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LAGRANGIAN STRUCTURE FOR COMPRESSIBLE FLOW IN
THE HALF-SPACE WITH NAVIER BOUNDARY CONDITION

MARCELO M. SANTOS, EDSON J. TEIXEIRA

ABSTRACT. We show the uniqueness of particle paths of a velocity field, which
solves the compressible isentropic Navier-Stokes equations in the half-space
]R{i with the Navier boundary condition. More precisely, by energy estimates
and the assumption of small energy we prove that the velocity field satisfies
regularity estimates which imply the uniqueness of particle paths.

1. INTRODUCTION

This article concerns the Lagrangian structure, i.e. the uniqueness of particle
paths, for the solution obtained by Hoff [16] to the Navier-Stokes system for com-
pressible isentropic fluids, in the half-space R3 = {z = (21, 72,73) € R®; 23 > 0}
with the Navier boundary condition. We follow the approach of [I7] but in [17] the
problem is posed in the whole space R™ (n = 2,3), so there is no questions in [17]
concerning boundary effects.

In view of the presence of the boundary, we analyze and show new estimates. For
instance, to estimate the L¢ norm of the second derivative of a part of the velocity
field, which is denoted by ug,,, we need to consider a singular kernel on 8Ri.
For estimating this norm, we use a theorem due to the Agmon-Douglis-Nirenberg
[3], i.e. Theorem below. In fact, this part, up,,, of the velocity field satisfies a
boundary value problem in the half-space (see (3.6)), to which we use the explicit
formulas given by Green’s functions for the half-space with Dirchlet and Neumann
boundary conditions (see and (2.3)).

The half-space has several properties that are important to our analysis, some
of which we mention in Section [2] below. In addition to the aforementioned explicit
formulas for Green’s functions, it enjoys the strong m-extension operator property
(see [1 Theorem 5.19]). This property implies that several classical inequalities
on R™ holds also on R’. In particular, it is very useful the imbedding inequality
and the interpolation inequality (2.16), which we can infer from the similar
inequalities on R™. These and some other results we shall need are explained in
details in Section 2

The crucial result in this paper, as in [I7], concerning the uniqueness of particle
paths, is the regularity estimates and , stated in Theorem (1.2l To
show these estimates, with the presence of the boundary (we recall that in [I7] it is
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considered only the initial value problem), in addition to the results mentioned in
Section [2] we shall use arguments in the papers [I3] [15] [I8, (16, 24]. In particular,
to prove Proposition and Theorem we use some arguments as those in [24]
Lemma 3.3 ].

Let us now describe in more details the results we show in this paper. First,
for the reader convenience, we recall the solution obtained in [I6]. Consider the

Navier-Stokes equations
pr +div(pu) =0 4
(pu?), + div(pu/u) + P(p)s, = pAu? + Xdivug, +pf?, j=1,2,3 ’

for x = (x1,22,23) € R and ¢ > 0, with the Navier boundary condition

u(a:,t) = K(m)(uig(m,t),u;(aj,t),O), (1.2)
for x = (z1,22,0) € OR3, ¢ > 0, and with the initial condition
(p7u)’t:0 = (pOaUO)' (13)

Here, as usual, p and u = (u!,u?, u3) denote, respectively, the unknowns density

and velocity vector field of the fluid modeled by these equations, and P(p) is the
pressure function, which is assumed to satisfy the following conditions:

PeC*(0,p]), P(0)=0, P'(p)>0,
(p=n)IP(p) = P(p)] >0, p#p. pel0,p],

for fixed numbers p, p such that 0 < 5 < p. In addition, f = (f!, f2, f3) is a given
external force density, 1 and A are given constant viscosities, and K is a smooth
and strictly positive function, also given, satisfying the following conditions:

(1.4)

w>0, 0<A<5u/4; (1.5)
K¢ (W W) (R?), K(r)>K >0, (1.6)
for some constant K > 0;
1
/ [§p0|’U,0|2 + G(po)] dzr S Co (17)
R}
and -
sup £l [ (LG + 0TIV FCOl) d
S (1.8)
+/ / (/P +o°1fi?) dudt < Cy,
0o JRr3
where

G(p) ;:p[”wd&

2
5

Cy and Cj are positive numbers sufficiently small and o(t) := min{¢,1}, and the

quantity

Myi= [ polualt sup [5G, + [ [ Iflrdeae (1.9)
Rgr t>0 0 JR3+
is finite, where ¢ > 6 and satisfies
(¢—2)?* p
< H 1.10
4(g—1) A (1.10)
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Throughout the article, || - ||, stands for the L¢ norm in R’}.

Under the above conditions, Hoff [I6, Theorem 1.1] established the existence of a
“small energy” (i.e. for Cy, Cy sufficiently small) weak solution (p,u) to .
as follows:

Given a positive number M (not necessarily small) and given p; € (p, p), there
are positive numbers € and C depending on j, p1, p, P, A, 11, ¢, M and on the function
K, and there is a positive universal constant 6, such that, if

0 <inf pg < suppo < p1,
Ry

3
RJr

Co+Cp<e and M, <M,

then there is a weak solution (p,u) to (L.I)-(L.3) having the following (among other)
properties:

The functions u, F = (A4 p) divu — P(p) + P(p) (the so-called effective viscous
flow) and wi* = ul — uﬁj, j,k = 1,2,3 (note that w = (w’*) is the worticity

matriz) are Holder continuous in @ X [, 00), for any 7 > 0;

C_linfpo <p<p ae

and
s [ ,0(33 Olu(z, 1) + |p(x,t) — p|* + o (t)| Vu(z, t)[*] dz
/ / [IVaf? + o3(@)|Val?] dedt
< C(Co +Cy),

where % denotes the convective derivative of u, i.e.
= u + (Vu)u.

In addition, when infgs po > 0, the term [ [os oi|? da dt can be included on the
T ¥

left side of (1.11).

In this article we show the following results.

Proposition 1.1. Let assumptions (1.4))-(1.10) be satisfied. Then the vector field
u described above (in particular, satisfying the estimate (1.11)) can be written as

U =up+ UFw,
for some vector fields up, up,, satisfying:
IVuplly < ClIP = Pllg, (1.11)
IVurwllq < C(IFlq + llwllg + 1P = Pllg + [lullg), (1.12)
ID*upully < CUIVEllg + [Vwllg + I1Fllg + lwllg + 1P = Pllg + llullg),  (1.13)

for any q € (1,00), where C'is a constant depending only on q and on arbitrary
positive numbers K, K such that K < K < K.

Theorem 1.2. Let assumptions (L.4])-(1.10]) be satisfied. Suppose that ug belongs to
the Sobolev space H*(R3), for some s € [0,1], and infRi po > 0. Then the solution
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(p,u) to problem (1.1))-(1.3), described above, satisfies the additional estimates:

supalfs/ |Vul? dx—i—/ / ol 5 plu|* dx dt

>0 RS o JRr3 (1.14)
< C(s)(Co + uollm= + Cp)?,

supaQ*S/ p|a\2d:ﬂ+/ / 0?75 |Va|* dx dt

>0 R% 0o JRr3 (1.15)

< C(s)(Co + lluollas + Cy)°,

where C(s) is a constant depending only on s and on the same quantities as does
C in Proposition[1.1}

Estimates and , as in [I7], imply a Lagrangian structure for the
solution (p,u) described above to problem —. More precisely, the follow-
ing theorem, which is similar to [I7, Theorem 2.5 ], holds for the Navier-Stokes
equations in the half-plahe R3 | with the Navier boundary condition (1.2)).

Theorem 1.3 (cf. [I7, Theorem 2.5]). Under the hypothesis in Theorem if
s> 1/2 then the following assertions are true:

(a) Foreachx € RTi, there exists a unique map X (-, x) € C([0,00))NC*((0, 00))
such that

X(t,z) = x—|—/0 w(X(r,x),7)dr, t€]0,00). (1.16)

(b) For each t > 0, the map x +— X (t,x) is a homeomorphism of Ri_ into @i,
leaving OR?. invariant i.e. X (t,0R3) C ORY.

(¢) Given ty,ty >0, the map X (t1,z) — X(t2,x), v € R3., is Holder continu-
ous, locally uniform with respect to t1,ts, i.e., given any T > 0, there exist
positive numbers C, L and v such that

[X(t2,y) = X(t2,2)] < CIX (t1,9) = X (01, )< "
for all ty,ts € [0,T]) and z,y € R3..

(d) Let M be a parametrized manifold in Ri of class C*, for some a € [0,1),
and of dimension k, where k = 1 or 2. Then, for each t > 0, M! =
X(t, M) is also a parametrized manifold of dimension k in Ri, and of
class CP, where B = aert” | being L and v the same constants in item (c).

We shall assume throughout the paper, without loss of generality, that the above
solution (p,u) to — is smooth, since it is the limit of smooth solutions
(see [I6l, Proposition 3.2 and §4]) and all the above estimates can be obtained by
passing to the limit from corresponding uniform estimates for smooth solutions.
In particular, we note that by the proof of [16] Proposition 3.2], we have that
p(- ), u(-,t) € H*(R3) for any ¢ > 0, if all data are smooth. Before ending this
Introduction, we say some words about previous results related to this paper.

Considering the Cauchy problem, Hoff [15] established the Lagrangian structure
in dimension two with the initial velocity in the Sobolev space H?, for an arbitrary
s > 0, while Hoff and Santos [I7] proved that the velocity field was a Lipschitzian
vector field, in dimension two and three, for the initial velocity in H*, with s > 0 in
dimension two and s > 1/2 in dimension three, and, as a consequence, assured the
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Lagrangian structure in dimensions two and three; Zhang and Fang [26] obtained
the Lagrangian structure in dimension two for the viscosity A = A(p), depending
only on the fluid density p, but with the initial velocity in H'(R?), and Maluendas
[22] extended the Lagrangian structure result obtained in [I7] to non isentropic
fluids in dimension two.

Regarding the initial and boundary value problems, Hoff and Perepelitsa [18]
proved (among other results in [I8]) the Lagrangian structure in the half-plane
with the initial velocity in H'.

We end this Introduction, by describing the next sections in this paper. In
Section [2] we collect several results we use in the proofs of Proposition [I.1] and
theorems and stated above. In Section [3] we prove these three results.

2. PRELIMINARIES

In this section we collect several results, regarding the half-space, that we shall
use in the proofs of Proposition and theorems and stated above. Al-
though, the problem — is set in this paper in the half-space Ri, some
results we give in this section are stated in the half-space R’ , for an arbitrary
n > 2, since it does not make any relevant difference to state them only for R:j_.

One of the main properties of the half-space R} is the existence of a strong m-
extension operator £, for any m € Z, and its explicit construction; see [I, Theorem
5.19 and its proof]. This property implies that several classical inequalities on R™
holds also on R”}. In particular, it is very useful the inequality

lullee @) < CllullL2@n) + VUl Lary)) (2.1)
where g > n is arbitrary, C' is a constant depending only on n and ¢, and u can be
any function in C*(R") such that u € L?(R%) and Vu € LY(R?%).

It is worth mentioning that inequality is true with R”} replaced by any open
set  in R™ that has a strong I-extension operator & mapping C*(2) into C*(R™)
and a simple (0,p)-extension operator & such that Vo & = & oV on C1(Q) (see
[1, Chapter 5, §Extensions Theorems] for details on extension operators). Indeed,
by the proof of Morrey’s inequality [8, p. 282] it easy to see that, given a function
v € C'(R") such that v € L*(R") and Vv € LY(R"), where ¢ > n, we have the
inequality

vl oo mny < ClJv]lz2@my + VOl La@®m)),
for some constant C' = C(n,q). Then, taking in this inequality v = £(u), for u €
C1(Q) such that u € L?(Q) and Vu € LI(1), using the aforementioned extension
operators, we obtain that

< C(|E)]| 2 @ny + [IVEW) || La@n))
CIEW) 2@y + 1€ (VU) | Lawny)
< C(llullz2) + IVullLay),

[ull oo (@) < [1€(w) || Lo )

where ¢ > n and C' denote different constants depending only on n and q.

Remark 2.1. Certainly many results in this paper (in particular, the very impor-
tant estimate (2.4)) below) hold true if we replace the half-space Ri by any domain
(i.e. an open set) © in R™ having the aforementioned extension properties, and a
nice boundary — such that we can assure the existence of the Green function, with
Dirichlet or Neumann boundary condition. In this regard, we believe that our main
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theorem in this paper, i.e. Theorem [I.2] above, and, consequently, also Theorem
above, hold true for the solution obtained by the Hoff in the paper [19] for more
general 3d domains.

For convenience of the reader, we give next explicitly the Green functions for
the half-space R}, and, using them, we show how to estimate solutions for some
Poisson equations in R} .

The Green functions in R}, with homogeneous Dirichlet and Neumann boundary
conditions, which we shall denote in this paper, respectively, by Gp and Gy, are
given by (see e.g. [12] p. 121])

Gp(z,y) =T(z—y) -T(z-y") and Gn(z,y)=T(z-y)+T(z-y"), (2.2)
where z,y € R?, x # y, I is the fundamental solution of the laplacian operator in
R™ and y* = (yf,---,y;) is the reflection point of y = (y1,--+ ,yn) € R through
the boundary OR?, i.e. yj =yjforj=1,---,n—1and y; = —yn.

Let us denote either Gp or Gy by G, for a while. A basic fact related to these
Green functions we shall use is that the operator
g VGxyg,

where
(VG *g)(x) = o VoG(z,y)9(y)dy, = €RY,
+
whenever the right-hand side makes sense, maps the space L4(R’) N L>(R%), for
1 < ¢ < n, continuously into the space of bounded log-lispchitzian functions in R},
i.e. the space of continuous functions h in R} such that

Ihlloe = Ihleoen) == Sup [h(@)] + (gL < oo, (2.3)
zER}

where h(x) ~ h(y)
) —
(W = sup 1 J .
x,yERi;O<\z—y|§l |£L' - y|(1 — log |(E - y‘)
More precisely, if g € LY(R}) N L*°(R?}), and 1 < g < n, then
IVG * gllLr@n) < CllgllLay) + l9llLee @) (2.4)

where C'is a constant depending only on n and ¢. This follows from a similar result

for VI g in R™ and the extension (simple O-extension) property of R’}. Indeed,

denoting by g the extension of g to R™ by reflection through OR? (i.e. g(y) := g(y*)

when y,, < 0), in the case G(z,y) = Gy(x,y) =T(z — y) + I'(x — y*) we have
VGxg=VIxg,

where the last symbol * stands for the classical convolution product in R™. Then

IVG*gllLown) = VI * gl Lr@n)
< CUglza@ny + 1l oo rmy)
< 2C(llgllarn) + gl gr))-
Regarding G(z,y) = Gp(z,y) =T'(z —y) — I'(z — y*), it is easy to see that
VGxg=VI*g—2 VI(x —y*)g(y) dy,
RY

so we obtain (2.4)) similarly, since the last integral has a regular kernel.
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Now, we want to give estimates to the solutions of boundary value problems for
a special (for us) Poisson equation in the half-space R7 (see (2.6) and (2.14)), but
let us first try to explain the importance of these estimates in this paper.

One of the ideas in the analysis of Hoff in e.g. [15] is to decompose the velocity
field u, in the solutions of , as the sum of two terms, up,, and up, being the
term up,, related to the distinguished quantity

F=(\+up)divu— P(p) + P(p)

and to the vorticity matrix
j K

wh k

= ’U’Jzk - ua:j7
and up related to the fluid pressure P. In subsection we exhibit a similar decom-
position. In [I7], the vector field up is log-lipschitzian with respect to the spatial
variable, with the log-lipschitz norm |Jup(-,t)|| Lz (see (2.3))) locally integrable with
respect to ¢, while up,, is a lipschitzian vector field with respect to the spatial
variable, with the Lipschitz norm

[upwllp = sup Jupw(z,t)]+  sup  |upe(@,t) —upo(y,)l/lz—yl  (25)

$ER+ yER?jr;I#y

also locally integrable (the hardest part to show) with respect to ¢t. Here, this facts
are also true, and we have extra difficulties to show them, in view of the presence of
the boundary. For instance, to estimate the L? norm of D?up ,, we need to consider

a singular kernel on 8Ri, which we deal with the help of the following theorem due
to Agmon, Douglis and Nirenberg [3}, Theorem 3.3] (see also [11, Theorem I1.11.6]).

Theorem 2.2. Let g € (1,00) and r : (R} =R"! x [0,00)) — {(0,0)} — R be
given by k(xz,x,) = w(lg; i:§|)/|(x,xn)|”*1, where w is a continuous function on
R NS™Y, Hélder continuous on S™*N{x, = 0} and satisfies [g,—, w(x,0)dz = 0.
Assume also that k has continuous partial derivatives Oy, Kk, = 1,2,...,n, 6§n/€ in
R% which are bounded by a constant ¢ on R} N S*=1. Then, for any function
h € LY(ORY) that has ﬁm'te seminorm

(h) (@) = h)l* ;. 4 )Uq
1-1/pp = orn Jor? |x—y|” 2+q vy

vle)i= [ nlo—pa)b) dy

belongs to LYRY) and [Vi)|[ramy) < Celh)i-1/q, where C is a constant depending
only on n and q.

the function

The coordinates functions of the vector fields ur,,,up in this paper, described
in satisfy boundary value problems for Poisson equations of the form

—Av =g, (2.6)

in the half-space Ri, for some function g, with Neumann or Dirichlet boundary
condition. In this regard, we shall use the formulas

v(z)=— | Gplz,y)9(y),, dy — Gp(z,y)y, h(y) dy
R" Rn—1

= Gp(%,y)y;9(y) dy — Gp(7,Y)y, h(y) dy
R™ Rn—1

(2.7)
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G @ )gly, dy— [ Gala)hlu)dy
R

R /Ri (2.8)

= [ Gn(z,9)y,9(y)dy — Gn(z,y)h(y) dy,
R? Rn-1

for the solutions of the the boundary value problems

—Av=g,;, inR}

v=h onR"!

and

—Av=g,, inRY

—v,, =h onR"!
respectively, for j = 1,--- ,n, and g € H™(R"),h € H™(R""!) with a sufficiently
large m, where Gp and G are the Green functions in R’} with the homogeneous
Dirichlet and Neumann boundary conditions, respectively (see (2.2)) and in the
case j = n we can assume g|R"~! = 0, without loss of generality.

We note that, extending g to a function § € H™(R") (see [I, Theorem 5.19]) we
can write the integral

(2.10)

w(z) = /R G(x,v)y;9(y) dy,

where G = Gp,Gy, in , , as
w@) = [ Ty awdy— [ Ta=-nyawdr [ Ta=y),00

Rn
n
being the last two integrals harmonic functions in R?;, since their kernels are regular,
for x € R’} . The first integral satisfies the equation

7Aw = ga:j
in R™ in the classical sense (cf. e.g. [8, §2.2, Theorem 1] where the condition of the
right hand side of the Poisson equation having compact support can be replaced

by the condition of being in H™(R™) for a sufficiently large m, as can be seen by
checking the proof). In addition, we also can write

w(z) = /]R

where g and g denote, respectively, the extensions by zero to R™ of g and g(yx),
from which, by using that the second derivative Iy, of the fundamental solution
for the laplacian in R™ is a singular kernel, we can infer the estimate

P (a—y)y, o(y) dy= / T'(a—y)y, glyx) dy = / T(@—y)y, [§(0)£5 () dy,

R™ n

n
+

Ve [ Gz —1y)y,9) dylly < Cllglly, (2.11)

R’”
+
for any ¢ € (1,00), where G = Gp,Gx and C is a constant depending only on n

and ¢q. On the other hand, writing

w(x) =~ [ G(z,y)gy,(y) dy,

RY
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by the same argument, we have also the estimate

102 [ Gle.a) sl < IVl (212)
+

for ¢q,G,C as in (2.11]).
Regarding the boundary integrals (i.e. over R"~1) in (2.7) and(2.8)), we observe
that the function
T — ) Gp(z,y)y, h(y)dy
Rn—
defines a classical solution to (2.9), with g = 0, if & is continuous and bounded, as
it is well known, and as for

/ G (2, y)h(y) dy,
]Rn—l

it defines a solution to , with also g = 0, if h is continuous and have a nice
decay at infinity (e.g. h € H™(R"™1!) for some large m); see [21} [4].

In addition, using the Agmon-Douglis-Nirenber (Theorem above), we have
the estimate

| D? /R,fl Gn(y)h(y) dy||Lq(R1) < C(M)1-1/9.q < CIVA| Lagany, (2.13)

for any ¢ € (1,00), where h is any extension to HY(R7Y) of h € HY(R}™Y), C is
a constant depending only on n and ¢, and for the last inequality we used [IT],
Theorem I1.10.2].

It is interesting to note that the boundary value problem

Av=0 in RY

2.14
Kv,, =v on dR', (2.14)

which is required for the coordinates u; and wus of the vector field w in the Navier
boundary condition 7 can be reduced to the boundary value problem with
homogeneous boundary condition (i.e. with h =0 in ) through the change of
variable (suggested to us by Hoff in a private communnication)

V =9v

where ¢ is a suitable function coinciding with e=% “enon OR" . From this obser-
vation, using (2.11)), (2.12) and that |Gy *v|lq < C||v|q, it is possible to show the
estimates

IVullg < Cllvllg,  1D*vlly < OVl (2.15)

for the solution to problem , where ¢ € (1,00) is arbitrary and C' is as in
[T13).

Finally, regarding the above boundary value problems for Poisson equations,
we observe that the solutions to the problems and given, respectively,
by and 7 are unique in the space LI(R%) N L*°(R?), for an arbitrary
g € [1,00). Indeed, if v is a solution of in L4(R%) N L>*(R%) with g = h =0,
extending it to R™ as an odd function with respect to x,,, we obtain an integrable
harmonic function (in the sense of the distributions) and bounded, in R™, then, by
Liouville’s theorem, we conclude that v = 0. We can conclude the same result with
respect to by taking instead an even extension with respect to x,,.
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Before ending this Section, we mention two facts we shall need in Section [3}
The first, is a very useful inequality for us in this paper, which is the interpolation
inequality

lull oy < Cllul Gl I Vall 3558, (2.16)
which holds for any function u in the Sobolev space H'(R3.), with ¢ € [2,6] and C
being a constant depending only on g. We note that this inequality can be obtained
from the same inequality in R3, using the extension operators from Ri to R3.

To estimate the solutions of — in the Sobolev space H®, 0 < s < 1,
we shall use the interpolation theory, since the space H? is the interpolation space
(L2, H"); 5 (see e.g. [23]). In particular, the interpolation Stein-Weiss’ theorem [5],
p. 115] will be very important to us.

3. PROOFS

In this section, using the results presented in Section [2| and following mainly the
methods in the papers [18] [15], 24] and [17], we prove Proposition and Theorems
(2l and @3

3.1. Proof of Proposition As in [18] (2.28)], we define up as the solution
of the boundary value problem

A+ p)Aup = V(P — P), inR%

(3.1)
u:}’ = (UQP)I3 = (u}:’)wg =0, on &Ri_,
i.e.
A+ pup(e) = | Gn(@,y)y, (P = P)(y)dy
R
" (3.2)
= [ M=)+ T =y, (P~ P)o)ds,
3
forj=1,2, z € le_, and
(A + pup(z / Gp(,y)y, (P = P)(y) dy
(3.3)
= [ M@ =9) =Tl =) (P = P
3
for x € R3; see (2.7) and (2.8). By (2.11]), we have the estimate
+
”Vuif’”q < CHP - p”q’ J=12,3, (3'4)

for any g € (1, 00), with C' being a constant depending only on n and g.
Next we define up,, = u — up. Using (3.4)), it follows that
IVurwlly < C[Vullg + 1P = Plly) (3.5)

for any g € (1,00), with C' being a constant depending only on n and g.

On the other hand, by the definitions of up, the Navier boundary condition ,
and observing that the the momemtum equation (second equation in ) can be
written in terms of the effective viscous flow F and of the vortex matrix w as

()\—I—M)Auj:FM—l—( +(A+p) waw
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we have that up,, satisfies the boundary value problem

3
A+ w)Aup, =VF+ A +p) Y wiF, iR}
k=1 (3.6)

u%yw =0, (u%’w)m3 =KW, j=2,3, on 8]1%3_.
Then by (2.11)), (2.12) and (2.13]), we have
ID?*upwlly < CUIVElq + [Vwllg + [IVullg), (3.7)

for ¢ and C as in (1.13). Now, the velocity field u satisfies the boundary value
problem

3
A+ m)Au=VF+A+p) Y wF+V(P-P), inRY
k=1
3 j “15 3
u’ =0, wul,, =K v, j=23, ondRj.
Then, by (2.11) and (2.15), we have the estimate [I6, Lemma 2.3, item (b)]
IVully < CUIFllg + Iwllg + 1P = Pllg + llullq) (3.9)
where ¢ and C' are as in (1.13)).
By (3.4), (3.5), and (3.9), we conclude the proof of Proposition [L.1]

Proof of Theorem To prove (|1.14)), following [I5] and [18], we write u =

v+ w, where v is the solution of a linear homogeneous system with initial condition
v]t=0 = wp and w is the solution of a linear nonhomogeneous system with initial
homogeneous initial condition. More precisely, taking the differential operator £ =

(L, L2, L£3) given by
LI(2) = pd — pAzd — Ndivz;, j=1,2,3, z=(z'2%2%),

(3.8)

where Z is the convective derivative of z with respect to u, i.e.
z:=z+uVz,
we define v and w as the solutions of the following initial boundary value problems

Lv)=0, inR3

(v, 0% 0%) = K1 (v},,v2,,0), on ORZ (3.10)
v(.,0) = up,

and R
L(w)=-V(P—P)+pf, R

(', w? w?) = K~} (w), w?,0), on IR} (3.11)

z30 Y3

w(.,0) =0.
Then v and w are estimated separately. To estimate v, the interpolation theory is
used, since the initial data ug is in H® and H? is the interpolation space (Lz, Hl) 605
see [23, p. 186 and 226]. We shall use also the Stein-Weiss’ theorem for L? spaces
with weights [5, p. 115]. To estimate w, the interpolation theory is not needed,
since the initial condition is null. Actually, w satisfies the estimate with

s =0 (equation (3.14) below).
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Proposition 3.1. If ug € H5(R3), 0 < s < 1, then for any positive number T
there is a constant C independent of (p,u), v, w, po,ug and f such that

sup ol 7(t )/ |Vv\2dac+/ / (t)plo|* dx dt < Clluo||3. (B2 )" (3.12)
0<t<T

Proof. We shall obtain (8.12) for s = 1 when uo € L*(R?%) and for s = 0 when
ug € H*(R%). Then (3.12) follows by interpolation.

Multiplying the equation pi/ = pAwv/ + A(divw); by v} and integrating, we
obtain

/ plo]? do — / pvlu - Vol do
R3 R3

+ +

=Uu Aviv! da + )\/ (divv);v] d
RE R3

=—u Vol - Vol dx + u/ VIV vdS, — X [ (divoe)(dive) do

3 3 3
R3 OR3. R%

+A (divv)v! 1’ dS,

oY
d Ad P
—_ke |V de — = — |divv|2dx+,u/ vivlvk ds,
2 dt ]R:}F 2 dt R:}F 8R:}F

1d
:—7—{,u/ |Vv|2dx+)\/ (divv)zdx—F/ uK_1|v|2de}.
th RS RS aRS
+ T +
Then

N =
&=

(ulIVel+ Nl divel+u [ K poPds,) + [ ploP da
ORY. R3

= / pi (u - Vi) dzx
RY

) / Cplupar) / oban) ([ i Vol ar)

<C(p )IlpullgH/mH1 “looll IIVUIIG
< C(p)(Co + C + My) | pill2]| Volle,

for some a € (0,1), where ¢ > 6 and M, are defined in (L.10)) and (1.9), @ is some
universal positive constant, and we used [16], Proposition 2.1] and (1.11))
Now defining

IN

F= A+ p)dive, @k = vik — ok

we have
A+ A = Fy, + (A + p)ilk
and, analogously to [16, Lemma 2.3], it follows that
IVollg < Clllvllg + 11 + 1E1q),
IVElq +[[Vallq < C(llpollg + 1Vollg + lvlle),
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for any g € (1,00). Thus by (2.16)) and energy estimates we have

/ po(u - Vol da
R

3
+

13

< Cllpollz(llvlls + 1@lls + | £]l6)

< C(Co + O bl (V] + [Vl + [V
Co + Cf

< C( Y llpoll2 (I[Voll2 + [1p9]l2 + [[v]|2)
=C(Cy+Cy)?
< O( )’

lpoll2V0]l2 + C(Co + C)°llpoll3 + C(Co + Cp)°[lpv]l2]v]l2
Co +Cp)’[IVull3 + C(Co + Cp)’lpoll3 + Clvll3

:C(co+cf)9/ |Vo|? da

R

+C(CO+Cf)9/ p|1}|2dl‘+C(CQ+Cf)a/
R

|v]? da
3
+
Therefore, if Cy, C'y are sufficiently small,
1d . _ .
5 WIToB 4 N divelg+p [ KR ds,)+ [ plif
2 dt aRd R3
- - (3.13)
< C/ |Vl do + C/ |v|? du,
R3 RY
so integrating on (0,t), we obtain

I

2

A
< H/ |Vu0|2d:c+—/ |divuo|2dx+ﬁ/ K Yug|? dS,
2 RZ 2 R3. 2 OR3.

T
—l—C/ / |v|? dx ds
o Jr3

< CH“MG—P(Ri)?

A T
/ |Vv|2dx+f/ |divv|2dx+ﬁ/ K_1|v|2d5x+/ / plo|? dx ds
5 2 Jrs 2 Jors o Jrs

if up € H'(R3.). On the other hand, multiplying (3.13) by o(t), we obtain
1
= 50 (uIVolB + N divol g [ o as,)
oR?

1d
—l—a/ p|1'1|2dx—|—f—<,ua||Vv||§—l—)\UHdiva%—l—uaa/ K_1|v|2d5'1)
R 2dt oR2.

SUC'/ |Vv|2dx—|—0/ |v|? de,
RS RS
so integrating on (0,t),
M 2 Ay 2 K —1,12 ’ “12
O'*HVUHQ+0'*||C11VU||2+0'*/ K~ v| dSI—i—/ / op|o|* dx ds
2 2 2 Jors 0o Jrz

T T
§/ / U’|Vv\2dxds+/ / o'| divv|? dx ds
0o Jrz o Jrz
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T T T
—|—/ / J’K_1|v|2dxd5m+0/ / |Vv|2dx—|—C/ / |Vo|? dx ds
0 Jor3 0o JR3 0 JRY

< Cluol3,
if ugp € L*(R%). In conclusion, we have the following estimates for v:

T
sup/ \Vv|2d1:+/ / plil? dz dt < Clluol2ps g
0<t<T Jr3 0o Jr: *

T
sup a(t)/ |Vv|2dx—|—/ / o(t)p|o|* dx dt < C||u0||2LQ(R3).
0<t<T R3 0o Jr3 *

In particular, for any fixed ¢ > 0, we have that the operator ug — Vv is linear
continuous from L?(R? ) into L?(R3.) and from H'(R3) into L*(R?}.) with respective
norms bounded by Cco(t)~'/2 and C. Then by interpolation (see [23, p. 186 and
226]) we obtain

sup o(t)l—S/ Vo2 dz < Clluo ). as -
0<t<T R} +

Also, from the above estimates, we have that the operator ug +— © is linear
and bounded from L?(R%) into L?((0,T) x R}, 0 (t)dtdz) and from H'(R3) into
L*((0,T) x R3). Then

T
[ [, ool de e < Cluol e
0 JRY +

(see [Bl, p. 115]). O

Proposition 3.2. For any positive number T there is a constant C' independent of
(p,u), v, w, po, ug and f such that

T
sup / |Vw\2dx+/ / plw|? dz dt < C(Co+ Cy)?, (3.14)
0<t<T JR2 o Jre
for some universal positive constant 6.

Proof. Multiplying (3.11)) by w{ , summing in j and integrating over Ri, we obtain

/p|w\2d:v7/ pidu - V! dx
R3 R?

+ +

o

(V! ) (V! ), de + p / w! (Vw’).vdS(z)

: 0w
- )\/ (divw)(divw) de + / (P — P)(divw), dz + / pflw! dx,
RY RY RY

thence,

d A -
/ p\w|2dx+—(ﬁ/ |vw|2dx+—/ |divw|2dx—/ (P — P)divw)
R dt>2 Jrs 2 Jry R

3 3
3 +
pi’u - Vu? dm—/ th; d:r—i—,u/

/3 3
R3 R OR3.

2111+I2+13+I4.

w! (Vw?).vdS(z) + /

. pflw! dx

3
+ +
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Let us estimate each of these integrals I1, I, I, Iy separately. Using estimates
for w analogous to those for u in [16, Lemma 2.3] and (2.16]), it is possible to show
that

I :/ pidu - V! dx
R}

<o [, irar) ([ ptupar) " ivus
+ T

. vz, -
< C(Co+Cp)( / plifdz) " (s + 1Vella + 1l + ol + 1P = Pllo)
+

< C(Co+Cp)? +C(Co+ cf)*’/ plw|? dx + C(Co + cf)e/ |Vwl|? dz.
R3 RE

Writing the identity
A+ AW = Fy, + A+ p)@hE + (P = P)a,,
with ~
F=M\+p)divw — P(p) + P(p)

k  similarly to the proof of [16, Lemma 2.3], we have

and oIk = w;k — Wy,
IVElly + V&lq < Clllpiollg + IVwllg + llwllg + llofllq),
ie.
IVEy = V(A + p) divw — (P = P)lg < C(llpillg + llpflq + IVwllg + wlly).
Thence, following [24, Lemma 3.3], we obtain
I, = 7/ th;: dx
=

= 7/ P’(p)ptwj dx
R3

+

:/ P’(p)div(pu)wg dx
R

3
T
/3
R3

< V(P—]B)udivwdm—&—C/ |Vu||Vw]| dx
=l

3
R

P'(p)(u - Vp)wg dz + /]R3 P'(p)pdivudivwdz
+

= div((P — P)u) divw dz — / (P — P)(div u)(divw) dz

3 3
R3 R3

+ c/ V|| Vo dae
&

§f/ (P—P)u~V(divw)d:c+C’/ |Vul|Vw| dx

R3 R%

:—/ (P—P)u-V(divw—@)dx—/ (P—P)u-V(P_P)dx
R3 At R3. At p
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+ c/ V|| Vo dae
R

<C/RS+ |V (dliv w0 — (}:__H}j)ﬂdx—M/Riu.V((P—PF)dx

+ C/ |Vu|| Vw| dz
R

P-P) o
P—-P
p )| dx 4+ C RileU( )2 dx

:C/ |u\|V(divw—(
R3
3
+ c/ V|| Vo dae
=

< C(Cy+ cf)e/ IV (divw — (]:_P)

)|? da + C/ \Vu|? da
R3. +u R3.

+ C/ |Vwl|? da
R}
g0(00+cf)9+0(00+0f)9/ p|w|2dx+0/ |Vul|? dx
R% R%

+ C/ |Vwl|? do
R3
3
Regarding I35, we have

I3 :/ pfjw{ dz
R3

+

:/ pf? (i — - Vud) de
R

3
+

1/3 1/6
30(co+cf)9/ p|w\2da:+c(/ p|f|3d:c) (/ |u|6dx)
R2 R 5
< ( /
R}

1/2
30(00+cf)9/ pl|? da +C(co+cf)9(/ \Vu\Qda:)
R2 R2

X (/3 \Vw|2dx)1/2
R

+

1/2
\Vw|2dm)

Finally,

I4:u/ wl (Vuw?) - vdS(z)
OR3

+

= p/ wﬁwiuk dS(z)
RS
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=—pu K~ wlw! dS(x)

ORY
— b [Py asta)
2 3R3
+
_EA [ ey as(a)
2dt 8R3+
Therefore
/p\w|2dx—|—(ﬁ/ \Vw\Qda:—&—é/ | div w|? dz
R 2 Jrs 2 Jrs

_/ (P—P)divwdz—l-g Kl|w|?dS(x));
R

3 3
+ ORY

SC(C0+Cf)9+C’(C’o+Cf)9/ |Vu|2dx+C/ [Vu||Vw|dx
R2 R2

+C(Co + cf)e/

plw|? dx + C/ |Vwl|? da
R3 R?

+

1/2
+c<co+cf>9(/ \Vu|2dx)1/2(/ Vuf?dr) .
R3 RY

Integrating on (0,t) and taking Cy, C sufficiently small, we obtain

t
A
// p|u')|2d:cds+ﬁ/ \Vw\2dx+f/ |divw\2dx+ﬁ/ K|w|*dS(z)
0 Jr2 2 Jry 2 Jry 2 Jorz,

< C(Cy+Cy)? +/ (P — P)(divw) dz
]RS

+
t 1/2 t 1/2
—|—C’Mq<// \Vu\zdxds) (// |Vw|2dxds>
0 JRY 0 JRY

§0(00+Cf)9+0(00+0f)0/ |Vw|2d:c,
)
hence obtaining the result, assuming again Cjy, Cy sufficiently small. ]

Now, we are ready to show (1.14)).

Theorem 3.3. Let ug be in the Sobolev space H*(R3), for some s € [0,1]. Then

the estimate (1.14) holds for the solution (p,u) of (1.1)-(1.3) obtained in [16], as
described here from (1.4) to (L.11)).

Proof. Let v and w be the solutions of and ), respectively. Since
v]¢—o = uo, by the unicity of solution of the linear system L(z) = V(P — P) + pf,
joint with the initial condition z;—¢ = wg, we have that u = v + w. (note that
z = v+ w and z = u are both solutions of this problem.) Thus, by (3.12)) and

(3.14]), we obtain (1.14]). O
Next we shall use ([L.14]) to show the estimate (1.15]).
Theorem 3.4. Let be ug € H*(R3), for some s € (1/2,1] and (p,u) as in Theorem

[3-3 Then we have the estimate (1.15)).
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Proof. Writing the momentum equation as

pid + Pj = pAu? + Ndivu; + pf,
and applying the operator o™’ (0,(-) + div(.w)), m > 1, as in [15] and [24], we
have

o™ pil ! + o™ pu - Vil Wl + o™il Py + o™ div(Pju)

= o™i (Au] + div(ulAu?)) + Ao™a? (8:9; div u + div(ud; divu))
+ ampajff + ampukf,z.

Note that

ampu{uﬂ' + o™ pu - Vil i
o™ . .
= 2 (p0u(lil®) + pu- V()
o™ . m

oo plil” = T pilil” + Z-pu- V(Jif).
Integrating on R3 | it follows that

m
(%/ p|u|2dm) —%U/O'm_l/ plu|* dx
R3. t R3
= —O'm/
R

3
+

@ (P + div(Pju)) dz + /wm/ W (Al + div(uAu?)) dzx
3

(i f] + puF ) dw
3 RS
+ +
=: N1 +N2—|—N3—|—N4

R+
+ o™ / @ (0;0; divu + div(ud; divu)) do + o™ /
R

Let us estimate each of these terms separately. Integrating by parts, we have

e
R

3
+

=™ /3 a';-P’pt dx—/ . oWV P, dS, + o™ /3 a'inuk

R3 oR? R3
—/ Umuiju.ung;
OR3

+

o™i’ (0; Py + div(Pju)) dx

zam/ u;iP'(—pdivu—u~Vp)dx+am/
R3

Dok
\ U Pju” dx

R+
z—am/ P’pugdivudm—am/
R

ilu - VP dx

Ry
- Jm/ (P— ]—:’)(uikuk + uiuf) dx + O'm/ (P — p)uiukyj dsS;
R

RS
=" / P’pug divudr + o™ / (P — P)(u;kuk + uiuﬁ) dx
R3 R3
—o™ / (P — P)(iJuv)dS, — o™ / (P — P)(i,uf + i ub) do
ORZ. RZ
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= —am/ (P’puj divu — Pu]u,c + Pujut > dx
R3

C(p)a™ [ Vull2lI Va2
< C(p)C(e)a™IVull3 + C(p)ea™ | Viil3.

Ny = uom/ W (Al + div(uAu?)) dz
R

= o™ /RB (Wi, + 0 (uPu))g) da

+

= f;mm{/ (uiuit) dx — / ujuitz/k ds;}
RY oS

RY

o m _ Gk, d, k
o {/ uku u” dx / W utuy vt dS, }
8 OR?.

= —uam{/ wl (@), — (- Vu? )i )dx—/ Wl v dS, )
oR3

+

—I-Mam{/ uklu u —l—ukuful)dx—/a \ uiukugyl ds,}
R
3

—/wm{/ |Va|? do — /R3 wlutud dr — /3 wlutul, do

R}

- / Wul, vk dS,} + ,uam{/ (] ufu] + @ ufu]) do
oR?. RS

—/ uiukuly ds;}
8]R3

,ugm{/RS |Val|? do — /3 ukukul dz +/ (uklu uk +ukuluk) dx
+

R3 Ry

- / Wl v”dS,} + ,uam{/ (], uu] + i uful) da
OR3. RS

— / wluFul vt dS, }
OR3.
= —Mam{/ |Vi|? do — / (i ubu] — e ubu), 4+ i uful) da:}
R3 R?
T +
+ ,uam/ . (Wl % — i uFu vt dS,;
.

R
3
to estimate the boundary term above, we write

pam/ (ujuituk — uiukugul) dS,; =: N2y + Naa,
oR?.
using that if h € (C' N WH1)(R3), then

+

/ h(x)dS, = / [h(z) + (3 — 1)hyg, (2)] d.
oR?. {0<w3<1}

19
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Observe that we can assume j # 3 in Noy and k& # 3 in Nyy without loss of
generality, since u® = 0 on 8R3+. Let us show how to estimate the term Ny; above.
The term Nss can be estimate similarly.

Nay = —po™ /a . W ul, dS,

+

= —po™ . K'Y/ u] dS,
oR
g

= —uc™ Kl (09 — ukui) dS;
oRY

_ _Mo,m/ K_1|’L'L‘2 dSw + /Lo'm/ K_lujukui dSm
ORY. ORY
< Mo'm K_lajukui dSw
o
- /wm/ KM (0 uu], + (25 — 1)[idubud, + o/ ufug, + @ ubuly)) de
{0<as<1}

< Cuam/ (IVallul|Vul + i Vullul + [l Vul?) do
R3

+

- uom/ (z3 — (K Yol ubud + Kol uful + (K1) gt ubud) de
{0<=z3<1}

+ /wm/{ o }K_1<$3 — Dl uFudpk ds,.
r3=0}U{x3=1

Note that the above boundary term is null, since for z3 = 0 we have u** = 0 and
for 3 = 1 the term (xz3 — 1) vanishes the integrand. Thus,

Ny < CJ’"/ (| V||| Vu| 4 [0]|Vulju| + ||| Vul?) de.
RS

Regarding N3, setting D = div u, we have

N3 = Xo™ / @ (0,0; divu + div(ud; divu)) dz
R

3
+

= —)\Jm/
R

+ AJT"/ @ (DD; 4+ u*Djy,) dz
R}

= —Ao—m/ (u§Dt)dx+Ao—m/
R

R

(@D ds+ 20" [ Dl ds,

3 3
+ oRY

iLjDDjdx—i—/ Wk Dy, dw

3 3
+ R

=: N31 + N3z + N33.
Note that N33 = —Ao™ fRi WDy dr = —Xo™ fRi WD dx + Ao™ fRi wju - VD dz.

For N3s, we have

by .
Noa = 5om [ a(DP); ds
2 R

3
+
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A 4 A .
_ :am/ u§.|D|2d;v+fo’”/ WD dS,
2 Rs 2 8R3~

+

gcm/ Vil Val? do
]R3

+

SC’&U"‘/ |Va|? da:—l—C’om/ |Vu|* dz.
R} RS

+

Ny = Aa™ / uFid Dy, da
RY

= —\o™ / (W)u" Dy, + Wk Dy) dz + Ao™ Dyu*aivi ds,
R

j
= —)\om/
R

5 0w
— o™ / wululvk ds,
OR3
3

J
= —)\Jm/
R

A o
+ —am/ W17 |DJ? dS,.
2 ORY

W VD dz + Ao™ / (juf D + @ uf ;D) d

3 3
T R

Wl - VD dx + )\om/

. A .
wukDdr — Zo™ | @!|D|? dx
ke 2 g J
R R

3 3
+ + +

Thus,
N31 + N33
L . . AL p
w;D dr + Ao /3 Wk D d — 59 /]RS | D|? da

3
+ Ry +

= —/\O'm/

R

< —)\am/ ugiDstam/ | V|2 d:c—!—C’am/ |Vu|* da
R R3 R3

=-Xo" D(ul +u- V'), da +sam/ |Va|? do
R3

3
R3 +

3
+

+ CJ’"/ |Vu|* da
R3

+

=A™ D(Dt—i—u-VD—l—ufui)dx—i—gom/ |Va|? da
R? R?
T T
—|—Cam/ |Vu|* da
R3
i
= —/\O'm/ |D|? dx—)\am/ Dubul, dx+€am/ |V|? da
R RS RS

+

+Co™ / |Vu|* dz
R3

3
< —)\am/
R

|D|2dx—|—5crm/ \Vu|2dx+00m/ |Vu|* d.
3 3

3
+ R R

21



22 M. M. SANTOS, E. J. TEIXEIRA EJDE-2019/106
Finally,

Ny, = crm/ (pi 7 + pﬂjukfg) dx
=)

350"“1/ p|11|2da:+CJm+1/ | fe|? dx
R3 R3

+

+60m/ p|u\2dx+00m+1/ IV f2|u|? dx
R3 R3

+

Saom_l/ p|u|2dx+00m+1/ | fe|? dx
R3 R3.

+

+ 0(0(3—33)/2 /

|u|4 dw)1/2(0(4m+1+33)/2/ |vf|4 d$)1/2
R R3

3
+ +

<comt [ plif et comt [ 5P ds
R +

T R

—|—C(CO _|_C«f)9(o,(4m+l+35)/2/

IV f|* dz)'/?,
RS

+

since
o732 |u||} < CoB3) 2|l | Vull3
< O(Co + Cp)P0®392|| T3
=C(Cy+ cf)e(/ o8|\ Vul? dz)3/? < C(Co + Cf)°.

3
Ry

With these estimates, we arrive at

m

(U—/ p|iL|2dm) —ma’om_l/ plu|? dz
2 ]RBJr t 2 Ri

< C(ﬁ)C(a)am/ \vu|2dx+0(ﬁ)gam/ Vil da
R3 R3

+ +

—/wm/ |Vu\2da:+00m/ \Vu|* dz
R? RE

+

+C€om/ |Vu\2dx+00m/ V| dm—/\am/ |D|? da
RS R3 RS

+C’am/ |u)? da:—l—Cam/ lu|* dx
R3 R3

+ +

+€O’m71/ p|ﬂ|2dx+00m+1/ | fe|? dx
R3 R

+

1/2
+ O(CO + Cf)9<0(4m+1+3s)/2/ |vf|4 dil') )
=

Integrating on (0,7"), taking m = 2 — s and using (1.14)), we obtain

T
O’m/ p|u|2dx—|—/ / o™|Va|? da ds
RS o Jrs



EJDE—2019/106 LAGRANGIAN STRUCTURE FOR COMPRESSIBLE FLOW 23
T
gC(c(]+cf)9+c/ / o™ (|Vult + ul*) dz ds
o Jrd
T T 1/2
+/ 03*5/ |ft|2dxdt+/ a<9*5>/4(/ \Vf\‘*dx) dt
0 R% 0 R%
T
gc*(co+cf)9+c/ / o™ (Yl + u]") d dt.
0 Ri

To conclude the result, we must estimate the term fOT 027 [os ([Vul* + |u|*) dz dr.
T

Using (2.16)), we have

T T
| o ltar < [ ol vulgar
0 0
T 1/2 3/2
:/ 02*5(/ uf?da) (/ Vuldr) " dr
0 R i
T
< C(Cy + Cy)° / UH(/
0 R}

T 1+s
gC(co+cf)9/ o' (JH/

0 R
< C(Cy +Cf)0.

3/2
|Vul? dx) dr

3/2
|vu\2dx) dr

3
+

On the other hand, following [24] Lemma 3.3], and using energy estimates and

(1.14)), we estimate
T
/ 02_‘9/ |Vul|* dz dr
0 ]Rijr
T
= [ o Ivaliar
0
’ ~ 3
<C [ oI ull (ol + [ Vule + [ulla+ Il + |P = Pls) " dr
0
' D13
<¢C / o2 Vullz (llpall§ + 1Vl + lulld + 1 £13 + IP = PI) dr
T
< C(Co+Cy)’ +C/ o2~ || Vul|o|| pir|| dr
0
T 1/2
SC(Co+Cf)9+C'/ 0275(/ \Vu|2dx)
0 Ri
. 1/2 )
X (/ plaf? dﬂ?) (/ plu|® dz) dr
R R3+

T ey 1/2
§0(00+cf)‘9+c/ UT(UH/ |Vu|2dx)
0 Ri’_

1/2
X (02_5/ p|u|2dx) (01_3/ p|u|2dm) dr
R} RY

3
+
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1/2
< C(Co+Cyp) +C(Co+Cp)° sup (UH/ plif? dz) "
o

0<t<T
Therefore, using once more that Cy, C'y are sufficiently small, we obtain (1.15). O

Proof of Theorem [1.3] The proof of Theorem [I.3] using Theorem is similar
to the proof of [I7, Theorem 2.5]. Thus, here we just give an overview of this proof,
showing some details which may be peculiar to our case.

The proof of the existence of the particle paths X (¢, z) satisfying is ob-
tained through the following estimate, uniformly with respect to smooth solutions:

to ta
X(tr2) - X(t2,2)| < [ llu(t.)lldt < C [ (utt, )l + [Vae. ),
t1 t1
where ¢ > 3, and for the last inequality we used (2.1]). Indeed, from this estimate it
is possible to show, after several other estimates, that X (¢, ) is Holder continuous
in ¢, uniformly with respect to smooth solutions.
The uniqueness (of particle paths) follows from the estimate

/0 (u(.,t))prdt < CT7,

for a fixed and arbitrary T > 0, where C' and ~ are positive constants, uniform with
respect to u, cf. [I7, lemmas 3.1 and 3.2].

For the proof of item (b) of Theorem first we observe that the injectivity
and openness of the map x — X (¢, ) can be shown exactly as in [I7]. To show the
surjectivity, we use the particles paths starting at ¢ty > 0, i.e. the map

X (- x03to) € C((0, +00), RY) N CH((0, +00); RY)
such that
t
X(t, wosto) = 2o +/ w(X (7, x0),7)dr

to
(see [I7, Corollary 2.3]): given y € @, let Y(s) = X(s;y,t), s € [0,t]. Since
the curves Y (s) e X(s,Y(0)) satisty Z'(s) = u(Z(s),s), Z(0) = Y(0), we have
Y(s) =X(s;Y(0)),s € [0,t],s0y =Y (t) = X (¢;Y(0)), which shows the surjectivity
of the map X(¢,-) : ﬁ — R3. The continuity is a direct consequence of item (c).
To show the invariance of the boundary aRi by the flux, let @ = (x1,22,0) €
OR3 . Defining X'(-,z), for i = 1,2, by

t
Xit,x) = o + / (X (r, ), 7) dr,
0

we have that Y (t,z) := (X'(t,2), X?(t,z),0) is a path which lies in R} and
satisfies
dy (t,z)/dt = uw(Y (t,z),t), t>0, Y(0)=u,

since u3 = 0 on OR3, so, by uniqueness (item (a)) we have Y (t,2) = X (¢, z), for
all ¢ > 0, and thus we conclude the invariance of the boundary by the flux X (¢, ).

The proofs of items (c) and (d) can be done exactly as the proofs of [I7, Theorem
2.5 (¢),(d)]. Actually, the proof of item (d) is a direct consequence of item (c) and
the definition of a parametrized manifold of class C“, which is the image of a map
YU — Rﬁ_ of class C, where U is an open set of R* k=1 or 2.
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