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ABSTRACT

Orthogonal data types can potentially provide new opportunities to pinpoint the

underlying molecular mechanisms of diseases. However, currently-available

techniques to capitalize on information from different data types suffer from a

substantial loss of statistical power. Therefore, there is urgent need to develop

algorithms to integrate data types. In this thesis, I have developed a data

integration approach based on multi-view clustering. I demonstrate the

usefulness of my approach in prognostication of Acute Myeloid Leukemia (AML),

a particular type of blood cancer. AML accounts for 1.2% of cancer deaths per

year in the USA. AML patients are categorized into low, medium and high-risk

groups. The variable survival rate for medium-risk patients leads to difficulties in

deciding on the appropriate treatment for these patients. Current methods of

prognostication of AML use only gene expression, mutations and molecular

cytogenetic abnormalities. However, the DNA methylation data, which have

valuable information that would be useful for prognostication, have not yet been

effectively used in the existing clinical tests. In this project, I have used The

Cancer Genome Atlas (TCGA) dataset and developed a method that analyzes

both gene expression and DNA methylation data in a single model using network

analysis. The model based on this methodology correctly classified 13 out of 90

patients as high-risk, whereas they were previously labeled as medium-risk using

current clinical methods. All 13 of these cases died within two years after

diagnosis. To validate these results, I tested the method using an independent

dataset. The model labeled 11 out of 228 patients as high-risk, whereas they

were previously labeled as medium-risk based on the European Leukemia

Net (ELN) 2010 criteria. All 11 patients died within two years of diagnosis, and

their risk group is not predictable with other currently used methods.
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I. INTRODUCTION

Motivation

Hematologic malignancies are types of cancer that initiate in the cells of the

blood-forming tissue, (i.e., the bone marrow), or in the cells of the immune

system (Forman et al., 2015). AML is an example of hematologic malignancy. It

is an aggressive type of blood cancer and accounts for 1.2% of cancer deaths in

the United States and, if not treated, it can lead to death within months after

diagnosis (Jemal et al., 2002). Based on current methods, AML patients are

classified as low, medium and high-risk.

There are practical treatments for high- and low-risk patients such as

chemotherapy and bone marrow transplant surgery. Medium risk patients are a

group of high- and low- risk patients but, their actual risk level is not detectable

based on current methods. Since the survival rate of this cohort of patients is not

clear, it is not possible to choose an appropriate treatment for them. So, there is

a demand to find a way to reclassify these patients into either high or low-risk

groups based on their clinical data.

In most methods, gene expression is the main data source to find risk

groups. Some research groups used mutation and molecular abnormalities along

with gene expression and found risk groups of more patients. I decided to use

genes’ methylation level since it is more robust and stable than gene expression

(Paziewska et al., 2014).

Epigenetics studies the chemical changes in DNA molecules without any

alteration in the nucleotide structure. Such changes can alter the expression of

genes and how the resulting proteins function. DNA methylation is an example of

epigenetic changes (Bird, 2007). A methyl group, CH3, contains one carbon atom

bonded to three hydrogen atoms. During the DNA methylation process, methyl

groups are added to DNA and bind to thymine or cytosine. It usually represses
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gene transcription. This procedure regulates gene transcription in human cells.

The levels of methylation differ in most cancerous and noncancerous cells.

At the beginning, I used DNA methylation solely to categorize AML

patients and the results were promising. Therefore, I decided to use DNA

methylation and gene expression information together. There are other

approaches that analyze each data type separately and then combine the results

(Li et al., 2009) (Gevaert et al., 2013). My developed approach is based on

analyzing different datatypes together based on multi-view clustering. It is a

novel approach because:

• It found new information about AML disease which is not obtainable by

analyzing different data types solely.

• It not only does not deal with the loss of statistical power issue but, the

power increased compared to using datasets separately.

Related work

Cox proportional hazard model

In the datasets that I used in this project, the clinical information of some

cases was censored (e.g., survival time, vital status, etc.). Therefore, I only

included those cases that had gene expression, DNA methylation and clinical

information at the same time. To fit a model using inferred eigengenes as the

features, I needed to rank and select the most significant ones. To rank

eigengenes based on their impact on predicting survival time, I used the Cox

proportional hazard model (Cox, 1992):

h(t) = h0(t) ∗ eb1x1+b2x2+...+bnxn

• x1, x2, ..., xn are model features, eigengene values in this case.

• b1, b2, ..., bn are coefficients that measures the impact of features on the

survival.
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• t represents the survival time

• h(t) is the hazard function based on time. The occurrences of hazard on

each time is determined based on input features and their covariates.

• h0(t) is the baseline hazard that shows the value of h(t) when the value of

all input features is 0.

Current methods

FEM

Functional Epigenetic Modules (FEM) is an R package based on an

algorithm that integrates and analyzes Infinium 450k DNA methylation and

matched or unmatched gene expression data (Jiao et al., 2014). The aim of this

analysis is to find the epigenetically regulated gene modules or molecular

pathways that play a key role in cellular differentiation and disease. The

procedure of this pipeline is based on four main steps, which are:

1. Integration of DNA methylation, mRNA expression, and Protein-protein

Interaction Network (PPI)

2. Construction of the weighted integrated network

3. Inference of FEM

4. Identification of top targets within an FEM

Here is a brief summary of the above-mentioned steps: Since the DNA

methylation data is defined for each loci of the genome, it is important to

convert these values to gene level. To do so, a method conducted by West et al.

(West et al., 2013) which is based on the distance from the Transcription Start

Sites (TSS) is used (Jones et al., 2013). It creates a DNA methylation profile

matrix for all patients. It creates another profile matrix for the gene expression

data, too. To define a single statistics value for each gene-based DNA
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methylation and gene expression data separately, it computes the t-statistics of

gene expression or DNA methylation with the Phenotype of Interest (POI),

which in this case is AML disease (Smyth, 2004) (Zhuang et al., 2012). The next

step is to define a network based on genes and their interaction. To find which

genes interact with each other, this method uses the PPI network (Cerami et al.,

2010). The network consists of 8,434 genes which are labeled with the NCBI

Entrez ID and their 303600 documented interactions (edges). Thus, any other

genes that are in either gene expression or DNA methylation dataset but not

defined in the PPI network are omitted in this step.

To find heavy subnetworks from the main network of genes, it uses the

spin-glass algorithm (Reichardt and Bornholdt, 2006). This algorithm selects a

limited number of genes (originally 100 genes) as seeds of heavy subnetworks.

Then, it looks for neighbors of these selected genes to increase the average weight

and size of each subnetwork. At the end, those subnetworks whose weight is

greater than a defined threshold are selected as FEM subnetworks.

I have used this package to try and find subnetworks with the aim of doing

survival analysis using genes of top selected subnetworks. There were several

issues with this package:

1. Since a greedy algorithm is used in this pipeline to find subnetworks,

running this pipeline multiple times results in a different number of

subnetworks each time despite using the same dataset as its input data.

2. It is not possible to find which loci are mapped to a gene. Consequently, it

is not possible to analyze the distance of selected loci to the mapped gene.

3. The number of genes that are used in the PPI network is limited. To define

a network based on both gene expression and DNA methylation data, I

had to omit those genes which were not included in the PPI network,

which results in loss of data and unreliable final stratification of patients.
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LSC17

Ng et al. introduced a new score-based method to classify AML patients

into different risk groups (Ng et al., 2016). The score is defined as the weighted

sum of gene expression of 17 specific genes. The weight of genes is modified and

varies between −0.070400 and 0.087400 (Table 1.1). It is a rapid method which

can be used in large datasets, since it classifies patients based on the average

sum of the expression of 17 genes among patients. Those patients with a score

higher than the average are classified as high-risk patients while those that have

a rating lower than the average are low-risk patients.

5



Table 1.1: Genes and their weight used in the LSC17 method

Gene Symbol Weight (coefficient)

DNMT3B 0.0874

ZBTB46 -0.0347

NYNRIN 0.00865

ARHGAP22 -0.0138

LAPTM4B 0.00582

MMRN1 0.0258

DPYSL3 0.0284

KIAA0125 0.0196

CDK6 -0.0704

CPXM1 -0.0258

SOCS2 0.0271

SMIM24 -0.0226

EMP1 0.0146

NGFRAP1 0.0465

CD34 0.0338

AKR1C3 -0.0402

GPR56 0.0501

ELN 2017

The European LeukemiaNet is a publicly funded research network with the

aim of curing several types of leukemia by integration of European leukemia

research and spread of excellence (Döhner et al., 2010). ELN 2017 is an update

to the recommendations published by the ELN network in 2010. Clinicians and
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researchers have widely used these recommendations regarding AML. ELN 2017

provides updates based on progress and developments in the prognosis and

diagnosis of AML during these years (Döhner et al., 2016). The ELN 2017

methodology is based on finding a classifier using mutations and molecular

abnormalities that are highly detected in patients with AML. It stratifies

patients into three different risk categories, which are favorable, intermediate and

adverse risk patients. Patients are stratified into four risk groups as favorable,

intermediate-risk I, intermediate-risk II and adverse, based on ELN 2010.

Gerstung

AML is a kind of heterogeneous disease. Most of the methods for analyzing

risk are based on recognizing specific mutated cancer genes, while there are only

a few cancer genes which are therapeutic targets. Others are mutated in the

tumor type, with a very low probability. Each tumor type has several driver

genes, and different combinations of these driver genes are observed in different

patients. Hence the demand for studying cancer genes and their clinical info in a

large dataset simultaneously. The focus of the Gerstung et al. method is mainly

about analyzing a large bank of information which contains 1,540 AML patients’

clinical data and cytogenetic profiles of 111 of their cancer genes (Papaemmanuil

et al., 2016). The methodology involves finding subcategories of AML to improve

the specificity of advised treatments for patients. The researchers also validated

their results using the TCGA dataset.

Overview of the implemented methodology

The purpose of this study was to provide a method that can find the group

of genes effective in AML development by using both DNA methylation and gene

expression data. R is the programming language used to implement functions

and for constructing the networks. R is a high-level statistical programming

language. It is a powerful tool for analyzing big data in different projects, since it
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provides statistical and graphical functions (Team et al., 2018). Here is a

summary of the steps followed in constructing the pipeline for the project:

First, I implemented a network based on DNA methylation data, where

nodes are genes and edges are weighted based on the DNAm correlation between

two different genes. Since DNA methylation data contains the amount of

methylation on different loci of the human genome, I transformed these data to

gene level methylation data to get a unique value of DNA methylation for each

gene. I therefore applied network analysis on the mapped loci of each gene and

then selected the cluster which shows loci highly correlated to each other. Then I

defined a value for these chosen clusters to be the DNA methylation value for the

related gene. I used Principal Component Analysis (PCA) as a tool to compute

the weighted sum of the DNA methylation value of loci of each cluster.

Secondly, I had to define another network of genes, where nodes are genes

and edges are the correlation of their gene expression and DNA methylation

level. I created this network using WGCNA package in R (Langfelder and Horvath,

2008). This generated gene modules out of 12,000 genes. For each gene module, I

defined a weighted sum value using PCA, based on their gene expression (Abdi

and Williams, 2010). I used the Pigengene package in R to compute these values

(Zare et al., 2016).

To select top modules that are highly correlated with survival time, I used

the Cox proportional hazard model (Cox, 1992). It takes survival time, features

and vital status of patients, as its input and ordering features are based on their

effect on estimating survival time.

To create a model based on the selected modules, I used the accelerate

failure time (AFT) model (Kalbfleisch and Prentice, 2011). It takes gene modules

and their values for each patient, vital status of patients and their survival time

as its input and estimates patients’ survival time. In addition, it classifies

patients into high, medium and low-risk groups based on their estimated survival

time.
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To validate results, I constructed the model for a different dataset using

genes of previously selected modules. It can recognize a group of high-risk

patients who were previously labeled as medium-risk patients but died within 2

years. In addition, I compared the results with the results of current popular

methods as well as with recently published methods.
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II. METHOD

Each section of the following pipeline is a separate R script. To run all

scripts together or individually, I wrote the runall.R script as a driver and

defined different tasks in it (Noble, 2009). Each task is related to a unique section

of the pipeline. In this chapter, I explain the implemented methodology in detail.

The datasets used in this study

In this project, I used two different datasets to train and test the pipeline.

For the training phase, I used the dataset which is provided by TCGA (Wan

et al., 2015). This is publicly available from their website. It contains clinical,

genomic and epigenomic information of 200 AML patients. The TCGA DNA

methylation dataset contains the level of methylation of 485,577 loci on the

human genome for 194 AML patients. The TCGA gene expression dataset

contains the expression of 20,442 genes for 179 AML patients. To test the

pipeline, I used the dataset provided by Herold et al. (Herold et al., 2014). It is

publicly accessible through Gene Expression Omnibus (GEO) (accession number:

GSE37642) (Barrett et al., 2013). It contains the genomic, epigenomic and

clinical information of 494 patients. I downloaded this data using getGeo

function from the GEOquery R package (Davis and Meltzer, 2007). The following

paragraphs discuss in detail the process of preparing gene expression and DNA

methylation data for the network analysis.

Preparing DNA methylation data

The DNA methylation dataset contains loci on the genome whose

methylation value is not available for more than half of the patients. Besides,

there are loci on the genome which have low variation. To filter out this

information from the dataset, I used the RnBeads package (Assenov et al., 2014).
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RnBeads is an R package that contains tools for analyzing DNA methylation

data of different assays such as Infinium 450k microarray, Whole–Genome

Bisulfite Sequencing (WGBS), Reduced Representation Bisulfite

Sequencing (RRBS), other forms of enrichment bisulfite sequencing and any other

large-scale method that can provide DNA methylation data at single base-pair

resolution (e.g., MeDIP-seq after suitable preprocessing). I cleaned the DNA

methylation data using some of the RnBeads package functions, in three steps:

1. There were loci in the dataset for which a methylation value was not

available for more than 50% of patients. I omitted such loci from the rest of

the normalization process.

2. The amount of methylation across the genome is required to be normalized

before using it for the rest of the downstream analysis. To do this, I used

the rnb.run.preprocessing function from the RnBeads package. It takes an

unfiltered RnBeads object which contains DNA methylation information

and returns an RnBeads object containing the normalized DNA

methylation values. The amount of normalized DNA methylation varies

from 0 to 1.

3. After normalization, I tried to find those probes whose methylation values

highly correlate with patients’ survival time. I excluded those probes whose

absolute value of Spearman correlation with the survival time of dead

patients was less than 0.2 (Daniel, 1990). I chose this threshold based on

the distribution of the correlation value of DNA methylation with the

survival time of dead AML patients. Those excluded probes would be

added later for the network analysis if they were mapping to a gene whose

expression level correlates highly with the survival time of dead patients.

There were 367,979 probes excluded during those steps, as mentioned above.

Finally, there were 24,649 probes remaining from the preprocessing steps.
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Preparing gene expression data

The gene expression dataset also contains some genes which have low

variation, i.e., their degree of expression of standard deviation is less than 10−8. I

filtered out these genes using a function called load.data . It takes expression

data as its input and returns filtered genes and their expression values as the

output. After that, I computed the absolute value of the Spearman correlation

between gene expression and survival time of dead patients and sorted them

decreasingly (Daniel, 1990). Based on experience in gene expression data

cleaning for network analysis in other projects of the lab, I kept 1/3 of those

genes that highly correlated with the dead patients survival time (Zainulabadeen

et al., 2017).

Union of gene expression and DNA methylation data

In this project, I analyzed the expression and methylation data at the same

level. To do this, I made a combined set of genes, of which either the expression

or methylation value highly correlated with dead patients’ survival time. There

were some probes which were mapped to multiple genes. Also, some genes were

mapped by multiple probes. I resolved these issues after this step using network

analysis, which I have explained in detail in the next section. By taking a union

of genes that were selected during the last two steps, I had a set of genes which

had valuable information about the AML disease, based on either their gene

expression or DNA methylation amount.

Network analysis

After selecting genes based on their gene expression or DNA methylation

value, I had a considerable number of genes which I assumed correlated with the

AML disease. To find biomarker genes from this massive set, I used network

analysis. This procedure consists of two main steps:
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1. Trim: Network analysis for probes of mapped genes

2. Network: Network analysis for selected genes

3. Eigengenes: Computing eigengenes for subnetworks of the genes

The steps are explained in detail in the following paragraphs.

Trim

As I mentioned in the previous section, it is challenging to determine a

single methylation value for every gene since there were some genes which have

multiple probes mapped to them (Koestler et al., 2014) (Jones, 2012). In this

case, I had to define a value as the DNA methylation for these genes. To do this,

I used the hierarchical clustering and a greedy approach for these specific genes

(Yip and Horvath, 2007) (Langfelder and Horvath, 2012). Here is a brief

summary of the algorithm.

For each gene:

• If the number of related mapped probes are less than or equal to 6, the

amount of DNA methylation for the gene gi is the average of methylation

amount on the loci of mapped probes.

• Otherwise:

1. Use the cluster_fast_greedy function from the igraph package to

cluster mapped probes (Csardi and Nepusz, 2006).

2. Take an average of the edge weights of each cluster and rank clusters

according to these values.

3. If there is only one cluster which has the maximum amount of average

edge weights, select this cluster as the representative of the gene gi..

Assign the sum of DNA methylation level of the probes of this cluster

to the DNA methylation level of gene gi.
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4. Otherwise, select patients that are originally labeled as high or low-

risk based on the dataset. Compute eigengenes based on the DNA

methylation of these patients for the probes of clusters that had

maximum average edge weight. Then, project these values for

originally medium-risk labeled patients, too.

The cluster_fast_greedy function from the igraph package tries to find dense

subgraphs. It measures the optimization of the density based on the modularity

score which is defined for each subgraph. The goal of this function is to find

subnetworks with maximum score (Csardi and Nepusz, 2006).

To compute eigengenes, I used the compute.pigengene function from the

Pigengene package (Foroushani et al., 2017). It uses PCA to compute eigengenes

for the DNA methylation value of probes. To project eigengenes for originally

medium-risk patients too, I used the project.eigen function from the

Pigengene package. This function projects DNA methylation of medium risk

patients onto the eigengenes of modules from high and low-risk patients.

Network

In this step, I found groups of genes which are highly correlated with each

other based on their methylation levels and gene expression values. To do so, I

defined two separate networks based on gene expression and DNA methylation

data. The nodes in both networks are genes, and edges are defined as the Pearson

correlation between every two genes (Benesty et al., 2009). I created these two

networks using the adjacency function from the WGCNA package. WGCNA is an R

package containing a comprehensive collection of R functions for performing

various aspects of weighted correlation network analysis. The package includes

functions for network construction, module detection, gene selection, calculations

of topological properties, data simulation, visualization, and interfacing with

external software (Langfelder and Horvath, 2008). To combine the weight matrix

of these two networks and make a combined network of genes based on both
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DNA methylation and gene expression values, I used the following formula:

W(gi, gj) = (1− λ)
∣∣corE(gi, gj)∣∣+ λ

∣∣corM(gi, gj)
∣∣ (II.1)

where
∣∣corM(gi, gj)

∣∣ and ∣∣corE(gi, gj)∣∣ are weights of the previously constructed

networks based on DNA methylation and gene expression values. For each i and

j index, the value of the W (gi, gj) shows the weight of the edge between the gi

and gj in the combined network. It is a combination of both
∣∣corE(gi, gj)∣∣ and∣∣corM(gi, gj)

∣∣ . The λ value is a factor which determines the degree of

combination of the weight matrix for each of these two networks. The value of

the λ coefficient varies between 0 to 1. Based on several experiments, I selected

0.6 as the value of the λ coefficient, since the final model based on this λ was the

best model. I have explained in detail about the method of comparing models

and selecting the best one in the survival analysis section.

The degree of correlation between some pairs of genes is very low. To

decrease the impact of these pairs of genes on the next step of the analysis, I

utilized a soft-threshold using the pickSoftThreshold.fromSimilarity function

from the WGCNA package (Zhang and Horvath, 2005) (Horvath and Dong, 2008).

It takes the network and other related parameters as it’s inputs and returns the

best power of the networks with regards to its connectivity as the soft threshold.

The best soft threshold for my network was 6.

Then, I found highly correlated subnetworks of genes. To do so, I used the

blockwiseModules function from the WGCNA package. It takes the Network

matrix, whose values are raised to the power of the amount of the soft-threshold,

which is 6 in this case, and other related parameters such as:

• maxBlockSize : The maximum size of subnetworks. I used the number of

genes in the W matrix as the value of maxBlockSize.

• corType : This parameter shows the correlation method which can be either

Pearson or bidweight midcorrelation. I used the Pearson correlation.
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• minModuleSize : The minimum size of subnetworks. Based on several

experiments, I got the best final model in the survival analysis phase while

using at least 5 genes in each subnetwork.

Eigengenes

In the previous section, I tried to classify a vast number of genes into

several clusters of highly correlated genes. The next step was computing an

eigengene as a weighted average value based on either gene expression, DNA

methylation or a combination of both of them for each of the clusters. I used the

compute.pigengene function from the Pigengene package to compute these

values (Zare et al., 2016). The compute.pigengene function takes as the input a

defined value for each gene and the related cluster assignments, and computes an

eigengene for each cluster using PCA. For each gene in the cluster, there were

three possible ways to define an eigengene:

• dnami,j: DNA methylation of the genei,j

• expri,j: gene expression value of the genei,j

• λ ∗ dnami,j + (1− λ) ∗ expri,j : a combination of gene expression and DNA

methylation of the genei,j

I decided to use only the gene expression values, due to the fact that the number

of datasets that contain both gene expression and DNA methylation values is too

low, while most datasets contain gene expression values. Thus, the pipeline will

be useful for many datasets.

Survival analysis

The methodology that I used for performing survival analysis is based on

the survival analysis that the other collaborators performed for a melanoma

dataset (Zainulabadeen et al., 2017). I improved their scripts and added some

extra features to their functions.
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I used the glmnet function from the glmnet R package (Simon et al., 2011)

to perform a penalized Cox analysis (Gui and Li, 2005). I set the α = 1 for using

the Least Absolute Shrinkage and Selection Operator (LASSO) in glmnet

function (Tibshirani and Efron, 2002). The LASSO set the coefficients of most

eigengenes in the Cox proportional hazards model to be zero. Consequently, it

identified the modules that highly associate with the survival time

(Zainulabadeen et al., 2017).

Using the output of this function, I selected the top three eigengenes. Using

three important features guarantees that the final model will not over-fit the

training data. I fitted an AFT model, which is a survival regression model to

inferred eigengene values (Kalbfleisch and Prentice, 2011). I used the survreg

function from the survival package. It took eigengene values, actual survival

time of patients and their vital status as its input (Therneau and Grambsch,

2000). I used this model to predict the survival time of patients. I defined two

time thresholds to classify patients into risk groups. The first threshold is the

maximum time that a high-risk patient is alive. The second threshold is the

minimum time that a low-risk patient is alive. These thresholds are computed

based on the minimum recall for low-risk and high-risk patients. I defined 0.2

and 0.05 as the minimum recall for low and high-risk patients. Those patients

whose survival times are in the range of the two thresholds are counted as

medium-risk patients.

I used the survdiff function from the survival package to find whether

the low and high-risk patients differ significantly. It computed a log-rank p-value

base on Mantel-Haenszel test for low and high-risk patients (Mantel and

Haenszel, 1959). To show the results graphically, I used the survfit function

from the survival package and drew a Kaplan-Meier survival curve for each of

the risk groups (Habib et al., 2008). It contains a curve for each risk group. Each

point on the curve shows the survival probability of patients at a certain point of

time.
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Pathway analysis

To check if the genes of top selected modules are participating in any

known pathway, I performed pathway analysis using the innateDB website.

InnateDB is a web-based tool which has been developed to facilitate systems

level investigations of mammalian physiology such as human, mouse and bovine

innate immune response. It provides functions for analyzing information of the

manually-curated knowledge-base of the genes, proteins. In particular, functions

are focused on the interactions and signaling responses involved in mammalian

innate immunity (Breuer et al., 2012). I used KEEG (Kanehisa and Goto, 2000)

and Reactome (Croft et al., 2014) repositories on InnateDB to determine the

biological pathways associated with each of the gene modules. I converted the

gene symbols of top selected modules to EntreZ IDs. Then I uploaded these gene

IDs on the InnateDB website, the pathway analysis section. To find significant

pathways, I performed Pathway Over-Representation Analysis (Pathway ORA). I

used the Hyper-geometric test as the analysis algorithm and the Benjamini &

Hochberg approach as the correction method.

Validation

To validate results from the previously described constructed pipeline, I

wrote some additional scripts that can prepare datasets for being analyzed

during the test phase. These scripts are integrate , valid_prep and

valid_survival . They are explained in detail in the following paragraphs. To

save key information about the model that I constructed using the TCGA data,

I used integrate script . I saved the following information about the top

selected modules as an R object:

• Gene names and their weight in computing the eigengene of each module

• Loci mapped to each gene and their weight in computing the DNA

methylation value of the gene.
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• The λ value that was used in construction of the network.

• The DNA methylation and gene expression data combination method.

Different clinical labs use different methods and protocols in their projects. There

are different methods for creating a gene expression profile in labs. Using key

factors of the model based on the TCGA dataset, it is possible to create a model

that fits different sets of gene expression information. The above-mentioned

items are the minimum required information in order to build a model that fits

with the test dataset information. I included significant information of DNA

methylation values in the process of network construction. To build a model that

fits the new datasets, DNA methylation values are an optional input. To prepare

gene expression of new datasets, I wrote the valid_prep script. The dataset that

I used to test the model had information for two cohorts of AML patients.

The gene expression values of these two cohorts were computed using three

different platforms, GPL96, GPL97 and GPL570. The valid_prep script

integrated this information at the very first step. Next, it normalized the gene

expression values and prepared them for computing eigengenes. Using the

integrator object from the integrate script, it computed new eigengene values

using the gene expression information of the test dataset. These values are

mandatory inputs for survival analysis. The outputs of the valid_prep script

were inferred eigengene values. I wrote the valid_survival script to perform

survival analysis using eigengene values. In this phase, there is no need for a Cox

analysis, since we already have the top modules and their related eigengene

values. The rest of the procedure for fitting a survival regression model is the

same as I carried out for the TCGA dataset.
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(a) Genes that are mapped from at most 4
highly correlated loci

(b) All genes mapped from highly highly corre-
lated loci

Figure 3.1: Genes and mapped loci. These loci are those whose DNA methylation value
highly correlates with the survival time of dead patients.

III. RESULTS

Network analysis

In the process of preparing DNA methylation data for the network analysis,

there were some loci that had low correlation with the survival time of the dead

AML patients. I excluded those loci but kept them for the union section of the

pipeline. Each gene is mapped from at most 4 loci with the probability of 95%

i.e., there are a few genes that are mapped from more than 4 loci. The maximum

number of loci mapped to a gene is 70 (Figure 3.1).

In the process of preparing gene expression profile matrix, I filtered 19911

genes. Then, I kept only 6637 of them, which were the top third of genes that

highly correlated with the dead patients survival time (Figure 3.2).

Module sizes had a mean, median and standard deviation of 127, 25 and

310, respectively (Figure 3.3). For each of the modules, I computed an eigengene,

which is a weighted average of expression levels of the genes in that module.
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(a) Cumulative probability of genes and
their gene expression correlation with
the survival time of dead patients.

(b) Sorted genes based on the absolute value
of their gene expression correlation with
dead patients time. Those genes that are
at the top left of the diagram are selected
and passed to the network analysis.

Figure 3.2: The absolute correlation value of the gene expression and survival time of
dead patients. These genes are from the expression profile matrix.

Figure 3.3: Number of genes in different clusters. The largest and smallest modules con-
sist of 2,092 and 5 genes, respectively.
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Module 56 has the eigengene most correlated with the survival time, with a

Pearson correlation of 0.3, and the most anticorrelated eigengene corresponds to

module 51, with a correlation of 0.4.

Survival analysis

Based on the results of the network analysis, there were 78 inferred

eigengenes as covariates (prognostic features). Since the information on some

patients was censored, I included only the 154 AML cases for which their vital

status, DNA methylation and gene expression data were available from the

TCGA dataset. Ordering these features based on their impact to predict the

survival time, using glmnet function to sort features based on their impact on

the survival time, showed that the top three modules are 55, 51 and 46. These

modules contain 14, 15 and 19 genes, respectively (Table 3.1).

Using the accelerated failure time model, it was revealed that the best

model to predict survival time was the combination of eigengenes of modules 46,

51 and 55. Using this classifier, 26 of the cases were predicted as high-risk, 27 as

low-risk and 101 as medium-risk. Out of 26 high-risk patients, one left the study

in less than a year and 25 of them died within two years. This indicates the high

sensitivity of the network classifier model for high risk patients. The p-value

10−11 shows that the survival curves that correspond to high-risk and low-risk

groups differ significantly (Figure 3.4 and Figure 3.5).

While 93 patients died of AML (mean = 1.1, median = 0.8, and standard

deviation = 1 years), 61 cases were alive at the last follow up time (mean = 2.5,

median = 2, and standard deviation = 2 years).

Based on cytogenetic abnormalities criteria, the TCGA cohort was

previously classified as 31 low, 90 medium, and 31 high-risk cases (Network

et al., 2013). The p-value 10−3 shows that the survival curves that correspond to

high-risk and low-risk groups do not differ significantly from each other. High

and low-risk curves seem to have the same patterns in the initial years of
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Table 3.1: Gene symbols of the top three modules and their related weight in the compu-
tation of eigengenes. These modules are selected using the Cox proportional
hazard model

Module 46 Weight Module 51 Weigth Module 55 Weight
CCDC64 0.65 KCTD17 0.87 PCSK4 -0.77
BCL2L11 0.56 PMM1 0.8 COQ10A -0.74
PPDPF 0.55 SFXN3 0.67 MAP6D1 -0.74

GLTSCR1 0.55 PDZD7 0.56 YWHAH 0.7
IL6ST 0.54 PHGDH 0.47 LRP10 0.64
RIMS3 0.52 SEC14L2 0.47 CALHM2 0.6

SLC35E4 0.51 LOC285830 0.44 REEP6 -0.58
TUBB2A 0.48 RDH13 0.39 GPX1 0.57
SQLE 0.46 TSHZ3 -0.3 LCOR 0.26

C1orf204 0.41 NKX3-1 -0.22 TRIM65 0.2
C11orf84 0.4 PLAUR -0.18 UBC 0.16
CAMK4 0.39 CCDC85C 0.17 C22orf24 0.12
ABHD11 0.35 KCNJ5 -0.05 TMEM65 -0.1
PHLDA3 -0.34 NT5C3L 0.03 PGPEP1 0.06
TSPAN14 0.33 AP1S1 -0.01
LRRN2 0.32
DUSP3 -0.31
SOCS2 0.12
RAB3IP -0.04

survival (Figure 3.6).

Comparison of the results using a confusion matrix shows that there were

13 patients whom both network classifier and cytogenetic information labeled as

low-risk patients, while there were 3 patients that were classified as low-risk

using network classifier and high-risk using cytogenetic information (Figure 3.7).

In addition, there were 11 patients whom both network classifier and cytogenetic

information labeled as high-risk patients. Also, there were 2 patients classified as

high-risk using network classifier and low-risk using cytogenetic information.

Based on the advice of Dr. Aly Karsan, the lab collaborator from British

Colombia Cancer Agency, I focused on patients that were predicted as
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Figure 3.4: Km-plots for TCGA data using network analysis. The X-axis shows the time
in year and the Y-axis shows the probability of being alive at a certain point
of time. Curves shows the probability of being alive during the time for low,
medium and high-risk AML patients.

medium-risk group with classifiers other than network classifier. These cases are

more clinically interesting to prognosticate.

Then, I focused on the 90 patients who were labeled as medium-risk

patients using cytogenetic information. Based on network classifier, 11 of them

were low-risk, 66 were medium-risk and 13 were high-risk patients. All 13

high-risk patients died (or left the study) within two years (Figure 3.8).

Gerstung et al. recently reanalyzed 111 cancer genes, cytogenetic profiles

and clinical data from 1,540 AML cases, and showed that their integrative

approach provides considerably more informative and accurate statements than

the current standards in clinical practice (Gerstung et al., 2017; Papaemmanuil

et al., 2016). In particular, validation using data from independent patients in

the TCGA cohort revealed that the Gerstung approach is superior to the
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Figure 3.5: Classification of AML patinets in TCGA dataset; The X axis shows the
predicted time based on network analysis while the Y axis shows the patients
actual survival time. The vertical orange and green lines show the maximum
and minimum predicted survival time based using network analysis.

prognostication based solely on cytogenetics. Their results using the TCGA

dataset showed that 39 of cases were grouped as low-risk, 81 as medium-risk and

33 as high-risk patients.

The group of 81 patients that Gerstung et al. classified as medium-risk

included a mix of high and low-risk cases. That is, in this group, 49 (60%) cases

died of AML while there were 14 (17%) other cases that were followed for at

least two years after diagnosis and were alive at the last time of contact. It is

thus clinically critical to further assess the risk for this subset of cases. Network

classifier labeled this cohort of 81 AML cases as 10 low, 60 medium and 11

high-risk patients (Figure 3.9). All 11 high-risk labeled patients died or left the

study within two years. The subset of 11 (14%) patients reclassified as high-risk

cases lived for significantly shorter periods than other cases in this group
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Figure 3.6: Km-plots for TCGA data using network analysis. The X-axis shows the time
in year and the Y-axis shows the probability of being alive at a certain point
of time. Curves shows the probability of being alive during the time for low,
medium and high-risk AML patients.

Figure 3.7: Confusion matrix for TCGA dataset patients using network and cytogenetic
informations as classifiers. Rows are results based on the network classifier
and columns are results based on the cytogenetic abnormalities information.

(p-value≤ 10−4) (Figure 3.10).

Pathway analysis

I listed the main information I gained using pathway analysis:

• Top pathways related to the genes of module 46 are described below and
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Figure 3.8: km-plots for a subset of TCGA data classified based on cytogenetic abnormal-
ities criteria, reclassified using network classifier. This cohort of patients were
previously classified as medium-risk based on the cytogenetic abnormalities
criteria.

Figure 3.9: Confusion matrix for TCGA dataset patients using network and Gerstung
et al. methods as classifier. Rows are results based on the network classifier
and columns are results based on the Gertung et al. method.

shown graphically in Figure 3.11.

1. Immune System: It is made up of a network of cells, tissues, and

organs that work together as the human body’s defense. It protects

human body from infectious organisms and other invaders through a

series of steps called the immune response (Parham, 2014). Important

genes found in this pathway that are highly correlated with the
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Figure 3.10: km-plots for a subset of TCGA data classified using the Gertsung et al.
classifier, reclassified using network classifier. This cohort of patients was
previously classified as medium-risk by Gertsung et al. .

survival time are CAMK4(+, positively correlate with survival time),

DUSP3 (-, negatively correlate with survival time), IL6ST (+),

SOCS2 (+), TUBB2A (+).

2. Signaling events mediated by HDAC Class II: In general, DNA is

wrapped around histones, and its expression is regulated by

acetylation and deacetylation process. Histone deacetylases (HDAC)

are a group of enzymes that mediate the expression of DNA by

removing acetyl groups from an amino acid on a histone (Seto and

Yang, 2010). Important genes that are founded in this pathway are

CAMK4 (+), TUBB2A (+)

3. Signalling by NGF: Neurotrophins (NGF, BDNF, NT-3, NT-4/5) are

a family of proteins that play important roles in survival,
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differentiation, functionality of neurons (Hempstead, 2006) (Reichardt,

2006). They can send signals about survival, differentiation or growth

to a particular cells (Allen and Dawbarn, 2006). Important founded

genes in this pathway are: CAMK4 (+), DUSP3 (-), BCL2L11 (+).

• Top pathways related to the genes of module 51 are described below and

shown graphically in Figure 3.12.:

1. Post–Translational protein Modification (PTM): It refers to a set of

covalent and enzymetix modifications of proteins which occurs after

their biosynthesis process (Walsh, 2006). Important genes are:

PLAUR (-) and PMM1 (+).

• Top pathways related to the genes of module 55 are described below and

shown graphically in Figure 3.13.:

1. Apoptosis: It is a process that occurs in multicellular organisms.

During this process, cell goes into a programmed death which can be

initiated through an intrinsic or extrinsic pathway (Karam, 2009).

Important founded genes in this pathway are: UBC (+) and YWHAH

(+).

2. Membrane trafficking: Macromolecules such as proteins are distribute

from the extracellular space throughout the cell during the membrane

trafficking pathway (Sadler, 2011). Important founded genes in this

pathway are UBC (+) and YWHAH (+).

3. Cellular responses to stress: It is a group of molecular changes that

happens in response to unusual changes in the cell environment such

as extremes of temperature. The goal of these changes is to protect

cells against those unfavorable conditions (Welch, 1993). Important

founded genes in this pathway are UBC (+) and YWHAH (+)
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Figure 3.11: Pathway analysis for the genes of module 46. The genes of module 46 were
highly associated in 10 known pathways with -log10 (p− value)>1.3. The
blue horizontal line shows the threshold for -log10 (p− value), which is 1.3.
The very top related pathway with module 46 is the Immune System path-
way.

Figure 3.12: Pathway analysis for the genes of module 51. The genes of module 51 were
highly associated in 1 known pathways with -log10 (p− value)>1.3. The
blue horizontal line shows the threshold for -log10 (p− value), which is 1.3.

Figure 3.13: Pathway analysis for the genes of module 55. The genes of module 55 were
highly associated in 3 known pathways with -log10 (p− value)>1.3. The
blue horizontal line shows the threshold for -log10 (p− value), which is 1.3.
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Validation using an independent dataset

In order to validate the results, I used the dataset which was used by

Herold et al. , and contains gene expression, DNA methylation and clinical

information of total 562 AML patients (Herold et al., 2014).

To prepare these data for the survival analysis, I used the valid_prep

script. Since the information of the Herold dataset is available in two sets, the

script also integrates this information into a unified object, too. The results of

this script are computed eigengenes of the genes which were in modules 51, 55 or

46. These modules were the top three modules among the others in the previous

constructed network using the TCGA dataset.

Using the valid_survival , I performed survival analysis for the Herold

dataset. The model reclassified 553 AML patients into new risk groups. It

classified 415 patients as medium risk, 107 patients as low risk and 31 patients as

high-risk. These results are based on using minimum recall equals to 0.2 for low

risk groups and 0.05 for high risk groups. The maximum predicted survival time

is 3 years.

From 553 patients, 494 of them had uncensored data. These 494 patients

were previously classified based on the ELN method: 120 patients as high risk,

146 patients as low risk and 228 patients as medium risk groups (Figure 3.14 and

Figure 3.15).

The cohort of 228 previously medium risk patients classified into 30 low risk

,188 medium risk and 10 high risk patients using network classifier. All of these

10 reclassified patients were died before 2 years, which is a strong proof for the

correctness of network classifier (Figure 3.16).

Since the patients mutation info of this dataset is not publicly accessible,

Dr. Zare and I asked Dr. Tobias Herold for it. He performed analysis on those

above mentioned 10 high-risk reclassified patients. Based on his email on March

6, 2018: "After adjustment for multiple hypothesis testing there was no

significant (p-value<0.05) association of the variable included in the European
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(a) ELN classifier (b) network classifier

Figure 3.14: km-plots for Herold dataset. The X axis shows the actual survival time for
patients and the Y axis shows the probability of survival. Each class of
patients has a related curve. The p-value shows the probability of patients
being classified randomly.

Figure 3.15: Confusion matrix for Herold dataset patients using network and ELN meth-
ods as classifier. Rows are results based on the network classifier and columns
are results based on the ELN classifier.

Leukimia Net 2017 generic risk classifier nor clinical variables like WBC,

hemogolobin, platelets, LDH or ECOG with the high-risk subgroup as predicted

by the network classifier." It showed that the risk group of this cohort of 13

AML patients is only predictable by using the combination of DNA methylation

and gene expression information.

32



Figure 3.16: Km-plots for a subset of Herold dataset classified based on ELN classifier,
reclassified using network classifier. This cohort of patients were previously
classified as medium-risk based on the ELN methodology.
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IV. CONCLUSIONS

n this project, I developed a novel approach to integrating different

data-types based on multi-view clustering. The approach works well in data

combination and improves clustering performance. I used this approach in

prognostication of AML disease risk. This is a novel method since:

• Other popular methods use only gene expression data and some other

mutation information. This information was not adequate to identify the

actual risk group of medium-risk patients which my method identified as

high-risk patients with a high sensitivity.

• The new model can work well even without DNA methylation values of its

cases. This is the most important characteristic of my pipeline, since the

number of datasets that have the information of both DNA methylation

and gene expression values is quite low. Most of the datasets contain only

gene expression values.

• The approach used in the FEM package combines gene expression and

DNA methylation with a different methodology. Their method was not

accurate for the AML patients dataset.

In the future, I am going to test the impact of some other clinical factors of

AML patients such as sex and age on the prognostication. Also, I am going to

define a statistical test to find those groups of patients that lived relatively

longer than others who left the study. I will identify and add those genes whose

gene expression or DNA methylation highly correlate with this cohort of

patients’ survival times. In addition, I will test this method on other disease

datasets such as Hepatocellular Carcinoma (HCC).
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(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.1: Survival results for TCGA dataset using λ = 0. The model is based on
modules 14, 24 and 3.

APPENDIX SECTION

Appendix A: Optimizing the weight of each data type

To combine the gene expression values and DNA methylation levels in

network construction phase, I used the following formula:

W(gi, gj) = (1− λ)
∣∣corE(gi, gj)∣∣+ λ

∣∣corM(gi, gj)
∣∣ (.1)

I used λ as a hyper-parameter to specify the weight of each dataset. To find

the best λ value, I tested the model several times with different values from 0 to

1. In each iteration, I increased the λ value by 0.1 (Figures 1 to 10).

Comparing final survival results based on different lambda values showed

that the model had the best performance using λ = 0.6.
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(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.2: Survival results for TCGA dataset using λ = 0.1. The model is based on
modules 14, 9 and 19.

(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.3: Survival results for TCGA dataset using λ = 0.2. The model is based on
modules 9 and 27.
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(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.4: Survival results for TCGA dataset using λ = 0.3. The model is based on
modules 9, 22 and 13.

(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.5: Survival results for TCGA dataset using λ = 0.4. The model is based on
modules 30 and 8.
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(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.6: Survival results for TCGA dataset using λ = 0.5. The model is based on
modules 33 and 30.

(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.7: Survival results for TCGA dataset using λ = 06. The model is based on
modules 51 and 55.
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(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.8: Survival results for TCGA dataset using λ = 0.7 The model is based on
modules 8, 33 and 31.

(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.9: Survival results for TCGA dataset using λ = 0.8. The model is based on
modules 44 and 57.
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(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.10: Survival results for TCGA dataset using λ = 0.9. The model is based on
modules 28, 20 and 17.

(a) Km-plot for the TCGA dataset (b) Size of genes modules

Figure A.11: Survival results for TCGA dataset using λ = 1. The model is based on
modules 24, 19 and 31.
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Figure A.12: Comparing the performance of the network classifier using different λ val-
ues. The X-axis shows the λ values and the Y-axis shows the log of p-value
of the survival model.
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