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SOLUTION TO NONLINEAR GRADIENT DEPENDENT
SYSTEMS WITH A BALANCE LAW

ZOUBIR DAHMANI, SEBTI KERBAL

ABSTRACT. In this paper, we are concerned with the initial boundary value
problem (IBVP) and with the Cauchy problem to the reaction-diffusion system
ut — Au = —u"|VolP,
vy — dAv = u" | V|,
where 1 < p < 2, d and n are positive real numbers. Results on the existence

and large-time behavior of the solutions are presented.

1. INTRODUCTION

In the first part of this article, we are interested in the existence of global classical
nonnegative solutions to the reaction-diffusion equations

up — Au = —u"|VolP = —f(u,v),

1.1
vy — dAv = u"|Vo|P, (1)

posed on RT x Q with initial data
w(0;2) = up(x), v(0;2) =vo(z) in (1.2)
and boundary conditions (in the case € is a bounded domain in R™)

9u = 9 =0, onRT x9Q. (1.3)

an  on
Here A is the Laplacian operator, ug and vy are given bounded nonnegative func-
tions, 2 C R™ is a regular domain, 7 is the outward normal to 92. The diffusive
coefficient d is a positive real. One of the basic questions for — or —
is the existence of global solutions. Motivated by extending known results on
reaction-diffusion systems with conservation of the total mass but with non linear-
ities depending only for the unknowns, Boudiba, Mouley and Pierre succeeded in
obtaining L' solutions only for the case u™|Vv|P with p < 2. In this article, we are
interested essentially in classical solutions in the case where p = 2 (Q bounded or
Q =R" ; in the latter case, there are no boundary conditions).
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2. RESULTS

The existence of a unique classical solution over the whole time interval [0, Tinax|
can be obtained by a known procedure: a local solution is continued globally by
using a priori estimates on ||u||oo, [|V]|cos |||Vt ||oo, and |||V ]||oo-

2.1. The Cauchy problem.

Uniform bounds for uw and v. First, we consider the auxiliary problem

Lyw:=w —AMw=>bVw, t>0, zeRY

(2.1)
w(0,2) =wp(z) € L™,
where b = (b1(t,z),...,bn(t,2)),bi(t,x) are continuous on [0,00) x RV, w is a
classical solution of (2.1)).
Lemma 2.1. Assume that wi, Vw,wg,z,, @ =1,..., N are continuous,
Lyw <0, (>) (0,00)xRY (2.2)

and w(t, x) satisfies (2.1)2. Then

w(t,z) < C:= sup wo(z), (0,00) x RV,
z€RN

w(t,z) > C:= inf w(z), (0,00) x RV,

r€RN

The proof of the above lemma is elementary and hence is omitted. Now, we
consider the problem ([1.1)-(1.2). It follows by the maximun principle that

uw,v >0, in RT xRV,
Uniform bounds of u. We have

u < Oy :=supup(x),
RN
thanks to the maximum principle.
Uniform bounds of v. Next, we derive an upper estimate for v. Assume that 1 <
p < 2. We transform (I.1))2 by the substitution w = e’ — 1 into
Wi — Mw = Xe (v, — dAv — dX [Vo]?) = Xe M (u"|VlP — d\ [Vo]?).
Let
¢(z) = CaP —dlz?;, C >0, 2 >0.

By elementary computations,

C\1/(2-p)
> < (= .
¢(x) >0 when z < ()\d)
But in this case -
c -p
<|+— .
Vol < (Ad)
In the case z > () (3~P),
p(x) <0 (2.3)
and hence w < M where
pC \P/2=P 2 —p
~(3;) 50 (2.4)

Then we have v < Cs.
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2.1.1. Uniform bounds for |Vu| and |Vv|. At first, we present the uniform bounds
for |Vov|. We write (|1.1)2 in the form

Lqv + kv = kv +u"|Vou|P (2.5)
and transform it by the substitutions w = e**v to obtain
Law = e (Lgv + kv) = e* (kv + u"|Vo[P), t >0, z € RY
w(0,2) = vo(x).
Now let

cexp ( |z — ¢ )
[471'A(t — 7')]7 4/\(t — 7')

be the fundamental solution related to the operator Ly. Then, with Q; = (0,t) x
RY, we have

Gr=G\(t—T;2—-¢) =

w=ely =00t 2) + / Ga(t — ;2 — &) (kv 4 u™|Vv|P)dédr
or

v=e*0 4 / e FEN Gyt — 1y — €) (kv + u™|VolP)dédr, (2.6)

where v°(t, z) is the solution of the homogeneous problem
Ly’ =0, 0°0,2) = vo(x).
From (2.6) we have
Vo =e MVl + / eTFEIY, Gyt — Ty — €) (kv 4+ u™|VolP)dedr.  (2.7)

t

Now we set v; = sup |Vo| and ¥ = sup |Vo°|, in Q;. From (2.6), and using v < Ca,
we have

t
vy =10 + (kCq + C{luf)/ e_k(t_T)(/ |V,Ga(t — 32 — §)|d§)d7'.
0 RN
We also have
: _ [z = ¢ '
[ 9Gatt = riz =i = | GG~ - e
which is transformed by the substitution p = 2,/d(t — 7)v into

WN o0 2 X
V. Gald :—/ iy = X
[RN| aldp /2 d(t—1)

1

NG
T3 - It follows that

i

where xy = thf,v/ﬂ‘(TH) =

dr
Vi—T1

¢ t
dr 2 2 T
—k(t—7) — -2 d \/7
e e z < .
/0 Vi—1  VkJo k
If we set s = v/k in (2.8)) then we have

v < 1/:? + (sC’2 + C;yf)x\/j. (2.9)

t
v =10+ (kCy + C{LV{’)% / e k(t=7) (2.8)
0

Recall that
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Now we minimize the right hand side of (2.9)) with respect to s to obtain

2 1/p
v <00+ Xf (CQC{IV{’) . (2.10)
Note that v = Cs.
We have two cases: Case (i) 1 < p < 2. In this case (2.10) implies
Vo] <y <7T(p) =D, in Qy, (2.11)
where D is a positive constant.
Case (ii) p = 2. In this case (2.10) holds under the additional condition
d
CoCl < —. 2.12
207 < (2.12)

Similarly we obtain from (1.1f)q,
VLS

Uy :==sup|Vu| < C + C’lixz/f/z < Constant. (2.13)
Qr Vd
The estimates (2.10]) and (2.13)) are independent of ¢, hence Tyax = +00.
Finally, we have the main result.

Theorem 2.2. Let p = 2 and (ug,vo) be bounded such that (2.12)) holds, then
system (1.1)-(L.2) admits a global solution.

2.2. The Neumann Problem. In this section, we are concerned with the Neu-
mann problem
uy — Au = —u"|Vol?
vy — dAv = u" |Vl
where Q be a bounded domain in RY, with the homogeneous Neumann boundary
condition

(2.14)

ou Ov n
5 = 5 = 07 on R™ x 99 (215)
subject to the initial conditions
u(0;2) = up(z); v(0;2) =ve(xz) in Q. (2.16)

The initial nonnegative functions ug, vy are assumed to belong to the Holder space

2 (Q).

Uniform bounds for u and v. In this section a priori estimates on ||ul/c and ||v]co
are presented.

Lemma 2.3. For each 0 <t < Tpax we have
0<u(t,z) <M, 0<wv(t,z) <M, (2.17)
for any x € Q.

Proof. Since ug(x) > 0 and f(0,v) = 0, we first obtain v > 0 and then v > 0 as
vo(z) > 0. Using the maximum principle, we conclude that

0<u(t,z) <M, onQr

where

M > M, := .
= M=y ole)
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Using w = e*? — 1, with d\ > M7, from ([2.14)), we obtain
wi — dAw = A|Vo[2(u™ — d\)er,  on Qr

0
871/: =0 on 8ST

Consequently as d\ > maxq u™, we deduce from the maximum principle that
0 <w(t,z) < exp(AMugleo) — 1.
Hence
v(x,t) < %1n(\w|oo + 1) < Constant < oo.
O

Uniform bounds for |Vv| and |Vul|. To obtain uniform a priori estimates for |Vo|,
we make use of some techniques already used by Tomi [§] and von Wahl [9]

Lemma 2.4. Let (u,v) be a solution to (2.10) -(2.12)) in its maximal interval of
existence [0, Tmax|[- Then there exist a constant C such that

[ull Lo o, rwza()) < € and  [[v]| Lo (o, 7 w2a()) < C.
Proof. Let us introduce the function
€+ |Vol?
14 €|Vol?’
It is clear that |f, .(t,2,u, Vv)| < C(1 + |Vv|?) and a global solution v, . differen-
tiable in ¢ for the equation

Ut — dAv = fo‘,e(tvxaua V’U)

foe(t,z,u, Vo) = ou”(t, x)

exists. Moreover, v, — v as 0 — 1 and € — 0, uniformly on every compact of
[0, Tona]-

The function w, := ag;‘ satisfies
€+ |Vug|? (€2 —1)Vv,.Vw,
Orwy — dAwy = u™(t, 2)~—A Y7L gpyn . 2.18
s Wo = L) T G0 T 2 T A T v, )2 (2.18)

Hereafter, we derive uniform estimates in ¢ and e. Using Solonnikov’s estimates
for parabolic equation [5] we have

1o | Lo (10,7 (w0 o) ;W2 () < CllIVUs100) + [VVo- Vo 170 (0)]-
The Gagliardo-Nirenberg inequality [5] in the in the form

1/2 1/2
ullw 20y < Cllull2 o, Cllul @

and the 6-Young inequality (where § > 0)

af < %(60&2 + %2),

allows one to obtain the estimate

lwo ll oo ([0, 7 (uo,v0) W2 r(@)) < C(1+ |lwo [lw2r@))-

But w, = %”;, hence by Gronwall’s inequality we have

HUO'||L°C([O7T[,W2,17(Q)) < Ce®e.
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Letting 0 — 1 and ¢ — 0, we obtain

vl o< (o, 71, w2p(2)) < C.

On the other hand, the Sobolev injection theorem allows to assert that u € C1:*(€Q).
Hence in particular |[Vu| € C%%(2). Since |Vo| is uniformly bounded, it is easy
then to bound |Vu| in L*(€2). As a consequence, one can affirm that the solution

(u,v) to problem ([2.14]) -(2.16) is global; that is Ti,ax = 0. O

2.3. Large-time behavior. In this section, the large time behavior of the global

solutions to (2.14)-(2.16|) is briefly presented.

Theorem 2.5. Let (ug,vg) € C%€(2) x C%<(2) for some 0 < € < 1. The system
- has a global classical solution. Moreover, as t — oo, u — ki and

v — ko uniformly in x, and
1
Fy+ ks = — / o (&) + vo ()] da
€2 Jo

Proof. The proof of the first part of the Theorem is presented above. Concerning
the large time behavior, observe first that for any ¢ > 0,

/Q[u(t,:r) +o(t,z)|dx = /Q[uo(x) + vo(z)]dz.

Then, the function ¢t — fQ u(z)dz is bounded; as it is decreasing, we have
/ u(z)der — k1 ast — oo;
Q

the function ¢t — [, v(x)dx is increasing and bounded, hence admits a finite limit

ky ast — 00, As Uysof(u(t),v(t))} is relatively compact in C(Q) x C(9),

w(rn) = u, v(t,) — v in C(Q),

through a sequence 7,, — oo. It is not difficult to show that in fact (@,v) is the

stationary solution to (2.14)-(2.16) (see [3]).
As the stationary solution (us,vs) to (2.14)-(2.16|) satisfies

—Aug = —u?|Vus?, inQ,
_dAUs = U?|VU5|27 in Qa aus = 81}8 - 0, on 897
ov ov

we have

—/ Aus.usd:r:—/ u" Vo, ?dx
Q Q

which in the light of the Green formula can be written

/ VusPde = — / w1 |V, e
Q Q

hence |Vus| = |[Vuvg| = 0 implies us = k1 and vs = k. O

Remarks. (1) It is very interesting to address the question of existence global
solutions of the system (2.14)-(2.16) with a genuine nonlinearity of the form u"|Vv|?
with p > 2.

(2) It is possible to extend the results presented here for systems with nonlinear
boundary conditions satisfying reasonable growth restrictions.
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