveying. 

Table A1.  Positive and negative attributes of the Phantom quadcopter UAS for surveying 

mixed-species waterbird colonies. 

Positive (+) Negative (–) 
 
Easily transportable. 

 
Battery life limited to approx. 15–20 min. 

 
Take-off and landing can be done on most 
terrain. 

 
Not fully autonomous out-of-the-box, 
although software is available. 

 
Inexpensive. 

 
Limited payload (e.g., 1 sensor attachment 
allowed at a time). 

 
A single technician can pilot the Phantom. 

 
Increased vigilance of waterbirds when 
flown between 46–91 m (see Chapter II). 

 
High resolution from stock camera (approx. 
1.3 cm/pixel for flights at 46 m).  

 

 
Many modifications and open source 
software available. 

 

 
Customer service and hardware repairs 
available from manufacturer. 
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Table A2.  Positive and negative attributes of the Minion fixed-wing UAS for surveying 

mixed-species waterbird colonies. 

Positive (+) Negative (–) 
 
Can carry multiple cameras and sensors.* 

 
Bulky, difficult to transport in the field.* 

 
Completely autonomous.  Flight path is 
input before take-off. 

 
Crew of 3 technicians needed for flight 
and ground station. 

 
Battery life is comparatively better, at 
approx. 60 min. per survey. 

 
Large landing area needed (approx. 0.5 
km), with specific terrain (e.g., short grass 
or sand).* 

 
High altitude flights, potentially less 
disturbing to birds (see Chapter II).* 

 
Various software and hardware problems. 
Possibly not the case with all fixed-wing 
platforms. 

  
Stringent airspace restrictions (FAA).* 

  
Repairs and customer service not reliable 
since it was custom-built. 

  
Expensive. 

  
Every landing was a “soft” crash landing, 
so repairs were frequent. 

  
Imagery resolution not suitable for 
surveying mid-size birds (approx. 4 
cm/pixel at 200 m altitude).  This was due 
to the 12 MP camera used, resolution 
would likely suitable with a 20 MP 
camera or similar. 
 

 
  *  Attributes that are common among all fixed-wing UAS models, not just the Minion. 
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APPENDIX B 

Below is a summary of recommended usage steps for surveying with both platform types, 

and for using automated bird counting algorithms or manual observer counts. 

Table B1.  Recommended minimum standards for two counting techniques: automated 

bird counts and manual counts. 

Attribute Manual counta Automated countb 

 
Climatic conditions 

 
Sunny, clear skies, little to 
no wind. 

 
Little to no wind. 

 
Nesting substrate 

 
Supplement surveys with 
another method if nest 
visibility is occluded (e.g. 
canopy). 

 
Supplement surveys with 
another method if nest 
visibility is occluded (e.g. 
canopy). 

 
Altitude (AGL)c 

 
46–91 m 

 
46–91 m  

 
Flight path 

 
Back-and-forth transects, 
preferably automated. 

 
Back-and-forth transects, 
preferably automated. 

 
Resolutiond 

 
≤1.7 cm/pixel for already 
identified species. 
 
≤0.5 cm/pixel to identify 
species via imagery.e 

 
Focal species contrasts 
heavily with background, 
medium-large sized birds, 
high visibility habitat: ≤4.5 
cm/pixel. 
 
Focal species does not 
contrast with background, 
small birds, any habitat: 
≤1.7 cm/pixel. 

 
Software 

 
Photoshop 

 
eCognition 
ArcGIS 
Photoshop 

 
Analysis technique 

 
Photoshop: color dot 
marking, count function, 
and image analysis 
function. 

 
eCognition: Object Based 
Image Analysis.  Used to 
more accurately detect 
birds that are densely 
clustered. 
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Table B1 continued. 

Attribute Manual counta Automated countb 
 
Analysis technique 

  
ArcGIS: unsupervised and 
supervised spectral 
analysis.  Size and 
adjacency filtering is 
recommended. 

   
Photoshop: spectral 
thresholding.  Should only 
be used when birds 
contrast markedly with 
substrate and are not in 
dense clusters. 
 

 
  a Bird counts done manually by an observer. 
 
  b Bird counts automated via software. 
 
  c Above Ground Level. 
 
  d Recommended resolution, software, and analysis techniques gleaned from Chabot and  
 
Francis (2016) and Dulava et al. (2015). 
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Figure B2.  Usage flowchart for two UAS platforms.  Guidelines for the fixed-wing UAS 

are specific to the Minion 2.0 craft (AggieAir, Utah State University, Logan, UT, USA).  

Survey altitude for the Phantom quadcopter (DJI, Shenzhen, Guangdong, China) is 

dependent upon the goal of the project and the imagery resolution needed.  Surveys at 46, 

61, 91, and 122 m yielded approximate imagery resolutions of 1.3, 1.7, 2.5, and 3.3 

cm/pixel, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78 

LITERATURE CITED 

Akaike, H.  1974.  A new look at the statistical model identification.  Transactions on 

Automatic Control 19(6):716-723.   

Altmann, J.  1974.  Observational study of behavior: sampling methods.  Behaviour 

49(3):227–266. 

Anderson, D. W., and J. O. Keith.  1980.  The human influence on seabird nesting 

success: conservation implications.  Biological Conservation 18:65–80. 

Anderson, D. R.  2001.  The need to get the basics right in wildlife field studies.  Wildlife 

Society Bulletin 29(4):1294–1297. 

Bakó, G., M. Tolnai, and A. Takács.  2014.  Introduction and testing of a monitoring and 

colony-mapping methods for waterbid populations that uses high-speed and ultra-

detailed aerial remote sensing.  Sensors 14:12828–12846. 

Bayliss, P. and K. M. Yeomans.  1989.  Correcting bias in aerial survey population 

estimates of feral livestock in northern Australia using the double-count 

technique.  Journal of Applied Ecology 26(3):925–933. 

Bayliss, P. and K. M. Yeomans.  1990.  Use of low-level aerial photography to correct 

bias in aerial survey estimates of magpie goose and whistling duck density in the 

northern territory.  Wildlife Research 17:1–10. 

Becker, P. H.  1995.  Effects of coloniality on gull predation on common tern chicks.  

Colonial Waterbirds 18(1):11–22. 

Benjamini, Y., and Y. Hochberg.  1995.  Controlling the false discovery rate: a practical 

and powerful approach to multiple testing.  Journal of the Royal Statistical 

Society.  Series B (Methodological) 57:289–300. 



 79 

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, 

and J. S. S. White.  2009.  Generalized linear mixed models: a practical guide for 

ecology and evolution.  Trends in Ecology and Evolution 24(3):127–135. 

Bolstad, P., editor.  2016.  Aerial and satellite images.  Pages 247–296 in GIS 

fundamentals: a first text on geographic information systems.  Fifth edition.  Eider 

Press, White Bear Lake, Minnesota, USA. 

Brunton, D.  1999.  “Optimal” colony size for least terns: an inter-colony study of 

opposing selective pressures by predators.  The Condor 101:607–615. 

Burger, J.  1981.  Effects of human disturbance on colonial species, particularly gulls.  

Colonial Waterbirds 4:28–36. 

Burger, J., and M. Gochfeld.  1983.  Behavioral responses to human intruders of herring 

gulls (Larus agentatus) and great black-backed gulls (L. marinus) with varying 

exposure to human disturbance. Behavioral Processes 8:326–344. 

Burger, J., M. Gochfeld, and L. J. Niles.  1995.  Ecotourism and birds in coastal New 

Jersey: contrasting responses of birds, tourists, and managers.  Environmental 

Conservation 22(1):56–65. 

Burnham, K. P. and D. R. Anderson.  2002.  Model selection and multimodal inference.  

Second edition.  Springer-Verlag, New York, New York, USA. 

Butler, M. J., W. B. Ballard, M. C. Wallace, S. J. DeMaso, and B. K. McGee.  2007.  

Aerial surveys for estimating wild turkey abundance in the Texas rolling plains.  

Journal of Wildlife Management 71(5):1639–1645. 

Carney, K. M., and W. J. Sydeman.  1999.  A review of human disturbance effects on 

nesting colonial waterbirds.  Waterbirds 22(1):68–79. 



 80 

Caughley, G.  1974.  Bias in aerial survey.  Journal of Wildlife Management 38(4):921–

933. 

Chabot, D., and D. M. Bird.  2012.  Evaluation of an off-the-shelf unmanned aircraft 

system for surveying flocks of geese.  Waterbirds 35(1):170–174. 

Chabot, D., V. Carignan, S. R. Craik, and D. M. Bird.  2014.  Evaluation and application 

of a small unmanned aircraft in waterbird research and conservation. Proceedings 

of The Wildlife Society annual conference.  Pittsburgh, Pennsylvania, USA. 

Chabot, D., S. R. Craik, and D. M. Bird.  2015.  Population census of a large common 

tern colony with a small unmanned aircraft.  PLoS One 10(4):e0122588. 

Chabot, D., and C. M. Francis.  2016.  Computer-automated bird detection and counts in 

high-resolution aerial images: a review.  Journal of Field Ornithology 0(0):1–17. 

Chapman, D. G.  1951.  Some properties of the hypergeometric distribution with 

applications to zoological censuses.  University of California Publications in 

Statistics 1:131–160. 

Clemmons, J. R. and R. Buchholz, editors.  1997.  Linking conservation and behavior.  

Pages 3–22 in Behavioral Approaches to Conservation in the Wild.  Cambridge 

University Press, Cambridge, UK. 

Conroy, M. J., J. T. Peterson, O. L. Bass, C. J. Fonnesbeck, J. E. Howell, C. T. Moore, 

and J. P. Runge.  2008.  Sources of variation in detection of wading birds from 

aerial surveys in the Florida everglades.  The Auk 125(3):731–743. 

Cook, R. D. and J. O. Jacobson.  1979.  A design for estimating visibility bias in aerial 

surveys.  Biometrics 35(4):735–742. 



 81 

Coulter, M. C. and P. C. Frederick.  1997.  Movements and population dynamics of 

colonial waterbirds as guides for the temporal and spatial scales of conservation. 

Colonial Waterbirds 20(2):295–297. 

Culik, B., D. Adelung, and J. Woakes.  1990.  The effect of disturbance on the heart rate 

and behavior of Adélie penguins (Pygoscelis adeliae) during the breeding season.  

Antarctic Ecosystems 177–182. 

Dahm, C. N., R. J. Edwards, F. P. Gelwick.  2011.  Gulf coast rivers of the Southwestern 

United States.  Pages 181-230 in Benke, A. C. and C. E. Cushing, editors.  Rivers 

of North America.  Academic Press, Waltham, Massachusetts, USA. 

DeRose-Wilson, A., J. D. Fraser, S. M. Karpanty, and M. D. Hillman.  2015.  Effects of 

overflights on incubating Wilson’s plover behavior and heart rate.  Journal of 

Wildlife Management 79(8):1246–1254. 

Dixon, T. J.  1977.  The distance at which sitting birds can be seen at sea.  Ibis 

119(3):372–375. 

Dulava, S., W. T. Bean, and O. M. W. Richmond.  2015.  Applications of unmanned 

aerial systems (UAS) for waterbird surveys.  Environmental Practice 17:201–210. 

Erwin, R. M.  1989.  Responses to intruders by birds nesting in colonies: experimental 

results and management guidelines.  Colonial Waterbirds 12(1):104–108. 

Frederick, P. C., and M. W. Collopy.  1989.  Nesting success of five Ciconiiform species 

in relation to water conditions in the Florida Everglades. The Auk 106(4):625–

634. 



 82 

Frederick, P. C., B. Hylton, J. A. Heath, and M. Ruane.  2003.  Accuracy and variation in 

estimates of large numbers of birds by individual observers using an aerial survey 

simulator.  Journal of Field Ornithology 74(3):281–287. 

Fulbright, T. E., D. D. Diamond, J. Rappole, and J. Norwine.  1990.  The coastal sand 

plain of south Texas.  Rangelands 12:337–340. 

Giese, M.  1996.  Effects of human activity on adélie penguin (Pygoscelis adeliae) 

breeding success.  Biological Conservation 75(2):157–164. 

Giese, M. and M. Riddle.  1999.  Disturbance of emperor penguin (Aptenodytes forsteri) 

chicks by helicopters.  Polar Biology 22(6):366–371. 

Gillett, W. H., J. L. Hayward, and J. F. Stout.  1975.  Effects of human activity on egg 

and chick mortality in a glaucous-winged gull colony.  The Condor 77(4):492–

495. 

Goering, D. K., and R. Cherry.  1971.  Nestling mortality in a Texas heronry.  The 

Wilson Bulletin 83(3):303–305. 

Graham, A., and R. Bell.  1989.  Investigating observer bias in aerial survey by 

simultaneous double-counts.  Journal of Wildlife Management 53(4):1009–1016. 

Green, M.C., and P. L. Leberg.  2005.  Flock formation and the role of plumage 

colouration in Ardeidae.  Canadian Journal of Zoology 83:683–693. 

Green, M. C., M. C. Luent, T. C. Michot, C. W. Jeske, and P. L. Leberg.  2008.  

Comparison and assessment of aerial and ground estimates of waterbird colonies.  

Journal of Wildlife Management 72:697–706. 



 83 

Gutzwiller, K. J., R. T. Wiedenmann, K. L. Clements, and S. H. Anderson.  1994.  

Effects of human intrusion on song occurrence and singing consistency in 

subalpine.  The Auk 111(1):28–37. 

Harrington, A.  2015.  Who controls the drones? (regulation unmanned aircraft).  

Engineering and Technology 10(2):80–83. 

Hillman, M. D., S. M. Karpanty, J. D. Fraser, and A. DeRose-Wilson.  2015.  Effects of 

aircraft and recreation on colonial waterbird nesting behavior.  Journal of Wildlife 

Management 79(7):1192–1198. 

Hunt, G. L.  1972.  Influence of food distribution and human disturbance on the 

reproductive success of herring gulls.  Ecology 53(6):1051–1061. 

Hunter, W. C., W. Golder, S. L. Melvin, and J. A. Wheeler.  2006.  Southeastern United 

States regional waterbird conservation plan.  U.S. Fish and Wildlife Service, 

Atlanta, Georgia, USA. 

Israel, M. 2011.  A UAV-based roe deer fawn detection system.  International Archives 

of the Photogrammetry, Remote Sensing, and Spatial Information Sciences 

38(1):51–55. 

IUCN red list of threatened species.  2015.  <www.iucnredlist.org>.  Accessed 10 

October 2015. 

Jeffress, M. R., C. P. Paukert, B. K. Sandercock, and P. S. Gipson.  2011.  Factors 

affecting detectability of river otters during sign surveys.  Journal of Wildlife 

Management 75(1):144–150. 

Johnson, C. M. and W. B. Krohn.  2001.  The importance of survey timing in monitoring 

breeding seabird numbers.  Waterbirds 24(1):22–33. 



 84 

Jones IV, G. P., L. G. Pearlstine, and H. F. Percival.  2006.  An assessment of small 

unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin 34:750–

758. 

Kingsford, R. T.  1999.  Aerial survey of waterbirds on wetlands as a measure of river 

and floodplain health. Freshwater Biology 41:425–438. 

Koneff, M. D., J. A. Royle, M. C. Otto, J. A. Wortham, and J. K. Bidwell.  2008.  A 

double-observer method to estimate detection rate during aerial waterfowl 

surveys.  Journal of Wildlife Management 72(7):1641–1649. 

Kushlan, J. A.  1979.  Effects of helicopter censuses on wading bird colonies.  Journal of 

Wildlife Management 43(3):756–760. 

Kushlan, J. A.  1993.  Colonial waterbirds as bioindicators of environmental change. 

Colonial waterbirds 16(2):223–251. 

Kury, C. R., and M. Gochfeld.  1975.  Human interference and gull predation in 

cormorant colonies.  Biological Conservation 8:24–34. 

Laursen, K., J. Frikke, and J. Kahlert.  2008.  Accuracy of ‘total counts’ of waterbirds 

from aircraft in coastal waters.  Wildlife Biology 14(2):165–175. 

Leberg, P. L., M. C. Green, B. A. Adams, K. M. Purcell, and M. C. Luent.  2007. 

Response of waterbird colonies in southern Louisiana to recent droughts and 

hurricanes.  Animal Conservation 10:502–508. 

Lukacs, M., and D. Bhadra.  2017.  FAA aerospace forecast, fiscal years 2017–2037: 

unmanned aircraft vehicles.  Federal Aviation Administration, Washington, D.C., 

USA. 



 85 

Ma, Z., Y. Cai, B. Li, and J. Chen.  2010.  Managing wetlands for waterbirds: an 

international perpective.  Wetlands 30(1):15–27. 

McCullagh, P. and J. A. Nelder, editors.  1989.  Monographs on statistics and applied 

probability: generalized linear models.  Second edition.  Chapman and Hall, New 

York, New York, USA. 

Menkens, G. E., and S. H. Anderson.  1988.  Estimation of small-mammal population 

size.  Ecology 69(6):1952–1959. 

Mueller, A. J., and P. O. Glass.  1988.  Disturbance tolerance in a Texas waterbird 

colony.  Colonial Waterbirds 11(1):119–122. 

Mulero-Pázmány, M., Jenni-Eiermann, S., Strebel, N., Sattler, T., Negro, J. J., Tablado, 

Z.  2017.  Unmanned aircraft systems as a new source of disturbance for wildlife: 

a systematic review.  PLoS ONE 12(6):e0178448. 

Nakagawa, S. and Schielzeth, H.  2013.  A general and simple method for obtaining R2 

from generalized mixed-effects models.  Methods in Ecology and Evolution 

4(2):133–142. 

Nichols, J. D., J. E. Hines, J. R. Sauer, F. W. Fallon, J. E. Fallon, and P. J. Heglund.  

2000.  A double-observer approach for estimating detection probability and 

abundance from count points.  The Auk 117(2):393–408. 

Nisbet, I. C. T.  2000.  Disturbance, habituation, and management of waterbird colonies.  

Waterbirds 23(2):312–332. 

Pagano, A. M., and T. W. Arnold.  2009.  Detection probabilities for ground-based 

breeding waterfowl surveys.  Journal of Wildlife Management 73(3):392–398. 



 86 

Palmer, R.  1941.  A behavior study of the common tern.  Proceedings of the Boston 

Society of Natural History 42:1–119. 

Paracuellos, M. and J. L. Tellería.  2004.  Factors affecting the distribution of a waterbird 

community: the role of habitat configuration and bird abundance.  Waterbirds 

27(4):446–453. 

Parnell, J. F., D. G. Ainley, H. Blokpoel, B. Cain, T. W. Custer, J. L. Dusi, S. Kress, J. A. 

Kushlan, W. E. Southern, L. E. Strenzel, and B. C. Thompson.  1988.  Colonial 

waterbird management in North America.  Colonial Waterbirds 11(2):129–169. 

Parsons, K. C., and J. Burger.  1982.  Human disturbance and nestling behavior in black-

crowned night herons.  The Condor 84:184–187. 

Pearse, A. T., P. D. Gerard, S. J. Dinsmore, R. M. Kaminski, and K. J. Reinecke.  2008.  

Estimation and correction of visibility bias in aerial surveys of wintering ducks.  

Journal of Wildlife Management 72(3):808–813. 

Pemberton, J. R.  1922.  A large tern colony in Texas.  The Condor 24(2):37–48. 

Pinheiro, J. C. and D. M. Bates.  2000.  Linear mixed-effects models: basic concepts and 

examples.  Pages 3–56 in Chambers, J., W. Eddy, W. Hardle, S. Sheather, and L. 

Tierney, editors.  Mixed-effects models in S and S-Plus.  Springer-Verlag, New 

York, New York, USA. 

Plumpton, D. L.  2006.  Review of studies related to aircraft noise disturbance in 

waterfowl: a technical report in support of the Supplemental Environmental 

Impact Statement (SEIS) for introduction of F/A-18 E/F (Super Hornet) aircraft to 

the East Coast of the United States. Ecology and Environment, Inc., San 

Francisco, California, USA. 



 87 

Pollock, K.H. and W. L. Kendall.  1987.  Visibility bias in aerial surveys: a review of 

estimation procedures.  Journal of Wildlife Management 51(2):502–510. 

Raynor, E. J., A.R. Pierce, T. M. Owen, C. M. Leumas, and F. C. Rohwer.  2013.  Short-

term demographic responses of a coastal waterbird community after two major 

hurricanes.  Waterbirds 36(1):88–93. 

Regan, T. J., I. Chadès, and H. P. Possingham.  2011.  Optimally managing for imperfect 

detection: a method for plant invasions.  Journal of Applied Ecology 48:76–85. 

Rodgers, J. A. and H. T. Smith.  1995.  Set-back distances to protect nesting bird colonies 

from human disturbance in Florida.  Conservation Biology 9(1):89–99. 

Rodgers, J. A., P. S. Kubilis, and S. A. Nesbitt.  2005.  Accuracy of aerial surveys of 

waterbird colonies.  Waterbirds 28(2):230–237. 

Rodgers, J. A. and H. T. Smith.  2012.  Little Blue Heron (Egretta caerulea).  The Birds 

of North America Online.  <https://birdsna.org/Species-

Account/bna/species/libher>.  Accessed 20 October 2015. 

Rümmler, M. C., Mustafa, O., Maercker, J., Peter, H. U., Esefeld, J.  2015.  Measuring 

the influence of unmanned aerial vehicles on Adélie penguins.  Polar Biology 

39:1329–1334. 

Safina, C., and J. Burger.  1983.  Effects of human disturbance on reproductive success in 

the black skimmer.  The Condor 85:164–171. 

Sardá-Palomera, F., G. Bota, C. Viñolo, O. Pallarés, V. Sazatornil, L. Brotons, S. 

Gomáriz, and F. Sardá.  2012.  Fine-scale bird monitoring from light unmanned 

aircraft systems.  Ibis 154:177–183. 



 88 

Seber, G. A. F., editor.  1982.  Closed population: single mark release.  Pages 59–125 in 

the estimation of animal abundance and related parameters. Griffin, London, 

England, U.K. 

Simons, T. R., M. W. Alldredge, K. H. Pollock, and J. M. Wettroth.  2007.  Experimental 

analysis of the auditory detection process on avian point counts.  The Auk 124(3): 

986–999. 

Smith, E. H.  2002.  Colonial waterbirds and rookery islands.  Pages 182–197 in Tunnel, 

J. W. and F. W. Judd, editors.  The Laguna Madre of Texas and Tamaulipas.  

Texas A&M University Press, College Station, Texas, USA. 

Stillman, R. A., A. D. West, R. W. G. Caldow, and S. E. A. Le V. Dit Durell.  2007.  

Predicting the effect of disturbance on coastal birds.  Ibis 149(1):73–81. 

Strobel, B. N., and M. J. Butler.  2014.  Monitoring whooping crane abundance using 

aerial surveys: influences on detectability.  Wildlife Society Bulletin 38(1):188–

195. 

Temple, S. A. and J. A. Wiens.  1989.  Bird populations and environmental changes: can 

birds be bio-indicators?  American Birds 43(2):260–270. 

Thomas, L.  1996.  Monitoring long-term population change: why are there so many 

analysis methods?  Ecology 77(1):49–58. 

Tremblay, J., and L. N. Ellison.  1979.  Effects of human disturbance on breeding of 

black-crowned night herons.  The Auk 96(2):364–369. 

Tunnel, J. W.  2002.  Geography, climate, and hydrology.  Pages 7-27 in J. W. Tunnel 

and F. W. Judd, editors.  The Laguna Madre of Texas and Tamaulipas.  Texas 

A&M University Press, College Station, Texas, USA. 



 89 

Van de Voorde, S., Witteveen, M., Brown, M.  2015.  Differential reactions to 

anthropogenic disturbance by two ground-nesting shorebirds.  Ostrich 1–10. 

Vas, E., A. Lescroel, O. Duriez, G. Boguszewski, and D. Gremillet.  2015.  Approaching 

birds with drones: first experiments and ethical guidelines. Biology Letters 11: 

20140754. 

Venables, W. N., and B. D. Ripley. 2002.  Random and mixed effects.  Pages 271–300 in 

Chambers, J., W. Eddy, W. Härdle, S. Sheaffer, and L. Tierney, editors.  Modern 

applied statistics with S.  Fourth edition.  Springer-Verlag, New York, New York, 

USA. 

Verhulst, S., and K. Oosterbeek.  2001.  Experimental evidence for effects of human 

disturbance on foraging and parental care in oystercatchers.  Biological 

Conservation 101(3):375–380. 

Walter, S. E., and D. H. Rusch.  1997.  Visibility bias on counts of nesting Canada geese.  

Journal of Wildlife Management 61(3):768–772. 

Watts, A. C., J. H. Perry, S. E. Smith, M. A. Burgess, B. E. Wilkinson, Z. Szantoi, P. G. 

Ifju, and H. F. Percival.  2010.  Small unmanned aircraft for low-altitude aerial 

surveys. Journal of Wildlife Management 74(7):1614–1619. 

Weissensteiner, M. H., J. W. Poelstra, and J. B. W. Wolf.  2015.  Low-budget read-to-fly 

unmanned aerial vehicles: an effective tool for evaluating the nesting status of 

canopy breeding bird species.  Journal of Avian Biology 46(4):425–430. 

Wiens, J. A., J. F. addicott, T. J. Case, and J. Diamond.  1986.  Overview: the importance 

of spatial and temporal scale in ecological investigations.  Community Ecology: 

145–153. Harper and Row, New York, New York, USA. 



 90 

Williams, B., D. F. Brinker, and B. D. Watts.  2007.  The status of colonial nesting 

wading bird populations within the Chesapeake Bay and Atlantic barrier island-

lagoon system.  Waterbirds 30(1):82–92.  

Williams, K. A., P. C. Frederick, P. S. Kubilis, and J. C. Simon.  2008.  Bias in aerial 

estimates of the number of nests in white ibis and great egret colonies.  Journal of 

Field Ornithology 79(4):438–447. 

Wilson, T. E., J. Wheeler, M. C. Green, and E. Palacios, editors.  2012.  Reddish egret 

conservation action plan.  Reddish egret conservation planning workshop, 

October 2012.  Corpus Christi, Texas, USA. 


