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ON PERIODIC BOUNDARY VALUE PROBLEMS OF
FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL

INCLUSIONS

BAPURAO C. DHAGE, ABDELKADER BOUCHERIF, SOTIRIS K. NTOUYAS

Abstract. In this paper we present an existence result for a first order im-
pulsive differential inclusion with periodic boundary conditions and impulses

at the fixed times under the convex condition of multi-functions.

1. Introduction

In this paper, we study the existence of solutions to a periodic nonlinear bound-
ary value problems for first order Carathéodory impulsive ordinary differential inclu-
sions with convex multi-functions. Given a closed and bounded interval J := [0, T ]
in R, the set of real numbers, and given the impulsive moments t1, t2, . . . , tp with
0 = t0 < t1 < t2 < · · · < tp < tp+1 = T , J ′ = J \ {t1, t2, . . . , tp}, Jj = (tj , tj+1),
consider the following periodic boundary-value problem for impulsive differential
inclusions (in short IDI):

x′(t) ∈ F (t, x(t)) +G(t, x(t)) a.e. t ∈ J ′, (1.1)

x(t+j ) = x(t−j ) + Ij(x(t−j )), (1.2)

x(0) = x(T ), (1.3)

where F,G : J × R → Pf (R) are impulsive multi-functions, Ij : R → R, j =
1, 2, . . . , p are the impulse functions and x(t+j ) and x(t−j ) are respectively the right
and the left limit of x at t = tj .

Let C(J,R) and L1(J,R) denote the space of continuous and Lebesgue integrable
real-valued functions on J . Consider the Banach space

X :=
{
x : J → R : x ∈ C(J ′,R), x(t+j ), x(t−j ) exist, x(t−j ) = x(tj), j = 1, 2, . . . , p

}
equipped with the norm ‖x‖ = max{|x(t)| : t ∈ J}, and the space

Y := {x ∈ X : x is differentiable a.e. on (0, T ), x′ ∈ L1(J,R)} .
By a solution of (1.1)–(1.3), we mean a function x in YT := {v ∈ Y : v(0) = v(T )}
that satisfies the differential inclusion (1.1), and the impulsive conditions (1.2).

Several papers have been devoted to the study of initial and boundary value
problems for impulsive differential inclusions (see for example [2, 3]). Some basic
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results in the theory of periodic boundary value problems for first order impulsive
differential equations may be found in [12, 13, 14] and the references therein. Also,
for a general theory on impulsive differential equations we refer the interested reader
to [15] and the monographs [10] and [16]. Our aim is to provide sufficient conditions
on the multifunctions F , G and the impulsive functions Ij , that insure the existence
of solutions of problem IDI (1.1)–(1.3).

2. Preliminaries

Let (E, ‖ · ‖) be a Banach space and let Pf (E) denote the class of all non-empty
subsets of E with the property f . Thus Pcl(E), Pbd(E), Pcv(E) and Pcp(E) denote
respectively the classes of all closed, bounded, convex and compact subsets of E.
Similarly Pcl,cv,bd(E) and Pcp,cv(E) denote the classes of all closed, convex and
bounded and compact and convex subsets of E. For x ∈ E and Y, Z ∈ Pbd,cl(E)
we denote by D(x, Y ) = inf{‖x− y‖ : y ∈ Y }, and ρ(Y,Z) = supa∈Y D(a, Z).

Define a function H : Pbd,cl(E)× Pbd,cl(E) → R+ by

H(A,B) = max{ρ(A,B, ρ(B,A)}.

The function H is called a Hausdorff metric on E. Note that ‖Y ‖ = H(Y, {0}).
A map F : E → P (E) is called a multi-valued mapping on E. A point u ∈ E is

called a fixed point of the multi-valued operator F : E → P (E) if u ∈ F (u). The
fixed points set of F will be denoted by Fix(F ).

A multivalued map F : [a, b] ⊂ R → Pcl,bd(E) is said to be measurable if for
each x ∈ X, the distance between x and F (t) is a measurable function on [a, b]. A
function f : [a, b] → E is called measurable selector of the multi-function F if f is
measurable and f(t) ∈ F (t) for almost everywhere t ∈ [a, b].

Definition 2.1. Let F : E → Pbd,cl(E) be a multi-valued operator. Then F is
called a multi-valued contraction if there exists a constant α ∈ (0, 1) such that for
each x, y ∈ E we have

H(F (x), F (y)) ≤ α‖x− y‖.

The constant α is called a contraction constant of F .

A multifunction F is called upper semi-continuous (u.s.c.) if for each x0 ∈ E,
the set F (x0) is a nonempty and closed subset of E, and for each open set N ⊂ E
containing F (x0), there exists an open neighborhood M of x0 such that F (M) ⊂ N .
If F is nonempty and compact-valued, then F is u.s.c. if and only if F has a closed
graph, i.e., given sequences {xn}∞n=1 → x0, {yn}∞n=1 → y0 , yn ∈ F (xn) for every
n = 1, 2, . . . imply y0 ∈ F (x0).

F is bounded on bounded sets if
⋃
F (S) is bounded in E for every bounded set

S ⊂ E, i.e., supx∈S{sup{|y| : y ∈ F (x)}} < +∞. Again the operator F is called
compact if

⋃
F (E) is a compact subset of E. F is said to be completely continuous

if it is u.s.c. and
⋃
F (S) is relatively compact set in E for every bounded subset S

of E. Finally a multi-valued operator F is called convex (resp. compact) valued if
F (x) is a convex (resp. compact) set in E for each x ∈ E.

The following form of a fixed point theorem of Dhage [6] will be used while
proving our main existence result.
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Theorem 2.1 (Dhage [6]). Let B(0, r) and B[0, r] denote respectively the open
and closed balls in a Banach space E centered at origin and of radius r and let
A : E → Pcl,cv,bd(E) and B : B[0, r] → Pcp,cv(E) be two multi-valued operators
satisfying

(i) A is multi-valued contraction , and
(ii) B is completely continuous.

Then either
(a) the operator inclusion x ∈ Ax+Bx has a solution in B[0, r], or
(b) there exists an u ∈ E with ‖u‖ = r such that λu ∈ Au+Bu for some λ > 1.

In the following section we prove the main existence results of this paper.

3. Main Results

Consider the following linear periodic problem with some given impulses θj ∈ R,
j = 1, 2, . . . , p:

x′(t) + kx(t) = σ(t), a.e. t ∈ J ′, (3.1)

x(t+j )− x(t−j ) = θj , j = 1, 2, . . . , p, (3.2)

x(0) = x(T ), (3.3)

where k > 0, and σ ∈ L1(J). The solution of (3.1)–(3.3) is given by (see [12,
Lemma 2.1])

x(t) =
∫ T

0

gk(t, s)σ(s) ds+
p∑

j=1

gk(t, tj)θj , (3.4)

where

gk(t, s) =


e−k(t−s)

1− e−kT
, 0 ≤ s ≤ t ≤ T

e−k(T+t−s)

1− e−kT
, 0 ≤ t < s ≤ T .

Clearly the function gk(t, s) is discontinuous and nonnegative on J × J and has a
jump at t = s.

Let
Mk := max {|gk(t, s)| : t, s ∈ [0, T ]} =

1
1− e−kT

.

Now x ∈ YT is a solution of(1.1)–(1.3) if and only if

x(t) ∈ B1
kx(t) +B2

kx(t), t ∈ J (3.5)

where the multi-valued operators B1
k and B2

k are defined by

B1
kx(t) =

∫ T

0

gk(t, s)F (s, x(s)) ds, (3.6)

B2
kx(t) =

∫ T

0

gk(t, s)[kx(s) +G(s, x(s))] ds+
p∑

j=1

g(t, tj)Ij(x(t−j )). (3.7)

Definition 3.1. A multi-function β : J × R → Pf (R) is called an impulsive
Carathéodory if

(i) β(·, x) is measurable for every x ∈ R and
(ii) β(t, ·) is upper semi-continuous a.e. on J .
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Further the impulsive Carathéodory multifunction β is called impulsive L1-
Carathéodory if

(iii) for every r > 0 there exists a function hr ∈ L1(J) such that

‖β(t, x)‖ = sup{|u| : u ∈ β(t, x)} ≤ hr(t)a.e. t ∈ J
for all x ∈ R with |x| ≤ r.

Denote
S1

β(x) = {v ∈ L1(J,R) : v(t) ∈ β(t, x) a.e. t ∈ J}.

Lemma 3.1 (Lasota and Opial [11]). Let E be a Banach space. Further if dim(E) <
∞ and β : J × E → Pbd,cl(E) is L1-Carathéodory, then S1

β(x) 6= ∅ for each x ∈ E.

Definition 3.2. A measurable multi-valued function F : J → Pcp(R) is said to be
integrably bounded if there exists a function h ∈ L1(J,R) such that |v| ≤ h(t) a.e.
t ∈ J for all v ∈ F (t).

Remark 3.1. It is known that if F : J → R is an integrably bounded multi-
function, then the set S1

F of all Lebesgue integrable selections of F is closed and
non-empty. See Covitz and Nadler [4].

We now introduce the following assumptions:
(H1) The functions Ij : R → R, j = 1, 2, . . . , p are continuous, and there exist

cj ∈ R, j = 1, 2, . . . , p such that |Ij(x)| ≤ cj , j = 1, 2, . . . , p for every x ∈ R.
(H2) G : J × R → Pcp,cv(R) is an impulsive Carathéodory multi-function.
(H3) There exist a real number k > 0 and a Carathéodory function ω : J×R+ →

R+ which is nondecreasing with respect to its second argument such that

‖G(t, x) + kx‖ = sup{|v| : v ∈ G(t, x) + kx} ≤ ω(t, |x|)
a.e. t ∈ J ′, x ∈ R.

(H4) The multi-function t 7→ F (t, x) is measurable and integrally bounded for
each x ∈ R.

(H5) The multi-function F (t, x) is F : J × R → Pcl,cv,bd(R) and there exists a
function ` ∈ L1(J,R) such that

H(F (t, x), F (t, y)) ≤ `(t)|x− y| a.e. t ∈ J
for all x, y ∈ R.

Note that the hypotheses (H1)–(H5) are not new, they have been used extensively
in the literature on differential inclusions. Also (H3) in the special case ω(t, r) =
φ(t)ψ(r) has been used by several authors. See Dhage [6] and the references therein.

Lemma 3.2. Assume that (H2)–(H3) hold. Then the operator S1
k+G : YT →

Pf (L1(J,R)) defined by

S1
k+G(x) :=

{
v ∈ L1(J,R) : v(t) ∈ kx(t) +G(t, x(t)) a.e. t ∈ J

}
(3.8)

is well defined, u.s.c., closed and convex valued, and sends bounded subsets of YT

into bounded subsets of L1(J,R).

Proof. Since (H2) holds, by Lemma 3.1 S1
k+G(x) 6= ∅ for each x ∈ YT . Below we

show that S1
k+G has the desired properties on YT .

Step I: First we show that S1
k+G has closed values on YT . Let x ∈ YT be arbitrary

and let {ωn} be a sequence in S1
k+G(x) ⊂ L1(J,R) such that ωn → ω. Then ωn → ω
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in measure. So there exists a subset S of positive integers such that ωn → ω
a.e. n → ∞ through S. Since the hypothesis (H2) holds, we have ω ∈ S1

k+G(x).
Therefore, S1

k+G(x) is a closed set in L1(J,R). Thus for each x ∈ YT , S1
k+G(x) is

a non-empty, closed subset of L1(J,R) and consequently S1
k+G has non-empty and

closed values on YT .
Step II: Next we show that S1

k+G(x) is convex subset of L1(J,R) for each x ∈ YT .
Let v1, v2 ∈ S1

k+G(x) and let λ ∈ [0, 1]. Then there exist functions f1, f2 ∈ S1
k+G(x)

such that
v1(t) = kx(t) + f1(t) and v2(t) = kx(t) + f2(t)

for t ∈ J . Therefore we have

λv1(t) + (1− λ)v2(t) = λ
[
kx(t) + f1(t)

]
+ (1− λ)

[
kx(t) + f2(t)

]
= λkx(t) + (1− λ)kx(t) + λf1(t) + (1− λ)f2(t)

= kx(t) + f3(t)

where f3(t) = λf1(t) + (1 − λ)f2(t) for all t ∈ J . Since G(t, x) is convex for each
x ∈ R, one has f3(t) ∈ G(t, x(t)) for all t ∈ J . Therefore,

λv1(t) + (1− λ)v2(t) ∈ kx(t) +G(t, x(t))

for all t ∈ J and consequently λv1 + (1 − λ)v2 ∈ S1
k+G(x). As a result S1

k+G(x) is
a convex subset of L1(J,R).
Step III: Next we show that S1

k+G is an u.s.c. multi-valued operator on YT . Let
{xn} be a sequence in YT such that xn → x∗ and let {yn} be a sequence such that
yn ∈ S1

k+G(xn) and yn → y∗. To finish, it suffices to show that y∗ ∈ S1
k+G(x∗). Since

yn ∈ S1
k+G(xn), there is a function fn ∈ S1

k+G(xn) such that yn(t) = kxn(t)+ fn(t)
for all t ∈ J and that y∗(t) = kx∗(t) + f∗(t), where fn → f∗ as n → ∞. Now
the multi-function G(t, x) is an upper semi-continuous in x for all t ∈ J , one has
f∗(t) ∈ G(t, x∗(t)) for all t ∈ J . Hence it follows that y∗ ∈ S1

k+G(x∗).
Step IV: Finally we show that S1

k+G maps bounded sets of YT into bounded sets
of L1(J,R). Let M be a bounded subset of YT . Then there is a real number r > 0
such that ‖x‖ ≤ r for all x ∈ M . Let y ∈ S1

k+G(S) be arbitrary. Then there is an
x ∈ M such that y ∈ S1

k+G(x) and therefore y(t) ∈ kx(t) + G(t, x(t)) a.e. t ∈ J .
Now by (H3),

‖y‖L1 =
∫ T

0

|y(t)| dt

≤
∫ T

0

‖kx(t) +G(t, x(t))‖ dt

≤
∫ T

0

ω(t, |x(t|) dt

≤
∫ T

0

ω(t, r) dt.

Hence S1
k+G(S) is a bounded set in L1(J,R).

Thus the multi-valued operator S1
k+G is an upper semi-continuous and has closed,

convex values on YT . The proof is complete. �

Lemma 3.3. Assume (H1)− (H3). The multivalued operator B2
k defined by (3.7)

is completely continuous and has convex, compact values on YT .
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Proof. Since S1
k+G is as upper semi-continuous and has closed and convex values

and since (H1) holds, B2
k is u.s.c. and has closed-convex values on YT . To show B2

k

is relatively compact, we use the Arzelá-Ascoli theorem. Let M ⊂ B[0, r] be any
set. Then ‖x‖ ≤ r for all x ∈M . First we show that B2

k(M) is uniformly bounded.
Now for any x ∈M and for any y ∈ B2

k(x) one has

|y(t)| ≤
∫ T

0

|gk(t, s)|‖[kx(s) +G(s, x(s))]‖ ds+
p∑

j=1

|gk(t, tj)||Ij(x(t−j ))|

≤
∫ T

0

Mkω(s, |x(s)|) ds+Mk

p∑
j=1

cj

≤Mk

∫ T

0

ω(s, r) ds+Mk

p∑
j=1

cj ,

where Mk is the bound of gk on [0, T ]× [0, T ]. Taking the supremum over t,

‖B2
kx‖ ≤Mk

[ ∫ T

0

ω(s, r) ds+
p∑

j=1

cj

]
for all x ∈M . Hence B2

k(M) is a uniformly bounded set in YT . Next we prove the
equi-continuity of the set B2

k(M) in YT . Let y ∈ B2
k(M) be arbitrary. Then there

is a v ∈ Sk+G(x) such that

y(t) =
∫ T

0

gk(t, s)v(s) ds+
p∑

j=1

gk(t, tj)Ij(x(t−j )), t ∈ J,

for some x ∈M .
To finish, it is sufficient to show that y′ is bounded on [0, T ]. Now for any

t ∈ [0, T ],

|y′(t)| ≤
∣∣∣∫ T

0

∂

∂t
gk(t, s)v(s) ds+

p∑
j=1

∂

∂t
gk(t, tk)Ij(yj(t−j ))

∣∣∣
=

∣∣∣∫ T

0

(−k)gk(t, s)v(s) ds+
p∑

j=1

(−k)gk(t, tk)Ij(yj(t−j ))
∣∣∣

≤ kMk

∫ T

0

ω(s, r) ds+ kMk

p∑
j=1

cj = c.

Hence for any t, τ ∈ [0, T ] and for all y ∈ B2
k(M) one has

|y(t)− y(τ)| ≤ c|t− τ | → 0 as t→ τ.

This shows that B2
k(M) is a equi-continuous set and consequently relatively com-

pact in view of Arzelá-Ascoli theorem. Obviously B2
k(x) ⊂ B2

k(B[0, r]) for each
x ∈ B[0, r]. Since B2

k(B[0, r]) is relatively compact, B2
k(x) is relatively compact and

which is compact in view of hypothesis (H2). Hence B2
k is a completely continuous

multi-valued operator on YT . The proof of the lemma is complete. �
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Lemma 3.4. Assume that the hypotheses (H4)–(H5) hold. Then the operator B1
k

defined by (3.6) is a multi-valued contraction operator on YT , provided Mk‖`‖L1 <
1.

Proof. Define a mapping B1
k : YT → YT by (3.6). We show that B1

k is a multi-valued
contraction on YT . Let x, y ∈ YT be arbitrary and let u1 ∈ B1

k(x). Then u1 ∈ YT

and

u1(t) =
∫ T

0

gk(t, s)v1(s) ds

for some v1 ∈ S1
F (x). Since H(F (t, x(t)), F (t, y(t)) ≤ `(t)|x(t) − y(t)|, one obtains

that there exists a w ∈ F (t, y(t)) such that

|v1(t)− w| ≤ `(t)|x(t)− y(t)|.
Thus the multi-valued operator U defined by U(t) = S1

F (y)(t) ∩K(t),where

K(t) = {w | |v1(t)− w| ≤ `(t)|x(t)− y(t)|}
has nonempty values and is measurable. Let v2 be a measurable selection for U
(which exists by Kuratowski-Ryll-Nardzewski’s selection theorem. See [3]). Then
v2 ∈ F (t, y(t)) and

|v1(t)− v2(t)| ≤ `(t)|x(t)− y(t)| a.e. t ∈ J.
Define

u2(t) =
∫ T

0

gk(t, s)v2(s) ds.

It follows that u2 ∈ B1
k(y) and

|u1(t)− u2(t)| ≤
∣∣∣ ∫ T

0

gk(t, s)v1(s) ds−
∫ T

0

gk(t, s)v2(s) ds
∣∣∣

≤
∫ T

0

Mk|v1(s)− v2(s)| ds

≤
∫ T

0

Mk`(s)|x(s)− y(s)| ds

≤Mk‖`‖L1‖x− y‖.
Taking the supremum over t, we obtain

‖u1 − u2‖ ≤Mk‖`‖L1‖x− y‖.
From this and the analogous inequality obtained by interchanging the roles of x
and y we get that

H(B1
k(x),B1

k(y)) ≤ µ‖x− y‖,
for all x, y ∈ YT . This shows that B1

k is a multi-valued contraction, since µ =
Mk‖`‖L1 < 1. �

Theorem 3.1. Assume (H1)–(H5) are satisfied. Further if there exists a real
number r > 0 such that

r >
Mk

∫ T

0
ω(s, r) ds+MkF0 +Mk

∑p
j=1 cj

1−Mk‖`‖L1
(3.9)

where Mk‖`‖L1 < 1 and F0 =
∫ T

0
‖F (s, 0)‖ ds, then the problem IDI (1.1)–(1.3)

has at least one solution on J .



8 B. C. DHAGE, A. BOUCHERIF, S. K. NTOUYAS EJDE-2004/84

Proof. Define an open ball B(0, r) in YT , where the real number r satisfies the
inequality given in condition (3.9). Define the multi-valued operators B1

k and B2
k

on YT by (3.6) and (3.7). We shall show that the operators B1
k and B2

k satisfy all
the conditions of Theorem 2.1.
Step I: The assumptions (H2)–(H3) imply by Lemma 3.3 that B2

k is completely
continuous multi-valued operator onB[0, r]. Again since (H4)–(H5) hold, by Lemma
3.4, B1

k is a multi-valued contraction on YT with a contraction constant µ =
Mk‖`‖L1 . Now an application of Theorem 2.1 yields that either the operator in-
clusion x ∈ B1

kx + B2
kx has a solution in B[0, r], or, there exists an u ∈ YT with

‖u‖ = r satisfying λu ∈ B1
ku+B2

ku for some λ > 1.
Step II: Now we show that the second assertion of Theorem 2.1 is not true. Let
u ∈ YT be a possible solution of λu ∈ B1

ku+B2
ku for some real number λ > 1 with

‖u‖ = r. Then we have,

u(t) ∈ λ−1

∫ T

0

gk(t, s)F (s, u(s)) ds+ λ−1

∫ T

0

gk(t, s)[ku(s) +G(s, u(s))] ds

+ λ−1

p∑
j=1

gk(t, tj)Ij(u(t−j )) .

Hence by (H3)-(H5),

|u(t)| ≤
∫ T

0

|gk(t, s)|ω(s, |u(s)|) ds+
∫ T

0

|gk(t, s)||`(s)||u(s)| ds

+
∫ T

0

|gk(t, s)|‖F (s, 0)‖ ds+
p∑

j=1

|gk(t, s)||Ij(u(t−j )|

≤Mk

∫ T

0

ω(s, ‖u‖) ds+Mk

∫ T

0

|`(s)|‖u‖ ds+MkF0 +Mk

p∑
j=1

cj

≤Mk

∫ T

0

ω(s, ‖u‖) ds+Mk‖`‖L1‖u‖+MkF0 +Mk

p∑
j=1

cj .

Taking the supremum over t we get

‖u‖ ≤Mk

∫ T

0

ω(s, ‖u‖) ds+Mk‖`‖L1‖u‖+MkF0 +Mk

p∑
j=1

cj .

Substituting ‖u‖ = r in the above inequality yields

r ≤
Mk

∫ T

0
ω(s, r) ds+MkF0 +Mk

∑p
j=1 cj

1−Mk‖`‖L1

which is a contradiction to (3.9). Hence the operator inclusion x ∈ B1
kx+ B2

kx has
a solution in B[0, r]. This further implies that the IDI (1.1)–(1.3) has a solution on
J . The proof is complete. �

Remark 3.2. On taking F (t, x) ≡ 0 on J ′ × R in Theorem 3.1 we obtain as a
special case the existence result in [7] for the impulsive differential inclusion (1.1)–
(1.3) with F (t, x) ≡ 0.
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Remark 3.3. In this paper we have dealt with the perturbed impulsive differen-
tial inclusions involving convex multi-functions. Note that the continuity of the
multi-function is important here, however in a forthcoming paper we will relax the
continuity condition of one of the multi-functions and discuss the existence results
for mild discontinuous perturbed impulsive differential inclusions.
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