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WELL-POSED PROBLEMS FOR THE FRACTIONAL LAPLACE
EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

NIYAZ TOKMAGAMBETOV, BERIKBOL T. TOREBEK

Abstract. In this remark we study the boundary-value problems for a frac-

tional analogue of the Laplace equation with integral boundary conditions in
rectangular and half-strip domains. We prove the existence and uniqueness of

solutions by using the spectral decomposition method.

1. Introduction

In [10], a fractional analogue of the classical Sturm-Liouville problem was found.
Moreover, it stands for a symmetric fractional differential operator of order 2α,
(1/2 < α < 1). Using the extension theory, we described a class of self-adjoint
boundary-value problems associated with the fractional Sturm-Liouville equation.

Here, we aim at studying fractional operators in two dimensional cases, that is, a
fractional Laplace equation. The main difference of the fractional Laplace equation,
that we are going to introduce, from an operator made of the Laplacian by taking
it in a fractional power is that the last one is a pseudo–differential operator with
the symbol (ξ2

1 + ξ2
2)β for some β ∈ R nevertheless the first one is not.

The purpose of this paper is to study two boundary value problems for the frac-
tional Laplace equation. Let Ω = {(x, y) ∈ R2 : 0 < x < 1,−∞ < a < y < b <∞}
and Ω∞ = {(x, y) ∈ R2 : 0 < x < +∞,−∞ < a < y < b <∞}. Now, we consider
the equation

Dαx,0+Dαx,0+u(x, y)−Dβy,a+D
β
y,b−u(x, y) = 0, (1.1)

in Ω, or in Ω∞, where 0 < α < 1, 1/2 < β < 1,

Dδt,p+u(t, z) =
1

Γ(1− δ)

∫ t

p

(t− s)−δ ∂u
∂s

(s, z)ds, −∞ ≤ p < t < q ≤ ∞

is the left Caputo derivative of order δ ∈ (0, 1] of u with respect to t, and

Dω
z,d−u(t, z) = − 1

Γ(1− ω)
∂

∂z

∫ d

z

(ξ − z)−ωu(r, ξ)dξ, −∞ ≤ c < z < d ≤ ∞

is the right Riemann-Liouville derivative of order ω ∈ (0, 1] of u with respect to z,
[4].
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We say that the function u ∈ C(Ω̄) is a regular solution of (1.1) if u satisfies
(1.1) and

Dαx,0+u ∈ C(Ω), Dαx,0+Dαx,0+u ∈ C(Ω), Dβy,a+D
β
y,b−u ∈ C(Ω).

Since for α = 1, β = 1 one has

D1
x,0+D1

x,0+ −D1
y,a+D

1
y,b− =

∂2

∂x2
+

∂2

∂y2
= ∆,

Equation (1.1) is a fractional generalization of the Laplace equation.

Problem 1.1. Find in the domain Ω a regular solution of Equation (1.1), satisfying
the following boundary value conditions:

u(0, y) = ϕ(y), u(1, y) = ψ(y), a ≤ y ≤ b, (1.2)

I1−β
b−,yu(x, a) = 0, I1−β

b−,yu(x, b) = 0, 0 ≤ x ≤ 1. (1.3)

Here ϕ(y) and ψ(y) are given sufficiently smooth functions.

Problem 1.2. Find in the domain Ω∞ a regular solution of (1.1), satisfying the
following boundary value conditions:

u(0, y) = φ(y), lim
x→+∞

|u(x, y)| → 0, a ≤ y ≤ b, (1.4)

I1−β
b−,yu(x, a) = 0, I1−β

b−,yu(x, b) = 0, 0 ≤ x ≤ +∞. (1.5)

where φ(y) is a sufficiently smooth function.

Note that Problems 1.1 and 1.2 for (1.1) when β = 1 were studied in [11, 5].
Some questions of solvability of boundary value problems with fractional analogues
of the Laplace operator were studied in [6, 2].

The meed to study boundary-value problems for (1.1) is determined by using
the fractal Laplace equations to describe the production processes in mathemat-
ical modeling of socio-economic systems [8]. We also note that in [8] an atten-
tion was drawn to the fact that the problem of finding a generalized two-factor
Cobb-Douglas function is reduced to the classical boundary value problems for a
generalized Laplace equation of a fractional order.

2. Auxiliary statements

In this section we start by recalling the definitions that we need later.

Definition 2.1. The left and right Riemann-Liouville fractional integrals Iαa+ and
Iαb− of order α ∈ R (α > 0) are defined as

Iαa+[f ](t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ (a, b],

Iαb−[f ](t) =
1

Γ(α)

∫ b

t

(s− t)α−1f(s)ds, t ∈ [a, b),

respectively. Here Γ stands for the Euler gamma function.

Definition 2.2. The left Riemann-Liouville fractional derivative Dα
a+ of order

α ∈ R (0 < α < 1) is given by

Dα
a+[f ](t) =

d

dt
I1−α
a+ [f ](t), ∀t ∈ (a, b].
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Analogously, the right Riemann-Liouville fractional derivative Dα
b− of order α ∈ R

(0 < α < 1) is defined as

Dα
b−[f ](t) = − d

dt
I1−α
b− [f ](t), ∀t ∈ [a, b).

Definition 2.3. The left and right Caputo fractional derivatives of order α ∈ R
(0 < α < 1) are given by

Dαa+[f ](t) = Dα
a+[f(t)− f(a)], t ∈ (a, b],

Dαb−[f ](t) = Dα
b−[f(t)− f(b)], t ∈ [a, b),

respectively.

Let λ be a positive real number, I = (0, 1), Ī = [0, 1]. Consider the problem

Dα0+Dα0+ν(x)− λν(x) = 0, t ∈ I, (2.1)

ν(0) = a0, ν(1) = a1, (2.2)

where a0 and a1 are real numbers.
We recall that the solution of problem (2.1)-(2.2) is a function ν ∈ C(Ī), such

that Dα0+ν ∈ C(Ī), Dα0+Dα0+ν ∈ C(I).

Lemma 2.4 ( [5]). The solution of problem (2.1)-(2.2) exists, and is unique. More-
over, it can be written in the form

ν(x) = a0C(λx) + a1S(λx), (2.3)

where

C(λx) =
Eα,1(

√
λ)Eα,1(−

√
λxα)− Eα,1(−

√
λ)Eα,1(

√
λxα)

2
√
λE2α,α+1(λ)

, (2.4)

S(λx) =
xαE2α,α+1(λx2α)

E2α,α+1(λ)
. (2.5)

Here

Eα,µ(z) =
∞∑
k=0

zk

Γ(αk + µ)

is the Mittag - Leffler type function [4].

It is easy to see that the function Eα,1(±
√
λxα) for 0 < α < 1 satisfies the

equation
ν′′(x)∓ λD2−α

0+ ν(x) = 0, x ∈ I. (2.6)

Lemma 2.5 ([9]). If the function ν ∈ C(Ī)∩C2(I), ν(x) 6= Const is a solution of
Equation (2.6), then it can not attain its positive maximum (negative minimum)
within the segment Ī.

Lemma 2.6 ([4]). For Eα,β(z) as |z| → ∞ the following asymptotic estimation
holds

Eα,β(z) =
1
α
z

(1−β)
α ez

1
α −

p∑
k=1

z−k

Γ(β − αk)
+O(

1
|z|p+1

), (2.7)

where |arg z| ≤ ρ1π, ρ1 ∈ (α2 ,min{1, α}), α ∈ (0, 2), and for arg z = π

Eα,β(z) =
1

1 + |z|
, |z| → ∞. (2.8)
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It is easy to show that functions Ck and Sk are solutions of (2.6) and

Ck(0) = 1, Ck(1) = 0,

Sk(0) = 0, Sk(1) = 1.
(2.9)

Lemma 2.7. For any x ∈ [0, 1] the following inequalities hold:

0 ≤ S(λx), C(λx) ≤ 1.

An application of the Fourier method to Problem 1.1 leads to the eigenvalue
problem

L := Dβy,a+D
β
y,b−τ(y) = λτ(y), a < y < b, (2.10)

with the conditions

I1−β
y,b−τ(a) = 0, I1−β

y,b−τ(b) = 0. (2.11)

For the fractional Sturm-Liouville problem (2.10)-(2.11) the following assertions are
true [10].

Lemma 2.8. The fractional Sturm-Liouville problem (2.10)-(2.11) is self-adjoint
and positive in L2(a, b).

Lemma 2.9. The spectrum of the fractional Sturm-Liouville problem (2.10)-(2.11)
is discrete and positive, and the system of eigenfunctions is a complete orthogonal
basis in L2(a, b).

It is not difficult to show that the eigenvalue problem (2.10)-(2.11) is equivalent
to the integral equation

L−1τ(y) :=
∫ b

a

K(y, ξ)τ(ξ)dξ = λ−1τ(y), (2.12)

where K(y, ξ) =
∫ b

max{y,ξ}
(ζ−y)β−1(ζ−ξ)β−1

Γ2(β) dζ.
Now we state the following theorem proved by Delgado and Ruzhansky [3]

Theorem 2.10. Let M be a closed manifold of dimension n. Let K belongs to the
Sobolev space Hµ(M ×M) for some index µ > 0. Then the integral operator T on
L2(M), defined by

(Tf) =
∫
M

K(x, s)f(s)ds,

is in the Schatten classes Sp(L2(M)) for p > 2n
n+2µ .

Corollary 2.11. The operator L−1, defined on L2(a, b) by (2.12) is in the Schatten
classes Sp(L2(a, b)) for p > 2

1+4β .

The above corollary provides a useful spectral property; that is,
∞∑
k=1

1
λpk

<∞ (2.13)

for any p > 2
1+4β .
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3. Well-posedness of Problem 1.1

Theorem 3.1. Let 0 < δ < 1, Dβy,a+D
β
y,b−ϕ(y) ∈ C1+δ[a, b], Dβy,a+D

β
y,b−ψ(y) ∈

Cδ[a, b] and

I1−β
y,b−ϕ(a) = I1−β

y,b−ϕ(b) = 0,

I1−β
y,b−ψ(a) = I1−β

y,b−ψ(b) = 0.

Then the solution of Problem 1.1 exists and is unique. Moreover, it can be written
in the form

u(x, y) =
∞∑
k=1

[ϕkC(λkx) + ψkS(λkx)]τk(y), (3.1)

where ϕk = (ϕ(y), τk(y)), ψk = (ψ(y), τk(y)) and τk(y) are eigenfunctions of the
problem (2.10)-(2.11) form an orthonormal basis in L2(a, b).

Proof. Existence of the solution. Since the system of eigenfunctions {τk(y)}k∈N
of the fractional Sturm-Liouville problem (2.10)-(2.11) forms an orthonormal basis
in L2(a, b), the function u can be represented as follows

u(x, y) =
∞∑
k=1

νk(x)τk(y), in Ω, (3.2)

where νk(x) are unknown functions. It is well known that if ϕ(y) and ψ(y) satisfy
the conditions of Theorem 3.1, then they can be uniquely represented in uniformly
and absolutely convergent Fourier series by {τk(y)}:

ϕ(y) =
∞∑
k=1

ϕkτk(y),

ψ(y) =
∞∑
k=1

ψkτk(y),

where ϕk = (ϕ, τk), ψk = (ψ, τk).
Putting (3.2) into (1.1) and boundary conditions (1.2), for unknown functions

νk(x), we obtain the problem

Dα0+Dα0+νk(x)− λkνk(x) = 0, 0 < x < 1, (3.3)

νk(0) = ϕk, νk(1) = ψk. (3.4)

By Lemma 2.4 the solution of (3.3)-(3.4) exists, is unique and it can be written
in the form

νk(x) = ϕkC(λkx) + ψkS(λkx),

where C(λkx) and S(λkx) are defined by (2.4) and (2.5), respectively. Furthermore,
according to Lemma 2.7 inequalities

0 ≤ S(λkx), C(λkx) ≤ 1, x ∈ [0, 1]

are true.
If for ϕ and ψ the conditions of Theorem 3.1 hold then

|ϕk| ≤
C

λ2+δ
k

, |ψk| ≤
C

λ1+δ
k

, C = const.
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For such functions, we obtain

|νk(x)| ≤ C
( 1
λ2+δ
k

+
1

λ1+δ
k

)
. (3.5)

Then taking into account the property (2.13) the convergence of the series (3.2) is
obvious in u(x, y) ∈ C(Ω̄). Further, using estimates (2.7) and (2.8), we get

Sk(λkx) = O(eλ
1/α
k (x−1)), (3.6)

C(λkx) = O(
1√
λk

).

Applying Dβy,a+D
β
y,b− term by term of the series (3.2), one obtains

Dβy,a+D
β
y,b−u(x, y) =

∞∑
k=1

λkνk(x)τk(y).

Then for all x ≥ x0 > 0, a ≤ y ≤ b, by taking into account inequalities (3.5), we
have

|Dβy,a+D
β
y,b−u(x, y)| ≤ C

∞∑
k=1

|λk||νk(x)|

≤ C
∞∑
k=1

λ−1−δ + λ−δe−λk(1−x).

Similarly, we can estimate the series

Dαx,0+Dαx,0+u(x, y) =
∞∑
k=1

λkνk(x)τk(y).

Then Dβy,a+D
β
y,b−u(x, y), Dαx,0+Dαx,0+u(x, y) ∈ C(Ω).

Uniqueness of the solution. Suppose that there are two solutions u1(x, y) and
u2(x, y) of Problem 1.1. Denote

u(x, y) = u1(x, y)− u2(x, y).

Then the function u(x, y) satisfies (1.1) and homogeneous conditions (1.2) and (1.3).
Let

uk(x) = 〈u(x, y), τk(y)〉, k ∈ N. (3.7)

Applying the operator Dα0+Dα0+ to Equation (3.3), we have

Dα0+Dα0+uk(x) = 〈Dαx,0+Dαx,0+u(x, y), τk(y)〉 = 〈Dβa+,yD
β
b−,yu(x, y), τk(y)〉.

Integrating by parts and taking into account the homogeneous condition (1.2), we
obtain

Dα0+Dα0+uk(x)− λkuk(x) = 0, uk(0) = 0, uk(1) = 0.

Consequently from Lemma 2.4 we get uk(x) ≡ 0.
Further, by the completeness of the system {τk(x)}N in L2(a, b) we conclude that

u(x, t) ≡ 0, 0 ≤ x ≤ 1, a ≤ y ≤ b.

Hence, the uniqueness of the solution of Problem 1.1 is proved. �
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4. Well-posedness of Problem 1.2

Theorem 4.1. Let 0 < δ < 1, Dβy,a+D
β
y,b−φ(y) ∈ C1+δ[a, b] and

I1−β
y,b−φ(a) = I1−β

y,b−φ(b) = 0.

Then the solution of Problem 1.2 exists, is unique and can be represented as

u(x, y) =
∞∑
k=1

φkEα,1(−
√
λkx

α)τk(y), (4.1)

where φk = (φ, τk), and {τk(y)}k∈N is the system of eigenfunctions of the problem
(2.10)-(2.11) forms an orthonormal basis in L2(a, b).

Proof. By applying the Fourier method to solve Problem 1.2, we lead it to the
spectral problem (2.10)–(2.11). The system {τk(y)}k∈N is an orthonormal basis in
the space L2(a, b). Thus, a regular solution of Problem 1.2 for all x > 0 can be
represented as the series

u(x, y) =
∞∑
k=1

uk(x)τk(y), (4.2)

where uk(x) is an unknown function. We expand the function φ(y) into the Fourier
series by the system {τk(y)}k∈N, that is,

φ(y) =
∞∑
k=1

φkτk(y), (4.3)

where φk = (φ, τk).
Let us consider functions

uk(x) =
∫ b

a

u(x, y)τk(y)dy, k ∈ N. (4.4)

Applying the operator Dα0+Dα0+ to the functions (4.4) and by taking into account
Equation (1.1), we have

Dα0+Dα0+uk(x) =
∫ b

a

Dαx,0+Dαx,0+u(x, y)τk(y)dy =
∫ b

a

Dβa+,yD
β
b−,yu(x, y)τk(y)dy.

Twice integrating by parts the last integral and by using the conditions (1.4) and
(1.5), we obtain

Dαx,0+Dαx,0+uk(x)− λkuk(x) = 0, 0 < x < +∞, (4.5)

uk(0) = φk, lim
x→+∞

|uk(x)| → 0. (4.6)

The general solution of Equation (4.5) has the form

uk(x) = C1Eα,1(
√
λkx

α) + C2Eα,1(−
√
λkx

α),

where C1 and C2 are unknown constants. Since Eα,1(
√
λkx

α) is completely mono-
tonic [7], that is,

Eα,1(
√
λkx

α)→∞, x→ +∞,
we need to choose C1 = 0 to have the second condition in (4.6). Then

uk(x) = C2Eα,1(−
√
λkx

α)
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and by the first condition in (4.6) we have

uk(x) = φkEα,1(−
√
λkx

α).

Furthermore, the identity (4.4) directly implies the uniqueness of the solution of
Problem 1.2: if φ(y) = 0 on [a, b] then uk(x) = 0 on [0,+∞). Consequently, due to
the completeness of the system {τk(y)}k∈N we obtain u(x, y) = 0 for all (x, y) ∈ Ω∞.

Therefore, the formal solution of Problem 1.2 can be represented as in (3.1). If
the function φ(y) satisfies conditions of Theorem 4.1, then for the Fourier coeffi-
cients we get inequality:

|φk| ≤
C

λ1+δ
k

.

Then for all y ∈ [a, b], for each x ∈ [0,+∞) we conclude

|u(x, y)| ≤
∞∑
k=1

C

λ1+δ
k

<∞,

i.e., the series (3.1) converges uniformly in the domain [a, b]∩ [0,∞). Therefore, u ∈
C(Ω̄∞). Similarly, we show that Dαx,0+Dαx,0+u ∈ C(Ω∞), Dβy,a+D

β
y,b−u ∈ C(Ω∞).

The proof is complete. �

5. Non-Homogeneous case

In this section we study a non-homogeneous fractional Laplace equation

Dαx,0+Dαx,0+u(x, y)−Dβy,a+D
β
y,b−u(x, y) = f(x, y), (x, y) ∈ Ω, (5.1)

with the boundary conditions

u(0, y) = 0, u(1, y) = 0, a ≤ y ≤ b, (5.2)

I1−β
b−,yu(x, a) = 0, I1−β

b−,yu(x, b) = 0, 0 ≤ x ≤ 1, (5.3)

for some sufficiently smooth function f .

Theorem 5.1. Let 0 < δ < 1. Assume that f ∈ C(Ω̄). Then there is a unique
solution u ∈ C(Ω̄) of the problem (5.1)-(5.3) such that

Dαx,0+u ∈ C(Ω), Dαx,0+Dαx,0+u ∈ C(Ω), Dβy,a+D
β
y,b−u ∈ C(Ω).

Moreover, we have the expansion

u(x, y) =
∞∑
k=1

τk(y)
∫ x

0

(x− s)2α−1Ck(λk(x− s))fk(s)ds

−
∞∑
k=1

τk(y)S(λkx)
∫ 1

0

(1− s)2α−1Ck(λk(1− s))fk(s)ds.

(5.4)

Here, fk(x) is from

f(x, y) =
∞∑
k=1

fk(x)τk(y),

where {τk}∞k=1 is an orthonormal basis in L2(a, b) and a system of eigenfunctions
generated by the spectral problem (2.10)–(2.11); that is,

Dβy,a+D
β
y,b−τ(y) = λτ(y), a < y < b,
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with the conditions
I1−β
y,b−τ(a) = 0, I1−β

y,b−τ(b) = 0.

Proof. Existence of the solution. Since the system of eigenfunctions {τk(y)}k=N
of the fractional problem (2.10)–(2.11) forms an orthonormal basis in L2(a, b), then
for u we obtain the representation

u(x, y) =
∞∑
k=1

νk(x)τk(y), (x, y) ∈ Ω, (5.5)

where νk(x) are unknown functions.
By using the representation (5.5), from (5.1)–(5.2) for the unknown functions

νk(x) we get the problem

Dαx,0+Dαx,0+νk(x)− λkνk(x) = fk(x), 0 < x < 1, (5.6)

νk(0) = 0, νk(1) = 0. (5.7)

Applying the method in [1], it is not difficult to show that the general solution of
Equation (5.6) has the form

νk(x) = C1Eα,1(
√
λkx

α) + C2Eα,1(−
√
λkx

α)

+
∫ x

0

(x− s)2α−1Ck(λk(x− s))fk(s)ds.
(5.8)

Using the boundary conditions (5.7), we obtain the unique solution of the problem
(5.6)-(5.7)

νk(x) =
∫ x

0

(x− s)2α−1Ck(λk(x− s))fk(s)ds

− S(λkx)
∫ 1

0

(1− s)2α−1Ck(λk(1− s))fk(s)ds,

where S(λkx) is defined by (2.5). Furthermore, according to Lemma 2.7, the fol-
lowing inequality holds

0 ≤ S(λkx), C(λkx) ≤ 1, x ∈ [0, 1].

Now, By Lemma 2.7, νk satisfies

|νk(x)|

≤
∫ x

0

(x− s)2α−1Ck(λk(x− s))|fk(s)|ds+
∫ 1

0

(1− s)2α−1Ck(λk(1− s))|fk(s)|ds

≤ max
x
|fk|(x2αCk(λkx) + Ck(λk))

≤ Cmaxx |fk|
1 + λk

,

where C is a constant. Then the series (5.4) converges uniformly in the domain Ω̄
and therefore u(x, y) ∈ C(Ω̄). Further, using the estimate

Sk(λkx) = O(eλ
1/α
k (x−1)),

we can prove that Dβy,a+D
β
y,b−u(x, y),Dαx,0+Dαx,0+u(x, y) ∈ C(Ω).

Uniqueness of the solution of the problem (5.1)-(5.3) follows from the uniqueness
of the solution of Problem 1.1. �
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