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LAGRANGIAN STRUCTURE FOR COMPRESSIBLE FLOW IN

THE HALF-SPACE WITH NAVIER BOUNDARY CONDITION

MARCELO M. SANTOS, EDSON J. TEIXEIRA

Abstract. We show the uniqueness of particle paths of a velocity field, which
solves the compressible isentropic Navier-Stokes equations in the half-space

R3
+ with the Navier boundary condition. More precisely, by energy estimates

and the assumption of small energy we prove that the velocity field satisfies
regularity estimates which imply the uniqueness of particle paths.

1. Introduction

This article concerns the Lagrangian structure, i.e. the uniqueness of particle
paths, for the solution obtained by Hoff [16] to the Navier-Stokes system for com-
pressible isentropic fluids, in the half-space R3

+ = {x = (x1, x2, x3) ∈ R3 ; x3 > 0}
with the Navier boundary condition. We follow the approach of [17] but in [17] the
problem is posed in the whole space Rn (n = 2, 3), so there is no questions in [17]
concerning boundary effects.

In view of the presence of the boundary, we analyze and show new estimates. For
instance, to estimate the Lq norm of the second derivative of a part of the velocity
field, which is denoted by uF,ω, we need to consider a singular kernel on ∂R3

+.
For estimating this norm, we use a theorem due to the Agmon-Douglis-Nirenberg
[3], i.e. Theorem 2.2 below. In fact, this part, uF,ω, of the velocity field satisfies a
boundary value problem in the half-space (see (3.6)), to which we use the explicit
formulas given by Green’s functions for the half-space with Dirchlet and Neumann
boundary conditions (see (2.7) and (2.8)).

The half-space has several properties that are important to our analysis, some
of which we mention in Section 2 below. In addition to the aforementioned explicit
formulas for Green’s functions, it enjoys the strong m-extension operator property
(see [1, Theorem 5.19]). This property implies that several classical inequalities
on Rn holds also on Rn+. In particular, it is very useful the imbedding inequality
(2.1) and the interpolation inequality (2.16), which we can infer from the similar
inequalities on Rn. These and some other results we shall need are explained in
details in Section 2.

The crucial result in this paper, as in [17], concerning the uniqueness of particle
paths, is the regularity estimates (1.14) and (1.15), stated in Theorem 1.2. To
show these estimates, with the presence of the boundary (we recall that in [17] it is
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considered only the initial value problem), in addition to the results mentioned in
Section 2, we shall use arguments in the papers [13, 15, 18, 16, 24]. In particular,
to prove Proposition 3.2 and Theorem 3.4 we use some arguments as those in [24,
Lemma 3.3 ].

Let us now describe in more details the results we show in this paper. First,
for the reader convenience, we recall the solution obtained in [16]. Consider the
Navier-Stokes equations

ρt + div(ρu) = 0

(ρuj)t + div(ρuju) + P (ρ)xj = µ∆uj + λ div uxj + ρf j , j = 1, 2, 3
(1.1)

for x = (x1, x2, x3) ∈ R3
+ and t > 0, with the Navier boundary condition

u(x, t) = K(x)(u1
x3

(x, t), u2
x3

(x, t), 0), (1.2)

for x = (x1, x2, 0) ∈ ∂R3
+, t > 0, and with the initial condition

(ρ, u)
∣∣
t=0

= (ρ0, u0). (1.3)

Here, as usual, ρ and u = (u1, u2, u3) denote, respectively, the unknowns density
and velocity vector field of the fluid modeled by these equations, and P (ρ) is the
pressure function, which is assumed to satisfy the following conditions:

P ∈ C2([0, ρ̄]), P (0) = 0, P ′(ρ̃) > 0,

(ρ− ρ̃)[P (ρ)− P (ρ̃)] > 0, ρ 6= ρ̃, ρ ∈ [0, ρ̄],
(1.4)

for fixed numbers ρ̃, ρ̄ such that 0 < ρ̃ < ρ̄. In addition, f = (f1, f2, f3) is a given
external force density, µ and λ are given constant viscosities, and K is a smooth
and strictly positive function, also given, satisfying the following conditions:

µ > 0, 0 < λ < 5µ/4; (1.5)

K ∈ (W 2,∞ ∩W 1,3)(R2), K(x) ≥ K > 0, (1.6)

for some constant K > 0;∫
R3

+

[1
2
ρ0|u0|2 +G(ρ0)

]
dx ≤ C0 (1.7)

and

sup
t≥0
‖f(., t)‖2 +

∫ ∞
0

(
‖f(., t)‖2 + σ7‖∇f(., t)‖4

)
dt

+

∫ ∞
0

∫
R3

+

(|f |2 + σ5|ft|2) dx dt ≤ Cf ,
(1.8)

where

G(ρ) := ρ

∫ ρ

ρ̃

P (s)− P (ρ̃)

s2
ds,

C0 and Cf are positive numbers sufficiently small and σ(t) := min{t, 1}, and the
quantity

Mq :=

∫
R3

+

ρ0|u0|q + sup
t>0
‖f(·, t)‖q +

∫ ∞
0

∫
R3

+

|f |q dx dt (1.9)

is finite, where q > 6 and satisfies

(q − 2)2

4(q − 1)
<
µ

λ
. (1.10)
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Throughout the article, ‖ · ‖q stands for the Lq norm in Rn+.
Under the above conditions, Hoff [16, Theorem 1.1] established the existence of a

“small energy” (i.e. for C0, Cf sufficiently small) weak solution (ρ, u) to (1.1)-(1.3)
as follows:

Given a positive number M (not necessarily small) and given ρ̄1 ∈ (ρ̃, ρ̄), there
are positive numbers ε and C̄ depending on ρ̃, ρ̄1, ρ̄, P, λ, µ, q,M and on the function
K, and there is a positive universal constant θ, such that, if

0 ≤ inf
R3

+

ρ0 ≤ sup
R3

+

ρ0 ≤ ρ̄1,

C0 + Cf ≤ ε and Mq ≤M,

then there is a weak solution (ρ, u) to (1.1)-(1.3) having the following (among other)
properties:

The functions u, F = (λ+ µ) div u−P (ρ) +P (ρ̃) (the so-called effective viscous
flow) and ωj,k = ujxk − ukxj , j, k = 1, 2, 3 (note that ω = (ωj,k) is the vorticity

matrix ) are Hölder continuous in R3
+ × [τ,∞), for any τ > 0;

C−1 inf ρ0 ≤ ρ ≤ ρ̄ a.e.

and

sup
t>0

∫
R3

+

[
1

2
ρ(x, t)|u(x, t)|2 + |ρ(x, t)− ρ̃|2 + σ(t)|∇u(x, t)|2] dx

+

∫ ∞
0

∫
R3

+

[
|∇u|2 + σ3(t)|∇u̇|2

]
dx dt

≤ C̄(C0 + Cf )θ,

where u̇ denotes the convective derivative of u, i.e.

u̇ := ut + (∇u)u.

In addition, when infR3
+
ρ0 > 0, the term

∫∞
0

∫
R3

+
σ|u̇|2 dx dt can be included on the

left side of (1.11).
In this article we show the following results.

Proposition 1.1. Let assumptions (1.4)-(1.10) be satisfied. Then the vector field
u described above (in particular, satisfying the estimate (1.11)) can be written as

u = uP + uF,ω,

for some vector fields uP , uF,ω satisfying:

‖∇uP ‖q ≤ C‖P − P̃‖q, (1.11)

‖∇uF,ω‖q ≤ C(‖F‖q + ‖ω‖q + ‖P − P̃‖q + ‖u‖q), (1.12)

‖D2uF,ω‖q ≤ C(‖∇F‖q + ‖∇ω‖q + ‖F‖q + ‖ω‖q + ‖P − P̃‖q + ‖u‖q), (1.13)

for any q ∈ (1,∞), where C is a constant depending only on q and on arbitrary
positive numbers K,K such that K ≤ K ≤ K.

Theorem 1.2. Let assumptions (1.4)-(1.10) be satisfied. Suppose that u0 belongs to
the Sobolev space Hs(R3

+), for some s ∈ [0, 1], and infR3
+
ρ0 > 0. Then the solution
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(ρ, u) to problem (1.1)-(1.3), described above, satisfies the additional estimates:

sup
t>0

σ1−s
∫
R3

+

|∇u|2 dx+

∫ ∞
0

∫
R3

+

σ1−sρ|u̇|2 dx dt

≤ C(s)(C0 + ‖u0‖Hs + Cf )θ,

(1.14)

sup
t>0

σ2−s
∫
R3

+

ρ|u̇|2 dx+

∫ ∞
0

∫
R3

+

σ2−s|∇u̇|2 dx dt

≤ C(s)(C0 + ‖u0‖Hs + Cf )θ,

(1.15)

where C(s) is a constant depending only on s and on the same quantities as does
C in Proposition 1.1.

Estimates (1.14) and (1.15), as in [17], imply a Lagrangian structure for the
solution (ρ, u) described above to problem (1.1)-(1.3). More precisely, the follow-
ing theorem, which is similar to [17, Theorem 2.5 ], holds for the Navier-Stokes
equations (1.1) in the half-plahe R3

+, with the Navier boundary condition (1.2).

Theorem 1.3 (cf. [17, Theorem 2.5]). Under the hypothesis in Theorem 1.2, if
s > 1/2 then the following assertions are true:

(a) For each x ∈ R3
+, there exists a unique map X(· , x) ∈ C([0,∞))∩C1((0,∞))

such that

X(t, x) = x+

∫ t

0

u(X(τ, x), τ) dτ, t ∈ [0,∞). (1.16)

(b) For each t > 0, the map x 7→ X(t, x) is a homeomorphism of R3

+ into R3

+,
leaving ∂R3

+ invariant i.e. X(t, ∂R3
+) ⊂ ∂R3

+.
(c) Given t1, t2 ≥ 0, the map X(t1, x) 7→ X(t2, x), x ∈ R3

+, is Hölder continu-
ous, locally uniform with respect to t1, t2, i.e., given any T > 0, there exist
positive numbers C, L and γ such that

|X(t2, y)−X(t2, x)| ≤ C|X(t1, y)−X(t1, x)|e
−LTγ

for all t1, t2 ∈ [0, T ]) and x, y ∈ R3
+.

(d) Let M be a parametrized manifold in R3
+ of class Cα, for some α ∈ [0, 1),

and of dimension k, where k = 1 or 2. Then, for each t > 0, Mt :=
X(t,M) is also a parametrized manifold of dimension k in R3

+, and of

class Cβ, where β = αeLt
γ

, being L and γ the same constants in item (c).

We shall assume throughout the paper, without loss of generality, that the above
solution (ρ, u) to (1.1)-(1.3) is smooth, since it is the limit of smooth solutions
(see [16, Proposition 3.2 and §4]) and all the above estimates can be obtained by
passing to the limit from corresponding uniform estimates for smooth solutions.
In particular, we note that by the proof of [16, Proposition 3.2], we have that
ρ(·, t), u(·, t) ∈ H∞(R3

+) for any t ≥ 0, if all data are smooth. Before ending this
Introduction, we say some words about previous results related to this paper.

Considering the Cauchy problem, Hoff [15] established the Lagrangian structure
in dimension two with the initial velocity in the Sobolev space Hs, for an arbitrary
s > 0, while Hoff and Santos [17] proved that the velocity field was a Lipschitzian
vector field, in dimension two and three, for the initial velocity in Hs, with s > 0 in
dimension two and s > 1/2 in dimension three, and, as a consequence, assured the
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Lagrangian structure in dimensions two and three; Zhang and Fang [26] obtained
the Lagrangian structure in dimension two for the viscosity λ = λ(ρ), depending
only on the fluid density ρ, but with the initial velocity in H1(R2), and Maluendas
[22] extended the Lagrangian structure result obtained in [17] to non isentropic
fluids in dimension two.

Regarding the initial and boundary value problems, Hoff and Perepelitsa [18]
proved (among other results in [18]) the Lagrangian structure in the half-plane
with the initial velocity in H1.

We end this Introduction, by describing the next sections in this paper. In
Section 2 we collect several results we use in the proofs of Proposition 1.1, and
theorems 1.2 and 1.3, stated above. In Section 3 we prove these three results.

2. Preliminaries

In this section we collect several results, regarding the half-space, that we shall
use in the proofs of Proposition 1.1, and theorems 1.2 and 1.3, stated above. Al-
though, the problem (1.1)-(1.3) is set in this paper in the half-space R3

+, some
results we give in this section are stated in the half-space Rn+, for an arbitrary
n ≥ 2, since it does not make any relevant difference to state them only for R3

+.
One of the main properties of the half-space Rn+ is the existence of a strong m-

extension operator E , for any m ∈ Z+, and its explicit construction; see [1, Theorem
5.19 and its proof]. This property implies that several classical inequalities on Rn
holds also on Rn+. In particular, it is very useful the inequality

‖u‖L∞(Rn+) ≤ C(‖u‖L2(Rn+) + ‖∇u‖Lq(Rn+)) (2.1)

where q > n is arbitrary, C is a constant depending only on n and q, and u can be
any function in C1(Rn+) such that u ∈ L2(Rn+) and ∇u ∈ Lq(Rn+).

It is worth mentioning that inequality (2.1) is true with Rn+ replaced by any open
set Ω in Rn that has a strong 1-extension operator E mapping C1(Ω) into C1(Rn)
and a simple (0,p)-extension operator E0 such that ∇ ◦ E = E0 ◦ ∇ on C1(Ω) (see
[1, Chapter 5, §Extensions Theorems] for details on extension operators). Indeed,
by the proof of Morrey’s inequality [8, p. 282] it easy to see that, given a function
v ∈ C1(Rn) such that v ∈ L2(Rn) and ∇v ∈ Lq(Rn), where q > n, we have the
inequality

‖v‖L∞(Rn) ≤ C(‖v‖L2(Rn) + ‖∇v‖Lq(Rn)),

for some constant C = C(n, q). Then, taking in this inequality v = E(u), for u ∈
C1(Ω) such that u ∈ L2(Ω) and ∇u ∈ Lq(Ω), using the aforementioned extension
operators, we obtain that

‖u‖L∞(Ω) ≤ ‖E(u)‖L∞(Rn) ≤ C(‖E(u)‖L2(Rn) + ‖∇E(u)‖Lq(Rn))

= C(‖E(u)‖L2(Rn) + ‖E0(∇u)‖Lq(Rn))

≤ C(‖u‖L2(Ω) + ‖∇u‖Lq(Ω)),

where q > n and C denote different constants depending only on n and q.

Remark 2.1. Certainly many results in this paper (in particular, the very impor-
tant estimate (2.4) below) hold true if we replace the half-space R3

+ by any domain
(i.e. an open set) Ω in Rn having the aforementioned extension properties, and a
nice boundary – such that we can assure the existence of the Green function, with
Dirichlet or Neumann boundary condition. In this regard, we believe that our main
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theorem in this paper, i.e. Theorem 1.2 above, and, consequently, also Theorem
1.3 above, hold true for the solution obtained by the Hoff in the paper [19] for more
general 3d domains.

For convenience of the reader, we give next explicitly the Green functions for
the half-space Rn+, and, using them, we show how to estimate solutions for some
Poisson equations in Rn+.

The Green functions in Rn+, with homogeneous Dirichlet and Neumann boundary
conditions, which we shall denote in this paper, respectively, by GD and GN , are
given by (see e.g. [12, p. 121])

GD(x, y) = Γ(x− y)− Γ(x− y∗) and GN (x, y) = Γ(x− y) + Γ(x− y∗), (2.2)

where x, y ∈ Rn+, x 6= y, Γ is the fundamental solution of the laplacian operator in

Rn and y∗ = (y∗1 , · · · , y∗n) is the reflection point of y = (y1, · · · , yn) ∈ Rn+ through
the boundary ∂Rn+, i.e. y∗j = yj for j = 1, · · · , n− 1 and y∗n = −yn.

Let us denote either GD or GN by G, for a while. A basic fact related to these
Green functions we shall use is that the operator

g 7→ ∇G ∗ g,
where

(∇G ∗ g)(x) :=

∫
Rn+
∇xG(x, y)g(y) dy, x ∈ Rn+,

whenever the right-hand side makes sense, maps the space Lq(Rn+) ∩ L∞(Rn+), for
1 ≤ q < n, continuously into the space of bounded log-lispchitzian functions in Rn+,
i.e. the space of continuous functions h in Rn+ such that

‖h‖LL ≡ ‖h‖LL(Rn+) := sup
x∈Rn+

|h(x)|+ 〈g〉LL <∞, (2.3)

where

〈h〉LL := sup
x,y∈Rn+; 0<|x−y|≤1

|h(x)− h(y)|
|x− y|(1− log |x− y|)

.

More precisely, if g ∈ Lq(Rn+) ∩ L∞(Rn+), and 1 ≤ q < n, then

‖∇G ∗ g‖LL(Rn+) ≤ C(‖g‖Lq(Rn+) + ‖g‖L∞(Rn+)) (2.4)

where C is a constant depending only on n and q. This follows from a similar result
for ∇Γ ∗ g in Rn and the extension (simple 0-extension) property of Rn+. Indeed,
denoting by g̃ the extension of g to Rn by reflection through ∂Rn+ (i.e. g̃(y) := g(y∗)
when yn < 0), in the case G(x, y) = GN (x, y) = Γ(x− y) + Γ(x− y∗) we have

∇G ∗ g = ∇Γ ∗ g̃,
where the last symbol ∗ stands for the classical convolution product in Rn. Then

‖∇G ∗ g‖LL(Rn+) = ‖∇Γ ∗ g̃‖LL(Rn)

≤ C(‖g̃‖Lq(Rn) + ‖g̃‖L∞(Rn))

≤ 2C(‖g‖Lq(Rn+) + ‖g‖L∞(Rn+)).

Regarding G(x, y) = GD(x, y) = Γ(x− y)− Γ(x− y∗), it is easy to see that

∇G ∗ g = ∇Γ ∗ g̃ − 2

∫
Rn+
∇Γ(x− y∗)g(y) dy,

so we obtain (2.4) similarly, since the last integral has a regular kernel.
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Now, we want to give estimates to the solutions of boundary value problems for
a special (for us) Poisson equation in the half-space Rn+ (see (2.6) and (2.14)), but
let us first try to explain the importance of these estimates in this paper.

One of the ideas in the analysis of Hoff in e.g. [15] is to decompose the velocity
field u, in the solutions of (1.1), as the sum of two terms, uF,ω and uP , being the
term uF,ω related to the distinguished quantity

F = (λ+ µ) div u− P (ρ) + P (ρ̃)

and to the vorticity matrix
ωj,k = ujxk − u

k
xj ,

and uP related to the fluid pressure P . In subsection 3.1 we exhibit a similar decom-
position. In [17], the vector field uP is log-lipschitzian with respect to the spatial
variable, with the log-lipschitz norm ‖uP (·, t)‖LL (see (2.3)) locally integrable with
respect to t, while uF,ω is a lipschitzian vector field with respect to the spatial
variable, with the Lipschitz norm

‖uF,ω‖Lip ≡ sup
x∈R3

+

|uF,ω(x, t)|+ sup
x,y∈R3

+;x 6=y
|uF,ω(x, t)− uF,ω(y, t)|/|x− y| (2.5)

also locally integrable (the hardest part to show) with respect to t. Here, this facts
are also true, and we have extra difficulties to show them, in view of the presence of
the boundary. For instance, to estimate the Lq norm of D2uF,ω we need to consider
a singular kernel on ∂R3

+, which we deal with the help of the following theorem due
to Agmon, Douglis and Nirenberg [3, Theorem 3.3] (see also [11, Theorem II.11.6]).

Theorem 2.2. Let q ∈ (1,∞) and κ :
(
Rn+ ≡ Rn−1 × [0,∞)

)
− {(0, 0)} → R be

given by κ(x, xn) = w( (x,xn)
|(x,xn)| )/|(x, xn)|n−1, where w is a continuous function on

Rn+∩Sn−1, Hölder continuous on Sn−1∩{xn = 0} and satisfies
∫
Sn−1 w(x, 0) dx = 0.

Assume also that κ has continuous partial derivatives ∂xiκ, i = 1, 2, ..., n, ∂2
xnκ in

Rn+ which are bounded by a constant c on Rn+ ∩ Sn−1. Then, for any function
h ∈ Lq(∂Rn+) that has finite seminorm

〈h〉1−1/p,p ≡
(∫

∂Rn+

∫
∂Rn+

|h(x)− h(y)|q

|x− y|n−2+q
dx dy

)1/q

,

the function

ψ(x, xn) :=

∫
∂Rn+

κ(x− y, xn)h(y) dy

belongs to Lq(Rn+) and ‖∇ψ‖Lq(Rn+) ≤ Cc〈h〉1−1/q, where C is a constant depending

only on n and q.

The coordinates functions of the vector fields uF,ω, uP in this paper, described
in §3.1, satisfy boundary value problems for Poisson equations of the form

−∆v = gxj (2.6)

in the half-space R3
+, for some function g, with Neumann or Dirichlet boundary

condition. In this regard, we shall use the formulas

v(x) = −
∫
Rn+
GD(x, y)g(y)yj dy −

∫
Rn−1

GD(x, y)ynh(y) dy

=

∫
Rn+
GD(x, y)yjg(y) dy −

∫
Rn−1

GD(x, y)ynh(y) dy

(2.7)
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and

v(x) = −
∫
Rn+
GN (x, y)g(y)yj dy −

∫
Rn−1

GN (x, y)h(y) dy

=

∫
Rn+
GN (x, y)yjg(y) dy −

∫
Rn−1

GN (x, y)h(y) dy,

(2.8)

for the solutions of the the boundary value problems

−∆v = gxj in Rn+
v = h on Rn−1 (2.9)

and
−∆v = gxj in Rn+
−vxn = h on Rn−1,

(2.10)

respectively, for j = 1, · · · , n, and g ∈ Hm(Rn+), h ∈ Hm(Rn−1) with a sufficiently
large m, where GD and GN are the Green functions in Rn+ with the homogeneous
Dirichlet and Neumann boundary conditions, respectively (see (2.2)) and in the
case j = n we can assume g|Rn−1 = 0, without loss of generality.

We note that, extending g to a function g̃ ∈ Hm(Rn) (see [1, Theorem 5.19]) we
can write the integral

w(x) :=

∫
Rn+
G(x, y)yjg(y) dy,

where G = GD, GN , in (2.7), (2.8), as

w(x) =

∫
Rn

Γ(x− y)yj g̃(y) dy −
∫
Rn−

Γ(x− y)yj g̃(y) dy ±
∫
Rn+

Γ(x− y∗)yjg(y) dy,

being the last two integrals harmonic functions in Rn+, since their kernels are regular,
for x ∈ Rn+. The first integral satisfies the equation

−∆w = g̃xj

in Rn in the classical sense (cf. e.g. [8, §2.2, Theorem 1] where the condition of the
right hand side of the Poisson equation having compact support can be replaced
by the condition of being in Hm(Rn) for a sufficiently large m, as can be seen by
checking the proof). In addition, we also can write

w(x) =

∫
Rn+

Γ(x−y)yjg(y) dy±
∫
Rn−

Γ(x−y)yjg(y∗) dy =

∫
Rn

Γ(x−y)yj [ḡ(y)±¯̄g(y)]dy,

where ḡ and ¯̄g denote, respectively, the extensions by zero to Rn of g and g(y∗),
from which, by using that the second derivative Γyiyj of the fundamental solution
for the laplacian in Rn is a singular kernel, we can infer the estimate

‖∇x
∫
Rn+
G(x− y)yjg(y) dy‖q ≤ C‖g‖q, (2.11)

for any q ∈ (1,∞), where G = GD, GN and C is a constant depending only on n
and q. On the other hand, writing

w(x) = −
∫
Rn+
G(x, y)gyj (y) dy,
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by the same argument, we have also the estimate

‖D2
x

∫
Rn+
G(x, y)yjg(y) dy‖q ≤ C‖∇g‖q, (2.12)

for q,G,C as in (2.11).
Regarding the boundary integrals (i.e. over Rn−1) in (2.7) and(2.8), we observe

that the function

x 7→
∫
Rn−1

GD(x, y)ynh(y) dy

defines a classical solution to (2.9), with g = 0, if h is continuous and bounded, as
it is well known, and as for ∫

Rn−1

GN (x, y)h(y) dy,

it defines a solution to (2.10), with also g = 0, if h is continuous and have a nice
decay at infinity (e.g. h ∈ Hm(Rn−1) for some large m); see [21, 4].

In addition, using the Agmon-Douglis-Nirenber (Theorem 2.2 above), we have
the estimate∥∥D2

∫
Rn−1

GN (·, y)h(y) dy
∥∥
Lq(Rn+)

≤ C〈h〉1−1/q,q ≤ C‖∇h̃‖Lq(Rn+), (2.13)

for any q ∈ (1,∞), where h̃ is any extension to H1(Rn+) of h ∈ H1(Rn−1
+ ), C is

a constant depending only on n and q, and for the last inequality we used [11,
Theorem II.10.2].

It is interesting to note that the boundary value problem

∆v = 0 in Rn+
Kvxn = v on ∂Rn+,

(2.14)

which is required for the coordinates u1 and u2 of the vector field u in the Navier
boundary condition (1.2), can be reduced to the boundary value problem (2.10) with
homogeneous boundary condition (i.e. with h = 0 in (2.10)) through the change of
variable (suggested to us by Hoff in a private communnication)

V = ϕv

where ϕ is a suitable function coinciding with e−K
−1xn on ∂Rn+. From this obser-

vation, using (2.11), (2.12) and that ‖GN ∗ v‖q ≤ C‖v‖q, it is possible to show the
estimates

‖∇v‖q ≤ C‖v‖q, ‖D2v‖q ≤ C‖∇v‖q (2.15)

for the solution to problem (2.14), where q ∈ (1,∞) is arbitrary and C is as in
(1.13).

Finally, regarding the above boundary value problems for Poisson equations,
we observe that the solutions to the problems (2.9) and (2.10) given, respectively,
by (2.7) and (2.8), are unique in the space Lq(Rn+) ∩ L∞(Rn+), for an arbitrary
q ∈ [1,∞). Indeed, if v is a solution of (2.9) in Lq(Rn+) ∩ L∞(Rn+) with g = h = 0,
extending it to Rn as an odd function with respect to xn, we obtain an integrable
harmonic function (in the sense of the distributions) and bounded, in Rn, then, by
Liouville’s theorem, we conclude that v = 0. We can conclude the same result with
respect to (2.10) by taking instead an even extension with respect to xn.
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Before ending this Section, we mention two facts we shall need in Section 3.
The first, is a very useful inequality for us in this paper, which is the interpolation
inequality

‖u‖Lq(R3
+) ≤ C‖u‖

(6−q)/2q
L2(R3

+)
‖∇u‖(3q−6)/2q

L2(R3
+)

, (2.16)

which holds for any function u in the Sobolev space H1(R3
+), with q ∈ [2, 6] and C

being a constant depending only on q. We note that this inequality can be obtained
from the same inequality in R3, using the extension operators from R3

+ to R3.
To estimate the solutions of (1.1)-(1.3) in the Sobolev space Hs, 0 < s < 1,

we shall use the interpolation theory, since the space Hs is the interpolation space
(L2, H1)s,2 (see e.g. [23]). In particular, the interpolation Stein-Weiss’ theorem [5,
p. 115] will be very important to us.

3. Proofs

In this section, using the results presented in Section 2 and following mainly the
methods in the papers [18, 15, 24] and [17], we prove Proposition 1.1 and Theorems
1.2 and 1.3.

3.1. Proof of Proposition 1.1. As in [18, (2.28)], we define uP as the solution
of the boundary value problem

(λ+ µ)∆uP = ∇(P − P̃ ), in R3
+

u3
P = (u2

P )x3
= (u1

P )x3
= 0, on ∂R3

+,
(3.1)

i.e.

(λ+ µ)ujP (x) =

∫
R3

+

GN (x, y)yj (P − P̃ )(y) dy

=

∫
R3

+

(Γ(x− y) + Γ(x− y∗))yj (P − P̃ )(y) dy,

(3.2)

for j = 1, 2, x ∈ R3
+, and

(λ+ µ)u3
P (x) =

∫
R3

+

GD(x, y)y3(P − P̃ )(y) dy

=

∫
R3

+

(Γ(x− y)− Γ(x− y∗))y3(P − P̃ )(y) dy,

(3.3)

for x ∈ R3
+; see (2.7) and (2.8). By (2.11), we have the estimate

‖∇ujP ‖q ≤ C‖P − P̃‖q, j = 1, 2, 3, (3.4)

for any q ∈ (1,∞), with C being a constant depending only on n and q.
Next we define uF,ω = u− uP . Using (3.4), it follows that

‖∇uF,ω‖q ≤ C(‖∇u‖q + ‖P − P̃‖q) (3.5)

for any q ∈ (1,∞), with C being a constant depending only on n and q.
On the other hand, by the definitions of uP , the Navier boundary condition (1.2),

and observing that the the momemtum equation (second equation in (1.1)) can be
written in terms of the effective viscous flow F and of the vortex matrix ω as

(λ+ µ)∆uj = Fxj + (P − P̃ )xj + (λ+ µ)

3∑
k=1

ωj,kxk ,
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we have that uF,ω satisfies the boundary value problem

(λ+ µ)∆uF,ω = ∇F + (λ+ µ)

3∑
k=1

ω·,kxk , in R3
+

u3
F,ω = 0, (ujF,ω)x3

= K−1uj , j = 2, 3, on ∂R3
+.

(3.6)

Then by (2.11), (2.12) and (2.13), we have

‖D2uF,ω‖q ≤ C(‖∇F‖q + ‖∇ω‖q + ‖∇u‖q), (3.7)

for q and C as in (1.13). Now, the velocity field u satisfies the boundary value
problem

(λ+ µ)∆u = ∇F + (λ+ µ)

3∑
k=1

ω·,kxk +∇(P − P̃ ), in R3
+

u3 = 0, ujx3
= K−1uj , j = 2, 3, on ∂R3

+.

(3.8)

Then, by (2.11) and (2.15), we have the estimate [16, Lemma 2.3, item (b)]

‖∇u‖q ≤ C(‖F‖q + ‖ω‖q + ‖P − P̃‖q + ‖u‖q) (3.9)

where q and C are as in (1.13).
By (3.4), (3.5), (3.7) and (3.9), we conclude the proof of Proposition 1.1.

Proof of Theorem 1.2. To prove (1.14), following [15] and [18], we write u =
v+w, where v is the solution of a linear homogeneous system with initial condition
v|t=0 = u0 and w is the solution of a linear nonhomogeneous system with initial
homogeneous initial condition. More precisely, taking the differential operator L ≡
(L1,L2,L3) given by

Lj(z) = ρżj − µ∆zj − λ div zj , j = 1, 2, 3, z = (z1, z2, z3),

where ż is the convective derivative of z with respect to u, i.e.

ż := zt + u∇z,

we define v and w as the solutions of the following initial boundary value problems

L(v) = 0, in R3
+

(v1, v2, v3) = K−1(v1
x3
, v2
x3
, 0), on ∂R3

+

v(., 0) = u0,

(3.10)

and
L(w) = −∇(P − P̃ ) + ρf, in R3

+

(w1, w2, w3) = K−1(w1
x3
, w2

x3
, 0), on ∂R3

+

w(., 0) = 0.

(3.11)

Then v and w are estimated separately. To estimate v, the interpolation theory is
used, since the initial data u0 is in Hs and Hs is the interpolation space

(
L2, H1

)
s,2

;

see [23, p. 186 and 226]. We shall use also the Stein-Weiss’ theorem for Lq spaces
with weights [5, p. 115]. To estimate w, the interpolation theory is not needed,
since the initial condition is null. Actually, w satisfies the estimate (1.14) with
s = 0 (equation (3.14) below).
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Proposition 3.1. If u0 ∈ Hs(R3
+), 0 ≤ s ≤ 1, then for any positive number T

there is a constant C independent of (ρ, u), v, w, ρ0, u0 and f such that

sup
0≤t≤T

σ1−s(t)

∫
R3

+

|∇v|2 dx+

∫ T

0

∫
R3

+

σ1−s(t)ρ|v̇|2 dx dt ≤ C||u0||2Hs(R3
+). (3.12)

Proof. We shall obtain (3.12) for s = 1 when u0 ∈ L2(R3
+) and for s = 0 when

u0 ∈ H1(R3
+). Then (3.12) follows by interpolation.

Multiplying the equation ρv̇j = µ∆vj + λ(div v)j by vjt and integrating, we
obtain∫

R3
+

ρ|v̇|2 dx−
∫
R3

+

ρv̇ju · ∇vj dx

= µ

∫
R3

+

∆vjvjt dx+ λ

∫
R3

+

(div v)jv
j
t dx

= −µ
∫
R3

+

∇vj · ∇vjt dx+ µ

∫
∂R3

+

vjt∇vj .ν dSx − λ
∫
R3

+

(div v)(div v)t dx

+ λ

∫
∂R3

+

(div v)vjt ν
j dSx

= −µ
2

d

dt

∫
R3

+

|∇v|2 dx− λ

2

d

dt

∫
R3

+

|div v|2 dx+ µ

∫
∂R3

+

vjt v
j
kν
k dSx

= −1

2

d

dt

{
µ

∫
R3

+

|∇v|2 dx+ λ

∫
R3

+

(div v)2 dx+

∫
∂R3

+

µK−1|v|2 dSx
}
.

Then

1

2

d

dt

(
µ||∇v||22 + λ||div v||22 + µ

∫
∂R3

+

K−1|v|2 dSx
)

+

∫
R3

+

ρ|v̇|2 dx

=

∫
R3

+

ρv̇j(u · ∇vj) dx

≤ C(ρ̄)
(∫

R3
+

ρ|u|3 dx
)1/3(∫

R3
+

ρ|v̇|2 dx
)1/2(∫

R3
+

|∇v|6 dx
)1/6

≤ C(ρ̄)‖ρu‖a2‖ρu‖1−aq ‖ρv̇‖2‖∇v‖6
≤ C(ρ̄)(C0 + Cf +Mq)

θ‖ρv̇‖2‖∇v‖6,

for some a ∈ (0, 1), where q > 6 and Mq are defined in (1.10) and (1.9), θ is some
universal positive constant, and we used [16, Proposition 2.1] and (1.11).

Now defining

F̃ = (λ+ µ) div v, ω̃j,k = vjxk − v
k
xj ,

we have

(λ+ µ)∆vj = F̃xj + (λ+ µ)ω̃j,kxk

and, analogously to [16, Lemma 2.3], it follows that

‖∇v‖q ≤ C(‖v‖q + ‖ω̃‖q + ‖F̃‖q),

‖∇F̃‖q + ‖∇ω̃‖q ≤ C(‖ρv̇‖q + ‖∇v‖q + ‖v‖q),
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for any q ∈ (1,∞). Thus by (2.16) and energy estimates we have∫
R3

+

ρv̇(u · ∇vj) dx

≤ C‖ρv̇‖2
(
‖v‖6 + ‖w̃‖6 + ‖F̃‖6

)
≤ C(C0 + Cf )θ‖ρv̇‖2

(
‖∇v‖2 + ‖∇w̃‖2 + ‖∇F̃‖2

)
≤ C(C0 + Cf )θ‖ρv̇‖2 (‖∇v‖2 + ‖ρv̇‖2 + ‖v‖2)

= C(C0 + Cf )θ‖ρv̇‖2‖∇v‖2 + C(C0 + Cf )θ‖ρv̇‖22 + C(C0 + Cf )θ‖ρv̇‖2‖v‖2
≤ C(C0 + Cf )θ‖∇v‖22 + C(C0 + Cf )θ‖ρv̇‖22 + C‖v‖22

= C(C0 + Cf )θ
∫
R3

+

|∇v|2 dx

+ C(C0 + Cf )θ
∫
R3

+

ρ|v̇|2 dx+ C(C0 + Cf )θ
∫
R3

+

|v|2 dx

Therefore, if C0, Cf are sufficiently small,

1

2

d

dt
(µ‖∇v‖22 + λ‖div v‖22 + µ

∫
∂R3

+

K−1|v|2 dSx) +

∫
R3

+

ρ|v̇|2

≤ C
∫
R3

+

|∇v|2 dx+ C

∫
R3

+

|v|2 dx,
(3.13)

so integrating on (0, t), we obtain

µ

2

∫
R3

+

|∇v|2 dx+
λ

2

∫
R3

+

|div v|2 dx+
µ

2

∫
∂R3

+

K−1|v|2 dSx +

∫ T

0

∫
R3

+

ρ|v̇|2 dx ds

≤ µ

2

∫
R3

+

|∇u0|2 dx+
λ

2

∫
R3

+

|div u0|2 dx+
µ

2

∫
∂R3

+

K−1|u0|2 dSx

+ C

∫ T

0

∫
R3

+

|v|2 dx ds

≤ C‖u0‖2H1(R3
+),

if u0 ∈ H1(R3
+). On the other hand, multiplying (3.13) by σ(t), we obtain

− 1

2
σ′
(
µ‖∇v‖22 + λ‖ div v‖22 + µ

∫
∂R3

+

K−1|v|2 dSx
)

+ σ

∫
R3

+

ρ|v̇|2 dx+
1

2

d

dt

(
µσ‖∇v‖22 + λσ‖div v‖22 + µασ

∫
∂R3

+

K−1|v|2 dSx
)

≤ σC
∫
R3

+

|∇v|2 dx+ C

∫
R3

+

|v|2 dx,

so integrating on (0, t),

σ
µ

2
‖∇v‖22 + σ

λ

2
‖ div v‖22 + σ

µ

2

∫
∂R3

+

K−1|v|2 dSx +

∫ T

0

∫
R3

+

σρ|v̇|2 dx ds

≤
∫ T

0

∫
R3

+

σ′|∇v|2 dx ds+

∫ T

0

∫
R3

+

σ′|div v|2 dx ds
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+

∫ T

0

∫
∂R3

+

σ′K−1|v|2 dx dSx + σ

∫ T

0

∫
R3

+

|∇v|2 dx+ C

∫ T

0

∫
R3

+

|∇v|2 dx ds

≤ C‖u0‖22 ,

if u0 ∈ L2(R3
+). In conclusion, we have the following estimates for v:

sup
0≤t≤T

∫
R3

+

|∇v|2 dx+

∫ T

0

∫
R3

+

ρ|v̇|2 dx dt ≤ C‖u0‖2H1(R3
+) ,

sup
0≤t≤T

σ(t)

∫
R3

+

|∇v|2 dx+

∫ T

0

∫
R3

+

σ(t)ρ|v̇|2 dx dt ≤ C‖u0‖2L2(R3
+) .

In particular, for any fixed t > 0, we have that the operator u0 7→ ∇v is linear
continuous from L2(R3

+) into L2(R3
+) and from H1(R3

+) into L2(R3
+) with respective

norms bounded by Cσ(t)−1/2 and C. Then by interpolation (see [23, p. 186 and
226]) we obtain

sup
0≤t≤T

σ(t)1−s
∫
R3

+

|∇v|2 dx ≤ C‖u0‖2Hs(R3
+) .

Also, from the above estimates, we have that the operator u0 7→ v̇ is linear
and bounded from L2(R3

+) into L2((0, T ) × R3
+, σ(t)dt dx) and from H1(R3

+) into
L2((0, T )× R3

+). Then∫ T

0

∫
R3

+

σ1−s(t)ρ|v̇|2 dx dt ≤ C‖u0‖2Hs(R3
+)

(see [5, p. 115]). �

Proposition 3.2. For any positive number T there is a constant C independent of
(ρ, u), v, w, ρ0, u0 and f such that

sup
0≤t≤T

∫
R3

+

|∇w|2 dx+

∫ T

0

∫
R3

+

ρ|ẇ|2 dx dt ≤ C(C0 + Cf )θ, (3.14)

for some universal positive constant θ.

Proof. Multiplying (3.11) by wjt , summing in j and integrating over R3
+, we obtain∫

R3
+

ρ|ẇ|2 dx−
∫
R3

+

ρẇju · ∇wj dx

= −µ
∫
R3

+

(∇wj)(∇wj)t dx+ µ

∫
∂R3

+

wjt (∇wj).νdS(x)

− λ
∫
R3

+

(divw)(divw)t dx+

∫
R3

+

(P − P̃ )(divw)t dx+

∫
R3

+

ρf jwjt dx,

thence,∫
R3

+

ρ|ẇ|2 dx+
d

dt
(
µ

2

∫
R3

+

|∇w|2 dx+
λ

2

∫
R3

+

|divw|2 dx−
∫
R3

+

(P − P̃ ) divw)

=

∫
R3

+

ρẇju · ∇wj dx−
∫
R3

+

Ptw
j
j dx+ µ

∫
∂R3

+

wjt (∇wj).ν dS(x) +

∫
R3

+

ρf jwjt dx

=: I1 + I2 + I3 + I4.
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Let us estimate each of these integrals I1, I2, I3, I4 separately. Using estimates
for w analogous to those for u in [16, Lemma 2.3] and (2.16), it is possible to show
that

I1 =

∫
R3

+

ρẇju · ∇wj dx

≤ C
(∫

R3
+

ρ|ẇ|2 dx
)1/2(∫

R3
+

ρ|u|3 dx
)1/3

‖∇w‖6

≤ C(C0 + Cf )θ
(∫

R3
+

ρ|ẇ|2 dx
)1/2(

‖ρẇ‖2 + ‖∇w‖2 + ‖f‖2 + ‖w‖2 + ‖P − P̃‖6
)

≤ C(C0 + Cf )θ + C(C0 + Cf )θ
∫
R3

+

ρ|ẇ|2 dx+ C(C0 + Cf )θ
∫
R3

+

|∇w|2 dx.

Writing the identity

(λ+ µ)∆wj = ˜̃Fxj + (λ+ µ)˜̃ωj,kxk + (P − P̃ )xj ,

with
˜̃F = (λ+ µ) divw − P (ρ) + P (ρ̃)

and ˜̃ωj,k = wjxk − w
k
xj , similarly to the proof of [16, Lemma 2.3], we have

‖∇ ˜̃F‖q + ‖∇ ˜̃ω‖q ≤ C(‖ρẇ‖q + ‖∇w‖q + ‖w‖q + ‖ρf‖q),

i.e.

‖∇ ˜̃F‖q = ‖∇((λ+ µ) divw − (P − P̃ ))‖q ≤ C(‖ρẇ‖q + ‖ρf‖q + ‖∇w‖q + ‖w‖q).

Thence, following [24, Lemma 3.3], we obtain

I2 = −
∫
R3

+

Ptw
j
j dx

= −
∫
R3

+

P ′(ρ)ρtw
j
j dx

=

∫
R3

+

P ′(ρ) div(ρu)wjj dx

=

∫
R3

+

P ′(ρ)(u · ∇ρ)wjj dx+

∫
R3

+

P ′(ρ)ρdiv udivw dx

≤
∫
R3

+

∇(P − P̃ )udivw dx+ C

∫
R3

+

|∇u‖∇w| dx

=

∫
R3

+

div((P − P̃ )u) divw dx−
∫
R3

+

(P − P̃ )(div u)(divw) dx

+ C

∫
R3

+

|∇u‖∇w| dx

≤ −
∫
R3

+

(P − P̃ )u · ∇(divw) dx+ C

∫
R3

+

|∇u‖∇w| dx

= −
∫
R3

+

(P − P̃ )u · ∇(divw − (P − P̃ )

λ+ µ
) dx−

∫
R3

+

(P − P̃ )u · ∇(
P − P̃
λ+ µ

) dx
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+ C

∫
R3

+

|∇u‖∇w| dx

≤ C
∫
R3

+

|u||∇(divw − (P − P̃ )

λ+ µ
)| dx− 1

2(λ+ µ)

∫
R3

+

u · ∇
(
(P − P̃ )2

)
dx

+ C

∫
R3

+

|∇u‖∇w| dx

= C

∫
R3

+

|u||∇(divw − (P − P̃ )

λ+ µ
)| dx+ C

∫
R3

+

div u(P − P̃ )2 dx

+ C

∫
R3

+

|∇u‖∇w| dx

≤ C(C0 + Cf )θ
∫
R3

+

|∇(divw − (P − P̃ )

λ+ µ
)|2 dx+ C

∫
R3

+

|∇u|2 dx

+ C

∫
R3

+

|∇w|2 dx

≤ C(C0 + Cf )θ + C(C0 + Cf )θ
∫
R3

+

ρ|ẇ|2 dx+ C

∫
R3

+

|∇u|2 dx

+ C

∫
R3

+

|∇w|2 dx

Regarding I3, we have

I3 =

∫
R3

+

ρf jwjt dx

=

∫
R3

+

ρf j(ẇj − u · ∇wj) dx

≤ C(C0 + Cf )θ
∫
R3

+

ρ|ẇ|2 dx+ C
(∫

R3
+

ρ|f |3 dx
)1/3(∫

R3
+

|u|6 dx
)1/6

×
(∫

R3
+

|∇w|2 dx
)1/2

≤ C(C0 + Cf )θ
∫
R3

+

ρ|ẇ|2 dx + C(C0 + Cf )θ
(∫

R3
+

|∇u|2 dx
)1/2

×
(∫

R3
+

|∇w|2 dx
)1/2

Finally,

I4 = µ

∫
∂R3

+

wjt (∇wj) · ν dS(x)

= µ

∫
∂R3

+

wjtw
j
kν
k dS(x)

= −µ
∫
∂R3

+

wjtw
j
3 dS(x)
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= −µ
∫
∂R3

+

K−1wjtw
j dS(x)

= −µ
2

∫
∂R3

+

(K−1|w|2)t dS(x)

= −µ
2

d

dt

∫
∂R3

+

K−1|w|2 dS(x)

Therefore∫
R3

+

ρ|ẇ|2 dx+ (
µ

2

∫
R3

+

|∇w|2 dx+
λ

2

∫
R3

+

|divw|2 dx

−
∫
R3

+

(P − P̃ ) divw dx+
µ

2

∫
∂R3

+

K|w|2dS(x))t

≤ C(C0 + Cf )θ + C(C0 + Cf )θ
∫
R3

+

|∇u|2 dx+ C

∫
R3

+

|∇u‖∇w| dx

+ C(C0 + Cf )θ
∫
R3

+

ρ|ẇ|2 dx+ C

∫
R3

+

|∇w|2 dx

+ C(C0 + Cf )θ(

∫
R3

+

|∇u|2 dx)1/2
(∫

R3
+

|∇w|2 dx
)1/2

.

Integrating on (0, t) and taking C0, Cf sufficiently small, we obtain∫ t

0

∫
R3

+

ρ|ẇ|2 dx ds+
µ

2

∫
R3

+

|∇w|2 dx+
λ

2

∫
R3

+

|divw|2 dx+
µ

2

∫
∂R3

+

K|w|2dS(x)

≤ C(C0 + Cf )θ +

∫
R3

+

(P − P̃ )(divw) dx

+ CMq

(∫ t

0

∫
R3

+

|∇u|2 dx ds
)1/2(∫ t

0

∫
R3

+

|∇w|2 dx ds
)1/2

≤ C(C0 + Cf )θ + C(C0 + Cf )θ
∫
R3

+

|∇w|2 dx,

hence obtaining the result, assuming again C0, Cf sufficiently small. �

Now, we are ready to show (1.14).

Theorem 3.3. Let u0 be in the Sobolev space Hs(R3
+), for some s ∈ [0, 1]. Then

the estimate (1.14) holds for the solution (ρ, u) of (1.1)-(1.3) obtained in [16], as
described here from (1.4) to (1.11).

Proof. Let v and w be the solutions of (3.10) and (3.11)), respectively. Since

v|t=0 = u0, by the unicity of solution of the linear system L(z) = ∇(P − P̃ ) + ρf ,
joint with the initial condition zt=0 = u0, we have that u = v + w. (note that
z = v + w and z = u are both solutions of this problem.) Thus, by (3.12) and
(3.14), we obtain (1.14). �

Next we shall use (1.14) to show the estimate (1.15).

Theorem 3.4. Let be u0 ∈ Hs(R3
+), for some s ∈ (1/2, 1] and (ρ, u) as in Theorem

3.3. Then we have the estimate (1.15).
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Proof. Writing the momentum equation as

ρu̇j + Pj = µ∆uj + λ div uj + ρf j ,

and applying the operator σmu̇j
(
∂t(·) + div(.u)

)
, m ≥ 1, as in [15] and [24], we

have

σmρu̇jt u̇
j + σmρu · ∇u̇j u̇j + σmu̇jPjt + σmu̇j div(Pju)

= µσmu̇j(∆ujt + div(u∆uj)) + λσmu̇j(∂t∂j div u+ div(u∂j div u))

+ σmρu̇jf jt + σmρukf jk .

Note that

σmρu̇jt u̇
j + σmρu · ∇u̇j u̇j

=
σm

2

(
ρ∂t(|u̇|2) + ρu · ∇(|u̇|2)

)
= ∂t

(σm
2
ρ|u̇|2

)
− m

2
σm−1σ′ρ|u̇|2 − σm

2
ρt|u̇|2 +

σm

2
ρu · ∇(|u̇|2).

Integrating on R3
+, it follows that(σm

2

∫
R3

+

ρ|u̇|2 dx
)
t
− m

2
σ′σm−1

∫
R3

+

ρ|u̇|2 dx

= −σm
∫
R3

+

u̇j (Pjt + div(Pju)) dx+ µσm
∫
R3

+

u̇j(∆ujt + div(u∆uj)) dx

+ λσm
∫
R3

+

u̇j(∂t∂j div u+ div(u∂j div u)) dx+ σm
∫
R3

+

(ρu̇jf jt + ρukf jk) dx

=: N1 +N2 +N3 +N4 .

Let us estimate each of these terms separately. Integrating by parts, we have

N1 = −
∫
R3

+

σmu̇j (∂tPj + div(Pju)) dx

= σm
∫
R3

+

u̇jjP
′ρt dx−

∫
∂R3

+

σmu̇jνjPt dSx + σm
∫
R3

+

u̇jkPju
k

−
∫
∂R3

+

σmu̇jPju.ν dSx

= σm
∫
R3

+

u̇jjP
′(−ρdiv u− u · ∇ρ) dx+ σm

∫
R3

+

u̇jkPju
k dx

= −σm
∫
R3

+

P ′ρu̇jj div u dx− σm
∫
R3

+

u̇jju · ∇P dx

− σm
∫
R3

+

(P − P̃ )(u̇jjku
k + u̇jku

k
j ) dx+ σm

∫
∂R3

+

(P − P̃ )u̇jku
kνj dSx

= −σm
∫
R3

+

P ′ρu̇jj div u dx+ σm
∫
R3

+

(P − P̃ )(u̇jjku
k + u̇jju

k
k) dx

− σm
∫
∂R3

+

(P − P̃ )(u̇jju.ν) dSx − σm
∫
R3

+

(P − P̃ )(u̇jjku
k + u̇jku

k
j ) dx
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= −σm
∫
R3

+

(
P ′ρu̇jj div u− Pu̇jju

k
k + Pu̇jku

k
j

)
dx

≤ C(ρ̄)σm‖∇u‖2‖∇u̇‖2
≤ C(ρ̄)C(ε)σm‖∇u‖22 + C(ρ̄)εσm‖∇u̇‖22.

N2 = µσm
∫
R3

+

u̇j(∆ujt + div(u∆uj)) dx

= µσm
∫
R3

+

(u̇jujkkt + u̇j(ukujll)k) dx

= −µσm{
∫
R3

+

(u̇jku
j
kt) dx−

∫
∂R3

+

u̇jujktν
k dSx}

− µσm{
∫
R3

+

u̇jku
kujll dx−

∫
∂R3

+

u̇jukujllν
k dSx}

= −µσm{
∫
R3

+

u̇jk(u̇jk − (u · ∇uj)k) dx−
∫
∂R3

+

u̇jujktν
k dSx}

+ µσm{
∫
R3

+

(u̇jklu
kujl + u̇jku

k
l u

j
l ) dx−

∫
∂R3

+

u̇jku
kujl ν

l dSx}

= −µσm{
∫
R3

+

|∇u̇|2 dx−
∫
R3

+

u̇jku
l
ku

j
l dx−

∫
R3

+

u̇jku
lujkl dx

−
∫
∂R3

+

u̇jujktν
k dSx}+ µσm{

∫
R3

+

(u̇jklu
kujl + u̇jku

k
l u

j
l ) dx

−
∫
∂R3

+

u̇jku
kujl ν

l dSx}

= −µσm{
∫
R3

+

|∇u̇|2 dx−
∫
R3

+

u̇jku
l
ku

j
l dx+

∫
R3

+

(u̇jklu
lujk + u̇jku

l
lu
j
k) dx

−
∫
∂R3

+

u̇jujktν
k dSx}+ µσm

{∫
R3

+

(u̇jklu
kujl + u̇jku

k
l u

j
l ) dx

−
∫
∂R3

+

u̇jku
kujl ν

l dSx

}
= −µσm

{∫
R3

+

|∇u̇|2 dx−
∫
R3

+

(u̇jku
l
ku

j
l − u̇

j
ku

l
lu
j
k + u̇jku

k
l u

j
l ) dx

}
+ µσm

∫
∂R3

+

(u̇jujktν
k − u̇jku

kujl ν
l) dSx;

to estimate the boundary term above, we write

µσm
∫
∂R3

+

(u̇jujktν
k − u̇jku

kujl ν
l) dSx =: N21 +N22,

using that if h ∈ (C1 ∩W 1,1)(R3
+), then∫

∂R3
+

h(x) dSx =

∫
{0≤x3≤1}

[h(x) + (x3 − 1)hx3
(x)] dx.
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Observe that we can assume j 6= 3 in N21 and k 6= 3 in N22 without loss of
generality, since u3 = 0 on ∂R3

+. Let us show how to estimate the term N21 above.
The term N22 can be estimate similarly.

N21 = −µσm
∫
∂R3

+

u̇juj3t dSx

= −µσm
∫
∂R3

+

K−1u̇jujt dSx

= −µσm
∫
∂R3

+

K−1u̇j(u̇j − ukujk) dSx

= −µσm
∫
∂R3

+

K−1|u̇|2 dSx + µσm
∫
∂R3

+

K−1u̇jukujk dSx

≤ µσm
∫
∂R3

+

K−1u̇jukujk dSx

= µσm
∫
{0≤x3≤1}

K−1(u̇jukujk + (x3 − 1)[u̇j3u
kujk + u̇juk3u

j
k + u̇jukujk3]) dx

≤ Cµσm
∫
R3

+

(|∇u̇‖u‖∇u|+ |u̇‖∇u‖u|+ |u̇‖∇u|2) dx

− µσm
∫
{0≤x3≤1}

(x3 − 1)(K−1u̇jku
kuj3 +K−1u̇jukku

j
3 + (K−1)ku̇

jukuj3) dx

+ µσm
∫
{x3=0}∪{x3=1}

K−1(x3 − 1)u̇jukuj3ν
k dSx.

Note that the above boundary term is null, since for x3 = 0 we have ukνk = 0 and
for x3 = 1 the term (x3 − 1) vanishes the integrand. Thus,

N21 ≤ Cσm
∫
R3

+

(|∇u̇‖u‖∇u|+ |u̇‖∇u‖u|+ |u̇‖∇u|2) dx.

Regarding N3, setting D = div u, we have

N3 = λσm
∫
R3

+

u̇j (∂t∂j div u+ div(u∂j div u)) dx

= −λσm
∫
R3

+

(u̇jjDt) dx+ λσm
∫
∂R3

+

u̇jDtν
j dSx

+ λσm
∫
R3

+

u̇j(DDj + ukDjk) dx

= −λσm
∫
R3

+

(u̇jjDt) dx+ λσm
∫
R3

+

u̇jDDj dx+

∫
R3

+

u̇jukDjk dx

=: N31 +N32 +N33.

Note that N31 = −λσm
∫
R3

+
u̇jjDt dx = −λσm

∫
R3

+
u̇jjḊ dx + λσm

∫
R3

+
u̇jju · ∇Ddx.

For N32, we have

N32 =
λ

2
σm
∫
R3

+

u̇j(|D|2)j dx
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= −λ
2
σm
∫
R3

+

u̇jj |D|
2 dx+

λ

2
σm
∫
∂R3

+

u̇jνj |D|2 dSx

≤ Cσm
∫
R3

+

|∇u̇‖∇u|2 dx

≤ Cεσm
∫
R3

+

|∇u̇|2 dx+ Cσm
∫
R3

+

|∇u|4 dx.

N33 = λσm
∫
R3

+

uku̇jDjk dx

= −λσm
∫
R3

+

(u̇jju
kDk + u̇jukjDk) dx+ λσm

∫
∂R3

+

Dku
ku̇jνj dSx

= −λσm
∫
R3

+

u̇jju · ∇Ddx+ λσm
∫
R3

+

(u̇jku
k
jD + u̇jukkjD) dx

− λσm
∫
∂R3

+

u̇jukju
l
lν
k dSx

= −λσm
∫
R3

+

u̇jju · ∇Ddx+ λσm
∫
R3

+

u̇jku
k
jDdx− λ

2
σm
∫
R3

+

u̇jj |D|
2 dx

+
λ

2
σm
∫
∂R3

+

u̇jνj |D|2 dSx.

Thus,

N31 +N33

= −λσm
∫
R3

+

u̇jjḊ dx+ λσm
∫
R3

+

u̇jku
k
jDdx− λ

2
σm
∫
R3

+

u̇jj |D|
2 dx

≤ −λσm
∫
R3

+

u̇jjḊ dx+ εσm
∫
R3

+

|∇u̇|2 dx+ Cσm
∫
R3

+

|∇u|4 dx

= −λσm
∫
R3

+

Ḋ(ujt + u · ∇uj)j dx+ εσm
∫
R3

+

|∇u̇|2 dx

+ Cσm
∫
R3

+

|∇u|4 dx

= −λσm
∫
R3

+

Ḋ(Dt + u · ∇D + ukju
j
k) dx+ εσm

∫
R3

+

|∇u̇|2 dx

+ Cσm
∫
R3

+

|∇u|4 dx

= −λσm
∫
R3

+

|Ḋ|2 dx− λσm
∫
R3

+

Ḋukju
j
k dx+ εσm

∫
R3

+

|∇u̇|2 dx

+ Cσm
∫
R3

+

|∇u|4 dx

≤ −λσm
∫
R3

+

|Ḋ|2 dx+ εσm
∫
R3

+

|∇u̇|2 dx+ Cσm
∫
R3

+

|∇u|4 dx.
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Finally,

N4 = σm
∫
R3

+

(ρu̇jf jt + ρu̇jukf jk) dx

≤ εσm−1

∫
R3

+

ρ|u̇|2 dx+ Cσm+1

∫
R3

+

|ft|2 dx

+ εσm
∫
R3

+

ρ|u̇|2 dx+ Cσm+1

∫
R3

+

|∇f |2|u|2 dx

≤ εσm−1

∫
R3

+

ρ|u̇|2 dx+ Cσm+1

∫
R3

+

|ft|2 dx

+ C(σ(3−3s)/2

∫
R3

+

|u|4 dx)1/2(σ(4m+1+3s)/2

∫
R3

+

|∇f |4 dx)1/2

≤ εσm−1

∫
R3

+

ρ|u̇|2 dx+ Cσm+1

∫
R3

+

|ft|2 dx

+ C(C0 + Cf )θ(σ(4m+1+3s)/2

∫
R3

+

|∇f |4 dx)1/2,

since

σ(3−3s)/2‖u‖44 ≤ Cσ(3−3s)/2‖u‖2‖∇u‖32
≤ C(C0 + Cf )θσ(3−3s)/2‖∇u‖32

= C(C0 + Cf )θ(

∫
R3

+

σ1−s|∇u|2 dx)3/2 ≤ C(C0 + Cf )θ.

With these estimates, we arrive at(σm
2

∫
R3

+

ρ|u̇|2 dx
)
t
− m

2
σ′σm−1

∫
R3

+

ρ|u̇|2 dx

≤ C(ρ̄)C(ε)σm
∫
R3

+

|∇u|2 dx+ C(ρ̄)εσm
∫
R3

+

|∇u̇|2 dx

− µσm
∫
R3

+

|∇u̇|2 dx+ Cσm
∫
R3

+

|∇u|4 dx

+ Cεσm
∫
R3

+

|∇u̇|2 dx+ Cσm
∫
R3

+

|∇u|4 dx− λσm
∫
R3

+

|Ḋ|2 dx

+ Cσm
∫
R3

+

|u̇|2 dx+ Cσm
∫
R3

+

|u|4 dx

+ εσm−1

∫
R3

+

ρ|u̇|2 dx+ Cσm+1

∫
R3

+

|ft|2 dx

+ C(C0 + Cf )θ
(
σ(4m+1+3s)/2

∫
R3

+

|∇f |4 dx
)1/2

.

Integrating on (0, T ), taking m = 2− s and using (1.14), we obtain

σm
∫
R3

+

ρ|u̇|2 dx+

∫ T

0

∫
R3

+

σm|∇u̇|2 dx ds
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≤ C(C0 + Cf )θ + C

∫ T

0

∫
R3

+

σm(|∇u|4 + |u|4) dx ds

+

∫ T

0

σ3−s
∫
R3

+

|ft|2 dx dt+

∫ T

0

σ(9−s)/4
(∫

R3
+

|∇f |4 dx
)1/2

dt

≤ C(C0 + Cf )θ + C

∫ T

0

∫
R3

+

σm(|∇u|4 + |u|4) dx dt.

To conclude the result, we must estimate the term
∫ T

0
σ2−s ∫

R3
+

(|∇u|4 + |u|4) dx dτ .

Using (2.16), we have∫ T

0

σ2−s‖u‖44 dτ ≤
∫ T

0

σ2−s‖u‖2‖∇u‖32 dτ

=

∫ T

0

σ2−s
(∫

R3
+

|u|2 dx
)1/2(∫

R3
+

|∇u|2 dx
)3/2

dτ

≤ C(C0 + Cf )θ
∫ T

0

σ2−s
(∫

R3
+

|∇u|2 dx
)3/2

dτ

≤ C(C0 + Cf )θ
∫ T

0

σ
1+s
2

(
σ1−s

∫
R3

+

|∇u|2 dx
)3/2

dτ

≤ C(C0 + Cf )θ.

On the other hand, following [24, Lemma 3.3], and using energy estimates and
(1.14), we estimate∫ T

0

σ2−s
∫
R3

+

|∇u|4 dx dτ

=

∫ T

0

σ2−s‖∇u‖44 dτ

≤ C
∫ T

0

σ2−s‖∇u‖2
(
‖ρu̇‖2 + ‖∇u‖2 + ‖u‖2 + ‖f‖2 + ‖P − P̃‖6

)3

dτ

≤ C
∫ T

0

σ2−s‖∇u‖2
(
‖ρu̇‖32 + ‖∇u‖32 + ‖u‖32 + ‖f‖32 + ‖P − P̃‖36

)
dτ

≤ C(C0 + Cf )θ + C

∫ T

0

σ2−s‖∇u‖2‖ρu̇‖32 dτ

≤ C(C0 + Cf )θ + C

∫ T

0

σ2−s
(∫

R3
+

|∇u|2 dx
)1/2

×
(∫

R3
+

ρ|u̇|2 dx
)1/2(∫

R3
+

ρ|u̇|2 dx
)
dτ

≤ C(C0 + Cf )θ + C

∫ T

0

σ
2s−1

2

(
σ1−s

∫
R3

+

|∇u|2 dx
)1/2

×
(
σ2−s

∫
R3

+

ρ|u̇|2 dx
)1/2(

σ1−s
∫
R3

+

ρ|u̇|2 dx
)
dτ
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≤ C(C0 + Cf )θ + C(C0 + Cf )θ sup
0≤t≤T

(
σ2−s

∫
R3

+

ρ|u̇|2 dx
)1/2

.

Therefore, using once more that C0, Cf are sufficiently small, we obtain (1.15). �

Proof of Theorem 1.3. The proof of Theorem 1.3 using Theorem 1.2 is similar
to the proof of [17, Theorem 2.5]. Thus, here we just give an overview of this proof,
showing some details which may be peculiar to our case.

The proof of the existence of the particle paths X(t, x) satisfying (1.16) is ob-
tained through the following estimate, uniformly with respect to smooth solutions:

|X(t1, x)−X(t2, x)| ≤
∫ t2

t1

||u(t, ·)||∞dt ≤ C
∫ t2

t1

(‖u(t, ·)‖2 + ‖∇u(t, ·)‖q)dt,

where q > 3, and for the last inequality we used (2.1). Indeed, from this estimate it
is possible to show, after several other estimates, that X(t, x) is Hölder continuous
in t, uniformly with respect to smooth solutions.

The uniqueness (of particle paths) follows from the estimate∫ T

0

〈u(., t)〉LLdt ≤ CT γ ,

for a fixed and arbitrary T > 0, where C and γ are positive constants, uniform with
respect to u, cf. [17, lemmas 3.1 and 3.2].

For the proof of item (b) of Theorem 1.3, first we observe that the injectivity
and openness of the map x 7→ X(t, x) can be shown exactly as in [17]. To show the
surjectivity, we use the particles paths starting at t0 > 0, i.e. the map

X(·, x0; t0) ∈ C([0,+∞),R3
+) ∩ C1((0,+∞);R3

+)

such that

X(t, x0; t0) = x0 +

∫ t

t0

u(X(τ, x0), τ) dτ

(see [17, Corollary 2.3]): given y ∈ R3
+, let Y (s) = X(s; y, t), s ∈ [0, t]. Since

the curves Y (s) e X(s, Y (0)) satisfy Z ′(s) = u(Z(s), s), Z(0) = Y (0), we have
Y (s) = X(s;Y (0)), s ∈ [0, t], so y = Y (t) = X(t;Y (0)), which shows the surjectivity

of the map X(t, ·) : R3
+ → R3

+. The continuity is a direct consequence of item (c).
To show the invariance of the boundary ∂R3

+ by the flux, let x = (x1, x2, 0) ∈
∂R3

+. Defining Xi(·, x), for i = 1, 2, by

Xi(t, x) = xi +

∫ t

0

ui(Xi(τ, x), τ) dτ,

we have that Y (t, x) := (X1(t, x), X2(t, x), 0) is a path which lies in ∂R3
+ and

satisfies

dY (t, x)/dt = u(Y (t, x), t), t > 0, Y (0) = x,

since u3 = 0 on ∂R3
+, so, by uniqueness (item (a)) we have Y (t, x) = X(t, x), for

all t ≥ 0, and thus we conclude the invariance of the boundary by the flux X(t, ·).
The proofs of items (c) and (d) can be done exactly as the proofs of [17, Theorem

2.5 (c),(d)]. Actually, the proof of item (d) is a direct consequence of item (c) and
the definition of a parametrized manifold of class Cα, which is the image of a map
ψ : U → R3

+ of class Cα, where U is an open set of Rk, k = 1 or 2.
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