Electronic Journal of Differential Equations, Vol. 2004(2004), No. 84, pp. 1-9.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

ON PERIODIC BOUNDARY VALUE PROBLEMS OF
FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL
INCLUSIONS

BAPURAO C. DHAGE, ABDELKADER BOUCHERIF, SOTIRIS K. NTOUYAS

ABSTRACT. In this paper we present an existence result for a first order im-
pulsive differential inclusion with periodic boundary conditions and impulses
at the fixed times under the convex condition of multi-functions.

1. INTRODUCTION

In this paper, we study the existence of solutions to a periodic nonlinear bound-
ary value problems for first order Carathéodory impulsive ordinary differential inclu-
sions with convex multi-functions. Given a closed and bounded interval J := [0, T
in R, the set of real numbers, and given the impulsive moments ¢1,s,...,t, with
0=ty <t1 <ta < - < by < tpy1 = T, J = J\{t17t2,...7tp}, Jj = (tj,lfjJrl),
consider the following periodic boundary-value problem for impulsive differential
inclusions (in short IDI):

7' (t) € F(t,z(t)) + G(t,z(t)) ae. t € J, (1.1)

a(t]) = a(ty) + L(z(t))), (1.2)

2(0) = (T), (1.3)

where F,G : J x R — Pf(R) are impulsive multi-functions, I; : R — R, j =
1,2,...,p are the impulse functions and J;(tj') and z(t;) are respectively the right

and the left limit of x at ¢ = ¢;.
Let C(J,R) and L'(J,R) denote the space of continuous and Lebesgue integrable
real-valued functions on J. Consider the Banach space

X:={z:J-R:z¢€ C(J',R),x(t;'),x(tj_) exist, z(t;) = z(t;), j = 1,2,...,p}

equipped with the norm ||z|| = max{|z(t)| : t € J}, and the space
Y := {x € X : x is differentiable a.e. on (0,T),2’ € L*(J,R)}.

By a solution of (L.1)-(L.3), we mean a function z in Y7 := {v € Y : v(0) = v(T)}

that satisfies the differential inclusion , and the impulsive conditions (|1.2]).
Several papers have been devoted to the study of initial and boundary value

problems for impulsive differential inclusions (see for example [2, [3]). Some basic
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results in the theory of periodic boundary value problems for first order impulsive
differential equations may be found in [12] [I3] [T4] and the references therein. Also,
for a general theory on impulsive differential equations we refer the interested reader
to [I5] and the monographs [10] and [I6]. Our aim is to provide sufficient conditions
on the multifunctions F', G and the impulsive functions I;, that insure the existence

of solutions of problem IDI (1.1)—(]1.3].

2. PRELIMINARIES

Let (E,|| - ||) be a Banach space and let P;(E) denote the class of all non-empty
subsets of E with the property f. Thus Py(E), Pya(E), Pey(E) and P, (E) denote
respectively the classes of all closed, bounded, convex and compact subsets of E.
Similarly P cvpda(E) and Pep oo (E) denote the classes of all closed, convex and
bounded and compact and convex subsets of E. For x € E and Y,Z € Pyy(E)
we denote by D(z,Y) =inf{|lz —y|| : y € Y}, and p(Y, Z) = sup,cy D(a, Z).

Define a function H : Py o (E) X Pyg,c(E) — RT by

H(A, B) = max{p(A, B, p(B, A)}.

The function H is called a Hausdorff metric on E. Note that ||Y| = H(Y, {0}).

A map F': E — P(E) is called a multi-valued mapping on E. A point u € E' is
called a fized point of the multi-valued operator F : E — P(FE) if u € F(u). The
fixed points set of F will be denoted by Fix(F).

A multivalued map F : [a,b] C R — Py pq(E) is said to be measurable if for
each z € X, the distance between x and F'(t) is a measurable function on [a,b]. A
function f : [a,b] — E is called measurable selector of the multi-function F' if f is
measurable and f(t) € F(t) for almost everywhere ¢ € [a, b].

Definition 2.1. Let F : E — Py (E) be a multi-valued operator. Then F is
called a multi-valued contraction if there exists a constant « € (0,1) such that for
each z,y € E we have

H(F(z), F(y)) < allz —yl|.

The constant « is called a contraction constant of F'.

A multifunction F is called upper semi-continuous (u.s.c.) if for each z¢ € E,
the set F'(zp) is a nonempty and closed subset of E, and for each open set N C E
containing F'(zq), there exists an open neighborhood M of z( such that F(M) C N.
If F is nonempty and compact-valued, then F'is u.s.c. if and only if F' has a closed
graph, i.e., given sequences {z,} —; — %0, {Un}trey — Y0,Un € F(x,) for every
n=1,2,... imply yo € F(zo).

F is bounded on bounded sets if | J F(S) is bounded in E for every bounded set
S C E, ie., sup,eg{sup{|y| : y € F(z)}} < 4+o00. Again the operator F is called
compact if | J F(E) is a compact subset of E. F is said to be completely continuous
if it is u.s.c. and | F(S) is relatively compact set in E for every bounded subset S
of E. Finally a multi-valued operator F is called convex (resp. compact) valued if
F(z) is a convex (resp. compact) set in E for each x € E.

The following form of a fixed point theorem of Dhage [6] will be used while
proving our main existence result.
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Theorem 2.1 (Dhage [6]). Let B(0,r) and B[0,r] denote respectively the open
and closed balls in a Banach space E centered at origin and of radius r and let
A: E — Pycppa(E) and B : Bl0,r] — Pep o(E) be two multi-valued operators
satisfying

(i) A is multi-valued contraction , and

(ii) B is completely continuous.
Then either

(a) the operator inclusion x € Az + Bx has a solution in B[0,r], or

(b) there exists an u € E with ||u|| = r such that Au € Au+ Bu for some X > 1.

In the following section we prove the main existence results of this paper.

3. MAIN RESULTS

Consider the following linear periodic problem with some given impulses ; € R,
i=12...p:

' (t) + kx(t) = o(t),ae t€J, (3.1)
x(t;') —xz(t;)=057=12,...,p,
2(0) = =(T),

where k > 0, and o € L'(J). The solution of (3.1)—(3.3) is given by (see [12|
Lemma 2.1])

x(t):/o g(t,8)a(s)ds + > gu(t,t;)0;, (3.4)

=1
where
e—k’(t—s)
T 0Ss<t<T
gr(t,s) = o—h(T+t—s)
EErea 0<t<s<T.

Clearly the function g(t,s) is discontinuous and nonnegative on J x J and has a
jump at t = s.

Let
1

Mk = ma,X{|gk(t,$)| :t,s S [O,T}} = m

Now x € Yr is a solution off if and only if
z(t) € Bia(t) + Bixz(t), teJ (3.5)

where the multi-valued operators B,i and B,% are defined by

T
Bia(t) :/0 gx(t, 8)F(s,x(s)) ds, (3.6)
T P
Biix(t) = /0 gr(t, s)[kz(s) + G(s,z(s))] ds + Zg(t’ ) (x(t; ). (3.7)

Definition 3.1. A multi-function 8 : J x R — P(R) is called an impulsive
Carathéodory if

(i) B(-,x) is measurable for every z € R and
(ii) B(t,-) is upper semi-continuous a.e. on J.
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Further the impulsive Carathéodory multifunction 3 is called impulsive L!-
Carathéodory if

(iii) for every r > 0 there exists a function h, € L'(.J) such that
18(t, z)|| = sup{|u| : v € B(t,x)} < h(t)ae t € J
for all x € R with |z] < r.

Denote
S(z) ={v e L'(JR) : v(t) € B(t,z) ae. t € J}.

Lemma 3.1 (Lasota and Opial [I1]). Let E be a Banach space. Further if dim(E) <
0o and 3 : J x E — Py (E) is L*'-Carathéodory, then Si(x) # 0 for each x € E.

Definition 3.2. A measurable multi-valued function F' : J — P,,(R) is said to be
integrably bounded if there exists a function h € L*(J,R) such that |v| < h(t) a.e.
teJforallve F(t).

Remark 3.1. It is known that if ' : J — R is an integrably bounded multi-
function, then the set SL of all Lebesgue integrable selections of F is closed and
non-empty. See Covitz and Nadler [4].

We now introduce the following assumptions:

(H1) The functions I; : R — R, j = 1,2,...,p are continuous, and there exist
¢; €R,j=1,2,...,psuch that |I;(z)| < ¢j,j =1,2,...,pfor every z € R.

(H2) G:J xR — P, c»(R) is an impulsive Carathéodory multi-function.

(H3) There exist a real number k& > 0 and a Carathéodory function w : J xR, —
R, which is nondecreasing with respect to its second argument such that

IG(t, ) + kx| = sup{|v| : v € G(t,x) + kx} < w(t,|z|)

ae teJ x ek

(H4) The multi-function ¢t — F(¢,x) is measurable and integrally bounded for
each z € R.

(H5) The multi-function F(t,z) is F : J x R — P ey pq(R) and there exists a
function ¢ € L'(J,R) such that

H(F(t,x), F(t,y)) <{L(t)|lx —y| ae teJ
for all z,y € R.

Note that the hypotheses (H1)—(H5) are not new, they have been used extensively
in the literature on differential inclusions. Also (H3) in the special case w(t,r) =
¢(t)1(r) has been used by several authors. See Dhage [6] and the references therein.

Lemma 3.2. Assume that (H2)-(H3) hold. Then the operator Si, . : Yp —
Pr(LY(J,R)) defined by

Sira(x) ={ve L (JR) :v(t) € kx(t) + G(t,z(t)) ae t € J} (3.8)

is well defined, u.s.c., closed and convexr valued, and sends bounded subsets of Yr
into bounded subsets of L*(J,R).

Proof. Since (H2) holds, by Lemma Stic(x) # 0 for each 2 € Y. Below we
show that S,i 4+ has the desired properties on Yr.

Step I: First we show that S,% 1 has closed values on Yr. Let x € Y7 be arbitrary
and let {w,, } be a sequence in S} ,(x) C L'(J,R) such that w, — w. Then w, — w
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in measure. So there exists a subset S of positive integers such that w, — w
a.e. n — oo through S. Since the hypothesis (H2) holds, we have w € Si, ().
Therefore, S, () is a closed set in L*(J,R). Thus for each x € Yr, S} o(x) is
a non-empty, closed subset of L'(.J,R) and consequently S} 4 has non-empty and
closed values on Yr.
Step II: Next we show that S} (x) is convex subset of L'(J,R) for each z € Yp.
Let vy,v2 € Sp, () and let A € [0,1]. Then there exist functions f1, fo € S, ()
such that
v1(t) = kx(t) + f1(t) and wvo(t) = kx(t) + fa(t)
for t € J. Therefore we have
A (t) + (1= Nwa(t) = Akz(t) + f1(t)] + (1 = X) [kz(t) + f2(t)]

= Ak (t) + (1 = Aka(t) + Afi(t) + (1= A) f2(t)

= kx(t) + f3(t)
where f5(t) = Af1(t) + (1 — X) fa(t) for all t € J. Since G(t,z) is convex for each
x € R, one has f3(t) € G(t,z(t)) for all t € J. Therefore,

Avp(t) + (1 = Nwa(t) € ka(t) + G(t, z(t))

for all t € J and consequently Avy + (1 — Avg € S} (). As a result S}, () is
a convex subset of L!(J,R).

Step III: Next we show that S’,L_G is an uw.s.c. multi-valued operator on Y7. Let
{z,} be a sequence in Y7 such that x,, — x, and let {y,} be a sequence such that
Yn € S,%_‘_G(:rn) and y,, — y«. To finish, it suffices to show that y. € 5,1+G(x*). Since
Yn € Sp, (), there is a function f, € S}, () such that y, () = kay (t) + fu(t)
for all t € J and that y.(t) = kx.(t) + f«(t), where f,, — f. as n — oco. Now
the multi-function G(t,z) is an upper semi-continuous in x for all ¢ € J, one has
f+(t) € G(t,z.(t)) for all t € J. Hence it follows that y. € S} ;(zs).

Step IV: Finally we show that Si, , maps bounded sets of Y7 into bounded sets
of L1(J,R). Let M be a bounded subset of Y7. Then there is a real number r > 0
such that ||z| < r for all # € M. Let y € S}, (S) be arbitrary. Then there is an
@ € M such that y € S} () and therefore y(t) € kx(t) + G(t,z(t)) a.e. t € J.
Now by (H3),

T
lyllz = / y(®)] dt
T
SA [kx(t) + G(t,2(t))]| dt

T
< / w(t, | () dt

T
< / w(t,r)dt.
0

Hence S}, (95) is a bounded set in L*(J,R).
Thus the multi-valued operator S ,i 4 is an upper semi-continuous and has closed,
convex values on Y. The proof is complete. [l

Lemma 3.3. Assume (Hy) — (Hs). The multivalued operator Bi defined by
is completely continuous and has convex, compact values on Y.
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Proof. Since S}, is as upper semi-continuous and has closed and convex values
and since (H1) holds, B? is u.s.c. and has closed-convex values on Y7. To show B3
is relatively compact, we use the Arzeld-Ascoli theorem. Let M C B[0,7] be any
set. Then ||z|| < r for all z € M. First we show that BZ(M) is uniformly bounded.
Now for any z € M and for any y € Bi(x) one has

T P
()] < /O |9k (t, $)|[|[kz(s) + G(s, x(s))][| ds + Z gk (¢, )11 (2(E5 )]
T P "
< /o Mw(s, |:c(s)|)ds+Mchj
T

P
< Mk/ w(s,r) ds+Mchj,
0

j=1

where M, is the bound of g; on [0,T] x [0,T]. Taking the supremum over ¢,

T p
|1Biz| < Mk[/o w(s,r)ds —|—ch}
j=1

for all z € M. Hence B3 (M) is a uniformly bounded set in Y7. Next we prove the
equi-continuity of the set BZ(M) in Yr. Let y € BZ(M) be arbitrary. Then there
is a v € Sk+q(z) such that

T
y(t):/ ot ) ds—i—ngtt ), ted,
0

for some x € M.
To finish, it is sufficient to show that 3’ is bounded on [0,7]. Now for any
t€10,T],

o= "2 ) ds+i§tgk<t,tk>fj<yj<t;>>\
= | [ oo ds+z B)ow (1, ) (5 (15 )|

SkMk/ w(s, r)ds—l—kMchJ =c
0

Jj=1
Hence for any ¢,7 € [0,7] and for all y € B,% (M) one has
ly(t) —y(r)| <cft—7]| -0 as t—rT.

This shows that BE(M ) is a equi-continuous set and consequently relatively com-
pact in view of Arzeld-Ascoli theorem. Obviously B(z) C Bi(B[0,r]) for each
x € B[0,r]. Since Bi(BJ[0,r]) is relatively compact, B2 (z) is relatively compact and
which is compact in view of hypothesis (H2). Hence B? is a completely continuous
multi-valued operator on Yr. The proof of the lemma is complete. (I
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Lemma 3.4. Assume that the hypotheses (H4)-(H5) hold. Then the operator B}
defined by (3.6)) is a multi-valued contraction operator on Yr, provided My||f||p: <
1.

Proof. Define a mapping Bi. : Y7 — Y7 by (3.6). We show that B} is a multi-valued
contraction on Yr. Let z,y € Yr be arbitrary and let u; € B}.(z). Then u; € Yr
and

T
ul(t):/o gi(t, s)v1(s) ds

for some v; € Sk(z). Since H(F(t,z(t)), F(t,y(t)) < £(t)|z(t) — y(t)|, one obtains
that there exists a w € F(¢,y(t)) such that

[v1(t) — w| < L(H)]z(t) — y(t)].
Thus the multi-valued operator U defined by U(t) = Sk(y)(t) N K (t),where
K(t) ={w | [vi(t) —w| < £(#)|x(t) —y@)[}
has nonempty values and is measurable. Let vy be a measurable selection for U

(which exists by Kuratowski-Ryll-Nardzewski’s selection theorem. See [3]). Then
vy € F(t,y(t)) and

[v1(t) — va(t)| < L(t)|x(t) —y(t)] ae te
Define T
ug(t) = /0 gk (t, s)va(s) ds.

It follows that us € Bi(y) and
T T
lug(t) — ua(t)| < ‘/ gk (t, s)v1(s) ds —/ gk (t, s)va(s) ds
0 0
T
< [ Moa(s) = vas)] s
0

T
< [ Mutl)lats) - uls)] ds
0
< Mille]| |z — yll.
Taking the supremum over ¢, we obtain
l[ur — wal| < Mi[[€] ]z —y].

From this and the analogous inequality obtained by interchanging the roles of x
and y we get that

H(By,(x), Bi(y)) < pllz —yll,
for all z,y € Yy. This shows that B} is a multi-valued contraction, since p =
M||€)| 12 < 1. O

Theorem 3.1. Assume (H1)-(H5) are satisfied. Further if there exists a real
number r > 0 such that

M;, fOTw(s, r)ds + My Fy + My Z?:l ¢
1 — Mi||€] s
where Mg||l||pr < 1 and Fy = fOT IE(s,0)|| ds, then the problem IDI 7

has at least one solution on J.

r >

(3.9)
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Proof. Define an open ball B(0,r) in Yp, where the real number r satisfies the
inequality given in condition . Define the multi-valued operators B}c and B,%
on Yr by and . We shall show that the operators B}, and B satisfy all
the conditions of Theorem 211

Step I: The assumptions (H2)—(H3) imply by Lemma that B? is completely
continuous multi-valued operator on B[0, r]. Again since (H4)—(H5) hold, by Lemma
Bi is a multi-valued contraction on Y7 with a contraction constant p =
Mg||l||lL:. Now an application of Theorem yields that either the operator in-
clusion x € B,ix + B,%x has a solution in B[0,r], or, there exists an u € Y with
|lu|| = r satisfying Au € B}u + Biu for some A > 1.

Step II: Now we show that the second assertion of Theorem is not true. Let
u € Yr be a possible solution of Au € Bju + Biu for some real number A > 1 with
|lu|| = 7. Then we have,

u(t) e A1 /0 ar(t,8)F(s,u(s))ds + A" /0 9k (t, 8)[ku(s) + G(s,u(s))] ds
+ A7t ng(t, t) 1 (u(t;)).

Hence by (H3)-(H5),

T

T
u(t)] < / 19k (t, 8)|w(s, [u(s)]) ds + / gkt 5)/[£(3)[u(s) | ds

T P
+ / gkt )1 F (5, 0) | ds + > lgw (£, )| 11 (u(t;)]
j=1
T p
10(5) [[ull ds + My Fo + Mi > ey
j=1

T
<M [ s, ul) ds + 04
0 0

T P
ng/ w(s, l[ul) ds + Myl oo Jull + MeFo + My 3 c;.
0

j=1
Taking the supremum over ¢ we get
T P
lu|l < Mk/ w(s, ||ull]) ds + Mg ||| L1 ||u|| + MeFo + My ch.
0 j=1
Substituting ||u|| = 7 in the above inequality yields

- My, fOTw(s, r)ds + My Fy + My Z§:1 ¢;
LS
1 — Mylle]|.x

which is a contradiction to (3.9). Hence the operator inclusion z € Bjx + Bix has
a solution in B[0,r]. This further implies that the IDI ([1.1)—(1.3) has a solution on
J. The proof is complete. ([

Remark 3.2. On taking F(t,z) = 0 on J' x R in Theorem we obtain as a
special case the existence result in [7] for the impulsive differential inclusion (I.1))—

(1.3) with F(t,x) = 0.
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Remark 3.3. In this paper we have dealt with the perturbed impulsive differen-
tial inclusions involving conver multi-functions. Note that the continuity of the
multi-function is important here, however in a forthcoming paper we will relax the
continuity condition of one of the multi-functions and discuss the existence results
for mild discontinuous perturbed impulsive differential inclusions.
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