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ABSTRACT 

Industrial Revolution 4.0 is defined as the interconnection of Information, 

Communications Technologies (ICT) within the industry. In the occupation of laborers, 

stock, and material mover they are often subjected to repetitive motions that cause 

exhaustion (or fatigue) that could potentially lead to work-related musculoskeletal 

disorder (WMSD). The most common repetitive motions are lifting, pulling, pushing, 

carrying, and walking with load, which are also known as Manual Material Handling 

(MMH) operations. There has been work using a machine learning technique known as 

Recurrent Neural Network (RNN) to predict short and long-term motions from motion 

capture measurements but research in using motion capture data related to MMH to 

measure the fatigue needs exploration. For this research, only the lifting motion is 

considered. Motion data is collected as time-stamped motion data using infrared cameras 

at a rate of 100Hz of a subject performing repetitive lifting motion. The data is a 

combination of XYZ coordinates from 39 reflective markers. Along with motion data, the 

subject will self-report the perceived level of fatigue using the Borg scale every minute. 

All this data can be merged into one to further be used for analysis. Since motions occur 

over time for a duration of time, this data is used as input to a time-series deep learning 

technique known as Long Short-Term Memory and Gated Recurrent Unit models. Using 

these models, this research will evaluate the deep learning technique and motion capture 

data to perform motion analysis to forecast univariate motion data and to also predict the 

fatigue based on the displacement movement from each marker.  



 

1 

I. INTRODUCTION 

We are currently in the Fourth Industrial Revolution or Industry 4.0 (I4.0), 

bringing the interconnection of Information Technology (IT) to create a holistic better-

connected ecosystem between human-technology interactions. I4.0 uses emerging digital 

technology such as the Internet of Things (IoT), machine learning (ML), collaborative 

robots, augmented reality (AR), and big data from real-time sensors to create a cyber-

physical system (CPS). This creates the interaction or connection between physical 

(aspects from the First and Second Industrial Revolution) to digital (aspects from the 

Third Industrial Revolution) allowing humans and machines to collaborate across the 

current industry. With ML being part of the I4.0 process, a value can be added to create 

solutions to augment human performance with tasks that are usually repetitive that will 

still require human interaction, such as in the material handling industry. Manual Material 

Handling (MMH) intensive companies like Amazon, Walmart, HEB, FedEx, and Toyota 

will require humans to continue to be part of the process as machines cannot do much of 

the process without human interaction. This research focuses on the Human aspect and a 

solution to improve their performance and safety can be integrated with I4.0 smart 

solution using ML. 

I4.0 is centered around the idea of augmenting humans performing MMH tasks 

within the material handling industry. With MMH labor, the worker must repeatedly lift-

lower, push-pull, walk, and carry material with different loads. Having to do these 

fundamental movements for a given day causes the operator to experience fatigue, which 

can put the worker at risk of developing a musculoskeletal disorder (MSD), often 

involving strains or sprains of the wrists, knees, shoulders, lower back, and upper limbs. 
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MSD is usually developed from overexertion the manual material handling operator 

endure to complete their given duties, specifically overworking their muscle-skeletal 

system to the point of hurting themselves. Therefore, having a sense of the exertion 

(fatigue) level can give a worker an indicator of performance to increase human safety by 

reducing their exertion levels when needed. The goal of this research is to create a smart 

manual material handling solution in which motions conducted by a worker can be used 

to predict the level of exertion (fatigue) to give them an indicator to know that they 

should rest and recover their musculoskeletal system reducing the amount of the 

individual overexerts themselves.  

Using only the motion displacement (XYZ values) of the individual as an indicator 

of fatigue in a specific motion using ML, rate of perceived exertion (RPE), and motion 

capture technology, a smart solution will be developed. Motion Capture (MoCap) 

technology comes in different forms, but the most common for recording MMH motions 

use either MoCap cameras with passive markers attached to the individual or wearable 

Inertial Measurement Unit (IMU) sensors. For this research, the data collection process is 

done in a real-time motion capture environment using twelve motion capture cameras in 

which participants wear 39 reflective markers to track their motions, along with the Borg 

RPE scale representing fatigue levels as they perform an MMH operation. This research 

is set out to investigate the combining of the motion data (XYZ coordinates) of MMH 

motions conducted by subjects, with the RPE per minute of a subject to create a 

Recurrent Neural Network (RNN)-based ML solution (Long Short-Term Memory and 

Gated Recurrent Unit algorithms) to predict the fatigue based on the RPE values 

associated with the motion(s) and to also perform univariate human motion forecasting. 
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The objective is to create a solution associated with I4.0 to create a smart, holistic system 

between human technology to increase worker safety in the material handling industry 

resulting in the augmentation of the human worker. 
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II. BACKGROUND INFORMATION 

Industry 4.0  

Starting from the advancement of the steam engine in the First Industrial 

Revolution to the manufacturing mass production process developed in the Second 

Industrial Revolution to the integration of computer systems to help drive the assembly 

line in the Third Industrial Revolution, bringing us into the present the Fourth Industrial 

Revolution or I4.0 with the use of Information and Communication Technology to create 

Cyber-Physical Production Systems (CPSS) in the manufacturing/production domain Fig. 

1 [1, 2]. 

 

Figure 1 Industrial Revolution Timeline adapted from [1] 
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I4.0 was first introduced at the Hannover fair in 2011 in Germany, which has 

grown into what is known today as the Fourth Industrial Revolution that involves 

automation and data exchange of traditional industrial processes [1]. The main idea for 

I4.0 is to produce a ‘smart’ factory to improve the interconnectivity of process within the 

factory between IT, and the physical operational technology systems to create a CPSPS 

[1-3]. The goal is to use the data collection process and exchange it in real-time with the 

help of enabling technologies. These include IoT, Big Data analytics, ML, AR, and 

advancement in collaborative robots [1-3]. The use of these digital technologies will 

make it viable to create flexible automation processes within the industrial settings to 

create an intelligent process, increase product quality, increase productivity, and create a 

safer environment for humans. By making machines and production more autonomous, 

the ability of self-monitoring, self-predictive, and self-organize can reduce humans' being 

at risk on the factory floor [3].  

Another motivation is to improve the MMH safety where operators are 

performing repetitive manual operations. When performing repetitive manual operations, 

operators may experience fatigue but will continue to work resulting in the overuse of 

their musculoskeletal system, leading to injuries and human error [4] in the factory. 

Therefore, to augment human-technology interaction, sensors can be added to the worker 

to monitor their fatigue with the use of real-time data analytics. The accumulation and 

collection of sensory data fit the criteria of what I4.0 brings to the future of smart 

factories.  
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Issues Associated with Material Handling Labor 

Fatigue 

Fatigue can be derived between two types, physical and mental fatigue that an 

individual develops over a duration of time giving the individual the sense of being tired, 

weak, or exhausted [5-9]. It often comes from a prolonged physical or mental activity that 

can be resolved or reduced with rest. In the material handling industry, workers usually 

perform repetitive MMH labor that involves a range of physical activities. The activities 

can range from motions that make them lift, lower, push, pull, walking, and/or carry 

objects with different weights for an extended period throughout their daily demanded 

tasks [5, 10, 11]. The fatigue considered for this research is tied to the physical aspect 

typically associated with these MMH labor motions. According to literature, fatigue is 

defined as the impairment of a person’s capacity or performance with the task [5-9]. 

Fatigue can lead to numerous symptoms including discomfort that may affect the 

person’s motor function, low motor control (increase reaction time), and reduction in 

physical strength that impacts the performance of a given activity [6].  

Multiple measurement tools have been introduced for measuring fatigue. There 

are objective methods that involve the use of biometric wearable sensors (e.g., surface 

electromyographic, heart rate monitor) [12-14] to capture physiological indicators. These 

types of sensors include indicators such as heart rate, breathing rate, minute ventilation, 

and muscle activity [14, 15]. Fatigue can also be measured by calculating the amount of 

energy, measured in calories, for a given activity the person will use in activity, also 

known as energy expenditure, to measure the accumulation of fatigue [16].  
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Other forms of measuring fatigue, considered a subjective measure, is the use of 

self-reported measures using questionnaires, surveys, or Likert scales [7, 17, 18]. Self-

reports rely on the person's perception of the activity. To name a few fatigue ratings used 

are Rapid Upper Limb Assessment (RULA), Brief Fatigue Inventory (BFI) chronic 

fatigue scale, Fatigue Symptom Inventory (FSI), and Likert Rate of Perceived Exertion 

(RPE) scale [7, 17]. For this research, a Likert RPE scale known as the Borg rate of 

perceived exertion scale is used as the measure of fatigue from the individual. The Borg 

scale is scaled from six representing no exertion to twenty meaning maximal exertion 

[18]. As previously mentioned, a Borg value is the perceived exertion by the individual 

themselves and where they think they stand on the scale. A Borg value is dependent on 

how hard the activity is to the individual performing it, and their perception of how it is 

affecting them physically. Both types, subjective and objective, of measurement of 

fatigue, will be helpful to create a solution for monitoring the human worker performance 

in the material handling industry. 

Furthermore, incomplete recovery from fatigue can increase the risk of injury, 

increase human error, and decrease work efficiency [6, 9]. In the long term, if fatigue 

levels continue to increase in an MMH operator, without adequate time to rest, they will 

remain within their exhausted state causing them to develop a work-related 

musculoskeletal disorder (WMSD) resulting in increased worker’s compensation claims 

and lost days [4]. Therefore, human safety in the material handling industry environment 

can be increased with the emerging technologies in I4.0. 
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Work-Related Musculoskeletal Disorder  

According to the Center for Disease Control and Prevention (CDC) for 

Occupation Safety and Health (NIOSH), Musculoskeletal Disorder (MSD) are considered 

injuries of the musculoskeletal system (e.g., muscles, joints, tendons, cartilage) [19]. 

WMSD is the same just a factor created by the work environment and conditions. A 

WMSD starts in a region of the body that is overexerted in a worker to the point of 

creating serious bodily harm. When an MMH worker has to repeatedly use the same body 

region for handling heavy loads, if the skeletal muscles do not have enough recovery time 

or there is improper posture, the individual will be at risk of injuring themselves [10, 20].  

This disorder is prevalent in the manufacturing, and material handling industry 

domain involving repetitive work [11]. According to the U.S. Department of Labor, 

Bureau of Labor Statistics [21], in 2015 20,990 workers in the occupation of laborers, 

stock, and material movers exhibited MSD  or ‘chronic’ fatigue, which was the largest 

occupation in the list [10] This number increased by 4,120, to 25,110 cases in 2018, 

indicating that this issue is still a concern in the industry. Workers usually experience 

injury in their upper limbs (e.g., tendonitis, tenosynovitis bursitis), lower limbs (e.g., 

knees), and back [4, 11, 15, 22]. WMSD does not appear overnight and gradually develop 

if the overuse of the body region is continued without sufficient recovery. Hence, 

knowing when the operator is fatigued, they can be given adequate resting time from the 

motions. Fig. 2 gives a visual representation of the manual material handling motions 

increasing fatigue up to the point of exhaustion (represented by the arrow leading to red) 

and developing a WMSD.  
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Figure 2 Representation of Developing MSD from Fatigue of MMH Motions 

Motion Capture Technology 

Motion Capture (MoCap) Technology was inspired by the movie industry to help 

speed up their animation process for developing new animation entertainment [23]. 

MoCap is prevalent in the video gaming industry with the intent to create realistic 

motions associated with human physics. MoCap is defined as the process of recording 

movements of an object of interest, at high frequency, in a real-time environment by 

tracking the position of points of interest on the object [23, 24]. This can be used to 

capture the posture and location of a human during physical activity for further analysis. 

MoCap technology has various tracking systems that include mechanical, 

acoustical, inertial, magnetic, and optical systems [23, 24]. The Acoustical Systems use 

sound transmitters and microphones placed on specific locations to estimate the position 

of the points of interest. Inertial motion capture systems use an inertial sensor, containing 

an accelerometer and gyroscope, and rely on acceleration and angular velocity [24]. 

Magnetic-based MoCap systems use a set of receptors to obtain the magnetic field given 

by the joint position, angles, and orientation on the body. Mechanical tracking systems 
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are the oldest and simplest method of capturing motion by using potentiometers to 

measure joint orientation displacement at each point. Lastly, Optical systems can be 

divided into two categories, marker, and marker-less tracking systems.  

An Optical Marker System (OMS) has two types of markers: passive and active 

markers. The passive markers are reflective markers attached to a point of interest on the 

actor. Using infrared high-speed cameras to capture the light reflective from the passive 

markers to triangulate the positions, producing 2D coordinates of the data. Proprietary 

software is used to compute the 3D coordinates of the markers [24] based on the XYZ 

plane in the designated environment. Alternatively, active markers use Light Emitted 

Diodes (LED) markers that emit light instead of reflecting it. Both are OMS but there is 

also an option for marker-less optical MoCap systems. These types of systems typically 

use computer vision algorithms for tracking the postures of the movements using a 

camera. The OMSs are the most accurate motion capture technology from all the ones 

mentioned beforehand [24]. 

From the mentioned MoCap technology, the two types of motion capture 

technology used for collecting the data from MMH motions being performed by a 

participant are the optical marker system and inertial motion systems. Using the motion 

data can be used to evaluate how the body responds to the repetitive motions conducted 

throughout their given task(s). Currently, this motion capture provides data for ergonomic 

evaluations for MMH operations [22, 25-29].  
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III. REVIEW OF LITERATURE 

WMSD is a major health concern in the occupation of laborers and freight, stock, 

and material movers. In 2015-2018 these occupations accounted for the most WMSD 

cases compared to the other occupations [21].In 2018,  30% of the MSDs cases involved 

work-related injuries that required a median of 12 days away from work (DAFW) [21]. 

Factors that increase the risk of MSDs include the increase of fatigue due to the intensity 

of the work, the frequency of repetitive motions, the duration, and the postures during 

each task.   

In other words, the operator for a duration of time performs repetitive motions 

with objects of different loads meaning while constantly changing posture to adapt to the 

task at hand. This will cause the level of fatigue to change over time, usually in an 

increasing manner. Overexertion combined with repetitive movements affects the 

workers' performance and increases the probability of getting a work-related injury that 

will be considered a WMSD. Being able to monitor the fatigue during a repetitive lifting 

operation can be beneficial for the worker in the field of work that deals with manual 

material handling. In this chapter, a review of the type of human motion analysis 

conducted on operations with the use of MoCap technology to obtain the motions 

conducted within different environments. MoCap technology such as OCMS and Inertial 

Measurement Units (IMUs) have previously been used to conduct experiments to 

evaluate the motions conducted by individuals. Some of this analysis is related to 

forecasting motion, identifying motion, and fatigue experienced from the motions.  
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Motion Capture and Motion Analysis 

Generation of human motion from motion capture data is a difficult task to 

replicate. In the past years, various motion capture datasets have been created to help 

model and reconstruct these motions [30-34]. In this section, a review of the research 

found that use motion capture datasets to perform forecast motion, detect different 

motions, and identify posture. 

Optical Motion Capture system using markers has been widely accepted as a 

popular methodology for obtaining pose data.  The Human3.6M (H3.6M) [32]dataset has 

been one of the driving factors to advancements in simulating the 3D posture of different 

tasks. This dataset contains about 3.6 million 3D poses collected from eleven actors (6 

male, 5 female) using four cameras at a rate of 50Hz, accurate 3D joint positions, and 

angles from ten motion cameras and 3D laser scans of the actors. Their motivation to 

include all types of data was to create a dataset that simulates 3D postures seen in daily 

life in the world. The researchers conducted experiments on fifteen scenarios of different 

postures that will be seen in a real-world setting (i.e., walking, eating, smoking, waiting, 

greeting, etc.). Recent developments in human motion prediction have been made 

possible using this dataset and machine learning [19, 35-39]. There three notable prior 

works related that provide solutions for forecasting short-term and long-term sequences 

of natural human motion [19, 37, 38].  

The authors in [19] exhibit the use of a recurrent neural network (RNN) model 

with a nonlinear encoder and decoder (ERD) for producing realistic motion from the 

H3.6M pose dataset. Learning from ground-truth data during training, RNNs will tend to 

have issues fitting to unseen data and not able to recover from the errors, therefore, they 
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gradually add noise to the ERD network [19] adding noise to the input when training will 

help with the issue (known as curriculum learning). The researchers provide a 

comparison with ERD and prior work that use Restricted Boltzmann Machines (CRBMs), 

Gaussian Process Dynamic Model (GPDM), nearest neighbor N-gram model (NGRAM), 

and 3 Long-Short Term Memory (LSTM) layers of 1000 units each with linear encoder 

and decoders to show the importance of the using a nonlinear encoder and decoder. In 

comparison, the N-gram model cannot generate anything outside of the training set, 

GPDM cannot handle the breadth of styles in training and produces unrealistic motion. 

The LSTM-3LR does perform relatively better than the ERD implementation for short-

term motion generation but soon seems to converge to a mean pose with long-term 

motion forecasting because it did not encounter similar examples in training.  The motion 

synthesis when using ERD showed that short-term motion (80msec, 160msec, 250 msec, 

and 320 msec) is mimicked well when comparing it to the ground- the truth of motion. 

Overall ERD only performs better on periodic activities (i.e., walking, smoking, etc.) than 

non-periodic (i.e., sitting) and produces fewer smooth completions with long-term motion 

predictions not staying close to the ground truth. Yet, according to the motion prediction 

error table in the paper, LSTM proves to have the lowest prediction error. 

In [37] they introduced a structural RNNs (SRNN’s) which uses Spatio-temporal 

graphs decomposed into different factors with each factor being assigned an RNN. Each 

of the RNN’s is interconnected semantically to represent the structure and interaction of 

Spatio-temporal graphs. SRNN model adapts ideas from [19]such as noise sampling 

during training input to help the prediction of motion a realistic human motion. In this 

research, they also use the H3.6M dataset to compare their S-RNN implementation with 
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ERD for motion forecasting of the same experiments (i.e., walking, eating, smoking, 

discussion). The short-term predictions stay close to the ground truth data and the SRNN 

can produce a long-term motion for periodic actions and unlike ERD implementation it 

can forecast human motion for aperiodic actions. Comparing this to the 3-layer LSTM, it 

also does a slightly better job (smaller error) in motion forecasting.  

Although S-RNN is a better solution compared to ERD another recent work 

focusing on creating a better performing long-term by authors in [38]. A single Gated 

Recurrent Unit (GRU) with 1024 units was created to simplify the solution. It will make 

the architecture simpler by reducing the number of gates, and layers. They create a 

sequence-to-sequence architecture with sampling-based loss to eliminate the need for 

hyper-parameter tuning[38]. According to the author a sequence-to-sequence architecture 

trains two networks: one network uses an encoder to generate an internal representation 

of the data inputted, the second network uses a decoder that takes the first network as 

input to produce the maximum likelihood estimation for prediction. They compare their 

implementation to LSTM-3LR, Encoder-Recurrent-Decoder (ERD) and structural RNNs 

(SRNNs) and the end results showed that the model suffers from discontinuities in short-

term prediction but produces a realistic motion longer duration. For short-term motion 

dynamics a large amounts of training data are needed for ML model to be able to 

distinguish the motions, but this model could potentially be useful for longer sequences 

of motion.  

Another dataset that provided advancement in simulating 3D motion is the 

Carnegie Mellon University (CMU) motion capture dataset [31]. This dataset contains an 

abundant number of motions by 144 participants, making this one of the largest motion 
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capture datasets. The data was captured using a Vicon motion capture system which 

consisted of 12 infrared MX-40 cameras at a rate of 120 Hz with a 4MP resolution and 41 

markers placed on each actor. This dataset encompasses six different categories with 

twenty-three subcategories including human interaction, interaction with the 

environment, locomotion (i.e., running, walking), sports, and common situations and 

scenarios in the real world. Although this dataset does contain a higher number of 

subjects, each subject performed a different set of actions that may or may not have been 

performed by others. This dataset has also been used to further pursue the advancement 

in human motion analysis [40-42] 

In [40] researchers, discuss the use of the Dynamic Forest Model (DFM) to 

recognize motions and predict what the action is. The authors created DFM for modeling 

human motion using a non-linear and non-parametric Markov model approach to form a 

linear system that can predict the next frame based on previous observations. They 

combine this Markov model with autoregressive trees (decision trees) and to overcome 

overfitting they use dynamic forest by creating an ensemble of trees. Each tree will then 

produce its prediction and average. They used the CMU motion capture dataset to 

generate the model sequence of motions and classified gestures. Another previous work 

that uses the CMU motion capture dataset for modeling human action recognition uses an 

unsupervised approach for detecting and isolating athletic movements [43]. The author 

used a PCA-like technique based on the kinematic structure of the movement data known 

as kinematic dimensionality reduction (KDR). The technique reduces the dimensionality 

of motion data to estimate the kinematic synergy for each limb joint motion They used 

the CMU motion capture dataset sports motions category such as jumping, kicking a 
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soccer ball, baseball pitching, and golf. Along with the motions of different sports, they 

also considered non-sports motions such as painting, hand waving, and window washing 

which might exhibit sport-like actions. The paper classifies an athletic movement as a 

movement that starts from a flexed pose, followed by quick and coherent motions. The 

flexed pose is detected by calculating the manipulability of the pose, which is a measure 

of the difference in eigenvalues of the Jacobian, therefore if the magnitude is low the 

pose of the limb is stretched and if the magnitude is high the pose of the limb is flexed. A 

limb movement is referred to as a motion of serial links connected by rotational joints 

and its kinematics were expressed as products of exponentials (POE). The proposed 

method is tested with non-athletic motion data which show that movements are detected 

as athletic movement due to the range of motion being performed. For example, spray 

painting motions are shown to be an athletic movement since it like disc throwing 

motion. This indicates there is a problem with their threshold and needs modifying. It 

also illustrates that the method does not make false-positive results since it is activated by 

athletic motions. Although repetitive manual handling labor can be considered non-

athletic, there are still athletic motions being conducted by the operator like squatting to 

pick up material.  

This is a good indication that joint movement obtained from motion capture data 

and the use of machine learning, actions can be isolated and detected.  

Motion Capture and Manual Material Handling 

Manual material handling workers are at risk of WMSDs due to the repeated 

demand on their spines and lower backs in posture from manual labor. This occupation 

requires workers to have to lift, lower, push, pull and carry material. This exposes the 
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human body to sustain awkward posture, perform repetitive motions, exposure to loads 

that may be unstable and hard to hold for a duration of time. Performing extraneous work 

like this can cause injuries, these include sprains and strains, back, writs, arms, shoulder, 

neck, or legs injuries [4, 44-46].  It is important to study the postures and create a solution 

to monitor the risks in overexertion caused throughout the day.  

Posture Recognition in Manual Material Handling Tasks 

Several methods have been created in the past that used motion capture 

technology to collect data and provide some form of evaluation in the motion. Posture 

recognition and classification have been accomplished using motion capture cameras [41, 

47], or wearable devices like inertial measurement units.[22, 27, 48-54] 

There have been studies in which they assess in an MMH setting how the posture 

distribution in the height of the box and distances of a lift that could occur in factories 

[55]. Force sensors have on the feet while performing lifting tasks to measure the 

distribution of weight between each foot, concluding that one foot would have the most 

load during the lifting [56]. Using machine learning it is possible to accomplish posture 

prediction [47] or classification [25]of MMH tasks.  

According to this research [47] created a solution using Artificial Neural 

Networks (ANN) to predict posture from motion capture data from the HUMOSIM 

dataset for non-repetitive manual material handling tasks. Their goal was to identify the 

lifting posture to assess the risk of physical injury from the MMH tasks. The authors used 

the initial and final hand locations of the MMH tasks to train the model with 2D and 3D 

coordinates. While their solution, compared to inverse kinematics, is equal in 

performance, the error percentage in predicting the posture was around 5 – 20%. 
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In [25], the authors explore the use of three classification algorithms: Linear 

discriminant analysis (LDA), k-nearest neighbor (k-NN), and multilayer feedforward 

neural network (MFNN) for classifying MMH tasks using inertial motion data and/or in-

shoe pressure measurements (IPM). A self-organizing map (SOM), a neural network 

based on an unsupervised clustering algorithm with 1024 neurons in a 32x32 grid as the 

machine learning technique was used on features extracted using a sliding window of ten 

frames obtaining five descriptive statistics: mean, variance, min, max, and kurtosis. For 

the data sets that contain IPM outputs, PCA was also used to reduce the dimensions of 

the feature vector. They achieved a precision percentage greater than 90 percent (>90%) 

but their data size was relatively small with only ten participants. Each of the task 

classifications was performed individually on each participant. 

Motion Capture and Analysis of Fatigue 

In this section a review of studies that used motion capture to identify the fatigue. 

Some of the literature that will be discussed uses machine learning to identify the 

relationship between the subject’s exhaustion level and motion data through time. Most 

of the research used a subjective measurement known as a rate of perceived exertion 

scale to obtain the participants level of exhaustion during the activity to predict fatigue 

from squat exercise[15] fatigue from outdoor running [57] fatigue related to a material 

handling process [22], classifying exhaustion in gait patterns [15, 58] and statistical 

analysis between first and last movements of manual labor [26]. 

As stated in [15] a set of 10 Motion Analysis Eagle cameras with 35 passive 

markers on the subject performing a squat exercise. The study used human-motion 

analysis for analyzing fatigue on a continuous level and estimating the increase of fatigue 
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whilst performing squatting. A parametric hidden Markov model (PHMM) and linear 

regression are used to estimate the level of fatigue when performing a squat exercise. 

Since the joint in the ankle, knee, hip, lower body, and upper body are predominantly 

used in the exercise, they used the angles from each of these joints. The first approach 

used sequential data of the squat exercise and linear regression is applied to the features. 

The second approach used PHMM for modeling the joint angles throughout the squat 

with a continuous parameter to indicate the motion change because of fatigue. Linear 

regression and PHMM produced similar results in accuracy for predicting the level of 

fatigue but PHMM is less prone to overfitting.  

A paper that is more related to sports biomechanics rather than material handling 

operations [57] illustrates a solution for predicting fatigue in outdoor runners using an 

RPE scale, IMUs, and machine learning. In this research, fatigue is measured RPE from 

an individual running. The RPE scale the authors decided to use was the Borg scale, 

which is a subject fatigue measure that is indicated by the subject's perceived exertion 

level between 6 (no exertion), to 20 (max exertion). The RPE was measured after every 

lap producing nine values per trail. The inertial motion data from the inertial motion units 

(IMU) attached to the runner’s which contains an accelerometer, gyroscope, and 

magnetometer. The IMUs were attached to the left/right shin bone (tibia), wrist, and arm 

along with a heart rate monitor. Only the accelerometer signals were considered from the 

IMU device attached to the runner. The RPE is added to each 10-second window sample 

that is collected from the IMU signals (RPE becomes the label). Since the RPE 

measurement is known as a linear change with the increase of time, they used linear 

interpolation of the values reported at the end of the previous and current lap to add to 
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each of the samples. They test four regression machine learning techniques to evaluate 

the prediction of the RPE range for the runners. The four techniques used were: 1) 

Gradient Boosted Regression Trees (GBRT), 2) Artificial Neural Network (ANN), 3) 

Linear Regression using penalty parameter of Elastic Net, and lastly 4) a Linear 

Regression with Least Absolute Shrinkage and Selection Operator regularization 

(LASSO). GBRT proved to perform the best indicating that this ML technique modeled 

the movement changes better using non-linear relationships. Using data only from one 

sensor, proved to be performing well-meaning there might not need to have multiple 

sensors when predicting the RPE values of the runner. Once again, as mentioned before, 

the Borg scale is a subjective measure of fatigue so it all depends on the participants' 

perceived exertion which can, in turn, be a different level of fatigue for every individual 

running.  

In [22, 47]  they use a data-driven implementation using wearable sensors to 

detect the physical fatigue in the subjects and to estimate the level of whole-body fatigue 

during a manual material handling process. They also used the Borg scale since it has 

been used by past literature to measure the physical fatigue in the individual. This RPE 

scale is asked every 10 min and written down. The participants wore four inertial 

measurement units (IMUs), strapped onto their right ankle, right wrist, hip, and torso. The 

wearable sensors recorded the XYZ data of acceleration, angular velocity, and the 

magnetic field, which will be used to measure the change in motion that occurred from 

fatigue. The RPE was defined as two binary decision rules one rule being RPE is greater 

than or equal to 13 (>=13, conservative rule), and the second rule is RPE is greater than 

or equal to 15 (>=15, standard based on Borg). In other words, if RPE is >= 13 the binary 
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decision is 1 same goes for >=15. The occurrence of the fatigue was modeled using these 

two different binary decision rules. They used the RPE Borg rating with linear regression 

to predict the rating. The features were extracted from the IMU sensor using the Least 

Absolute Shrinkage and Selection Operator (LASSO). A penalized logistic and multiple 

linear regression were used to perform the prediction and estimation of fatigue. The 

LASSO model with sampling performs better than current mathematical models and they 

claim to have an estimation of 100%. This creates a correlation between the IMU data 

and the self-reported RPE value in the participant in that it is possible to identify fatigue 

in MMH tasks. 

Another unrelated to MMH study that classifies fatigue is [15]. The authors used 

machine learning to identify common features of exhaustion in gait (walking) patterns. 

They used Principal Component Analysis (PCA) and Fourier Transformation (FT) on all 

motion capture measurements obtained to reduce the dimensionality of the features. The 

experiments were captured using 6 VICON IR cameras with 35 passive markers attached 

to the subjects. They used a combination of features that include the XYZ coordinates or 

the joint angles from the data to classify the gait of the walkers. They used several 

classifiers for classifying normal and exhausted gait patterns such as Linear Discriminant 

Analysis (LDA), 1-Nearest Neighbor Clustering (1NN), Naïve Bayes, and Support 

Vector Machine (SVM). They state that they achieved 100% correct classification when 

using LDA, 1NN, and SVM but not Naïve Bayes. This means that an unknown gait 

pattern might not fit well with the model.  

Next is a recent study conducted in 2019 which uses motion data from 

smartphone to classify the fatigue experienced from the gait patterns of individuals [58]. 
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The motion data consisted of twenty-four participants from the university population (12 

M, 12F) performing a walking pattern of 20-32 steps, followed by 16 squats. At end of 

each squat set, the participant gave their RPE value which is based on Borg’s scale rating 

and then performed the same procedure again. The smartphone was attached to the shank 

of the participants which acted as an Inertial Measurement Unit (IMU) collecting at a 

frequency of 100Hz and the data was collected until they reached a Borg value of 17 or 

greater. Each IMU data was segmented into windows of fixed sizes along the sequence of 

data points to identify the segments of acceleration in the gait pattern. Then features were 

extracted which included, mean, coefficient of variation, maximum acceleration, 

acceleration range, second acceleration peak, etc. that will be used as input for an SVM 

classifier with a Radial Basis Function kernel. They experimented with two different 

numbers of classes for fatigue classification, 2 class SVM and 4 class SVM. The 2-class 

SVM is based on binary classification where 0 is classified as normal walking and 1 is 

classified as a range of 15-20 Borg RPE rating. For the 4-class SVM, the classification is 

based on four categories, 0 is classified as normal walking, 1 classified as a range of 7-10 

Borg RPE rating, 2 classified as a range of 11-15 Borg RPE rating, and 3 classified as a 

range of 15-20 Borg RPE Rating. They performed gait analysis using these two types of 

classes to classify the fatigue which they achieved accuracies of 91% for 2-class SVM 

and 61% for 4-class SVM. The binary classification performed better than the 4-class 

SVM because there are fewer gaps between the classes making it difficult to separate 

them in the hyperplane. The 2-classes gap had a much bigger gap between classes when 

looking at the RPE value so there is higher sensitivity for identifying the gait pattern of 

RPE 15-20. 
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Lastly, research related to the manual handling of loads [26], focuses on the 

fatigue that is caused by manual labor. The goal of the project was to identify an indicator 

that shows fatigue in the participant using physical symptoms (i.e., posture change, facial 

expression). They used two webcams to capture the recordings of the experiments with 

the volunteers repetitively lifting a load. The participants had markers placed only on the 

upper body and the reference points were manually placed in each frame of the video and 

the real-world coordinates of the body position were reconstructed using Direct Linear 

Transformation. They gathered rates of perceived exertion (RPE) using the modified 

Borg scale at the end of the experiment. The Borg scale indicates the level of fatigue 

from 0 to 10 (0 being none, and 10 being maximal exertion). Once the experiment was 

over the researchers watched the recordings to observe the physical changes throughout 

the recording. To improve this aspect, they could have also recorded the biometrics of the 

individual (i.e., heart rate, breath pattern, etc.) to help validate their observations from the 

recordings. They performed statistical motion analysis between the first and last 

movement of the wrists, elbows, and shoulders using XYZ, velocity, and acceleration. 

They observed that the range of movement during the lifting changed individually with 

others having different acceleration when lifting. This research has proven to show that 

movement changes are prone to change when performing lifting and lowering 

movements. 
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IV. DATA COLLECTION 

MoCap was invented to help speed up the animation process for developing future 

content and is widely used in the gaming, entertainment, biomechanics, and ergonomic 

industries [22-25, 28, 29]. MoCap is defined as recording movements at a high frequency 

in a real-world setting by tracking the positions of points of interest attached to an object 

or person [23, 24, 59]. There are various tracking technologies used for motion capture; 

they include acoustical, inertial, magnetic, mechanical, and optical systems [24]. The 

acoustical systems use sound transmitters and microphones placed in specific locations to 

estimate the points of interest. Inertial motion capture systems use an inertial sensor 

(containing an accelerometer and gyroscope) that relies on acceleration and angular 

velocity [22, 27, 28]. Magnetic-based motion capture systems use a set of receptors to 

obtain the magnetic field given by the body’s joint position, angles, and orientation. 

Mechanical tracking systems are the oldest method of capturing motion by using 

potentiometers to measure joint orientation displacement at each point of interest on the 

actor [24].  

Finally, the Optical Motion Capture System (OMCS) is divided into passive and 

active markers. The passive markers are reflective indicators attached to the main points 

of interest on the person or object. Passive marker positions are triangulated using 

measurements captured from infrared high-speed camera reflections off the marker 

producing 2D coordinates of the data. Proprietary software is used to compute 3D 

coordinates of the markers [23]. Alternatively, active markers use light-emitting diode 

(LED) indicators that emit a light of their own instead of reflecting light. Some OMCS do 

not require physical markers, known as optical marker-less capture systems that use 
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computer vision algorithms to track the movements. OMCS technologies have been 

implemented to collect data from motions performed by participants performing manual 

handling tasks for Industry 4.0 applications [25, 27-29]. It can also analyze the 

correlation between exhaustion and manual handling operations[22, 60]. This research 

aims to analyze motion data to predict fatigue levels based on the Borg rate of perceived 

exertion. An Optical Marker Motion Capture System (OMMCS) system with passive 

markers and infrared cameras has been developed, as shown in Fig. 3. The following 

chapter is split into four subsections describing the various components of data collection 

for the research. The first section, Overview, gives an overview of the OMMCS 

technology involved in this research. The following section, Preparations for Setting Up 

Data Collection, is a detailed breakdown for performing an experiment and the various 

aspects involved to capture the data. The third section, Post Processing of Data Using 

Qualisys Tracking Manager (QTM), discusses proprietary software paired with the 

OMMCS to process and clean the data after capture is completed and describes the type 

of data is captured. Lastly, in the Selected Data from Motion Capture Experiment section, 

a description of the data selected from the experiments to develop a machine learning 

model is discussed.  

Overview 

The data collection environment contains various components for capturing the 

movements associated with Manual Material Handling. An OMMCS is used to obtain 

participants' motions in a real-time environment, as shown in Fig. 3. In the OMMCS, 

three additional Qualisys (Oqus 110+) cameras were added to the previous group of 

cameras, making up a total of twelve infrared cameras (Oqus 110+, 510+, and M3) [60]. 
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One video camera (210c) is shown in Table 1. 

 

Figure 3 Optical Marker Motion Capture System 

These cameras are confined to space in the Ingram School of Engineering lab 

designated for the subject to perform the tasks, so adding more cameras added vantage 

points to the lower portion of the body that was continually missed while the participant 

performed experiments. This research involves human subjects; therefore, the 

experimental procedures had to be approved by the Texas State University Institutional 

Review Board, and informed consent was obtained from the participant before 

conducting any experiments. 
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Table 1 Cameras in the Optical Marker Motion Capture System Environment 

Qualisys Camera Type Quantity 

Oqus 110+ 3 

Oqus Video 210c 1 

Oqus 510+ 6 

Miqus M3 2 

 

The task(s) needed to be performed by a subject essentially mimics a manual 

material handling movement in which the performer operates based on various heights 

and weights shown in Table 2. For measuring the body positions, 39 markers were 

attached with double adhesive-sided tape on the participant. Using QTM, proprietary 

software gives the ability to use the Qualisys cameras to capture 2D/3D/6DOF motion 

capture data in real-time [61]. The QTM software with the cameras will capture and 

generate real-time 3D coordinates of each marker position at a rate of 100 Hz (100 

frames per second) while the participant performs each motion. Each experiment 

conducted by the participant was based on the “Snook Table” at various heights and 

weights [62]. The motion reference will be on the lifting motion from the floor to the 

knuckle height for these experiments. 
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Table 2 Lifting Experiments for Participants to Perform 

Gender Range % Industry 
Weight 

(kg) 

The distance 

of Lift (cm) 

Interval 

Between Lift 

(sec) 

Female Floor-Knuckle 50 15 25 9 

Female Floor-Knuckle 50 13 51 9 

Female Floor-Knuckle 50 12 76 9 

Female Floor-Knuckle 50 16 25 14 

Female Floor-Knuckle 50 14 51 14 

Female Floor-Knuckle 50 13 79 14 

Male Floor-Knuckle 50 24 25 9 

Male Floor-Knuckle 50 20 51 9 

Male Floor-Knuckle 50 19 76 9 

Male Floor-Knuckle 50 28 25 14 

Male Floor-Knuckle 50 24 51 14 

Male Floor-Knuckle 50 22 76 14 

 

Each participant also provided their fatigue level using a rating of perceived 

exertion based on the Borg scale from six to twenty every 60 seconds in the experiment. 

In this case, six was no exertion perceived by the individual, while twenty is maximal 

exertion [18]. Every participant performed the lifting task for a different duration of time 

until they perceived on their own that they could not go any further in the experiment. In 

other words, from the data points standpoint, every participant motion data produced a 

different number of frames/samples with a mean of 106,025, a minimum of 25116, and a 

maximum of 195,799 frames between the ten participants for lifting only motion. The 

OMCS can capture each of the 3D coordinates of the markers(s) using Qualisys 

proprietary software, Qualisys Tracking Manager (QTM) [63]. Another type of data 
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collected from the individual that is not going to be used for this research is the 

biometrics data, i.e., the heart rate and breathing rate in real-time using a Hexoskin Smart 

Shirt[64]. The biometric data is part of the contributed data collected while performing 

these experiments that will not be used to develop a predictive fatigue model. 

Preparations for Setting Up Data Collection 

The starting basics will be discussed further along with the activities done to get 

to the point of capturing data and as represented by Fig 4. The setup ranges from starting 

the system to calibrating the data to preparing the experiment and the subject's reflective 

markers' placement. Lastly, the general flow of what the experiment process is during the 

experiments. Fig. 4 shows the flow for the beginning MoCap session in the lab. As 

shown, there are five steps to get to the point of start for capturing the data. These steps 

must be performed chronologically to complete the MoCap setup. Once these steps are 

completed, the data capture can begin. 
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Figure 4 Flow for Data Capturing 

Calibration of Environment 

Firstly, the environment must be calibrated to give the origin point where the 

experiment area begins to give the bounding area where the motions will be captured. 

This is done using the calibration kit provided from Qualisys containing two apparatus, 

an L-frame and a 300 mm carbon fiber wand, as shown in Fig. 5 [63]. 

System 
Setup

• Turn On Cameras 
and Computer 
with QTM 
Software

Calibrate 
Experiment 

Environment

• Use 
Qualisys 
Calibration 
Kit

Prepare 
Subject & 

Experiment 

• Attach markers to 
subject

• Set up weight and height 
of lift

AIM Model 
Development

• Calibrate subject to 
system

• label markers

Ready for 
Motion 
Capture 
Activity

• Subject starts 
at T-Pose



 

31 

 

Figure 5 Calibration Kit: Top Item is L-Frame, Bottom Item is 300 mm Fiber Wand. 

The L Shape is placed on the designated spot on the floor in the viewpoint of 

cameras' viewpoint, indicating the origin, which will let the calibration distinguish where 

the experiment area begins. Using the wand apparatus and moving it in the x (left to 

right), y (forward and backward), and z (up and down) direction indicated by the 

direction of the axis shown in Fig 6. This ensures while calibration mode is on in the 

QTM software, the cameras can triangulate the area of interest. 
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Figure 6 XYZ Direction Corresponding to MoCap Environment that is Viewed by the Cameras. 

The software creates the calibration area by forming a bounded box in which the 

motions will only be captured. Therefore, any motions performed outside this bounded 

box will not be captured and will not show up in the data capture. This creates a concise 

way for cameras to view the markers attached to a subject in the experiment area.  

Setting Up the Experiment and Subjects 

Once the calibration is performed, the next step is to set up the experiment being 

performed by the subject based on the activity’s parameters. In this case, it will be the 

lifting operations. Lifting operations involve loads with different weights based on a 

percentage of the gender population and distance of the vertical lift [1][3]. Each lifting 

task contained three parameters: the interval between each lift, the box’s weight, and the 

distance of the lift from floor level to knuckle height. In the data collection process, the 

participant must lift a box with the load derived from the “Snook Tables” [3]. These 
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tables outline the maximum acceptable weight for specified manual material handling 

motion for the female and male population. Each participant was to perform the 

experiments described in Table 2, which lists the experiment’s setup parameters by 

setting up the table, the box with corresponding weight, and the interval timer. 

Once the experiment setup is completed, markers are placed on the participant 

based on a modified version of the Qualisys Animation Marker Set provided within the 

Qualisys Tracking Manager shown in Fig. 3. The marker set contains only 39 markers 

that will be used to capture the motions during the experiments. In Fig. 7, the marker set 

is edited to showcase the 39 markers, with left and corresponding right markers. Each of 

the subjects also wore a back-support brace to mitigate the effects of lifting the load 

provided for each experiment, which is also used by workers dealing with manual 

material handling operations in the industry. The double-sided adhesive tape was used for 

attaching the markers, with some attached to the skin, while others attached to the 

clothing and back brace. 
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Figure 7 Marker Set Based on Qualisys 

Automatic Identification Markers (AIM) of Subject 

Once the calibration is set for the area and the subject is set up with the markers, 

the next step is to generate an Automatic Identification Markers (AIM) [63] model 

tailored to the person performing the motions. Essentially calibrating the system to the 

person and manually labeling the markers to the corresponding joint used in real-time 

marker identification. The AIM helps the data collection process that allows the system to 

quickly identify the markers attached to the individual in real-time; without this, the post-

processing will have a significant number of unidentified trajectories that will have to be 

manually labeled for each marker on the person. 
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Capture of Experiments 

The steps beforehand must be completed, and the data collected captured in real-

time begins with the subject standing at T-Pose to start data collection. The motion 

positions are processed in the QTM software for the experiment's duration, and motion is 

conducted based on the interval. Unlike the QTM that QTM automatically processes, the 

Borg RPE values are manually collected onto an Excel spreadsheet every 60 seconds. 

Every 60 seconds, the subject self-reports the lab assistant what their RPE value is and 

notes it down into the Excel file. The experiment stops once the individual believes they 

are fatigued based on their own perceived motion in the activity and signals the lab 

assistant by standing back into T-Pose to stop the capture in QTM. Fig. 8 shows an 

example of the lifting motion capture experiment and how the environment looks. 

 

Figure 8 Motion Capture Lifting Experiment 



 

36 

Post Processing of Data with QTM 

After completing the capture using QTM, the data is post-processed. The cameras 

capture every marker data at a speed of 100 frames every second, meaning every frame is 

captured every 0.01 seconds. Each frame contains each of the marker positions in x, y, 

and z-direction, with a total of 117 data points each frame (39 markers * 3 directions). 

The tracking system suffers from missing or gaps in the data for the marker(s). These 

gaps are usually automatically filled up to ten missing frames by the QTM software based 

on the AIM model created, but there are instances where the software cannot track the 

marker. The leading cause is by obstructing the view of marker(s) or having fallen when 

performing a movement, and the cameras lose track causing the system to have missing 

frames or gaps in the data. To overcome this issue of missing data/frames, Qualisys has 

provided tools (algorithms) to fill in the data's missing gaps. Looking at the trajectory 

editor, the options provided in QTM are Static, Linear, Polynomial, Relational, Virtual, 

and Kinematic. Filling in the missing gaps using QTM reconstructs the data for missing 

frames from the marker(s) that have gaps, all performed manually. After interpolating the 

data, the data is simulated on the 3D plane in QTM to visualize if the filled data's 

trajectory corresponds to the motion conducted. 

Depending on the number of frames missing, for 100 or fewer missing frames, the 

Polynomial algorithm was used to fill in the gaps. Polynomial uses an algorithm to join 

the X, Y, and Z trajectory curves from the beginning of the gap to the other end[61]. This 

algorithm smooths the data, so this can only be used when there is trajectory data on both 

sides of the gap. It relies on the previous and later data to interpolate the missing 

trajectory curves. For this reason, long gaps more extensive than 100 frames are 
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disregarded because they will not reconstruct the trajectory of the curves that correspond 

to the motion being performed. Fig. 9 shows an example of the trajectory editor with the 

Polynomial fill type selected. For missing gaps of 100 frames or greater, Relational was 

used to fill in gaps for the X, Y, and Z trajectory curves[61]. Just like the Polynomial 

algorithm, the Relational fill type connects both sides of the gap. The difference is that it 

uses surrounding markers' movement to create a local coordinate system to follow the 

trajectory path and fill in the missing curves. Since this requires an origin marker to 

create the local coordinate system, this is ideal for more significant gaps because there 

will always be other markers in the surrounding area to fill in the missing data in the 

trajectory curves. An example of the trajectory editor for the Relational fill type is shown 

in Fig. 10.

 

Figure 9 Trajectory Editor of the Polynomial fill type in QTM. a) Gaps to Fill shown in the left sidebar, b) 

the trajectory curve is shown in the middle with a missing gap, and c) gap-fill type is shown on the right 

sidebar. 
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Figure 10 Trajectory Editor of the Relational fill type in QTM. a) Gaps to Fill shown in the left sidebar, b) 

the trajectory curve is shown in the middle with a missing gap, and c) gap-fill type is shown on the right 

sidebar. 

After the data is post-processed in QTM, the data can be exported, and for this 

purpose, the data is exported into a Tab Separated Value (TSV) file, which holds the 3D 

XYZ positional coordinates of every marker separated by tabs. Every three columns 

contained the x, y, and z of each marker shown in Fig. 11. Since the cameras will capture 

and generate in real-time 3D coordinates of each marker position at a rate of 100 Hz (100 

frames per second), the timestep of each frame is 0.01 seconds. QTM does have other 

formats to export, but for this purpose, the files with TSV format will be used for 

obtaining the motion capture data from the motions performed by the subjects. Each TSV 
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file corresponds to a separate experiment completed by a subject.

 

Figure 11 Lifting Experiments for Participants to Perform 

Along with the TSV files, the Borg values stored in the Excel sheet will indicate 

fatigue from the motions. An example of the Excel file is shown in Fig. 12, showing a 

column for a minute and a column for the Borg value corresponding to each minute the 

subject reported the data. These values will need to be interpolated to every frame with 
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every 6,000th frame starting with a different Borg RPE value. This is because 6,000 

frames are equivalent to 60 seconds in the motion data since each frame's rate is 100 

frames per second (100 frames/second * 60 seconds). 

 

Figure 12 Borg RPE Value at Every Minute from Subject 

 

 



 

41 

Selected Data from Motion Capture Experiments 

With the limited amount of participant and their availability, some of the 

experiments were not completed. Therefore, only one set of parameters is considered to 

create a solution as they have a more significant number of subjects. The vertical lift 

parameter is the distance from the floor level to the knuckle height of 51 cm with a nine-

second interval for both genders, highlighted with grey on Table 2. This provides ten 

participants’ data (seven males, three females) for lifting only experiments (motion data 

and RPE values) for this work. The data will be split for the machine learning process of 

training and testing the model, which will be discussed further using these lifting 

experiments. 
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V. MACHINE LEARNING DESIGN AND IMPLEMENTATION 

In this chapter, the machine learning algorithms that were used for applying deep 

learning for two applications, 1) forecasting human motion and 2) predicting the 

exhaustion level (Borg scale values) based on the displacement of motions obtained from 

data collection. This covers a brief background on Artificial Neural Network which is the 

workhouse of deep learning algorithms like the Recurrent Neural Network (RNN). 

Further, into the chapter, the RNN is also discussed in-depth and how it can be used for 

time-series applications. Finally, Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) algorithms were used to investigate the possibility to forecast 

motion using a single marker and to also use motion data to predict the fatigue level 

based on the changes in the motion. 

Background of Artificial Neural Network 

ML is a tool used to create new solutions that can be used to build applications for 

Artificial Intelligence. Machine learning is considered the first subset of artificial 

intelligence and is achieved by providing a system the ability to learn from a set of data 

patterns to predict an outcome without human intercession. One way to train an ML 

algorithm is supervised learning. For supervised learning, the machine is trained using a 

given input data that has been labeled to the correct output data. The machine will find 

patterns between the input and output values, which can then be used on a new set of 

input values.  

Neural Networks can be used in a supervised setting which makes it ideal to use 

in this case since there will be a set of labeled data that will be used to create machine 

learning algorithms. A NN is a machine learning algorithm that recognizes patterns in a 
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set of data through the process that mimics the human brain processing data using our 

system of neurons. ANN in the computational world has nodes that act like neurons in the 

brain which are just the mathematical nodes that work in unison to find the patterns and 

change the internal weights within the nodes that can be stacked in layers with other 

nodes. A common way NN works is the feed-forward network type that follows one 

pattern. The data will begin in the Input layer that receives the input information, then 

follow into the hidden layers where all the computational nodes are located followed by 

the output layer which gives the result based on the data set provided as shown in Fig 13. 

The way NN learns is with an important aspect known as backpropagation. It is a way of 

tuning the internal weights and biases. NN uses backpropagation to calculate the loss 

backward layer by layer in which it calculates the gradient of error and aims to minimize 

the loss by adjusting the weights and biases. 
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Figure 13 ANN Visual of Layers and Back-Propagation 

This feedforward type network will only pass the information through these 

layers, therefore, a standard NN will not learn previous observations that are sequentially 

in order. NN is the foundation of deep learning a powerful tool in machine learning that 

can help solve complex problems related to computer vision, speech recognition, 

predictive modeling, etc.  

Recurrent Neural Network 

A type of deep learning technique is the RNN which is the descendent of NN that 

behaves differently from the feed-forward path. RNN has a straight path but it also 

contains a recursive component as shown in Fig. 14 below. This recursive component 

provides the RNN to build an internal hidden state (memory) that is used with the next 
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inputted data to learn the patterns. Essentially, the RNN uses previous observations with 

the new data to build features that distinguish what the model should learn and make an 

accurate prediction.  

 

Figure 14 Feedforward vs recurrent neural network 

Unfortunately, the RNN tends to suffer from short-term memory; if the sequence 

is long the network will have a difficult time carrying previous observations throughout 

the network because it encounters either vanishing or exploding gradient problems. When 

training an RNN, as the gradients are calculated when back propagated through the 

earlier layers, the gradients to update the network weights suddenly become too small 

(vanishing gradient, values are < 1) or become too large (exploding gradient, values are > 

1) [65].  

To overcome these issues two popular RNN based solutions that work well with 

time-series forecasting are known as Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) which have been used for predicting the motion but not predicting 

fatigue in motion [19, 37, 38]. Since it is proven that RNNs can predict human motion, 

combining the motion data with fatigue analysis of motion it is possible to predict fatigue 
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for a specific material handling operation. A 1-Layer LSTM and 1-Layer GRU will be 

used for investigating two different scenarios; 1) human motion forecasting and 2) predict 

Borg RPE value using motion data at each frame captured.  

Preparing the Sequence of Data 

MoCap data and level of exhaustion increases over time as the individual 

performing the task will gradually experience discomfort. This will then lead to motion 

changing over time and the displacement of motions which can be used as an indicator of 

fatigue. When using time-series data, the samples are split into sub-samples taken at a 

timestep value creating a sequence of data. The individual features in the data appear to 

be in a certain order since it is sequential data dependent on the time just like the MoCap 

data and Borg RPE values. There are two separate scenarios in which the sequence of 

data plays a role. One is creating the sequence of data for forecasting the motion and the 

second one is creating the sequence of data for predicting RPE value. For this instance, 

let’s assume there are n training samples for each subject of chronological order by time 

of each frame without shuffling the order to derive the trends within the data. Essentially 

using the historical sequential data, or the previous MoCap values to forecast 1) future 

MoCap values or 2) future Borg RPE values based on the historical data.  

LSTM Architecture  

The LSTM is an RNN type that contains gates that create and carry the 

information throughout the NNs [65]. Each of these gates represents a NN assigned to 

perform different tasks. The first gate is the forget gate which decides what information 

should be passed into the cell state or discarded. The data that passes through here is the 

previous hidden state and current input which in this case will be the previous. The input 
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gate also takes the previous hidden state and current input into a sigmoid function that 

decides what data is important to pass. Another factor for this is the output from the input 

gate is followed by a piecewise multiplication.  

The output gate decides what the next hidden state should be, which contains the 

information on the previous input. In this case, the hidden state will contain the previous 

MoCap data. This information will be used with the cell state to create a long short-term 

memory which is ideal for predicting longer-timesteps ahead. This provides an advantage 

for forecasting MoCap data as this is an indicator for when a person experiences 

discomfort as they become fatigued.  

The architecture for this model is represented in Fig 15. It will only have one 

LSTM layer to receive inputs, with a single dense neuron layer. This dense layer is a fully 

connected layer of neurons in the model that represents a matrix-vector multiplication 

that changes the dimension of the vector from the previous layer to a single dimension. 

The output size is represented by the number of neurons in the dense layer. In this case, 

only one neuron is needed since there is only a single forecasted output. 
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Figure 15 LSTM Architecture 

 

GRU Architecture 

The GRU contains fewer gates, making a simpler implementation of LSTM which 

also makes it less complex meaning it performs fewer mathematical operations [66]. This 

will decrease the amount of work and time compared to the LSTM. For the GRU the first 

gate is the Reset gate which just decides what past information to forget. Secondly, the 

update gate is the combination of the forget and input gate of an LSTM. They combined 

both these gates to give the GRU a way to decide what information is not useful to 

discard and what new information to add to the cell state. Just as the LSTM the hidden 

state is just the output of the previous time step from the MoCap data.  

The architecture for this model is represented in Fig 16. It will only have one 

GRU layer to receive inputs, with a single dense neuron layer. This architecture is 

essentially identical to Fig. 14 architecture, but the LSTM is replaced with a GRU layer.  
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Figure 16 GRU Architecture 
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VI. EXPERIMENTAL DESIGN 

In this chapter the review of experiment design for both the study of using the 

univariate approach in human motion forecasting and predicting the fatigue Borg RPE 

value based on the displacement of motions. For this implementation, only supervised 

learning will be considered for training the ML algorithm. There will be two different 

ways that supervised is implemented within the architecture of the ML algorithm. The 

first way is a univariate approach of using one single marker data and convert it into a 

time-series sequence in using previous observations and the next is to predict the future 

values. There are a total of ten subjects (seven males, three females) that are related to the 

lifting experiment of 51 cm height and the nine-second interval between lifts. Different 

model architectures using LSTM and GRU were experimented with using Tensorflow 

2.2.0 and Keras 2.4.3 which provides a Python interface for deep learning neural 

networks. Only these two different deep neural networks for each scenario are configured 

and evaluated. The loss function used for training is the mean square error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1  (1) 

The �̂�is the predicted value, and Y represents the ground-truth value. Using MSE will 

indicate that this model is a regression analysis to allow to predict a continuous outcome 

variable.  
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Computation Resources 

Hardware 

For creating and executing the experiments the Texas State University Learning, 

Exploration, Analysis, and Process (LEAP) cluster and High-Performance research 

group’s cluster were used in this research. These clusters are a group of servers that work 

together that increase computational capabilities. The LEAP cluster uses the SLURM 

batch system for submitting jobs, which execute the experiments. The system details of 

the LEAP cluster are listed in Table 3. The nodes are the inter-connected computers that 

work together to create a single powerful machine to perform highly intensive 

computational tasks. 

Table 3 LEAP Cluster System Details [67] 

LEAP High-Performance Computing Cluster Hardware Details 

Operating System Linux (Cent OS) 

CPU Type Two Intel Xeon E5-2680v4 

Processor Cores 3,532 

Nodes 123 

Memory 18TB 

Disk Size 48TB 

Memory per CPU 4.5 GB 

CPU Speed 2.4 GHz 

CPU Cores per Node 28 cores 

Memory per Node 128 GBs 

Batch System SLURM 
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The HiPE servers were also used to run experiments that simultaneously ran with 

the LEAP cluster. The HiPE servers were accessible by being part of the HiPE research 

group. These servers were equipped with graphics processing units (GPUs), unlike the 

LEAP cluster. The GPUs provided an advantage to training deep learning models as they 

provided better performance in computational time. Two HiPE servers that were used, 

and their specifications are listed in Table 4. 

Table 4 HiPE Computation Server System Details [68] 

High-Performance Engineering Research Group Hardware Details 

Servers 

Two PowerEdge C4130 Rack Servers 

(HiPE1) 

One PowerEdge R740 Rack Server 

(HiPE3) 

Operating System Linux (CentOS 7) Linux (CentOS 7) 

CPU Type Dual Intel Xeon E5-2640 v4 Dual Intel Xeon gold 

CPU Speed 2.4 GHz 2.3 GHz 

CPU Cores 20 Cores 18 Cores 

Memory Size 

16GB RDIMM x8 Data Width (128GB) 16GB RDIMM x12 Data Width 

(192GB) 

Disk Size Dual 800GB Solid State Drive uSATA Dual 1.2TB Solid State Drive SATA 

GPUs Dual NVIDIA Teslas V100 Dual NVIDIA Teslas V100 

Cores per GPU 5,120 cores 5,120 cores 

Tensor Cores per 

GPU 

640 tensor cores 640 tensor cores 

Memory per GPU 16GB HBM2 16GB HBM2 

 

Software 

For the development of software, Python 3.7 was used for the experimental design 

of the machine learning models. Python provides a range of libraries that are helpful for 
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reading/writing data from files and doing some preprocessing. Python is one of the 

popular computer programming languages used to create deep learning architectures. 

Each python library and its version are displayed below in Table 5.  

Table 5 Python libraries used in Thesis. 

Library Name Description Version 

Keras Open-source software for deep learning that acts as an 

interface for running machine learning platform 

TensorFlow [69] 

2.4.3 

Matplotlib Open-source library for creating plots in Python [70] 3.3.0 

Numpy A library that adds support for processing arrays and 

matrices on a large amount of data.[71] 

1.19.1 

Openpyxl A library to read/write Excel files to save results [72]. 3.0.4 

Pandas Library software used for data manipulation and analysis. 

Using data frames and operations for manipulating tables 

obtained from excel files and to create time-series data 

[73]. 

1.1.0 

Scikit-learn Library software for supporting machine learning 

algorithms. This library was used for scaling the raw 

MoCap data in-between ranges -1 and 1 [74]. 

0.23.1 

Tensorflow An open-source software library for machine learning that 

is used as the backend for Keras. Used for the training of 

deep neural networks of Long-Short Term Memory and 

Gated Recurrent Unit. This specific library supports only 

the Central Processing Unit (CPU) [75]. 

2.2.0 

Tensorflow-gpu Same as above but this is support for Graphics Processing 

Unit (GPU). Using GPU support will enable an improved 

model performance [75]. 

2.2.0 

 

Process of Merging Motion Capture and Borg RPE Values 

As discussed in Chapter 3 the datasets were obtained within the guidelines of the 

Snook Tables. The subjects were recruited at Texas State University and were mainly 

students, therefore there were no experts that had experience in manual handling 

materials.  

Since the data is in TSV format, as shown in Fig 11, the file contained 

unnecessary data like the heading. Using Python 3 the TSV file was parsed to extract 
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only the following data, the frames, the time for each frame, and the columns for the 

marker XYZ data. Using the knowledge obtained from literature in what is known about 

MMH workers that experience a WMSD, only certain markers from the subject are 

selected. These markers are related to the parts in which the individual will likely 

experience physical discomfort or will use specific parts of the body while performing a 

lifting motion of the material. These markers of interest are the Back, Shoulder Back, 

Shoulder Tops, Knees, Shins, Thighs, and Elbows since there are cases of injury in the 

back, shoulders, elbows, and legs (thigh and shin). This means 14 different markers are 

only being considered out of the 39 as these are prone to show more of what the body is 

reacting to when the person will begin to experience fatigue. This creates about 42 

different values (14 markers * 3 orientations) per frame since there are XYZ coordinates 

to each marker. Using the remaining data, the Borg RPE values can be interpolated for 

each frame in the MoCap file with every 6000th frame indicating the start of a new RPE 

value. Once all the data is merged it can be saved into a comma-separated variable (CSV) 

as shown in the figure below. Another thing to note is that the frame number and time per 

frame are also included within the file. A thing to note about time per frame since frames 

are captured at a rate of 100 Hz (100 frames/second), one frame is captured every 

10msec, so when for example, when predicting one timestep it accounts for 1 frame 

ahead or 10msec ahead.  
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Figure 17 Flow of Merging MoCap and Borg to CSV 

This CSV format is used in the machine learning process of creating each model. This 

will provide a smaller size file and a simpler process of opening the file using python 

panda’s data frame for an efficient way of reading the data.  

Normalization of Motion Capture Data 

As explained in the section before, the MoCap data used contains XYZ 

coordinates for each marker captured throughout the experiment. Using only the MoCap 

data, as a raw format could provide an issue while training because each subjects’ data 

will feature a different range because of their height difference, the marker placement, or 

even the range of motion conducted over time. The goal for normalizing the MoCap data 

is to rescale the features or numeric columns in the dataset to a common scale to use with 

the ML algorithm. For this research, the MoCap data is normalized to a range of [-1,1] 

with the use of the MinMaxScaler estimator class from the scikit-learn library. 

According, to the documentation [74], the transformation is calculated using equations 

(1) and (2) where min and max equal the boundary of the interval of the range given (min 

= -1, max = 1). The Xmin is the smallest in a feature column, and the Xmax is the largest 

value in the column.  
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𝑋𝑠𝑡𝑑 =
(𝑋 − 𝑋𝑚𝑖𝑛)

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (2) 

𝑋𝑠𝑐𝑎𝑙𝑒 = 𝑋𝑠𝑡𝑑 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛) + min  (3) 

The MinMaxScaler estimator is fit on the training data set which are the eight 

different subject files. Each subject file has 42 columns of data corresponding to each 

marker. Using the estimator each of these will be individually fitted using the given range 

on the training set, e.g., between negative one and one. The same estimator will be used 

to transform both the training and test data. Transforming the data will scale the data to 

be used for creating the models. 

Metrics for Evaluating Machine Learning Performance 

Along with the MSE loss function, other metrics that are considered to evaluate 

the performance are the root mean square error (RMSE) and mean absolute error 

functions (MAE). These metrics are typically used for regression-type models to help 

indicate how the model is performing. Just as MSE these will give a sense of how well 

the model can predict. Using these together with loss curves plot can provide a complete 

picture of the distribution in prediction errors [76].  

𝑅𝑀𝑆𝐸 = √∑
(𝑌�̂�−𝑌𝑖)2

𝑛
𝑛
𝑖=1  (4) 

𝑀𝐴𝐸 =
1

𝑛
√∑ |Yî-Yi

|𝑛
𝑖=1  (5) 

Training, Validation, and Testing 

To design a machine learning algorithm a common practice is to split the data into 

two sections a training set and a testing set. The model is initially fitted on a training 
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dataset which provides a set of examples for the system to learn the patterns from pair of 

input to the known output values (target). The training dataset can optionally be split into 

a subset known as the validation dataset. A validation data split provides examples 

containing the unknown input and output pairs not used during training to provide an 

unbiased evaluation of the models fit on the training dataset. This is used for tuning the 

model hyperparameters and find the optimal parameters for the model. Comparing the 

training and validation error will provide a sign for the model overfitting or underfitting 

to the training dataset. Lastly, the test set provides a sample of unseen data to provide an 

unbiased evaluation of the final model. Fig. 18 shows how data can be partitioned to be 

used in machine learning design. For this research, the dataset of ten subjects is split into 

two ways, for forecasting motion, it is split into eight subjects for training with 15% of 

each subject data used for validation and two subjects for testing. For predicting the Borg 

RPE value, the data is split into eight subjects for training and two subjects for testing 

with no validation set since all the RPE values are needed to not miss the information 

provided by each subject. The MSE, RMSE, and MAE are calculated to measure the 

testing performance between prediction and true values in the. 
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Figure 18 Ways to partition the dataset. 

Loss Curve Plots 

To measure the performance, besides using the metrics and picking the 

implementation that contains low MSE, RMSE, and MAE error between prediction and 

target values is using loss curve plots. A loss curve plot illustrates the training and 

validation losses against the number of epochs on the fitted model. The horizontal axis 

(x-axis) represents the number of epoch and the vertical axis (y-axis) represents the error 

values. This provides insight into how the ML model performance is fitted to training 

data and if any overfitting or underfitting is occurring. Overfitting is when a model has 

learned the trained data too well but fails to generalize on a new set of data that has not 

been seen by the model. Underfitting is when the model cannot learn the underlying 

patterns within the training data and fails to predict. 

Univariate Human Motion Forecasting with Machine Learning 

In this section, there are two different scenarios for using the Univariate approach 

for forecasting human motion. The first scenario begins with using a single file and single 

subject to help guide the training process in finding the hyperparameters for the machine 
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learning algorithm. The second scenario is using every single file that is presented with a 

lifting task at the height and interval discussed prior and evaluating on a single marker to 

forecast motion. Each of these scenarios will follow the flow shown below. Each of these 

scenarios was trained on 10 epoch and MSE loss function to keep consistency between 

the two algorithms. A validation split of 15 percent was used as well to perform 

validation of the model and indicate how the model was performing using the set of 

parameters. 

 

Figure 19 Univariate Approach for MoCap Motion Forecasting 

As shown in Fig. 19, the data gathered from the database is scaled to a range 

between [-1,1]. Once the data is normalized to a common scale, the data must be 

transformed to represent a time series of sequences of consecutive observations before it 

can be modeled. This is a requirement for the model to learn from historical data to 

forecast the next value in the sequence of time-series data. LSTM and GRU will learn 

patterns that map a sequence of past observations as input to an output observation. Since 

this is a univariate time series forecasting using a single marker, the sequence of 

observations is transformed into multiple MoCap examples as input and a single output 
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prediction. For example, to make a single forecast 50 msec (five timesteps), given 

50msec of history data in a sequence it will look like Fig. 20.  

 

Figure 20 Preprocessing of MoCap data into univariate timestep sequence, an example of five timesteps 

ahead. 

One File One Subject Hyperparameter Tuning 

For this implementation, only one subject and one MoCap file were used for 

finding optimal parameters that will give insight into how the two algorithms will 

perform. Using hyperparameter tuning, a process used to find an optimal parameter, each 

of these algorithms presented different outcomes. There was a combination of the number 

of neurons ranging from [1,20], optimizer between Adam and stochastic gradient descent 

(SGD), and three different options for splitting training and testing data. One thing to 

note was the split difference did not present much information since the future 

implementation will use more subject files that will contain a different split between 

training and testing data. The split referred to here is splitting the single-subject data into 
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a certain percentage for training and the rest for testing. This is useful to indicate the 

number of neurons that will be ideal to use when using multiple files. Each experiment 

was conducted for 10 epochs which are the number iterations data are trained on with a 

batch size of one.  

For this scenario, there was a combination of 20 neuron options * 2 optimizers * 3 

split differences (60%/40%, 70%/30%, and 80%/20%) making a total of 120 different 

experiments to find optimal parameters. These experiments were performed on a singular 

marker for each marker, making it a univariate approach to forecasting. As discussed in 

the previous section, each of these marker data was converted into a time series sequence. 

The data was sequenced into predicting 10 msec (one timestep). Using only the MoCap 

data from the marker, for example, RElbowOut X position, the sequence could be 

constructed. Using t as a timestep factor, for instance, the input data (X) at t=0 will be the 

first value at frame 1 while the target value (Y) will be t+1. This process will be followed 

by scaling the data to then splitting it into training and testing. These models were trained 

on the LEAP cluster. The learning rate for Adam and SGD were kept in their default 

setting. The learning rate determines the step size in each iteration that will move the loss 

error to its minimum. A summary of the parameter values for both models is displayed in 

Table 6. 
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Table 6 LSTM & GRU parameter values. 

 

For this scenario, both LSTM and GRU SGD were found to perform the best 

compared to using Adam optimizer. SGD was a more effective optimizer for the model to 

learn the patterns when using a single marker and its corresponding values. Based on the 

metrics for the LSTM 20 neurons seemed to capture the most benefit for optimizing the 

error between prediction and ground truth while for GRU it was 17 neurons.  

Training and Evaluating with Multiple Subjects  

Using the experiments from beforehand this scenario uses all the subject data 

available for lifting height of 51 cm and 9-second interval between lifts. For this scenario, 

the data is split between the ten subjects with the assumption that the participants will 

have similar movement patterns. Eight for training (6 male, 2 female) and two subjects 

for testing (1 male, 1 female). A male and female were placed in the testing set to 

represent the sample of data that will provide an evaluation on forecasting male and 

female subjects’ motion. These models are trained on both the LEAP cluster and the 

High-Performance Engineering (HiPE) servers. Using the parameters discovered in the 

past experiments with a single subject, the LSTM uses 20 neurons and GRU uses 17 

Parameters LSTM GRU 

Batch Size 1 1 

Loss function mean square error mean square error 

Optimizer Stochastic Gradient Descent Stochastic Gradient Descent 

Learning Rate 0.01 (default) 0.01 (default) 

Number of Neurons 20 17 

Number of Epochs 10 10 
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neurons for training and testing on all 10 subjects. For each experiment, the way each file 

was used to train depended on the number of epochs. As done in the previous scenario 

ten epochs were used for training and a validation split of 15% was also used for 

measuring the performance of using multiple subject files instead of one subject. To 

measure the performance of the models only one marker will be considered which is the 

RElbowOut X position. Using every single file, a loop is created to train individually 

each file between each epoch. At the beginning of every epoch, the file order is 

randomized with each epoch having a different subject order. This process also follows 

the same approach in Fig 19. Each subject data is fitted into the scale data to be used for 

future scaling of unseen test data. Different motion forecasting experiments were created 

to give a comparison between the forecasting length of sequence timesteps and the 

difference in batch size. Each training dataset will be transformed into a time-series 

sequence based on previous timesteps to predict future values as done in the example in 

Fig. 20. 

• For these experiments, the goal is to make a single prediction: 

1. 1 Timestep (10 msec) given 10 msec of previous observations. 

2. 5 timesteps (50 msec) given 50 msec of previous observations. 

3. 10 timesteps (100 msec) given 100 msec of previous observations. 

4. 20 timesteps ahead (200 msec) given 200 msec of previous observations. 

5. 100 timesteps ahead (1 sec) given 1 sec of previous observations. 
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The timesteps considered in this scenario are predicting 1, 5, 10, 20, and 100 

frames with a batch size of one and a batch size of ten. The purpose is to investigate the 

performance of each algorithm using different timestep sizes for forecasting t frames 

ahead and measure if there is a difference in performance when increasing batch size to 

10. The reason for increasing batch size will be to decrease the computational time 

without losing the performance as a batch size of 1 only take a sample one at of time. 

With a batch size of 10, 10 samples from the training set will be used to calculate the 

gradient error value by comparing the prediction of those 10 samples to their expected 

output variables. Afterward, the internal weights and bias are updated in the algorithm, 

unlike a batch size of 1 where they are updated after each sample presented.  

Once the training process is completed the remaining two datasets are used to test 

the model’s performance. These two subjects as discussed previously are 1 male and 1 

female subject. Just like the training dataset, each test set is scaled using the same scaler 

from training. This will normalize the data between [-1,1] and will be used as the new 

input to predict based on the timestep provided. The data must also be formatted into a 

sequence of the previous timestep to forecast the value. Using the metrics MSE, RMSE, 

and MAE, each of these can indicate which experiment performed the best in LSTM and 

GRU.  

Multivariate Human Motion to Predict Borg RPE Value 

Using the experiments from beforehand this scenario uses all the subject data 

available for lifting height of 51 cm and 9-second interval between lifts which are in total 

ten subject files. The data is split between ten subjects. Using the ten subjects the 

assumption is participants will have similar fatigue based on the motion displacement 
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from lifting. Eight subjects are used for training (6 male, 2 female) and two subjects for 

testing (1 male, 1 female). The same process is conducted for this scenario as shown 

below Fig. 21 except for this time the target values are not MoCap values, the target 

values are Borg values.  

 

Figure 21 Multivariate MoCap Data to Predict Borg Values 

The markers of interest for this case are the Back, Shoulder Back, Shoulder Tops, 

Knees, Shins, Thighs, and Elbows since there are cases of injury in the back, shoulders, 

elbows, and legs (thigh and shin). This means 14 different markers are only being 

considered to show more of what the body is reacting to when the person will begin to 

experience fatigue from lifting [4, 9, 46]. There are 42 different columns with values (14 

markers * 3 dimensions) since there are XYZ coordinates to each marker. The time per 

frame was also included in the set of features that will be inputted into the computer 

algorithm. This will create a dimension of 43 different features or columns by n samples. 

Each row will contain the time per frame and MoCap data. A male and female were 

placed in the testing set to represent the sample of data that will provide an evaluation on 

male and female subjects. These models are trained on both the LEAP cluster and the 
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High-Performance Engineering (HiPE) servers. Using the parameters discovered in the 

past experiments, indicated by Table 16 the LSTM and GRU will remain the same using 

eight subjects for training and testing using two subjects, with an epoch of 10 and batch 

size 1. For each sequence, there will be 43 different inputs that will be used to predict the 

target values which is the Borg value at that frame in time.  

Creating the sequence of time is essentially the same as in Fig. 20 except there are 

multiple features of input data and the single output data is the Borg RPE value instead of 

MoCap data. In this case, a single prediction 10msec into the future given 10msec of 

historical data which is 43 different points in the sequence transformed to be like in Fig. 

22. 

 

Figure 22 Multivariate data preparation to create a sequence of data given 10 msec history to predict 10 

msec Borg RPE value. 

Since the Borg value is in increasing order with dependent on a time in the 

activity, all the samples must be used as to not remove information needed to teach the 
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ML algorithm. Therefore, no validation split in data will be evaluated as described in the 

past experiment designs. In this case, test sets are going to be used to evaluate the 

performance of the trained model. This will be used to investigate if motion displacement 

is enough to give an indication of fatigue and be able to predict it.  
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VII. RESULTS AND DISCUSSION 

In this chapter the experimental results for both the univariate human motion 

forecasting with machine learning using multiple subjects and predicting Borg RPE 

Values using multivariate motion capture data. Each evaluation or test is performed on 

the test set of data that contains only two subjects. subject 1016 a male subject and 007 a 

female subject. Both participants provide a sample of RPE data that ends in the same 

number of 19 which is close to the maximal exertion.  

Univariate Analysis of Human Forecasting 

This section first covers the performance on the test set using metrics of MSE, 

RMSE, and MAE. For the first model, the LSTM will be shown using the parameters of 

20 neurons, an MSE loss function. For the second model, the GRU will be shown using 

17 neurons with the same loss function. The loss function estimates how close the 

predictions made by the model match the target variable that was shown during training. 

In this scenario, as described in chapter VI, a univariate approach with multiple 

subject data is considered with the use of one marker data. In this case, only the 

RElbowOut X data is used to create a time series sequence in which the input data is the 

previous RElbowOut X data, and the target value is the next measurement in the data. 

Since the model was trained on eight subjects using ten epochs, in which each subject is 

individually processed through the ML algorithm so each file shall be iterated ten times 

by the end of the tenth epoch.  

To measure the performance, ten different sets of experiments are designed to 

find the optimal way of training the model and forecast the timestep t for RElbowOut X. 

Firstly, using a batch size of one, five different timestep predictions will be used to train 
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the model and then evaluated using the test set of data. The five different timestep 

predictions are t+1, t+5, t+10, t+20 and t+100. To reiterate this means a prediction of 10 

msec, 50 msec, 100 msec ahead, 200 msec, and 1 sec. Additionally, using the same time 

step prediction, training the model with a batch size of ten is also evaluated and compared 

with the batch size of 1. Each setup is executed ten times and the metrics for each are 

calculated at the end of each experiment. Once all ten experiments were completed the 

average of all the ten runs was taken to measure the performance of the model. The 

difference between each run was the training process in which each training file is 

randomly selected. This will create a sense of how the model will perform using 

differently ordered data. 

To measure the performance, besides using the metrics and picking the 

implementation that contains low error between prediction and target values there are two 

other ways to measure performance. The first way is to view the loss curves and metrics. 

The second way is to view the actual forecasted MoCap data plotting the raw data and 

forecasted values over the number of frames in the implementation. These plots contain a 

vertical (x-axis) that corresponds to the MoCap position values, and the horizontal (y-

axis) corresponds to the frame number. For these plots, each data point is plotted for 

every 1000th frame to reduce the number of points and provide a better visualization 

between raw data and forecasted values. Only four sets of the experiments for each model 

will be showcased. Two will represent the worst-performing from each batch size and the 

other two will represent the best performing from each batch size. For the MoCap 

prediction plots, blue arrows will be used to show the spots where there are gaps and 

inconsistencies between the raw data and forecasted values. This will be used to 
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showcase each model’s performance between batch sizes and how well the fitted model 

predicted on the test set. Starting with LSTM the plots will be shown followed by a table 

of metrics from all experiments. Secondly, the GRU plots will be shown and also a table 

of the metrics from all experiments. 

LSTM Worst Performance Loss Curve Plots: Batch Size 1 & 10  

In Fig 23 and 24, the loss curves of two experiments were plotted for the LSTM 

implementation using batch sizes of 1 and 10. Fig. 23 is associated with forecasting 200 

msec given 200 msec of previous data, using a batch size of 1. Fig 24, is associated with 

forecasting 50 msec given 50 msec of previous data, using a batch size of 10. 

Figure 23 LSTM 200 msec train and validation loss curves of using batch size 1. 
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Figure 24 LSTM 50 msec train and validation loss curves of data using batch Size 10. 

LSTM Worst Performance MoCap Forecasting with Batch Size of 1 

The two plots that are shown in this section are for each subject in the test dataset 

using a batch size of 1. These plots in Fig. 25, and 26 are the experiment of forecasting 

200 msec that also correspond to loss curves in Fig. 23. These were plotted to show the 

performance of the fitted model for forecasting MoCap data on the 007 subject and 1016 

subject. The first figure shows the predictions for 007 and the second figure shows the 

predictions for 1016. The blue arrows will indicate where the fitted model 

underperformed. 

 

L
o

ss
 

R
M

S
E

 

M
S

E
 

M
A

E
 



 

 

7
2
 

Figure 25 LSTM motion forecasting 200 msec of 007 with batch size 1 
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Figure 26 LSTM motion forecasting 200 msec of 1016 with batch size 1 
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As can be seen in Fig 23 the validation curve compared to the training, there are 

gaps. This gap indicates that there is some overfitting occurring within the data so there 

will be a possibility that new unseen data will not fit well the trained model. Looking at 

Fig 25 and 26, there are spots in which the predicted data is not fitted well with the raw 

test data. For each subject 1016 and 007, there are variations in errors between prediction 

and errors that are noticeable with underpredicting the data.  

LSTM Worst Performance MoCap Forecasting with Batch Size of 10 

The two plots are shown in this section with the worst performance in forecasting 

the test dataset using a batch size of 10. These prediction plots in Fig. 27, and 28 are for 

forecasting 50 msec of MoCap data. These were plotted to show how well the fitted 

model can forecast MoCap data using 007 subject and 1016 subject when using a batch 

size of 10 instead of 1. The first figure shows the predictions for 007 and the second 

figure shows the predictions for 1016. 
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Figure 27 LSTM motion forecasting 50 msec of 007 with batch size 10 
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Figure 28 LSTM motion forecasting 50 msec of 1016 with batch size 10 
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Fig 24., indicates some issues between the training and validation. They follow 

each other but also experience a high value of error between epoch 3 and 6 with epoch 6 

having a gap in between both which means there is some overfitting. Just as the previous 

figures that used a batch size of 1, Fig 27 and 28, have a variety of missed predictions 

indicated by the blue arrows. For subject 007 the data does not fit as well as for subject 

1016. Since there is fewer female in training a 50msec timestep could be causing the 

fewer patterns to form for the ML algorithm to learn from. 

LSTM Best Performance Loss Curve Plots: Batch Size 1 & 10  

The loss curves of the two best-performed experiments were plotted for the 

LSTM implementation using batch sizes of 1 and 10. Fig. 29 is associated with 

forecasting 50 msec given 50 msec of previous data, using a batch size of 1. Fig 30, is 

associated with forecasting 100 msec given 100 msec of previous data, using a batch size 

of 10.  

 

Figure 29 LSTM 50 msec train and validation loss curves using batch size 1. 
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Figure 30 LSTM 100 msec train and validation loss curves using batch size 10. 

LSTM Best Performance MoCap Forecasting with Batch Size of 1 

In this section, the raw data against the predictive motion data of test data is 

plotted. These plots show the fitted model performance in predicting 50 msec, using 

LSTM with a batch size of 1. This is the best case in which the model predicted the best 

among all the experiments. Fig. 31 is the plot for subject 007 and Fig 32 is the plot for 

subject 1016. 
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Figure 31 LSTM motion forecasting 50 msec of 007 with batch size 1 
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Figure 32 LSTM motion forecasting 50 msec of 1016 with batch size 1 
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As seen in Fig. 29, the training vs validation loss curve plots indicates that the 

model is fitting well with unseen data. They both converge to zero at the end of epochs if 

looking at MSE but with RMSE and MAE, the error was about to increase and there 

might have been some overfit occurring. For this reason, there is a small prediction error 

in the predictions of each subject. Fig. 31 and 32 show the visual plot of each subject 

when plotting the MoCap prediction. There are not as many wrong predictions visible to 

the naked eye for both subjects. subject 007 performance is better this time around than 

using 50msec timestep prediction. 

LSTM Best Performance MoCap Forecasting with Batch Size of 10 

In this section, the raw data against the predictive motion data of test data is 

plotted. These plots show the fitted model performance in predicting 100 msec, using 

LSTM with a batch size of 10. Fig. 33 is the plot for subject 007 and Fig. 34 is the plot 

for subject 1016.
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Figure 33 LSTM motion forecasting 100 msec of 007 with batch size 10 
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Figure 34 LSTM motion forecasting 100 msec of 1016 with batch size 10      
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In Fig. 30, the training and validation follow closely throughout the ten epochs, 

which proves that the model trained will fit well with unseen data. This means using test 

data that was not used in training the fitted model will perform well since the loss for 

training and validation converge close to zero error. Fig. 33 and 34 plots have fewer 

errors compared to the others which presents a case that this set of implementations will 

prove to work well with training the model. 

LSTM Univariate Test Metrics Summary Tables 

A full summary of each test conducted using the LSTM 1 layer model for 

univariate forecasting of MoCap RElbowOut X data is compiled into two tables below. 

These two tables correspond to the two different subjects used in the testing set: 007 and 

1016. The best performing implementation for LSTM is using a batch size of 10 with a 

timestep prediction of 100msec. 

Table 7 LSTM Univariate Forecasting Metrics for Subject 007 

Subject 007 Female Test Metrics LSTM 

  

10 

milliseconds 

(1 Frame) 

50 

milliseconds 

(5 Frames) 

100 

milliseconds 

(10 frames)  

200 

milliseconds 

(20 frames)  

1sec (100 

frames)  

Batch Size 1 10 1 10 1 10 1 10 1 10 

Mean Square 

Error (MSE) 58.93 15.37 2.45 21.86 17.21 1.11 26.92 6.10 100.38 4.97 

Root Mean 

Square Error 

(RMSE) 6.60 3.53 1.53 4.41 3.81 1.05 4.53 2.25 8.09 2.06 

Mean 

Absolute 

Error (MAE) 5.84 2.63 1.29 3.54 3.32 0.81 4.06 1.93 7.14 1.74 
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Table 8 LSTM Univariate Forecasting Metrics for Subject 1016 

Subject 1016 Male Test Metrics LSTM 

  

10 

milliseconds 

(1 Frame) 

50 milliseconds 

(5 Frames) 

100 

milliseconds 

(10 frames)  

200 

milliseconds 

(20 frames)  

1sec (100 

frames)  

Batch Size 1 10 1 10 1 10 1 10 1 10 

Mean Square 

Error (MSE) 38.16 7.77 2.83 14.36 11.11 1.19 17.71 3.68 97.72 2.95 

Root Mean 

Square Error 

(RMSE) 5.53 2.72 1.58 3.69 3.15 1.07 3.80 1.80 7.99 1.63 

Mean 

Absolute 

Error (MAE) 4.94 1.88 1.34 2.91 2.78 0.82 3.42 1.53 7.26 1.36 

 

Looking at the metrics for both subjects, there is a solid indication that training 

with a batch size of 10 proves to increase the overall performance of the LSTM model as 

can also be seen by low error predictions and how well the validation fits well with 

training data in Fig 30. 

GRU Worst Performance Loss Curve Plots: Batch Size 1 & 10  

The loss curves for the worst performed experiments were plotted for the GRU 

implementation using batch sizes of 1 and 10. Fig. 35 is associated with forecasting 10 

msec given 10 msec of previous data, using a batch size of 1. Fig 36, is associated with 

forecasting 50 msec given 50 msec of previous data, using a batch size of 10. 
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Figure 35 GRU 10 msec train and validation loss curves of using batch size 1. 

 

Figure 36 GRU 50 msec train and validation loss curves of using batch size 10. 
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GRU Worst Performance MoCap Forecasting with Batch Size of 1 

In this section, the raw data against the predictive motion data of test data is 

plotted which performed the worst in all the experiments. These plots show the fitted 

model performance in predicting 10 msec, using GRU with a batch size of 1. Fig 37 is the 

plot for subject 007 and Fig. 38 is the plot for subject 1016. 

 



 

 

8
8
 

 

Figure 37 GRU motion forecasting 10 msec of 007 with batch size 1 
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Figure 38 GRU motion forecasting 10 msec of 1016 with batch size 1 
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Looking at the loss curves for batch size 1 Fig. 35, there is a strong indication that 

some overfitting is occurring between the training and validation. There are big gaps 

between epoch four and eight, and the validation loss curves for MSE, RMSE and MAE 

do not converge to the training loss at the end of the 10th epoch. With 10 epochs, the 

model is not able to learn and fit well with the training data. Combining what is known 

from the loss curves and the forecasted plots, presents a correlation with a lot of missed 

predictions, in where the model does not follow the raw data This is indicated by all the 

blue arrows in Fig. 37 and 38. As with the GRU model, the predictions using 007 data 

presents more mispredictions of data since it does not fit well into the raw data. 

GRU Worst Performance MoCap Forecasting with Batch Size of 10 

In this section, the raw data against the predictive motion data of test data is 

plotted that performed the worst among all the experiments. These plots show the fitted 

model performance in predicting 50 msec, using GRU with a batch size of 10. Fig. 39 is 

the plot for subject 007 and Fig. 40 is the plot for subject 1016.
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Figure 39 GRU motion forecasting 50 msec of 007 with batch size 10 
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Figure 40 GRU motion forecasting 50 msec of 1016 with batch size 10
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Looking at the loss curves Fig. 36 for a batch size of 10, the validation plot 

between epoch 0 and 4, there is a gap with the training loss. Afterward, the model seemed 

to fit well starting at epoch 4 since it began to converge to a loss of zero which will 

indicate a well-fitted model. This is not the case as the model begins to deviate from that 

at the eighth epoch meaning the model is not generalizing to the data. Combining what is 

known from the loss curves and the forecasted plots, presents a correlation with a lot of 

missed predictions, in where the model does not follow the raw data This is indicated by 

all the blue arrows in Fig. 39 and 40. subject 007 mispredictions are shown to be more 

apparent than with subject 1016. 

GRU Best Performance Loss Curve Plots: Batch Size 1 & 10  

The loss curves that proved to have better performance were plotted for the GRU 

implementation using batch sizes of 1 and 10. Fig. 41 is associated with forecasting 50 

msec given 50 msec of previous data, using a batch size of 1. Fig 42, is associated with 

forecasting 10 msec given 10 msec of previous data, using a batch size of 10. 
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Figure 41 GRU 50 msec train and validation loss curves of using batch size 1. 

 

Figure 42 GRU 10 msec train and validation loss curves of using batch size 10. 
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GRU Best Performance MoCap Forecasting with Batch Size of 1 

In this section, the raw data against the predictive motion data of test data is 

plotted which performed the best among all the experiments. These plots show the fitted 

model performance in predicting 50 msec, using GRU with a batch size of 1. Fig. 43 is 

the plot for subject 007 and Fig. 44 is the plot for subject 1016.
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Figure 43 GRU motion forecasting 50 msec of 007 with batch size 1 



 

 

9
7
 

 

Figure 44 GRU motion forecasting 50 msec of 1016 with batch size 1
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As seen in Fig. 41, the training vs validation loss curve plots indicates that the 

model is fitting well with unseen data. They both converge to zero at the end of epochs if 

looking at MSE, RMSE, and MAE, the error is close to zero. There is a small prediction 

error in the predictions of each subject. Fig. 43 and 44 show the visual plot of each 

subject when plotting the MoCap prediction. There are not as many wrong predictions 

visible to the naked eye for both subjects. subject 1016 test prediction is better this time 

around when using 50msec timestep prediction. 

GRU Best Performance MoCap Forecasting with Batch Size of 10 

In this section, the raw data against the predictive motion data of test data is 

plotted which performed the best among all the experiments. These plots show the fitted 

model performance in predicting 10 msec, using GRU with a batch size of 10. Fig. 45 is 

the plot for subject 007 and Fig. 46 is the plot for subject 1016. 
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Figure 45 GRU motion forecasting 10 msec of 007 with batch size 10 
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Figure 46 GRU motion forecasting 10 msec of 1016 with batch size 10
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In Fig. 42, the training and validation follow closely throughout the ten epochs 

with validation in RMSE at epoch 4 having a lower prediction error but converges at the 

end. This indicates that the model trained will fit well with unseen data. This means using 

test data that was not used in training the model will perform well since the loss curves 

between training and validation converge close to zero. Fig. 45 presents several gaps 

between raw, and predictions indicated by the blue arrows. This means that for subject 

007 the model performed relatively well. Compared to that, the subject 1016 plot in Fig. 

46, does not have many mispredictions which means the GRU model performs better 

with this subject data. This could be due to the inconsistent amount of data for female 

subjects since 007 is a female subject, more female subject data could provide a better-

fitted model.  

GRU Univariate Test Metrics Summary Tables 

A full summary of each test conducted using the GRU 1 layer model for 

univariate forecasting of MoCap RElbowOut X data is compiled into two tables below. 

These two tables correspond to the two different subjects used in the testing set: 007 and 

1016. The best performing implementation for GRU is using a batch size of 1 with a 

timestep prediction of 50 msec.  
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Table 9 GRU Univariate Forecasting Metrics for Subject 007 

Subject 007 Female Test Metrics GRU 

  

10 

milliseconds 

(1 Frame) 

50 

milliseconds 

(5 Frames) 

100 milliseconds 

(10 frames)  

200 

milliseconds 

(20 frames)  

1sec (100 

frames)  

Batch Size 1 10 1 10 1 10 1 10 1 10 

Mean Square 

Error (MSE) 78.57 7.85 0.78 10.74 4.02 11.14 6.13 8.84 5.45 9.18 

Root Mean 

Square Error 

(RMSE) 7.53 2.59 0.85 3.04 1.87 2.85 2.25 2.52 2.06 2.54 

Mean 

Absolute 

Error (MAE) 6.78 2.03 0.71 2.42 1.63 2.42 1.98 2.14 1.81 2.16 

 

Table 10 GRU Univariate Forecasting Metrics for Subject 1016 

Subject 1016 Male Test Metrics GRU 

  

10 

milliseconds 

(1 Frame) 

50 

milliseconds 

(5 Frames) 

100 

milliseconds 

(10 frames)  

200 

milliseconds 

(20 frames)  

1sec (100 

frames)  

Batch Size 1 10 1 10 1 10 1 10 1 10 

Mean Square 

Error (MSE) 56.12 4.52 0.88 6.98 2.86 6.15 4.15 4.71 3.67 4.80 

Root Mean 

Square Error 

(RMSE) 6.67 2.07 0.90 2.52 1.58 2.24 1.87 1.95 1.76 1.92 

Mean Absolute 

Error (MAE) 6.05 1.57 0.74 1.97 1.38 1.85 1.64 1.60 1.56 1.57 

 

Looking at the metrics for both subjects, there is a solid indication that training 

with a batch size of 10 does not increase the overall performance of the GRU model as 

can also be seen by higher error predictions compared to a batch size of 1. Comparing the 

metrics between LSTM and GRU metrics, GRU performed better with a batch size of 1. 

Therefore, training the GRU model with a batch size of 1 will provide better performance 

when using more than 10 msec of previous data.  
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Predicting Borg RPE value using MoCap Data 

This section will discuss the experiment results on measuring fatigue based on the 

movement changes. For each time sequence, there will be 43 different inputs that will be 

used to predict the Borg value at that frame in time.  In this case, the input at timestep t 

will look like (X0
t, X

1
t ….. X

43
t) = Yt+1 which contains the time at each frame and the data 

from each marker. The marker data is dependent on time so adding the time feature will 

help the machine learn the time in which the displacement of motions occurred 

corresponding to the Borg value of the participant. Each subject began at a Borg RPE 

value of 6 since they have not begun any activity indicating no exertion in the scale. For 

evaluating the performance, the metric plot curve will be looked at to see how the 

training data is actively reacting with learning the patterns. The LSTM and GRU are both 

ran using ten epochs and the file is randomly chosen in the beginning. Let's start with 

looking at their respective training metric curves that show how the errors were treated 

during each epoch.  
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Figure 47 LSTM MoCap Borg Prediction Train Metrics Plot 

 

Figure 48 GRU MoCap Borg Prediction Train Metrics Plot 
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Looking at both metrics there are major differences in both implementations. 

Starting with the LSTM, it seems in the first epochs in the loss curve plot in Fig. 47 it 

was converging to 0 or close to it. Once it reached epoch 6 to 7 the loss will gain 

momentum and begin to experience bigger errors leading it to move upward and the 

algorithm is not able to learn within 10 epochs. Next looking at Fig 48, the GRU 

implementation looks like the opposite of the LSTM metrics in which it ends trying to 

converge the error to 0. Although each epoch is gradually increasing and decreasing 

between the predictive and target value calculations. This will also make it harder for 

GRU to learn the relationship between time and motion capture to predict Borg value.  

Now after looking at the metrics plot, the next thing is to observe how the 

prediction from each model when using LSTM and GRU. If LSTM and GRU were able 

to create the relationship between the input data (the time per frame and MoCap data) and 

target data (Borg value) each prediction should begin at minimal at a Borg RPE of 6. 

Since each file contains the time of each frame the model should learn the association at 

the start of every file a value of 6 will be present. 
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Figure 49 Borg Prediction of Subject 1016 using LSTM. 
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Figure 50 Borg Prediction of Subject 007 using LSTM. 
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Figure 51 Borg Prediction for Subject 1016 using GRU. 
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Figure 52 Borg Prediction for Subject 007 using GRU. 
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Comparing the LSTM and GRU figures, the LSTM produced a better prediction. 

Look at both Fig. 49 and Fig. 50 the prediction begins at a good start between 4 and 6 

which is close to the initial RPE value of 6 that each subject report at the beginning of the 

experiment. Although it begins where it is expected, the prediction ends up consolidating 

up to an RPE value of 14 and does not continue to predict any further. Visually 

comparing the predicted line in green to the raw data in black, it is easy to see that the 

raw Borg data continues to linearly ascend upward but as stated before the RPE settles on 

14. Similarly, the GRU performs a little differently than expected as seen in both Fig 51 

and Fig 52. The same way as in LSTM the prediction is consolidated at 14 but the main 

difference is the beginning of the plot. The GRU does not predict anywhere near the 

initial value of 6 from starting point.  

Using the MSE, RMSE, and MAE the errors between the predicted and true 

values are calculated to measure the performance of LSTM and GRU. The metrics are 

shown in Table 11 below and do not reflect the full picture which why having the metric 

plot and the prediction plot assist in analyzing the performance of the machine learning 

algorithm. Looking at MSE on average the error is greater than 10 for all four 

experiments. Since the loss function for these algorithms was the MSE, the updated 

values were treated as the average squared difference between the predicted and actual 

target data. In this case the larger the MSE the harder the machine will have to learn the 

actual data points. For this cause the higher the MSE the harder it is to interpret how well 

the model is performing since there is a certain range of values that the data contains for 

each RPE value.  
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Table 11 Borg Prediction Metrics for LSTM & GRU 

Testing Subject 1016 (M) 007 (F) 

ML Algorithm LSTM GRU LSTM GRU 

MSE 10.69 11.43 14.08 15.20 

RMSE 3.27 3.38 3.75 3.90 

MAE 2.70 2.77 3.22 3.32 

 

Although in this case, there are issues with the balance in the data for each Borg 

value obtained from each subject. Below the RPE values for each subject used during the 

train can be found in Fig 53. Each process of collecting this data was first created in the 

mind of the subject picking and choosing when they felt exhausted and will indicate to 

the research in the lab that they would like to halt the experiment. 

 

Figure 53 Self-Reported Borg Values from Each Subject used during training. 

Minute Borg's Scale Minute Borg's Scale Minute Borg's Scale Minute Borg's Scale Minute Borg's Scale Minute Borg's Scale Minute Borg's Scale Minute Borg's Scale

0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6

1 8 1 7 1 8 1 9 1 6 1 6 1 6 1 8

2 11 2 9 2 11 2 9 2 6 2 7 2 8 2 12

3 13 3 11 3 15 3 11 3 6 3 8 3 8 3 13

4 14 4 13 4 17 4 13 4 7 4 8 4 9 4 13

5 14 5 14 5 14 5 7 5 8 5 9 5 14

6 14 6 14 6 7 6 10 6 10 6 14

7 15 7 15 7 8 7 10 7 10 7 14

8 15 8 16 8 8 8 11 8 11 8 14

9 15 9 18 9 9 9 12 9 11 9 15

10 16 10 9 10 14 10 12 10 15

11 9 11 14 11 13 11 15

12 10 12 14 12 14 12 16

13 10 13 15 13 14 13 16

14 11 14 15 14 14 14 16

15 11 15 15 15 14 15 16

16 12 16 16 16 14 16 17

17 12 17 15 17 17

18 13 18 15 18 17

19 13 19 15 19 17

20 14 20 16 20 18

21 14 21 17 21 19

22 15 22 17

23 15 23 17

24 16 24 18

25 16 25 18

26 16 26 19

27 17

28 17

29 17

30 18

31 18

32 18

Subject 1013 (M) Subject 1017 (M)Subject 005 (F) Subject 010 (M) Subject 012 (M) Subject 1001 (M) Subject 1002 (M) Subject 1007 (F)
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Since there was no consistency in when the subject will stop performing the 

lifting experiment this will cause the Borg value data to be inconsistent in that they would 

not all complete the task at the same level of fatigue. As can be seen in Fig. 53, each 

subject will end at a different fatigue value with the lowest value being 14. For this 

reason, the prediction consolidated to Borg value of 14 due to a disbalance when training 

the machine learning algorithm as there will be no consistent data to help the computer 

distinguish the patterns between the input and output values.  

  



 

113 

VIII. CONCLUSIONS 

Limitations of Research 

For this research there are limitations regarding the motion capture data collected 

was limited to the population of students and professors at Texas State University. This 

will be a different application compared to experts in the industry that perform MMH 

tasks regularly. Although the lab setting was to mimic an MMH task of lifting, the 

worker's conditions will be much different as they might change their lifting habits 

compared to students who just lift a box. This means participants cannot be generalized 

to MMH workers since it was only the population from the university. This limited the 

number of participants since every person had to be recruited to join the project, which 

can be unreliable as people's schedules might not fit into the experiment's time. Along 

with that is the population of subjects that were recruited to conduct the experiments. 

There were more males than females at the end of the data collection process, so that can 

create some bias in motion since there is a gender imbalance. 

Also, during the experiments, each person had to self-report their level of fatigue 

based on the Borg scale which is subjective to themselves. Within the data used there 

were inconsistencies in when the individual felt exhausted so they would stop the 

experiment. This would cause a different range of Borg values between subjects which 

affects the machine learning process. With ML there is a need for consistent data to help 

teach the patterns and since each subject would complete their lifting experiment at 

different levels this would create problems and limit the patterns learned by the machine.  

Another limitation to this study is the motion dataset itself. Since it is an OMCS 

with markers attached to participants using double adhesive tape different possibilities 
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could affect the motion capture data. One thing will be when placing the markers on the 

participants, no guarantee placing the markers will be in the exact spot-on subjects every 

time, this could cause some deviation in the data that could add some inconsistency 

between datasets. Another limitation is the double adhesive tape might not remain sticky 

enough throughout the experiment so it might slip off the subject and caused gaps in the 

data. This is a byproduct of subjects sweating that causes the adhesion on the tape to 

decrease and then the marker falls off.  

Lastly, there were gaps in the set of experiments in which subjects still needed to 

perform some experiments. Each subject was to complete a set of six experiments using 

different parameters but within each parameter, there were missing gaps, in where the 

subject did not complete the task. This caused some incomplete data to occur between 

experiments.  

Delimitations 

Although there were other MoCap experiments conducted such as other lifting 

parameters with different heights as seen in Table II, only one parameter was considered 

due to the nature of how many subjects and datasets were collected. The parameter as 

stated in the previous chapters was the lifting height of 51 cm at an interval of 9 seconds 

between lifts.  

Conclusions 

In this paper, the dataset of human motion for lifting and the experiment 

procedure to capture such motion were introduced. Even though there were multiple 

subjects at different lifting tasks, only ten datasets containing lifting human motion were 

considered for the research. This dataset contained a fatigue level from each subject 
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based on the Borg RPE value which can be used as an indicator when the person might 

begin to feel some discomfort in their motions.  

Although using LSTM and GRU proved to work to some extent on forecasting 

one individual marker data using the data provided there can be further work done. In this 

case, the data that was used was only normalized to range from [-1,1] to try and keep a 

simple solution that could fit into the LSTM without much preprocessing needed but 

other normalization techniques such as forward kinematics [40] or root normalization in 

which each segment is relative to a root segment [77].can be looked at. In general, this 

study provides evidence for one set of activities during MMM to forecast motion. Further 

studies should be conducted to understand more of the biomechanics since this 

implementation only regards the use of the relative marker positions attached to the 

subjects. For this system, it might work but for another MoCap system, it might not 

achieve the same results so using further knowledge in biomechanics can help focus on 

the mechanics of the WMSD risk from the lifting motions. Another way to boost the 

work would be to include multiple markers to predict the motion of the whole body [38, 

47]. This could be something that could be used to predict the motion of a worker in the 

environment or be able to detect the posture of the worker and detect if they are 

performing a wrong lift or any task related to MMH activities.  

In contrast, for this study, predicting the fatigue level based on the displacement 

of the motion over time proved to not achieve the expected results. When using LSTM, it 

proved to measure close to the beginning of the Borg scale of 6 and slightly perform 

better than GRU. In the end, both algorithms will consolidate to only predict around an 

RPE value of 14 and will not continue to predict any further.  As described in the 
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limitation section, each subject had to self-report their subjective level of exhaustion 

using the Borg RPE scale. Their exhaustion level although subjectively reported was still 

dependent on the movement they were performing repetitively throughout the 

experiment. Since each person will react differently to the experiment, each subject was 

indicated to let the lab assistant when they wanted to stop the experiment. This will cause 

inconsistency in the data since each subject will end at a different level of fatigue. The 

model will tend to predict data that is more common and less rare in these cases which 

why it will make it difficult for each model to learn patterns with inconsistent data.  

Contributions 

In this thesis, some methods for understanding human motion using deep learning 

techniques for forecasting data.  

My research has contributed to the field of Motion Capture and MMH by: 

1. Design of Motion Capture experiments for lifting task as seen in MMH. 

2. Collection of Motion data from different subjects in the university. 

3. Confirm the idea of being able to forecast a single marker data based on historical 

data. 

4. Study the performance of predicting Borg value using only the displacement of 

motions throughout each frame. 

Future Work 

In this research, the use of OMCS is used to collect human motion but requires 

equipment that must be placed beforehand and is usually permanently left there. High-

frequency cameras are not as portable and are typically expensive. Multiple cameras will 

be required which also depends on the area of the environment in which the application 
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will be applied. For example, in a manufacturing factory, there is machinery, shelves, 

people regularly walking, etc. there will have to be cameras in places that will not 

obstruct the workplace and have a view of the workers. Additionally, reflective markers 

must be attached to multiple individuals which will require a longer setup before work 

even starts. Using an OMCS will not be ideal in a warehouse setting or any type of 

setting in where there is a lot of mobility. Therefore, for future work, using IMUs can 

provide a better implementation for data collection that will be less intrusive to the work 

environment [22, 51, 54, 78, 79].  

Another idea for future work is to use a different type of machine learning 

algorithm to forecast either the motion data or the exhaustion level of individuals. A 

novel ML technique is also a deep learning architecture known as Transformer. A 

Transformer application is transforming an input sequence into an output sequence which 

can include speech recognition, trajectory forecasting, or any sequential data [80, 81]. 

This model is said to be faster than Long-Short Term Memory and facilitates more 

parallelization during training, it will reduce the time of training. The Transformer uses a 

set of encoder and decoder layers to process and generate encoding that contains 

information about which input value is relevant to each other [82]. 
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