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NON-TRIVIAL SOLUTIONS OF FRACTIONAL

SCHRÖDINGER-POISSON SYSTEMS WITH SUM

OF PERIODIC AND VANISHING POTENTIALS

MINGZHU YU, HAIBO CHEN

Abstract. We consider the fractional Schrödinger-Poisson system

(−∆)αu+ V (x)u+K(x)Φ(x)u = f(x, u)− Γ(x)|u|q−2u in R3,

(−∆)βΦ = K(x)u2 in R3,

where α, β ∈ (0, 1], 4α + 2β > 3, 4 ≤ q < 2∗α, K(x), Γ(x) and f(x, u) are
periodic in x, V is coercive or V = Vper + Vloc is a sum of a periodic potential

Vper and a localized potential Vloc. If f has the subcritical growth, but higher

than Γ(x)|u|q−2u, we establish the existence and nonexistence of ground state
solutions are dependent on the sign of Vloc. Moreover, we prove that such a

problem admits infinitely many pairs of geometrically distinct solutions pro-
vided that V is periodic and f is odd in u. Finally, we investigate the existence

of ground state solutions in the case of coercive potential V .

1. Introduction

This article concerns the nonlinear fractional Schöding-Poisson system

(−∆)αu+ V (x)u+K(x)φ(x)u = f(x, u)− Γ(x)|u|q−2u, in R3,

(−∆)βφ = K(x)u2, in R3,
(1.1)

where α, β ∈ (0, 1], 4α + 2β > 3, the fractional Laplacian (−∆)α(α ∈ (0, 1)) can
be defined by the Fourier transform (−∆)α = F−1(|ξ|2αFu), Fu being the usual
Fourier transform in R3. System (1.1) stems from not only an expansion of the
Feynman path integral from Brownian-like to Levy-like quantum mechanical paths
[17, 18], but also a system of identically charged particles interacting with each
other in the case when magnetic effects can be neglected [3].

When α = β = 1, system (1.1) reduces to the Schrödinger-Poisson system

−∆u+ V (x)u+K(x)φ(x)u = f(x, u)− Γ(x)|u|q−2u, in R3

−∆φ = K(x)u2, in R3
(1.2)

which has important physical meanings because it appears in quantum mechanical
models (see [19]) and in semiconductor theory [4, 20]. During the past few years,
there has been increasing attention to problems like (1.2) on the existence of ground
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state solutions, positive solutions, multiple solutions and so on. For more details in
studying on these kinds of problems, we refer the readers to [1, 2, 7, 15, 22, 27, 32,
33, 39] and the references therein.

When φ ≡ 0, system (1.1) reduces to the fractional Schrödinger problem

(−∆)αu+ V (x)u = f(x, u)− Γ(x)|u|q−2u in RN , (1.3)

which appears in different areas of mathematical physics. For fractional Schrödinger
problems like (1.3), pioneered from [12] and [14] via variational methods, there have
been many works in the existence and multiplicity of solutions, such as [6, 30, 36].
For other related problems, we can refer to [9, 10, 23, 31, 24, 28, 36, 11]. At least in
our knowledge, however, the only paper considering problem (1.3) is Bieganowski
[6], where the authors assumed that

(A1) f : RN × R → R is measurable, ZN− periodic in x ∈ RN and continuous
in u ∈ RN a.e. x ∈ RN , and there are c > 0, 2 ≤ q < p < 2∗α = 2N

N−2α such
that

|f(x, u)| ≤ c(1 + |u|p−1) ∀u ∈ R, x ∈ RN ;

(A2) f(x, u) = o(|u|) uniformly in x as |u| → 0;
(A3) F (x, u)/|u|q →∞ uniformly in x as |u| → ∞, where F (x, u) =

∫ u
0
f(x, s)ds

is the primitive of f with respect to u;
(A4) u→ f(x, u)/|u|q−1 is strictly increasing on (−∞, 0) and (0,+∞);
(A5) Γ ∈ L∞(RN ) is ZN -periodic in x ∈ RN , Γ(x) ≥ 0 for a.e. x ∈ RN ;
(A6) V0 := ess infx∈RN V (x) > 0 for 0 < α < 1, inf σ(−∆ + V (x)) > 0 for α = 1;
(A7) V ∈ C(RN ,R) is such that lim|x|→∞ V (x) =∞ and V0 := infx∈RN V (x) >

0;
(A8) V = Vper + Vloc, Vper ∈ L∞(R3) is Z3-periodic, Vloc ∈ L∞(R3) and

Vloc(x)→ 0 as |x| → ∞.

To obtain the ground state solutions of (1.3), the authors first adopted the
techniques in [34] to show that the corresponding Nehari manifold is a topological
manifold homeomorphic with the unit sphere in the work space, where a minimizing
sequence can be found. Then they use the abstract setting introduced [5] which
extends some results from [24, 25] to indicate that such a minimizing sequence
is bounded. Finally, they decomposed the bounded (PS) sequences including the
above minimizing sequence to achieve their aim. The similar reduction techniques
are successful used by other authors to study semilinear elliptic systems in [9] and
Schrödinger-Poisson system in [37]. Bieganowski also applied the methods in [34]
to obtain infinitely many pairs of geometrically distinct solutions of (1.3).

Presently, more attention has been paid to the study of problems concerning the
fractional Schöding-Poisson system (1.1) without Γ(x)|u|q−2u. And there has been
a few results about these kinds of problems, we can refer to [8, 13, 16, 21, 35, 38].
Among them, Ji [16] considered the fractional Schrödinger-Poisson system

(−∆)su+ V (x)u+ λφu = f(x, u), in R3,

(−∆)tφ = u2, in R3,
(1.4)

where λ ∈ R+ is a parameter, s, t ∈ (0, 1) and 4s+ 2t > 3, V (x) satisfies (Vα2) and
f fulfills subcritical growth, 4-suplinear at infinity and monotonicity assumption.
By constraint variational method and quantitative deformation lemma, Ji proved
that the system (1.4) admits a least an energy sign-changing solution.
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Motivated by the results mentioned previously, we study the non-trivial solutions
of (1.1). In what follows, we assume that N = 3 in conditions (A5)–(A8) for
convenience. To state our main results, we make the following assumptions:

(A9) f : R3 × R → R is measurable, Z3-periodic in x ∈ R3 and continuous in
u ∈ R3 a.e. x ∈ R3, and there are c > 0, 4 ≤ q < p < 2∗α = 6

3−2α such that

|f(x, u)| ≤ c(1 + |u|p−1) ∀u ∈ R, x ∈ R3;

(A10) K ∈ L∞(R3) is Z3-periodic, 0 ≤ K(x) ≤ K∞, for all x ∈ R3 and K(x) 6≡ 0;

Now we state our main results.

Theorem 1.1. Let α ∈ (0, 1]. Suppose that (A2)–(A6), (A8)–(A10) are satisfied
and either Vloc ≡ 0 or Vloc(x) < 0 a.e. x ∈ R3. Then (1.1) has a ground state of
Nehari type.

Theorem 1.2. Let α ∈ (0, 1]. Suppose that (A2)–(A6), (A8)–(A10) are satisfied
and inf σ(−∆ + Vper(x)) > 0. If Vloc > 0 a.e. x ∈ R3, then (1.1) has no ground
state solutions.

Theorem 1.3. Let α ∈ (0, 1]. Suppose that (A2)–(A6), (A8)–(A10)are satisfied,
Vloc ≡ 0 and f is odd in u. Then (1.1) admits infinitely many pairs ±u of geomet-
rically distinct solutions.

Theorem 1.4. Let α ∈ (0, 1]. Suppose that (A2)–(A5), (A7), (A9), (A10) are
satisfied. Then (1.1) has a ground state solution of Nehari type.

The remainder of this articleis organized as follows. In Section 2, some pre-
liminary results are presented. In Section 3 − 6, we give the proof of our main
results.

2. Variational setting and preliminaries

In this section, we introduce some necessary information to be used in this paper.
We will denote by Fu the usual Fourier transform of u.

Fractional Sobolev spaces are the convenient setting for our equations. A very
detailed introduction about it can be found in [26], we offer a review below.

We see that the fractional Sobolev space Wα,p(R3) is defined for any p ∈ [1,+∞)
and α ∈ (0, 1) as

Wα,p(R3) =
{
u ∈ Lp(R3) :

∫
R3

|u(x)− u(y)|p

|x− y|αp+3
dxdy <∞

}
.

This space is endowed with the Gagliardo norm

‖u‖Wα,p =
(∫

R3

|u|pdx+

∫
R3

|u(x)− u(y)|p

|x− y|αp+3
dxdy

)1/p
.

When p = 2, these spaces are also denoted by Hα(R3).
If p =2, an equivalent definition of fractional Sobolev spaces is possible, based

on Fourier analysis. Indeed, it turns out that

Hα(R3) =
{
u ∈ L2(R3) :

∫
R3

(|ξ|2α|û|2 + |u|2)dξ <∞
}
,

and the norm can be equivalently written as

‖u‖Hα =
(
‖u‖22 +

∫
R3

|ξ|2α|û|2dξ
)1/2

.
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Furthermore, this norm is equivalent to the norm

‖u‖α =
(∫

R3

(|(−∆)α/2u|2 + u2)dx
)1/2

.

The spaces Dα,2(R3) is defined as the completion of C∞0 (R3) under the norm

‖u‖Dα,2 =
(∫

R3

|(−∆)α/2u|2dx
)1/2

=
(∫

R3

|ξ|2α|û(ξ)|2dξ
)1/2

.

In this article, in view of the potential V (x), we consider its subspace

Eα =
{
u ∈ L2(R3) :

∫
R3

(|ξ|2α|û(ξ)|2 + V (x)u2)dx <∞
}

(2.1)

endowed with the norm

‖u‖ =
(∫

R3

(|ξ|2α|û(ξ)|2 + V (x)u2)dx
)1/2

, (2.2)

and the scalar product

(u, v) =

∫
R3

(|ξ|2αû(ξ)v̂ + V (x)u(x)v(x))dx.

Furthermore, we know that ‖ · ‖Eα is equivalent to the norm

‖u‖ =
(∫

R3

(|(−∆)α/2u|2 + V (x)u2)dx
)1/2

.

The corresponding inner product is

(u, v) =

∫
R3

((−∆)α/2u(−∆)α/2v + V (x)uv)dx.

First of all, let us study the variational setting of problem (1.1). Under (A10),
for any u ∈ Eα(R3), the linear operator T : Dβ,2(R3)→ R defined as

T (v) =

∫
R3

K(x)u2v dx.

By Hölder’s inequality and fractional Sobolev inequality, one has

T (v) =

∫
R3

K(x)u2v dx

≤ K∞
(∫

R3

|u(x)|
12

3+2β dx
) 3+2β

6
(∫

R3

|v(x)|2
∗
βdx

)1/2∗β
≤ C‖u‖2‖v‖Dβ,2

(2.3)

is well defined on Dβ,2(R3) and is continuous, where 2 ≤ 12
3+2β < 2∗α because of

4α+ 2β > 3. Then, by the Lax-Milgram theorem, there exists φβu ∈ Dβ,2(R3) such
that ∫

R3

(−∆)β/2φβu(−∆)β/2v dx =

∫
R3

K(x)u2v dx, ∀v ∈ Dβ,2(R3). (2.4)

Therefore, (−∆)βφβu = K(x)u2 in a weak sense, and the representation formula
holds

φβu(x) = cβ

∫
R3

K(y)u2(y)

|x− y|3−2β
dy,∀x ∈ R3 where cβ = π−

3
2 2−2β

Γ (3− 2β)

Γ (β)
.
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This formula is called t-Riesz potential. Substituting φβu into (1.1), then (1.1) can
be reduced to the fractional Schrödinger equation

(−∆)αu+ V (x)u+K(x)φβu(x)u = f(x, u)− Γ(x)|u|q−2u in R3, (2.5)

whose solutions are the critical points of the function J(u) : Eα(R3) → R defined
by

J(u) =
1

2
‖u‖2 +

1

4

∫
R3

K(x)φβuu
2dx− I(u), (2.6)

where

I(u) =

∫
R3

(F (x, u(x))− 1

q
Γ(x)|u|q)dx.

Obviously, the assumptions of our theorems imply that J is a well-defined of class
C1 functional and that

(J ′(u), v) =

∫
R3

((−∆)α/2u(−∆)α/2v + V (x)uv)dx+

∫
R3

K(x)φβu(x)uv dx

−
∫
R3

f(x, u)v − Γ(x)|u|q−1u dx.
(2.7)

Hence, if u ∈ Eα(R3) is a critical point of J , then the pair (u, φβu) is a solution of
(1.1).

Our goal is to find a critical point being a minimizer of J on the Nehari manifold
N := {u ∈ Eα(R3) \ {0} : J ′(u)(u) = 0}. Obviously, N contains all nontrivial
critical points, hence a ground state is the least energy solution.

Lemma 2.1 ([35]). If α, β ∈ (0, 1) and 4β+ 2α ≥ 3, then for any u ∈ Hα(R3), we
have

(i) φtu : Hα(R3) → Dβ,2(R3) is continuous, and maps bounded sets into
bounded sets;

(ii) φβτu(x) = τ2φβu(x) for all τ ∈ R, φβu(·+y) = φβu(x+ y);

(iii) if un ⇀ u in Hα(R3), then φβun ⇀ φβu in Dβ,2(R3);

(iv) if un ⇀ u in Hα(R3), then
∫
R3 φ

β
unu

2
n =

∫
R3 φ

β
(un−u)(un − u)2 +

∫
R3 φ

β
uu

2 +

o(1).

3. Proof of Theorem 1.1

First, we consider the norm in the working space Hα/2(R3).

Lemma 3.1 ([6]). Let α ∈ (0, 2) and denote by

‖u‖2Hα/2 =

∫
R3

|ξ|α|û(ξ)|2dξ +

∫
R3

|u(x)|2dx

the classical norm on the fractional Sobolev space Hα/2(R3). Suppose that (A6)
and (A8) hold. Then the norm

‖u‖2 =

∫
R3

|ξ|α|û(ξ)|2dξ +

∫
R3

V (x)|u(x)|2dx

is equivalent to ‖ · ‖Hα/2 .
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Remark 3.2. Obviously, the norm equivalence is also true when (A7) or (A8)
holds. And the above lemma implies that Eα(R3) coincides with Hα(R3). Thus
our functional J : Hα(R3)→ R has the form

J(u) =
1

2
‖u‖2 +

1

4

∫
R3

K(x)φβu(x)u2 − I(u).

The Nehari manifold has the form

N =
{
u ∈ Hα(R3) \ {0} : ‖u‖2 = I ′(u)(u)−

∫
R3

K(x)φβu(x)u2
}
.

The following lemmas are crucial to the proof of the Theorem 1.1.

Lemma 3.3. Suppose that the following conditions hold:

(A11) there exists r ∈ (0, 1) such that a := inf‖u‖=r J(u) > J(0) = 0;
(A12) for any tn →∞ and un → u 6= 0 as n→∞, I(tnun)/tqn →∞;

(A13) for t ∈ (0,∞) \ {1} and u ∈ N , t4−1
4 I ′(u)(u)− I(tu) + I(u) < 0;

(A14) J is coercive on N .

Then infN J > 0 and there exists a bounded minimizing sequence for J on N , i.e.
there is a sequence {un} ⊂ N such that J(un)→ infN J and J ′(un)→ 0.

Since the proof of Lemma 3.3 is similar to that of [37, Theorem 3.2], we omit it
here.

Lemma 3.4. Suppose that (A2)–(A10) are satisfied. Then (A11)–(A14) hold.

Proof. To prove (A11) we fix ε > 0. Observe that (A2) and (A9) imply that
F (x, u) ≤ ε|u|2 + Cε|u|p for some Cε > 0. Therefore,∫

R3

(F (x, u(x))− 1

q
Γ(x)|u|q)dx ≤

∫
R3

F (x, u(x)dx ≤ C(ε‖u‖2 + Cε‖u‖p)

for a positive constant C provided by the Sobolev embedding theorem. Thus there
is r > 0 such that ∫

R3

(F (x, u(x))− 1

q
Γ(x)|u|q)dx ≤ 1

4
‖u‖2

for ‖u‖ ≤ r. Therefore

J(u) =
1

2
‖u‖2 +

1

4

∫
R3

K(x)φβu(x)u2 − I(u) ≥ 1

4
‖u‖2 =

1

4
r2 > 0

for all u ∈ Hα(R3), p > 4. So there exists r ∈ (0, 1) such that ‖u‖ = r and
J(u) > 0, then a = inf‖u‖=r J(u) > 0.

To prove (A12), by (A4) and Fatou’s lemma we obtain

I(tnun)/tqn =

∫
R3

F (x, tnun)

tqn
dx− 1

q

∫
R3

Γ(x)|un|qdx→∞.

To prove (A13) we fix u ∈ N and consider

ψ(t) =
t4 − 1

2
I ′(u)(u)− I(tu) + I(u) ∀t ≥ 0.

Then ψ(1) = 0 and

dψ(t)

dt
= 2t3I ′(u)(u)− udI(tu)

dt
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= 2t3
∫
R3

f(x, u)u− Γ(x)|u|qdx−
∫
R3

f(x, tu)u+ Γ(x)tq−1|u|q−1dx

=

∫
R3

2t3f(x, u)u− f(x, tu)u dx− (2t3 − tq−1)

∫
R3

Γ(x)|u|qdx.

Since u ∈ N ,

I ′(u)(u) =

∫
R3

f(x, u)u− Γ(x)|u|qdx = ‖u‖2 +

∫
R3

K(x)φβuu
2 > 0.

Therefore, for t > 1, we have dψ(t)
dt < 0 by (A4). Similarly, dψ(t)

dt > 0, for t < 1.
Therefore ψ(t) < ψ(1) = 0 for t = 1, that is

t4 − 1

2
I ′(u)(u)− I(tu) + I(u) < 0.

To prove (A14), for u ∈ N , (A4) implies that f(x, u)u ≥ qF (x, u). Therefore

J(u) = J(u)− 1

q
J ′(u)(u)

= (
1

2
− 1

q
)‖u‖2 + (

1

4
− 1

q
)

∫
R3

K(x)φβu(x)u2dx+

∫
R3

(
1

q
f(x, u)u− F (x, u))dx

≥ (
1

2
− 1

q
)‖u‖2

which implies that J is coercive on N . �

Now, we will introduce a decomposition result of bounded (PS) sequences which
is important to the proof of Theorem 1.1. The following lemma generalizes the
decomposition result from [5]. We will denote

Jper = J(u)− 1

2

∫
R3

Vloc(x)u2dx.

Lemma 3.5. Suppose that the assumptions of Theorem 1.1 are satisfied. Let (un)
be a bounded Palais−sequence for J . Then passing to a subsequence of (un), there
exist an integer l ≥ 0 and sequences (ykn) ⊂ Z3, wk ∈ Hα(R3), k = 1, . . . , l such
that

(a) un ⇀ u0 and J ′(u0) = 0;

(b) |ykn| → ∞ and |ykn − yk
′

n | → ∞ for k 6= k′;
(c) wk 6= 0 and J ′per(w

k) = 0 for each 1 ≤ k ≤ l;
(d) un − u0 −

∑l
k=1 w

k(· − ykn)→ 0 in Hα(R3) as n→∞;

(e) J(un)→ J(u0) +
∑l
k=1 Jper(w

k).

The proof of Lemma 3.5 resembles the proof of [5, Theorem 4.1]. So we omit it.

Proof of Theorem 1.1. By Lemmas 3.3 and 3.4, there exists a bounded minimizing
sequence (un) ∈ N for J , that is J ′(un) → 0 and J(un) → c := infN J > 0. By
Lemma 3.5 we have that

J(un)→ J(u0) +

l∑
k=1

Jper(w
k),

where wk satisfies

wk 6= 0 and J ′per(wk) = 0 for 1 ≤ k ≤ l,
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that is wk are critical points of the periodic part of the functional J . Suppose that
Vloc ≡ 0, so J = Jper. If u0 = 0, we have

c+ o(1) = J(un)→
l∑

k=1

Jper(w
k) ≥ lc.

Then l = 1 and w1 6= 0 is a ground state solution. If u0 6= 0, we have

c+ o(1) = J(un)→ J(u0) +

l∑
k=1

Jper(w
k) ≥ (l + 1)c.

Therefore, l = 0 and J(un) → J(u0) = c, so u0 is a ground state solution.
Suppose that Vloc < 0 for a.e. x ∈ R3. We denote cper := infNper Jper, where

Nper =
{
u 6= 0 : J ′per(u)(u) = 0

}
. Because Vloc < 0, we have J(u) < Jper(u). From

the above arguments, there exists a ground state solution uper of Jper such that
Jper(uper) = cper. Let t > 0 be such that tuper ∈ N . Then

c ≤ J(tuper) < Jper(tuper) ≤ Jper(uper) = cper.

If u0 = 0, we have

c+ o(1) = J(un) =

l∑
k=1

Jper(w
k) ≥ lcper > lc,

which implies l = 0 and J(un) → c = 0. Obviously, it is a contraction. Therefore,
u0 6= 0 and note that

c+ o(1) = J(un)→ J(u0) +

l∑
k=1

Jper(w
k) ≥ c+ lcper.

So l = 0 which means that J(un)→ J(u0) = c and u0 is a ground solution. �

4. Proof of Theorem 1.2

Observe that the condition inf σ(−∆ + Vper) > 0 implies that the norm ‖u‖20 =∫
R3(|ξ|2α|û(ξ)|2 + Vper(x)u2)dx is equivalent to ‖ · ‖ in Hα(R3).

Proof of Theorem 1.2. By contradiction, suppose that there exists a ground state
solution u0 ∈ N of J . Similar to the proof of [37, Theorem 3.2], there exists tp > 0
such that tpu0 ∈ Nper. Since Vloc > 0 for a.e. x ∈ R3, one has

∫
R3 Vloc(x)u20 > 0.

Then by Lemma 3.4, we obtain that (A13) holds; that is, for t ∈ (0,∞) \ {1} and
u ∈ N ,

t4 − 1

4
I ′(u)(u)− I(tu) + I(u) < 0.

Since u0 ∈ N , one has

J(u0)− J(tpu0)

=
1− t2p

2
‖u0‖2 −

t4p − 1

4

∫
R3

K(x)φβuu
2
0 − I(u0) + I(tpu0)

=
(1− t2p

2

)2
‖u0‖2 −

t4p − 1

4
J ′(u0)u0 −

t4p − 1

4
I ′(u0)(u0) + I(tpu0)− I(u0)

=
(1− t2p)2

4
‖u0‖2 −

t4p − 1

4
I ′(u0)(u0) + I(tpu0)− I(u0)
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>
(t2p − 1)2

4
‖u0‖2

Then J(u0) > J(tpu0). Therefore,

cper := inf
Nper

Jper ≤ Jper(tpu0) < J(tpu0) < J(u0) = c. (4.1)

On the other hand, let u ∈ Nper and uy(·) = u(· − y) for y ∈ Z3. Then there exist
tu > 0 such that tuuy ∈ N . Observe that

Jper(u) = Jper(uy) ≥ Jper(tuuy)

= J(tuuy)− 1

2

∫
R3

Vloc(x)(tuuy)2

≥ c−
∫
R3

Vloc(x)(tuuy)2.

(4.2)

We are going to show that ∫
R3

Vloc(x)(tuuy)2 → 0 (4.3)

Indeed, ∫
R3

Vloc(x)(tuuy)2 = t2u

∫
R3

Vloc(x+ y)u2. (4.4)

By (A8), one has ∫
R3

Vloc(x+ y)u2 → 0 as |y| → ∞. (4.5)

If tu →∞, then by (A4) one has

o(1) =
c

tqu
≤ J(uuy)

tqu

=
1

2
‖uy‖2t2−qu +

1

4
t4−qu

∫
R3

K(x)φβuyu
2
y

−
∫
R3

F (x, tuuy)

|tuuy|q
uqydx+

∫
R3

1

q
Γ(x)|uy|qdx→ −∞.

Thus tu < ∞, which, together with (4.5), implies that (4.3) holds. By (4.2), we
have

Jper(u) ≥ c−
∫
R3

Vloc(x)(tuuy)2 → c.

Taking infimum over all u ∈ Nper we have cper ≥ c, which contradicts with (4.1).
The proof is complete. �

5. Proof of Theorem 1.3

Let β := infN ‖u‖ > 0, where ‖ · ‖ is the norm defined by (2.2). Theorem 1.1
provides that c is attained at some function in N . By τu we denote the Z3-action
on Hα(R3), i.e. τku = u(· − k). Obviously, τkτ−ku = u. For given k ∈ Z3, let us
consider τk as an operator τk : Hα(R3) → Hα(R3). It is easy to prove that τk is
linear.

Lemma 5.1 ([6]). . For every u, v ∈ Hα(RN ) and k ∈ ZN , we have

(τku, v) = (u, τ−kv) .
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Remark 5.2. When N = 3, the conclusion in Lemma 5.1 still holds. Obviously,
by the definition of τk, we have ‖τk‖ = ‖u‖. Thus τk is a bounded operator and
‖τk‖ = 1. Then we may consider an adjoint operator τ∗k : Hα(R3)→ Hα(R3). From

Lemma 5.1 we have τ∗k = τ−k. Moreover, τk is an isomorphism and τ−1k = τ−k = τ∗k .
So τk is an orthogonal operator.

The proof of Lemmas 5.3, 5.5, 5.6 are similar to those in [6, Lemmas 5.3, 5.4 5.6,
5.7]. So we omit them here.

Lemma 5.3. Let α ∈ (0, 1].

(1) The functional J is Z3-invariant;
(2) N is Z3-invariant.

Remark 5.4. Lemma 5.1 implies that the unit sphere S1 is Z3-invariant.

From [5] we know for each u ∈ Hα(R3) there is a unique number t(u) > 0
such that t(u)u ∈ N and the function m : S1 → N given by m(u) = t(u)u is a
homeomorphism. The inverse m−1 : N → S1 is given by m−1(u) = u

‖u‖ . Assume

that A,B ⊂ Hα(R3) are Z3-invariant subsets. We say that the function h : A→ B
is Z3-equivariant if

h(τku) = τkh(u)

for any u ∈ A and k ∈ Z3.

Lemma 5.5. The following four functions are Z3-equivariant:

(1) m : S1 → N ,
(2) m−1 : N → S1,
(3) ∇J : Hα(R3)→ Hα(R3),
(4) ∇(J ◦m) : S1 → Hα(R3)

Lemma 5.6. The function m−1 : N → S1 is Lipschitz continuous.

We denote O(u) =
{
u(· − k) : k ∈ Z3

}
. If u is a solution of (1.1) and k ∈ Z3,

then u(· − k) is also a solution, provided that Vloc ≡ 0. Therefore, all elements of
the orbit O(u) of u under the Z3-action are solutions. We define that u1 and u2
are geometrically distinct if their orbits satisfy O(u1) ∩ O(u2) = ∅.

To prove Theorem 1.3 we use the method introduced by Szulkin and Weth [34].
Let L = {u ∈ S1 : (J ◦ m)′(u) = 0}. Take a set F ⊂ L such that F = −F
and for each orbit O(w) there is a unique representative v ∈ F . Observe the [24,
Theorem 3.1(b)], we know that to prove Theorem 1.3 it is sufficient to show J ◦m
has infinitely many geometrically distinct critical points. Therefore, we only need
to show that F is infinite.

As in [34], we put
κ = inf

v,w∈L,v 6=w
‖v − w‖ > 0.

Next, we show a lemma which is crucial to the proof of the Theorem 1.3.

Lemma 5.7. Let d ≥ c. If (v1n), (v2n) ⊂ S1 are two (PS) sequences for J ◦m such
that J(m(vin)) ≤ d, i = 1, 2, then

‖v1n − v2n‖ → 0

or
lim inf
n→∞

‖v1n − v2n‖ ≥ ρ(d) > 0,

where ρ(d) depends only on d, but not on the particular choice of the sequences.
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Proof. Note that uin = m(vin), i = 1, 2 are (PS) sequences for J . Moreover, they
are bounded in Hα(R3), since J is coercive on N . Therefore (u1n) and (u2n) are
bounded in L2(R3), say |u1n|2 + |u2n|2 ≤M for some M > 0.

Case 1: Assume that |u1n − u2n|p → 0. Fix ε > 0, by (A2) and (A9) we have

‖u1n − u2n‖2

= J ′(u1n)(u1n − u2n)− J ′(u2n)(u1n − u2n) +

∫
R3

[f(x, u1n)− f(x, u2n)](u1n − u2n)dx

−
∫
R3

Γ(x)(|u1n|q−2u1n − |u2n|q−2u2n)(u1n − u2n)dx

+

∫
R3

K(x)(φβu1
n
u1n − φ

β
u2
n
u2n)(u1n − u2n)

≤ ε‖u1n − u2n‖+

∫
R3

(ε(|u1n|+ |u2n|) + Cε(|u1n|p−1 + |u2n|p−1))|u1n − u2n|dx

−
∫
R3

Γ(x)(|u1n|q−2u1n − |u2n|q−2u2n)(u1n − u2n)dx

+

∫
R3

K(x)φβu1
n
u1n(u1n − u2n)dx+

∫
R3

K(x)φβu2
n
u2n(u1n − u2n)dx

≤ (1 + C0)ε‖u1n − u2n‖+Dε|u1n − u2n|p + C1|Γ|∞|u1n − u2n|qq

+

∫
R3

K(x)φβu1
n
u1n(u1n − u2n)dx+

∫
R3

K(x)φβu2
n
u2n(u1n − u2n)dx

for each n ≥ nε and some constants C0, C1, Dε > 0. By assumption we have that
Dε|u1n − u2n|p → 0. Observe that

C1|Γ|∞|u1n − u2n|qq ≤ C1|Γ|∞|u1n − u2n|
θq
2 |u1n − u2n|(1−θ)qp ,

where θ ∈ (0, 1) is such that 1
q = θ

2 + 1−θ
p . Thus

C1|Γ|∞|u1n − u2n|qq ≤ C1|Γ|∞Mθq|u1n − u2n|(1−θ)qp → 0.

And by Hölder inequality,∫
RN

K(x)φβu1
n
u1n(u1n − u2n)dx

≤ |K|∞
(∫

R3

|φβu1
n
|2
∗
βdx

)1/2∗β(∫
R3

|u1n(u1n − u2n)|
6

3+2β dx
) 3+2β

6

≤ C2‖φβu1
n
‖Dβ,2

(∫
R3

|u1n|
6

3+2β |u1n − u2n|
6

3+2β dx
) 3+2β

6

≤ C3‖φβu1
n
‖Dβ,2 |u1n| 12

3+2β
|u1n − u2n| 12

3+2β

≤ C4|u1n − u2n| 12
3+2β

,

(5.1)

where C2, C3, C4 > 0 are constants. By β ∈ (0, 1], we have 12
3+2β < 4 < p. Thus

there exists θ′ ∈ (0, 1) such that

1
12

3+2β

=
θ′

2
+

1− θ′

p

and
|u1n − u2n| 12

3+2β
≤ |u1n − u2n|θ

′

2 |u1n − u2n|1−θ
′

p ≤Mθ′ |u1n − u2n|1−θ
′

p . (5.2)



12 M. YU, H. CHEN EJDE-2019/102

Then ∫
R3

K(x)φβu1
n
u1n(u1n − u2n)dx ≤ C4M

θ′ |u1n − u2n|1−θ
′

p → 0. (5.3)

Similarly we have∫
R3

K(x)φβu2
n
u2n(u1n − u2n)dx ≤ C5M

θ′′ |u1n − u2n|1−θ
′′

p → 0, (5.4)

where C5 > 0 is some constant and θ′′ ∈ (0, 1). Finally

lim sup
n→∞

‖u1n − u2n‖2 ≤ lim sup
n→∞

(1 + C0)ε‖u1n − u2n‖

+ lim sup
n→∞

Dε|u1n − u2n|p + lim sup
n→∞

C1|Γ|∞|u1n − u2n|qq

+ lim sup
n→∞

C4M
θ′ |u1n − u2n|1−θ

′

p + lim sup
n→∞

Cθ
′′

5 |u1n − u2n|1−θ
′′

p

= (1 + C0)ε lim sup
n→∞

‖u1n − u2n‖

(5.5)
for every ε > 0. Thus limn→∞ ‖u1n − u2n‖ = 0. Finally

‖v1n − v2n‖ = ‖m−1(u1n)−m−1(u2n)‖ ≤ L‖u1n − u2n‖ → 0,

where L > 0 is a Lipschitz constant for m−1.

Case 2: Assume that |u1n−u2n|p 9 0. By the Lions lemma, there are yn ∈ R3 such
that ∫

B(yn,1)

|u1n − u2n|2dx = sup
y∈R3

∫
B(y,1)

|u1n − u2n|2dx ≥ ε

for some ε > 0. In view of Lemma 5.5 we can assume that (yn) is bounded.
Therefore, up to a subsequence we have

u1n ⇀ u1, u2n ⇀ u2,

where u1 6= u2 and J ′(u1) = J ′(u2) = 0 and

‖u1n‖ → α1, ‖u2n → α2,

where β ≤ αi ≤ ν(d) = sup {‖u‖ : u ∈ N , J(u) ≤ d}, i = 1, 2. Suppose that u1 6= 0
and u2 6= 0. Then ui ∈ N for i = 1, 2. Moreover

vi = m−1(ui) ∈ S1, i = 1, 2 and v1 6= v2.

Therefore,

lim inf
n→∞

‖v1n − v2n‖ = lim inf
n→∞

‖ u1n
‖u1n‖

− u1n
‖u2n‖

‖ ≥ ‖u
1

α1
− u2

α2
‖ = ‖β1v1 − β2v2‖,

where βi = ‖ui‖
αi ≥

β
ν(d) , i = 1, 2. Of course ‖v1‖ = ‖v2‖ = 1. So

lim inf
n→∞

‖v1n − v2n‖ ≥ ‖β1v1 − β2v2‖ ≥ min
i=1,2
{βi}‖v1 − v2‖ ≥

βκ

ν(d)
.

If u2 = 0, then u1 6= u2 = 0. Therefore,

lim inf
n→∞

‖v1n − v2n‖ = lim inf
n→∞

‖ u1n
‖u1n‖

− u1n
‖u2n‖

‖ ≥ ‖u
1

α1
− u2

α2
‖ = ‖u

1

α1
‖ ≥ β

ν(d)
.

The case u1 = 0 is similar, the proof is complete. �
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Proof of Theorem 1.3. Suppose by contraction that F is finite. Because the unit
sphere S1 ⊂ Hα(R3) is a Finsler C1,1−manifold and by [29, Lemma II.3.9], we
obtain J ◦m : S1 → R has a pseudo-gradient vector field. Because of the obtained
discreteness of (PS) sequences in Lemma 5.7, we can apply the methods in [34,
Lemma 2.15, Lemma 2.16 and Theorem 1.2] in our case. In fact, for every k ∈ N
there is u ∈ S1 such that

(J ◦m)′(u) = 0 and J(m(u)) = ck,

where
ck = inf

{
d ∈ R : γ({v ∈ S1 : J(m(v)) ≤ d}) ≥ k

}
is the Lusternik-Schnirelmann value and γ denotes the Krasnoselskii genus (see
[29]). Moreover ck ≤ ck+1, thus we get contradiction (for the detailed arguments
see [34]). The proof is complete. �

6. Proof of Theorem 1.4

Before showing the proof, We state the following form of the Sobolev-Gagliardo-
Nirenberg inequality.

Lemma 6.1 ([28, Proposition II.3]). Let r > 1. Then there is a positive constant
C > 0 such that for every function u ∈ Hα(RN ) there holds

|u|r+1
r+1 ≤ C‖u‖

(r−1)N
α

Hα |u|r+1− (r−1)N
α

2 .

In [11], it was proven that Eα is compactly embedded into Lr(RN ) for N > α
and 2 ≤ r < 2∗α. We will show that the method introduced by Secchi in [28] may
be applied in this case.

Proof of Theorem 1.4. In view of Lemma 3.3, we obtain a bounded minimizing
sequence (un) ⊂ N , i.e.

J(un)→ inf
N
J =: c, J ′(un)→ 0.

Then we assume that un ⇀ u0 in Eα(R3) and un → u0 in Lrloc(R3) for 1 ≤ r < 2∗α.
It is a easy to proof that u0 is a weak solution to our problem. Then we just need
to check whether u0 6= 0. Observe that for n ≥ n0

c

2
≤ J(un) = J(un)− 1

2
J ′(un)(un)

=
1

2

∫
R3

f(x, un)un − 2F (x, un)dx−
(1

2
− 1

q

) ∫
R3

Γ(x)|u|qdx

− 1

4

∫
R3

K(x)Φβu(x)u2dx

≤ 1

2

∫
R3

f(x, un)un − 2F (x, un)dx

≤ 1

2

∫
R3

f(x, un)undx

≤ 1

2

∫
R3

(ε|un|2 + Cε|un|p)dx,

where n0 ≥ 1 is large enough. Then

c

2
≤ ε

2
|un|22 +

Cε
2
|un|pp.



14 M. YU, H. CHEN EJDE-2019/102

By Lemma 6.1, we have

c

2
≤ ε

2
|un|22 +

CCε
2
‖un‖

3(p−2)
α

Hα(R3)|un|
p− 3(p−2)

α
2 .

Observe that the boundedness of (un) in Hα with respect to the norm ‖ · ‖ implies
the boundedness of (un) in Eα with respect to the classical norm ‖ · ‖Hα(R3).
Therefore ‖un‖Hα(R3) ≤ D for some D > 0. Thus

c

2
≤ ε

2
|un|22 +

CCε
2

D
3(p−2)
α |un|

p− 3(p−2)
α

2 .

Denote Ĉε = C·Cε
2 D

3(p−2)
α . Then

c

2
≤ ε

2
|un|22 + Ĉε|un|

p− 3(p−2)
α

2 .

Take any ε ≤ c
2(supn ‖un‖)2

. Then

c

2
≤ c|un|22

4(supn ‖un‖)2
+ Ĉε|un|

p− 3(p−2)
α

2 .

Obviously,
|un|22

(supn ‖un‖)2
≤ 1,

and therefore
c

2
≤ c

4
+ Ĉε|un|

p− 3(p−2)
α

2 .

Finally
c

4
≤ Ĉε|un|

p− 3(p−2)
α

2 .

So

ln
c

4
≤
(
p− 3(p− 2)

α

)
ln(C1|un|2),

where C1 = Ĉ
p− 3(p−2)

α
ε . Thus

α

αp− 3(p− 2)
ln
c

4
≤ ln(C1|un|2).

And finally

|un|22 ≥
( 1

C1
exp

( α

αp− 3(p− 2)
) ln

c

4

))2
=: ĉ > 0.

Take any R > 0 and observe that

|un|22 =

∫
B(0,R)

|un|2dx+

∫
R3\B(0,R)

|un|2dx.

Assume by a contraction that u0 = 0, then un → 0 in L2
loc(R3). Then for every

R > 0 there is n0 such that for n ≥ n0 we have∫
B(0,R)

|un|2dx ≤
ĉ

2
.

Thus ∫
R3\B(0,R)

|un|2dx ≥
ĉ

2
.

On the other hand

ĉ

2
≤
∫
R3\B(0,R)

|un|2dx =

∫
R3\B(0,R)

V (x)|un|2

V (x)
dx
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≤ 1

inf |x|≥R V (x)

∫
R3\B(0,R)

V (x)|un|2dx

≤ ‖un‖2

inf |x|≥R V (x)
≤ supn ‖un‖

2

inf |x|≥R V (x)
.

Taking R > 0 big enough we obtain a contradiction, since V (x)→∞ as |x| → ∞.
Therefore, u0 6= 0. The proof is complete. �
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