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A KAM THEOREM FOR HIGHER DIMENSIONAL REVERSIBLE
NONLINEAR SCHRODINGER EQUATIONS

ZHAOWEI LOU, YINGNAN SUN

ABSTRACT. In this article we prove an abstract Kolmogorov-Arnold-Moser
(KAM) theorem for infinite dimensional reversible systems. Using this theo-
rem, we obtain the existence of quasi-periodic solutions for a class of reversible
(non-Hamiltonian) coupled nonlinear Schrodinger systems on a d-torus.

1. INTRODUCTION AND MAIN RESULT

Among various techniques for studying the existence of quasi-periodic solutions
of nonlinear partial differential equations (PDEs), the Kolmogorov-Arnold-Moser
(KAM) theory is one of the most powerful tools. Kuksin [I2] and Wayne [I8] first
developed a Newtonian scheme to investigate quasi-periodic solutions of Hamilton-
ian PDEs in one dimensional space. The general idea is that Hamiltonian function
is thought of as a normal form plus a real analytic perturbation, then constructing
an infinite symplectic transformation sequences to make the perturbation smaller
and smaller and construct a converged local normal form. The normal form is help-
ful to understand the dynamics around the quasi—periodic solutions, for example,
one sees the linear stability and zero Lyapunov exponents.

The feasibility of the KAM method in one dimensional Hamiltonian PDEs, how-
ever, depends crucially on the second Melnikov condition. Because of the mul-
tiple eigenvalues of the linear operator, such condition is not naturally available
in higher dimensional case, and the KAM method is in general not easy to ap-
ply. In 1998, Bourgain [3] first made a breakthrough. He used multi-scale analysis
method to avoid the cumbersome second Melnikov condition and thus obtained
small-amplitude quasi-periodic solutions of two dimensional nonlinear Schrodinger
equations (NLS). Later, he improved his method and studied quasi-periodic solu-
tions of NLS and nonlinear wave equations in any dimensional space. Following the
idea and methods in [3], many works [4, [2, [I7] have been done.

There are strong hopes to develop the KAM theory for higher dimensional PDEs,
because multi-scale analysis can not help us to understand the dynamics around
quasi-periodic solutions. Geng and You [9] first built a KAM theorem for higher
dimensional beam equation and nonlocal smooth NLS. They used momentum con-
servation condition which means the nonlinearity is independent of spatial variable
x to avoid the difficulty of multiple eigenvalues. In 2010, Eliasson and Kuksin
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[6] studied a class of higher dimensional NLS with convolution type potential and
nonlinearity containing spatial variable x. They used the block diagonal normal
form structure to deal with multiple eigenvalues of linear operator. Also, they
introduced Lipschitz domain property of perturbation to handle infinitely many
resonances at each KAM step. By developing To6plitz-Lipschitz property of per-
turbation and constructing appropriate tangential sites on Z2, Geng, Xu and You
[8] obtained quasi-periodic solutions of two-dimensional completely resonant NLS.
Later on, Geng and You [11]] simplified the proof of [6] via momentum conservation
condition. Procesi and Procesi [15] extended the result in [8] to the d-dimensional
case by a very ingenious choice of tangential sites. See [5] [16] 19, 10] for further
studies.

Recently, KAM theory for Hamiltonian PDEs has been generalized to reversible
ones in one dimensional space [20] [I]. In fact, reversible PDEs are a class of phys-
ically important PDEs as well as Hamiltonian ones. For example, the following
coupled NLS system arising from nonlinear optics (see [13]

):
iug — Au + Meu + 905G (Jul?, [v]?) = 0,

1.1
iy — Av + Mgv + D5Ga(Ju®,|v*) =0, =eT¢:=RY/277Z¢, (1)

where Mg and Mg are real Fourier multiplier, G; = o(|ul® + [v|?), i = 1,2 are real
analytic functions near (u,v) = (0,0). When G; = G4, equation is not only
reversible (with respect to the involution Sy (u(x), v(z)) = (@(—=x),v(—x))) but also
Hamiltonian. When G; # G5, equation is no longer Hamiltonian but still
reversible. This motives us to develop reversible KAM theory for equation .

As in the Hamiltonian case, the major difficulty in constructing KAM scheme
for is to deal with infinitely many resonances. In this article, by introducing
the class of To6plitz-Lipschitz vector fields (inspired by [0, 8 [I]) and momentum
conservation condition, the difficulty can be overcome. T6plitz-Lipschitz vector
field plays the most essential role and it reduces infinitely many resonances to only
finitely many ones. Momentum conservation condition can simplify the proof. We
mention that Toplitz-Lipschitz vector field introduced here is the generalization of
Toplitz-Lipschitz functions in [§].

Following [6], we could study more general equation with nonlinearities G
containing the spatial variable x explicitly, but the proof would be more complicated
since we have to deal with block diagonal normal form. This article is working on
NLS with the external parameters, and the completely resonant case (i.e. no Fourier
multiplier in equation (L.I)) is in [7]. As in the Hamiltonian case (see [8, [175]), the
construction of Birkhoff normal form will be a new challenge.

1.1. Main result. Let

7, = {iW i@ i) ¢z,

T, = (0,7, 5m) ¢ zd
be two sets of distinguished sites of Fourier modes. For technical convenience, we
suppose 0 € Z; NZ,. We denote by \;, i € Z% (resp. \;) the eigenvalues of —A + M
(resp. —A + M;g:) under periodic boundary conditions:

Mo =w; =[PP+, 1<j<n,
o= il i ¢ T,
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o =@ =[PP +g, 1<j<m,
Xi: ‘”27 i¢127

and the corresponding eigenfunctions ¢;(z) = mei<i’m>. Assume the parameters
™

(£,€) € O :=[0,1]" x [0,1]™ € R™™. Then we have the following main result.

Theorem 1.1. For any 0 < v < 1, there exists a Cantor subset O, C O with
meas(O \ O,) = O(y'/4), such that for any (¢€,€) € O, equation (1) with re-
versible perturbation

Gr = [ul*vl* + o(([uf® + [v]*)*) # G2 = [ul*[o]* + o((Jul* + [v[*)?)

possesses a small amplitude quasi-periodic solution of the form

u(t,z) = Z ui (Wit ..., wnt)di(x),

i€z (1 2)
o(t,z) = Z vi(@nt, ..., Omt) i (),
i€z
where u; : T" — R (resp. v; : T™ — R ) and dn,...,d, (resp. Oty lom ) are
close to the unperturbed frequencies wy,...,w, (resp. ©1,...,0m ). Moreover, the
quasi-periodic solutions are real analytic and may not be linear stable.
Remark 1.2. In the following proof, we set the nonlinearities Gi = |u|*|v|* +

o((Jul? + [v|?)3) and Go = |u|?*|v]* + o((Ju|? + |v|?)?) to simplify notations. Our
method also applies to the general cases G; = (Jul? + [v|*)™ + o((Ju|? + |v]?)™),
n; €L, n; >2,0=1,2.

We point out that the reversible coupled nonlinearities may lead to the linear in-
stability of KAM tori. Note that because G; # G5 in equation , the eigenvalues
of

= (37 ) st
after KAM iteration (see ) may not be real numbers. Thus we can not obtain
the linear stability of quasi-periodic solution . But for the case of Hamiltonian
coupled nonlinearities G1 = G, Aj o0 = flj,oo (i.e., M; o is symmetric), this means
the eigenvalues of M} o are real numbers and thus their result is linearly stable. For
the single (non-coupled) reversible PDEs in [I], M; o is the scalar normal frequency
.00, thus their result is also linearly stable.

The rest of this article is organized as follows. In Section 2, we give the definitions
of weighted norms for functions and vector fields. An abstract KAM theorem
(Theorem for infinite dimensional reversible systems is presented in Section 3.
In Section 4, we use the KAM theorem to prove Theorem[I.1} The proof of Theorem
[3:2)is given in Section 5. Some properties of reversible system and technical lemmas
are listed in the Appendix.

2. PRELIMINARIES

For the sake of completeness, we first introduce some definitions and notation.
Let Z C Z¢ be a finite subset and p > 0. We introduce the Banach space ¢7 of all
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complex sequences z = (zj),ecza\z With

l=llo =D €1°)z] < oo,

JEZINT

where |j| = \/[j1[? + - + [jal*. o i
Given two subsets of Z%: T; = {i) i) ... i} and T, = {iV), 1) ... (™)
we denote Z¢ := Z?\ 7; and ¢} := E%, (I =1,2). We consider the phase space
Py =T x T™ x R" x R™ x 0 x U5 x 07 x 05> y:=(0,0,1,J,2z,w, z,0).
We introduce a complex neighborhood
Dy(r,s) ={y: |Imb| <r,|Ime| <7 |I| <s,|J| <s,
Izllp < s, llwll, < s, 012, < s, 1@, < s}
of T¢ ™ =T x T™ x {I =0} x {J =0} x {z = 0} x {w = 0} x {Z = 0} x {w = 0},
where | - | is the sup-norm.
Suppose O C R™"™ is a compact parameter subset. A function f : D,(r,s) x

O — C is real analytic in y and Cj;, (i.e., C*-smooth in the sense of Whitney) in
¢ € O and has Taylor-Fourier series expansion

L) = ()i (kO +Re)) [l gl azBy dpb
[y Q) Z fklaﬁ,kla,@(o
kE€Z™ lEN™ 0, BN |

~ ~ ~ d
keZ™,[eN™,a,3eN?2

where (k,0) = S0 kif;, I' = [/, I/, and 2°%° = [L;ezs z; zﬁ . @, 3 have only
finitely many nonzero components, and similarly for the other 1ndexes We define

the weighted norm of f as

1D, rexo = sup > |fas imagloe I 28] 0 2.
12|, <s,|2|p<s kla .8,
lwlp<s,|wl,<s L7 5 3

where

b
|fklaﬁ,1%[a3|0 = sup Z |8€fkla67fcl”/§"
0<b<4

245 =+,
28 =9 ¢
Zj, 0= —,

and similarly for 2¢ = (27)ezq, wj, and w®.
We consider a vector field X (y),y € D,(r, s):
0 0

P
X(y)ZX(e)(y)%ﬂLX(W)(y)% o7

0 - 0
‘*‘X(w)(y)% +X(z)(y)£

Let

0

+ XD (y) = i

+ X(y) =

BN
+ X (y) o=

9
+ X (y) - o0

0z

= Z xW

vey

where ¥ = {0a, b, 2i, w5, %, W5 : a = 1,...,n;b = 1,...,m;i € Z{;5 € Z3}.
Suppose X is real analytic in y and depends Cf‘;V smoothly on parameters ¢ € O,
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we define the weighted norm of X as follows

||X| $;Dp(r,s)xO — ||X(0)||Dp(7',s)><(9 + ||X(<P)HDP(7',S)><O

1 1
+ g||X(1)||Dp(r,s)xo + ;||X(J)HDP(T,S)xo

1 i zJ i w
+ - Z(Z N IpHX( b )||D,,(r,s)xo + Z el Ip”X( H )||Dp(r,s)><(9)~
o=% jcz7¢ i€zd
The norm of vector valued function G : D,(r,s) x O — C", n < oo, is defined as
IGlp,rsx0 = 2o IGbllD,(rs5)x0-
The Lie bracket of two vector fields X and Y is defined as [X,Y] =YX — XY

3. A KAM THEOREM FOR INFINITE DIMENSIONAL REVERSIBLE SYSTEMS

In this section, we give an abstract KAM theorem for infinite dimensional re-
versible systems. The definition and properties of reversible system are listed in
the appendix.

Given an involution S : (0,¢,I,J,z,w,z,w) — (=0,—p,I,J,z,w,z,w). We
consider a family of S-reversible vector fields

X(y;¢) = N(y; ¢) + A(y; ),

where
0 0 0 ~ 0 0 ~ 0
N = W(C)% + @(C)% + iQ(C)Z& + iQ(C)waTU - Z'Q(C)Eg - Z'Q(C)w%
" 0 UL 0
= ;%(C)aab + bZ:: b(C) 9on
0 (3.1)
+> (@€2(Q)zj 5~ — 19%(C)Z 5 )
JjEZ$ J
+ Z (ZQj(C)wj - Zﬁj (C)wj %)7
JjEZE J
and
0 ~ 0 0 ~ 0
0 ~ 0 0 - o 3.2
= > (iAj(C)wjajj + iAj(C)ZjaT}j - iAj(C)u’)ja?j - iAj(C)EjaTDj%
JEZINZE

where wy, @, 5, Qj, A;, A € Rand A; = 0,(j € Z4\ Z23), A; =0 (j € 2§\ Z9).
For each ¢ € O, the motion equation governed by the vector field X° is
b=w, ¢=0a,
I=0, J=0,
2 =0iQz], o=+, je€Li\73,

W =i, jeZi\Zf,

5= (3 @) (), semna
I = P o, JELTNZS.
(’U}j Aj Qj ’UJj 1 2
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Obviously, {(0 + wt,p + ©t,0,0,0,0,0,0) : t € R} forms an invariant torus of the
above system.
We consider now the perturbed S-reversible vector field

X=X"4+P=N+A+Py). (3.3)

We will prove that, for typical (in the sense of Lebesgue measure) ¢ € O, the vector
fields still admit invariant tori for sufficiently small P. For this purpose, we
need the following six assumptions:
(A1) Non-degeneracy: The map ¢ + (w(¢),@(C)) is a Cy, diffeomorphism be-
tween O and its image.
(A2) Asymptotics of normal frequencies:

Q=2+, jezi Q=+9%, jezs, (3.4)

where 09, Q0 € C},(0) with Cjj,-norm bounded by a small positive con-
stant L.
(A3) Non-resonance conditions: We denote

M; = (Qj Aj), jezinzi.

A
Suppose A-,fl- € C%,(O) and there exist v, 7 > 0, such that
YRR w
~ - ’Y ~
k,w + k,OJ 27.., k,k #0, 35
() + (k@) > ol (R (35)
= g . d d
kow)+ (k,o)+ Q| > —————, 1€ Z\7Z5, 3.6
() + (R.0) + 0 > o, e 2\ 28 (35
7~ A g . d d
kow)+ (k,o)+ Q| > —————, 1€ Z5\ZS, 3.7
)+ (1.0) + 0l > ot e 2\ 2 (37
- y ~ ..
|<k7w>+<kvw>+ﬂiin| Z m7 <k7k)7é077/».7 EZ?\Zga (38)
\<k,w>+</%,w>+mmj\zm, ieZ{\Z8,j €23\ 2],  (3.9)
~ vy i
y . . d d d\ md (3.12)
> ,j)or (4,1) € (Z§ NZ3) x (ZS \ Z5),
= Ukl + R i,7) or (j,1) € (Z9 9) X (Z{\ Z3)
| det(((k,w) + (k,&) + )Lz + M)
i . . . d d d d (3.13)
> —— (i,4) or (j,2) € (ZiNZ3) x (Z5 \ Z.),
= (K + |E)" (,4) or (j, i) € (Z7 N Z5) x (Zy \ ZT)
| det(((k,w) + (k,@)) s + M; ® I £ I, ® M} )|
Y = .. d d (314)
>———— (k,k)#0, 4,5 € Z{ NZ5.
(|k] + kD)7

where I}, is b x b identity matrix, det(-) is the determinant, ® is the the
tensor product, and (-)7 is the transpose of matrices.
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(A4) Regularity: A + P is real analytic in y and Cg-smooth in . Moreover,

0= [IPlls;D(rs)x0 < 00.

(A5) Momentum conservation: The perturbation P satisfies [P,M;] = 0 (I =
1,...,d), where

@ 0 ) O
le) Z o +ZZ@Z]1%89+ZZ@ZWW v
b=1 o= ijGZd o= i]GZd
(A6) Toplitz-Lipschitz property: Let

A= Zm > %)

jezg jezd

For fixed i, € Z%, ¢ € Z¢\ {0}, the following limits exist and satisfy:

. 0P®
I Jim Do 5D, (rs)x0 < €05 T = 0b, 00, I, Jp, u = 2,w; (3.15)
> i+tc
(A 4 P)(uisee) o
| im ————"——ls;p,(rs)x0 < €0€ iFle =z w; (3.16)
t—)oc 8 ]itc P
A+ P (ufiee) P
I aim QA o S oo T, () = (20), (0,2). (317)
]itc

Furthermore, there exists K > 0 such that when |¢| > K, the following
estimates hold.

op) I opP@)

— m ||S;Dp(r,s)><(9

Ouf, . t—o0 Ouf, . (3.18)
<607 .I‘Zgb,()Ob,Ib7Jb;u:Z,w;
O(A 4 P)Wiee) G(A + P) i)
||a— - tllzgo a—| s;D,(r,5)xO
u]j:tc ujitc (319)
< |€0‘ e liFle = 2wy
(A + P) (ufyse) ) 8(./4 + P)(ug-l—tc)
||a— - tli>rgo ? s;D,(r,s)xO
Uj:ttc Vjttc (320)
< = £0 e IiFile, (u,v) = (z,w), (w, 2).

[

Remark 3.1. In (A6), the conditions (3.16)-(3.17) and (3.19)-(3.20) are the most
important for measure estimates. The role played by the conditions (3.15) and
3.18)) is to preserve Toplitz-Lipschitz property after the KAM iteration (see Lem-
mas 5.5 and |5.6| below).

Now we state our KAM theorem.

Theorem 3.2. Suppose the S-reversible vector field X = N+ A+P in (3.3) satisfies
(A1)—(A6). v > 0 is small enough. Then there exists a positive € depending only on
n,m, L, K,7,7,s and p such that if | P|ls.p(rs)xo < €, the following holds: There
exist (1) a Cantor subset O, C O with Lebesgue measure meas(O \ O,) = O(y/*);
(2) a Cf-smooth family of real analytic torus embeddings

U T x Oy — D,y(r, s)
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which is 20 -close to the trivial embedding ¥q : T ™ x O — 76”‘””;

(8) a C’W—smooth map ¢ : O, — R™ ™ which is e—close to the unperturbed
frequency (w,&) such that for every ¢ € O, and (0,9) € T"™ the curve t
U((0,0) + ¢(O)t;¢) is a quasi-periodic solution of the equation governed by the
vector field X = N + A+ P.

4. APPLICATION TO THE COUPLED NLS

4.1. Lattice form of equation (L.I). Let Z; = {i(V) i®® ... i} ¢ Z¢ and
T, = {iM,i®@ it} ¢ Z% and 0 € Z;NZ,. Under periodic boundary conditions,
we denote the eigenvalues of —A 4 Mg and —A + Mg by A, i € Z% and \;, i € Z2,
respectively, satisfying
wj =N = |i(j)\2 +¢&, 1<ji<n,
Q=N =i]*, i¢T,
& =N =[PP +§, 1<j<m,
QG=N=i% i¢D,
and the corresponding eigenfunctions ¢;(x) = (2r)~%/2e!(%:),
Without loss of generality, we consider (I.1) when G = |ul*|v|?, G = |u|?|v|?

since the higher order terms of nonlinearities will not make any difference.

Let u(t,z) = >, cza qn(t)on(x), v(t,x) = >} cpa Pr(t)én (), then we obtain the
equivalent lattice reversible equations

dn = ixnan + Q") (q,p, 4, D),
Ph = i)\hph + é(ph)(qvpa (1717)

. , . (4.1)
gh = —lAh(jh + Q(Qh) (qﬂpv Q7 ﬁ)»
5h = _ixhph + @(ﬁh')(Q7p7 Qaﬁ)7 h e Zda
which is reversible with respect to S(q,p,q,p) = (g, D, q, p), where
QU= 3 Q) apkdsm, Q") = Q) (4.2)
i,k 1, mEZd
= Y QMapia, QP =Qww (4.3)
i,5,k€Z?
with
Qfgﬁlm = Qi/d GOk P1OmPrd
T
; . 4.4
0, ititk—l—m—h#0,
and
) i +.7 - k - h = 07
p” = z/ i dx = (2“)d ' 4.5
31050101 0 itj-k-h#0, (45)

By direct computation, one can verify that the perturbations Q@ = (Q(qh))hez?

and Q@) = (Q(Pn)) neza have the following regularity properties.
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Lemma 4.1. For each fized p > 0, Q® (resp. Q(p)) is real analytic as a map in a
neighborhood of the origin with

1R, < cli(a, )}, (resp. [QIP < el(a p)II3).
Let

a o
0_ @) (»°)
p ;:i: QU +Q e ).

Lemma 4.2. (1) [P, M?] =0, forl=1,...,d, where
MP =D ) szqjﬁ + Z > it 3 7 (4.6)
o==% jezd 4 o=% jezd
(2) PV satisfies Toplitz-Lipschitz property.
Proof. (1) If we write
(@) _ (ar) aﬁa—ﬁ A P)aﬁaﬁ
QUY =3 Q1 g™, QW= 3 QM 4"q (4.7)
a,B,a”@ a,B,a /3
(a3) 5() -
then by (4.4) and (4.5), we have Q(xﬂh&B =0 and Qaﬁ}&ﬁ’ = 0 when m;(af,af;v) #
0,v = g, pj. where
m(aB,aBiv) = > (a; = Bj)ii+ Y (&5 — B;)j1 — ohu.
jezs jezd
Note that by elementary computations, we have
0° a0 M) = im (B, 3 v)g* B,
which implies [P, M?] = 0.
(2) We only consider lim;_, M It follows from and . that

9q;j+
6@(‘11 Z 43 _
— = Toaq dnPrdiPm,
aqj n+k+l—m=i—j (27T)
then
3Q(qi+tc) 3@(%) 3@ (qitec)
= = lim [l
aqurtc aQJ t—o0 aQJ+tc

4.2. Verification of assumptions (A1)—(A6). We introduce the action-angle
variables (6, ¢, I,J) and normal coordinates (z,w, Z,w) by the following transfor-
mation ¥ on some D(r,s), (r,s > 0):

ql'u):\/f‘-f-foewj, (iiu):q/f—i—loe_wj, j=1,...,n,
Pio = \/ J +JO up]? pz(J) Y J +JO _upj =1,....m, (48)

qh =2n, Gn=2n, h¢l,
Ph = Wh, Dh=Wn, h¢I,

where the IJQ and JJQ are fixed numbers satisfying 0 < s < I]Q and J]Q < 2s.
We obtain a new vector field
X(0,0,1,J,2,Z,w,W)

4.9
:N(@,(p,[,J,z,Z,w,w)+P(9,¢,I,J,z,2,w,u7), ( )
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where
0 o 0 0 1o} ~ 0
N=w— — +1Q Q Qz7— — 1QWw—
wag T@g, Ty, Ty, m itk —iugs
and
~ 0
pP= W) Z,w, W5 €, &) o :
D O B Sk (4.10)
we{0,p,1,J,2,Z,w,0}
with
wp = |z'(b)|2 +&, 1<b<n,
=[P+ &, 1<b<m,
Qh = |h|27 h¢Il7
Qh: |h|27 h¢12;
and
PO — L om) 0w — Q) o v, (4.11)
QZqi(b) 271%(17)
P(Ib) p— (ji(b)Q(qi(b)) oW —+ qi(b)Q qi(b)) o W’ (412)
p(ZZ) =QU) oV, o= (4.13)
pe) = = Qrw) o — —— Qi) o ;s (4.14)
2sz(h) 22]5;(5)
P — pgw)Q(p?(b)) oW+ p;(b)Q(f’z(b)) o U; (4.15)
pPwi) — Q(i"Z) oV, o==. (4.16)

Here X is reversible with respect to the involution
S(9a§07l7 J7Zaw,2’w) = <_9’ _§07I7 ']7 271I],Z,U})-

Now we verify assumptions (A1)-(A6) for (4.9):
(A1) Set ¢ = (&,€), it is obvious as the Jacobian matrix
ow,w)  Ow,w)
o aed T

(A2) It is also obvious.

(A3) One can refer to [8, Section 3.2], their proof is similar.

(A4) Suppose vector field (4.9) is defined on the domain D(r,s) with0 <r < 1,s =
LT

t follows from (4.11)-(4.16) that
P®) = 0(s?), PI) =0(s), P& =0(s)e
P = 0(s), PU = 0(s?), PUT) = O(sh)e I,

Then

HPHS;DP(T‘,S)XO < 651/2 < ce.

rough the transtormation mm (4.8), the vector fields m (4.6) are
A5) Th h th i ion ¥ in (4.8)), th field M? in (4.6
transformed into M[; = \Il*Ml , then

[P,M] = [0* PO, &*MY] = U*[P°, M| = 0.
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(A6) We only consider BP o) - and ob (z,HtC) and the others can be verified similarly.

0z O0zjttc
P(9b )
gz = O(s?)e Pt 50, ¢t — .
j+tc
then
oP) ) oP)

— am ”s;D EROPC] <e.
0zjyte 100 0Zj4tc plsm)

It follows from (4.13)) and (2) in Lemmathat 81;20 = 0(s%/?)ePl=il and
HP(Zitte) oP(z) i P (zitte)

= = 1m .
8zj+tc ﬁzj t—o0 62]4_“
Then
aP(zi+tc) . 8P(Zi+tc) —pli— ]‘
|T B ls;D,(s,ryx0 < me
j+tc Jj+tc

5. PROOF OF THEOREM [3.2]
At the v*" step of the KAM iteration, we consider an S-reversible vector field
on D, (ry,s,) x Oy
Xl/ = Nu + Al/ + Pl/
satisfying (A1)—(A6), where N, and 4, have the same form as N and A in (3.1)
and (3.2).

We shall construct an S-invariant transformation
®,: Dy, (Tvs1,8041) X Oy = Dy (14, 5,) X O,

such that ®: X, := (D®,)"'- X, 0®, = Nyy1 + A, 41 + P41 with a new normal
form N,41, A,4+1 and a much smaller perturbation term P,,; and still satisfying
(A1)—(A®6).
In the sequel, for simplicity, we drop the subscript v and write the symbol ‘+’
for ‘v + 1’. Then we have the vector field
X=N+4+A+P (5.1)

with

d - d
A= 3" (0id;(¢ jag+ngj(g)z§W),
J

o== jezinzd

Let 0 <ry <rand

1
Sy = Zssl/?’, ep =cy 5 (2r — 2T+)71K5T+1955/3 +£7/6,

where ¢ is some suitable (possible different) constant independent of the iterative
steps. Then our goal is to find a set O, C O and an S-invariant transformation



12 Z. LOU, Y. SUN EJDE-2022/69

®: D,(ry,s4) x Oy — D,(r,s) x O such that it transforms the above X in
into

X, =N+ A+ P,
with

" 0 - 0
Ny = ZWJr,b(C)éTgb + Z@,b(é‘)a?b
b=1

b=1
0
+ Z Z 01 (€)%} 8 g + Z 0ify ;(Q)w Qw)y
EZd EZd J
0o 0 0
A"I‘ - Z Z Q'LAJ,.] j a Q + QZA+ J(C) 671]9)
+ jezdnzd J

5.1. Solving the homological equations. For K > 0, we define the truncation
operator T as follows: for f on D(r) = {(8,¢) € C"xC™ : |Im 0| < r,|Im | < r},

Tr f(0, ) = Z fk,/}ei(<k’9>+<’;’“’>)~
(k,k)Z™ xZm | k| +| k| <K
The average of f with respect to (6, ¢) is defined as

= foo = Gy [ 0.)d0

We write the reversible vector field P as Taylor-Fourier series
_ (v) i((k,0)+(k,0)) 71 7l Lo B [3 8
()= Z Z Pklaﬁ,fci&é(oe LT Ov
V€Y gk, B,&,5
Let R =3,y RV (y;¢) & be the truncation of P with
RV = Z TKPI(;L,M(@’ @)IlJizo‘iﬁw&wB
2+l 1 Bl+| &+ Bl <1

<

for v e {9b7 Pb, Iba Jba Zj, 2_]7 wj, w]}
We rewrite R™) as follows: for v € {6y, s, Iy, J, 2j, Zj, Wi, W, },
RY = RY(0,¢) + > R™M(0, o)u.
UG{IQ,JG,Z]‘AVEJ',MJ',’LT)]‘}

Remark 5.1. For the usual KAM procedure, we only need to eliminate terms
R R¥ in R® R®) . 1In this paper, we need to control the first derivatives of
perturbatlon vector field P — R in lemma [5.6l So we must eliminate all the linear
terms R%u, R#"u in R®, R(¥).

We define the normal form of R as

[R] =D _[R"]5- +Z R a%

b=1

8
SRl 3 R
jezd jezinzd

6

+ > [R¥F)z —+ > [RF™w

jezg JEZINZE
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WjWj i Wi 25 i
+ Z [R }wj awj + Z [R }ZJ awj

JjELY Jjez¢NZe
- 0 D5 0
W45 W4 ,7, WizZil=
+ E [R" ]}ij-i- E [R"i J]Zj?
— w; W,
JELy JELINL

In the sequel, we denote by ¢ the flow generated by vector field X and ¢} =
@Y |+=1. Suppose vector field F' has the same form as R, ®*X = (¢})* X,

X = (¢p) (N +A) + (¢p) R + (¢p) (P — R)

SN+ A+ [N+ A F] +/1(1 C (@) [N + A, ], Fldt
0

1
+ R+ [ (60 (R Flit+ 6}y (P R)
0
We solve the homological equation
[N+ A F]+ R = [R]. (5.2)
We denote 0, z)f(0, ) := 0., f(0,0) + 05 f(0, ). By the definition of Lie bracket,
the homological equation (5.2)) is equivalent to the following scalar forms ([5.3[)—(5.6)):
Owayf=9 (5.3)
where
(f,9) = (F",R* — [R"]), (F", R"),
u € {aav 9011}; (S {Ia; Jav ga-[bv gan» SpaIbv QOan7 IaIba Ian, JaIbv Jan}'

Owa f —irf =g, (5.4)
where
(fyg;N) e {(F",R";\): l=1,...,6},
with
uy € {042, % paz; ©laz; 0 Juzy 28, 2000, 2800 10 € N 2T}, ANy = 0Q,

ug € {0,w; ¢, paw; ¢, Lywy ¢, Jaw; ¢ wfi, wily, wiy : j € 73\ 73}, Ny = gﬂj,
us = 2827, A3 =00 —0Q;, i,jE€LI\L], i#jo0#o0,
ug = 22w, Ay=00— o0y, i€Zi\Z§, jezi\Zf
70 s =0 — oy, i€ZIN\ZY, jezi\Zs,
ug = wiwy, Ao = 0 — o€y, 0,5 €ZINZL, i#j 00
O,y F +iMF =G, (5.5)

(]:7g7M) € {( (?v;) ’ (gv;) aMl) = 1776}7
with

(U/17’U1) E {(UZJQ7UU)§) -u E {eaagoa71a)¢]a}7 J e chi ﬂZg}7 Ml = AQMJT7
(ug,v2) € {(22,w?), (2814, wil,), (28 Ja,wiJy) i i € ZiNZdy, My = —oM;

(u,v3) = (2727, zfwy), Mz =—0Q;l>+ anT, iezi\73, jezinzl,

i W
(ug,ve) = (wiz], wiwyg), My= —oO I + O'MjT, iezi\7d, jezinz,

where
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(us,vs) = (2827, wfz]), Ms =0l —oM;, i€Z{NZy, jeLi\Zs,
e

w9), Me=0Qlo—oM;, i€ZinZ3, jezi\Zf.

(ug,vg) = (zgw] , WS

i) F55 — piQF*5 4 i P55 Q) — 0i A, FY 5 + 0i P15 A
= R¥% — 5,56, [R7 ),

D) FH T — iU FT 4 gi P Q) — i A;FYIT 4 0i P57 A

= R — §,,6,[R*), (5.6)
O,y F7 5 — 0iQu FYe% 4+ gi PV Q) — 0i A, F5 4 i P A |
= RWi% — 0p00ij [Rvi%],

Oy P75 — 0iQUF0 4 gi P Qy — 0i A FHYT 4 0i P A
= R — 6,,0,[RM1 4,5 € Z4 N 24

here §,, = 1 if u = v, and 0 otherwise.
Suppose that for ( € O, |k| + |k| < K,

>,
|<k,w>+<l%,ov>+9i|z%, i e Z4\Z
[(k,w) + (k,@) + 4] > L, i€ Z3\Z

a
K™’
[k, w) + (k@) + Q; £ Q] > % iezi\7d, jezi\ 7
2 (k k) #0, i, € Z3\ 7§,
Kl iezinzd,
| det(((k,w) + (k, @) + Qi) Io £ My)| > —,  (i,5) o

(i,4) or (j,i) € (Z{ N Z3) x (23 \ Z7),

r (1) € (2§ NZ3) x (Z{\ Z3),

Nﬂg

| det(((k,w) + (k,® >+Q)I2:l:M)|>KT,

| det(((k,w) + (k, &) Ls + M; © I £ I © MT)| > % (k, k) #£0, i,j € 24N Z2.
(5.7)
Lemma 5.2. Suppose that on O, the non-resonance conditions in (5.7) hold uni-
formly. Then there exists a positive ¢ = c(n,m,T) such that (5.2) has a unique
solution F with [F] = 0, which is regular on D(r,s) x O. Moreover,
(1) HF”S;DP(T,S)XO < 0775K5T+19€;
(2) FoS=DS F;
3) [F,M] =0 forl=1,...,d;
(4) F satisfies (A6) with €/3 in place of € on D(r—6,5/2), where 0 < § < r/2.
Proof. (1) As we have mentioned above, (5.2) is equivalent to (5.3)—(5.6). Below
5.6)

we only consider the most difficult equation (5.6 with o = 0,4 # j since the other
ones can be solved similarly.
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By Fourier expansion, we have

L2929 2829
Tiie | T
(ko) + (Foo) I — oMo I+ oo MPy | ik, | = | g, |
! Flfu’ 2»; wJQ Rjz ’;];wje
ZFk,;% ’ Rk,}c ’
where
((k,w) + (k, @)1 — oM; ® I + oIy ® MT
= (<k’w> + <I~€"D>)I4
—082; + 05 0A; . —04; 0
n 04, —0Q; + 09 _0 —04;
—04; 0 —0Q; + 09 QA
0 —@z‘L 0A,; —0Q; + 09

Using the non-resonance conditions in (5.7), we obtain that for |k| + |k < K,
w 24
IF ’Io, IF o, Fyr o, |Fwiwj\

Q
§07*5K5T+19<|RLJ|0+|R ]|O+‘R |o+|R )
Then according to the definition of vector fields, we have
||F||S;Dp(r,s)><(9 < C’y_5K5T+19||R||3;Dp(r,s)><(9 < 07_5K5T+198°

(2) FoS = DS F can be implied by the uniqueness of solutions of homological
equation.
(3) We verify that [F,M;] =0. For Il =1,...,d, consider

m(kap; kap), v =0y, 0p, I, Jy,

wap), (5.8)
Wl(kCVﬂ;kaﬂ)_Q]l, V—Zj,w],

m(kafiEfiv) = {
where

m(kafB; kafB) = Zzl ki +Zz§b)k + ) (o= Bi+ Y (@

jezd jeZd
As in the proof of Lemma , one can verify that a vector field X satisfying
[X,M];] = 0 is equivalent to X]Sl' Biiaf = 0, if m(kaf; INco?B;v) # 0. Thus to prove

[F,M;] = 0, it suffices to verify that F(l)ﬁ Rag = =0, if m(kaﬂ;icolﬁ;v) # 0. This

can be implied by [P,M] = 0 since F' is determined by R.
(4) Fr the proof we can follow that of [8, Lemma 4.3] since there is no essential
difference. O

5.2. Estimates on the coordinate transformation.
Lemma 5.3. If ¢ < 67K 57719, then for every —1 <t < 1, we have
@' i Dy(r —28,8/4) = D,(r —8,5/2),
6% — id||s;p, (r—26,s/1)x0 < €y K T e,
|1D¢% — 1d||s;p, (r—26,5 /0y x0 < ¢y 0 T K TH %,
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Proof. Using Cauchy’s inequality, we obtain

c c
||DF||S;DP(7‘76,S/2)><O < gHF s;D,(r,s)xO < 57
then if £ < 75 K519 for every —1 <t < 1,

ok D,(r—20,s/4) = D,(r —6,s/2)

—5K5‘r+19

EJDE-2022/69

is well-defined. Thus by Gronwall’s inequality and the estimate for DF', we have

¢ — id]

s$;D(r—268,s/4)x O < CHFHS;D(T,S)X(’) <cy

ID¢% — Id||s;p(r—26,5/4)x0 < C||DF ||s.p(r—s,5/2)x0 < 6 'y

—5K5T+19€
)

75K57+19€

O

5.3. New normal form. Through the time-1 map ® = ¢% defined above, the
vector field X is transformed into Xy = ®*X = Ny + A, + P; with new normal
form Ni, A, and new perturbation P;. In this subsection, we consider the new

normal form
N, =N+N, A =A+A,

where

b=1 9 = Oy
ZjZ ZjZ = a
+ > ([R%])zj5— + [R¥ Zi5)
jezd J
3 Ry o + (R, 50,
JEZE

wip=wp+[R”], (b=1,...,n),

Orp=wp+ [R?], (b=1,...,m),
Qi =Q —i[R*], (ieZ),
Qi =Q —i[R™™], (i€ Z3),

A+’i = Az — Z[Rz‘w‘], A+,i = Al — Z[Rw‘z‘}, (Z € Ztli n Zg)

It follows form ([5.9) that ||N||5;Dp(r,s)><o < HRHS;Dp(r,s)xO- Then |[RZ?23]|O <

1 Rls;p,(rs)x0 < €; thus
24,0 = Qilo = [[R**]lo <&, forieZ{.

Similarly,

104 — Qilo, | A — Ao, A — Ailo,  |wip —whlo, |04 — @blo <e.
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5.4. New perturbation. The new perturbation is

1
Pe = [ (@b 1RO Flde+ (0 (P = )
with R(t) = (1 —t)[R] + tR.
Let n = /3. We now give the estimate of | P |l D(r—26,ms/2) x O
H(Qﬁ?)*[R(t)vF]||77$;D(r—25,s/4)><(9 < 05717771”R”s;D(r,s)XO”F”s;D(r,s)XO
< eyl TOROTHIO2

Consider the estimate for |[(¢})*(P — R)|lys;p(r—26,ms/4)x0- Rewrite P — R as
P — R = Py + P), where

\% I o= & -3 3
Py = > > (=TRY s T wta o,
VE{Obspu: I, Tb,25 wi (141
+Bl+lal+81<1
v I o= 5 —B 0
Py = Z Z Pl(a)ﬁj&g(t?,go)Illeo‘zﬁwawBa.
velly, o,z wit U+l

+18]+&|+18]>2

Then

-1.,—K$§
s;D(r,s)x O <n e &,

||P(1)||7]S;D(T75,’I’]S/2)><O < nileiK5||P|
||P(2)||713;D(7'—5,7)s/2)><(9 < C77||P|
This implies that

s;D(r,8)x O < cne.

K6||P||ns;D(r,ns/2)><(’)+C77||P||5;D(r,s)><(’)

HP - RHns;D(r—é,ns/Q)x(’) <e”
<nte K%+ ene.
Therefore,
||P+||775;D(7‘725,773/4)><O
< H(qs%)*[R(t)vF]||ns;D(r—26,7]s/4)><(9 + ”(d)}?)*(P - R)||ns;D(r—26,7]s/4)><O
S C(S—ln—l,y—5K5T+1952 +77_1e_K6€+C775
— 6571775K5T+1955/3+67K6€2/3+C€% S £t

The following lemma ensures that the new perturbation P, satisfies reversibility
and momentum conservation condition.

Lemma 5.4. (1) Py is S-reversible;
@) [Pe. M =0,1=1,....d;

Proof. (1) We conclude from (2) in Lemma [5.2 that ® 0 .S = S o ®, which implies
X108 =-DS-X,. Itisobvious that NyoS = —-DS- N4, thus PyoS = -DS-P,.

(2) We know that [N,M;] = 0 and [P,M;] = 0. From Lemma we obtain
[F,M;] = 0. This together with

Py =P~ R+ [P,F|+ Z[IN,F],F| + [P, ], F]
P AT, ERLT BNy B NUR
1: H,_/ 7: H,_/

implies that [Py, M;] = 0. O
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Lemma 5.5. Suppose P satisfies (A6), and F satisfies (A6) with €2/3 in place of
e. Also assume that for o = %, |j| > K,

OF(b) 0 oFv) 0 OF(Jb) _ OF (Jv) -
920 7 wg 020 ows
J J J J
HF () B OF(0v) 0 OF(¢v) 0 OF(®b) _
9zg 7 ow? 9zg 7 owg 7

and for |i Fj| > K,

OF (=) oFw?) OF(z]) 0 oF w?)
azj-[” - 811)}” - 8w]j-w - azji” B

Then [P, F] also satisfies (A6) with e in place of €.
Proof. By the definition of Lie bracket, the z;-component of [P, F] is

oP(z) OF ()
P F1G) = v _ pw
P A =3, CPW),

where ¥ = {04, pp, zi, w5, Z;, w5 ca=1,...,m;b=1,.. mzeZ j €73}
To verify that [P, F] satisfies (A6), 2-[P, F](Zl) and the deriva-
tives with respect to the other components are similarly analyzed.

82P(2 (z1) opGD) gFGn) o 9 (21)
It suffices to consider 3, G5~ F*") and ), “5- o%; Q—[P F]\#) since

the other terms can be sumlarly studled.
. (Zj4te) . (Zj4te)
Let pi7 = limy % and f77 = lim; angtz Then
92 p(z L+tL) 92 P (zitte)
HZ o) — lim ———— h))||s;Dp(r—5,s/2)

8zhazj+tc t—o0 02,0%j4tc
P Fitec)
< ”FHsD (r, S)Hi pff”s;Dp(r,s) (5.11)
j+tc
5/3 € o
< —pli=jl « =t _o—ptli—il
e = 300
and
aP(Z'i+tc) aF(Zh+tc) P
|| Z 8Zh+tc 8Zj+tc _pihfhj) s;D,(r—6,s/2)
8P(Zt+t6)
< s |l s: —0,8 — — i s; r—3a4,s
_Zh:Hfh] s, (r—5,5/2) Doree it 5D, (r—3,5/2)
OF i)
+ Z ||p1h ||5 D,(r—é,s/2) ||7 fhj ||s;Dp(7'—5,s/2)
025+t (5.12)
aP(Zl+tC - aF(Z}H»tc) .
+ Z |—=—— Done — Pinlls:D,(r—5.5/2) ||m = fiillsip,(r—s.5/2)

£5/3 £5/3
<CKd " e Pli— ﬂ"‘CKd e—rli—il
St oplizil

<
= 30/¢|
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Note that h is bounded by cK<¢ in the above inequality since |i — h| < K and
7 —h| < K. O

The following lemma follows from (5.10) and Lemma
Lemma 5.6. P, satisfies (A6) with K,e4,py in place of K, e, p.

5.5. Iteration and convergence. For given r > 0,s > 0,L >0 and 0 < v, < 1,
consider ¢ a positive constant depending only on n, m,7. For v > 0, we define the
iterative sequences:

r
61/ = 2u+3a Tv41 =Ty — 261/7 To=T,
— A —Bs—1p5T+19 5/3 | _7/6 —
Epy1 = ey OO IKSTHIOS/3 L T/6 o = ¢,
o Ko _ c1/2

v )

1
1/3
= 6,// 5 Sy+1 = 1771/31/’ S0 = S,
Ly+1 = Ll/ + €y, LO = L,
v+1

py = p(l— ZTW

5.5.1. Iteration lemma. According to the preceding analysis, we obtain the follow-
ing lemma.
Lemma 5.7. Let € be small enough and v > 0. Suppose that

(1) The normal form

0 0 0
N, + A, = Wu(C)% ‘HDV(Q% + Z O'i(Qu(C)ZU@ +Q,(Qu?
o=%

)+ Ay,

dwe®
with ¢ € O, ~satisﬁes with w,,,d),,,Q,,,Q,,,AWflU and K, ;
(2) wy, @y, Q5,85 are C{fV smooth in ¢ and satisfy
lwy — wu—1]o, |0y — Dv—1lo, | — Q—1jlo, |Qu,j — Qu717j|(9 <eéey_1;
(3) N, + A, + P, satisfies (A5) and (A6) with K,,&,,p, and
HPVHSV;DP,,(TV,su)xoV <e,.
Then there exists a real analytic, S-invariant transformation
®,: D, (Tv41,5041) X Oy = D, (14, 50)
satisfying
1By — idlls, 1D, (rosrss0s0)x 00 < CEL 2, (5.13)
ID®,, — Id|ls, . ,:D, (rve1.6s1)x0, < 552, (5.14)

and a closed subset
Ovi1 = O \Ug,, ciiiiisinn Rig ) (5.15)

where Rzgl(’y) is defined in (5.18), such that X, 11 = (P,)*X, = Nyy1 + Avy1 +
P, 11 satisfies the same assumptions as X, with v + 1’ in place of v’
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5.5.2. Convergence. We now complete the proof of Theorem [3.2] Let
Xo=No+ A+ Py =N+A+P

be an initial S-reversible vector field and satisfies the assumptions of Theorem
Recall that eg = ¢, 79 =7, Sg = s, po = p, Lo = L. Suppose O is a compact set of
positive Lebesgue measure and all the conditions in the iterative lemma with v = 0
hold. Then we inductively obtain the following sequences
Ou+1 - O,,,
U =®go®i0---0®,: D, (ry41,5041) X Oy — Dy (70, 50),
XVJrl = (\I]V)*X = Nu+1 + AVJrl + PI/+1~

Let O = N%2,0,. Using (5.13), (5.14) and following from [I4], we obtain that
N, + A,, V", DU converge uniformly on Dg(g,O) x O with

0 0 0 ~ 0
Noo oo = Woo ~<><> i Qoo 7 Qoo 7 00+
+A Woo g +w e CrE:icm( i + Qoow 8w”)+A

which corresponds to a motion equation,
0 = Woo, @ = oo,
I=0, J=0,
20 =00 2], o=, j€ L]\ L],

W] = 0iQujw), jEZI\ZE,

24 Qo A . 4
(ﬁ,) = 0i ( s ~°°”> (Zjo) , jEZINZI.
'U.)j Aoo7j Qoo,j wj

By the choice of ¢, and K, we have ¢,41 = 0(817,/6), thus ¢, — 0,v — oo.
And we also have 230:0 €, < 2e. Consider the flow d)tX of X. It follows from
Xy41 = (UY)*X that

(5.16)

’fxo\I/”:\If”oqﬁg(Vﬂ. (5.17)
Thanks to the uniform converge of X,, ¥ and DV, we can take limits on both
sides of (5.17)). Therefore, on Dz (3,0) x O, we have
P o WX =TV o0l |
oo r A
vee Dg(E,O) x O — D,(r,s) x O.
It follows that for each ¢ € O, the set U (T"+™ x {¢}) is and embedded torus

which is invariant for the original perturbed reversible system at { € O.

5.6. Measure estimate. Let O_; = O and K_; = 0. At the vth step of the
KAM iteration, the resonant set R¥ C O,_1 need to be excluded.

R = Uk, <ipj+ifi<k, R » (5.18)
with
0 1 2 11,4+ 12,4+
Ry =R Y (UiRk%,i) U (UiRklIé,i) U (Uinkk,iju) v (Uinkfc,ijy)

22,4 3u 13,4 23,4+ 34,4
(Uinkfc,ijy) Y (UiRM},z‘) Y (Uinkfc,ijy) Y (Uinkk,iju) Y (Uinkfc,iju)’
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where
= {C€O, 1 [(kw(Q)) + k@, (O)] < Ki
Ryt ={C 1k, @) + (k@) + Dl < Kl} i € 74,
Rt = {C [(kywo) + (k@) + Oyl < Kl;}, i € 78
Rl ={C: [k wo) + (k@) + Qi £ Qg < KT} i\j € 24\ 7
iiﬁ"—{c [(k,w) 4 (B, @) + Qs £ Q5] < IzT}
i € ZI\ 73,5 € Z§ \ Z;
REE = (¢ |y} + (B, @) + Qs £ 0y ] < Kl} ij € zd\ 7¢,
Rigﬂ» = {¢: [ det(((k,w,) + (k, @, )]s + M, )| < Kl} i e 7dnzd;
Ry = {C+ [det(((kyw,) + (k@) + Q) o £ Myg)| < 720,

v

(i,4) or (i,§) € (Z{ N Z§) x (Z§\ Z4);

+v 7~ A Y
ii = ={C: |det(((k,wy) + (k,0v) + Qi) o £ M, ;)| < K—;},

(i,§) or (i,§) € (Z{ N Z§) x (Z3 \ Z{);

Ry = {C [ det((kyw,) + (k@) s+ My © I £ 1o © M| < =L},

kk K¥l

i,j € Z¢NZ3.
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(5.19)
(5.20)
(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Note that Rllcz:j”, RQQJ,_,”, and Riz;’ are the most complicated three case, and

kk,ij

the former two have been studied in [I1]; thus it suffices to consider the last case.

We denote
D, = ((k,wy) + (k,@,)) s + My; ® o — I, ® M.

Lemma 5.8. For any given i,j € Z4 N 74 with |i — j| < K,,, either
|det(D,)| > 1

or there are ig, jo,C1, - - -, ca_1 € Z with |iol, |jol,|c1],- - -, |ca_1] < 3K2 and

t1,...,tq—1 € Z such thati = ig+tic1+---+tg_1¢4—1,J = jo+tic1+---+tqg_1cq—1-

For a proof of the above lemma see [I1]. In the following, for convenience of

notation, let

t = (t1,t2,...,ta—1), c:=(c1,¢2,...,Ca-1)

and t-c:=tjc1+toco+---+tq_1¢4-1. By Lemma we have the following result.

Lemma 5.9.
34,—v 34,—v

UMGZEIOZ%’RM,@ C Uig,d0sc1,62,0 a1 €2% kk,io+tc jottc’
t1,t2,...,ta_1€Z

where |io|, |jol, le1], 2|, - - Jca_1| < 3K2.
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Lemma 5.10. Let 7 > %. Then for fized k, k, 10,J0,Cly - - - 5 Cd—1,

1/4

34,—v ) <e Y
kk,io+t-c,jo+t-¢/ — Kﬁ :
v

Proof. Without loss of generality, we assume [t;]| < [to] < -+ < |tq—1|. Let Q,; =
1P+ 9,5, Qo = 1P + Q9 , and Dy (t) = ((kyw,) + (k, @, >)14 + Myigttc ® 12 —
L ME]o-HS ¢’

Using Toplitz-Lipschitz property of A, + P,, for | = ig,jo,1 < j < d—1, we
have

meas ( Utl,tg,...,td—lez R

|Qul+tc_ hm Q1/l+1:c| <

\t |’
|QO — lim Q° | < <
v,l+t-c tj—>00 v,l+t-c ‘tj‘v
€
|Aul+tc_ hm Aul+tc| < — |t |
€
|Aul+tc_ hm Aul—i-tcl < |t |
Then we have
eK}
| det(D, (t)) — hm det(D,(t)) T
J
We consider the resonant set
34,—v . Y
Rkiﬂ,iojocood71 o {C € OV L | lgnoo(tz, E}Ii%oo det(DV(t))” < Kydl, }
For fixed k, k, io, jo, ¢, its Lebesgue measure satisfies
) b 7.7 ) ) g
1/4
meas(R*Y™7 )< 2 —,
kk,iojocood—1 K
v
34,—
and for ¢ € Op—1 \ R} zol;gcood .
. Y
> .
|t11£1100(t2, Ejrfll—N)O det(DV(t)))| - Kﬁ

Below we consider the following cases:
Case 1: |t1] > Kl,‘TT’H. For ( € O,_4 \RS%’_V we have

kk},iojoCOOd_ b

=1 g4
> i Ky
[ det(Du(E)] 2 |l (,, Jim _de(D, Z
> WL_(d_l)
K K
> 'Yi 0
2K T

Case 1: This is the general case 2 < [ < d — 1. We counsider [t;| < K,j’T’H,
27 (= 1 ' ur
[ta] < KT +4 o o] < K, L, , ] > K7 ™ We define the resonant set

R~ ={C€0,1:| lim _det(D,(t)| < —
K

.. _ 1
kk,m]octltz‘..tl_lood l t]yeestg—1—00 l{;!—

v
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Then for fixed k, k, 10, J0,C, t1,t2, ..., t;_1, its Lebesgue measure satisfies
1/4
meaS(R34 )< 7 )
kk,iojocts.. Lty _q00d-1 TT
K"

34,—v
meas | U 11y R )
< [t1],eeolts 1|<K( d!)7+4 kk,iojocty...t; 1009t
|t

U=D=D7 g )y 1/4

2l—1K
KTT
21—171/4
= T a0y
K, 4(1-1)
ar ril a-yir "
Thus for |t1| < Kd!+4’ ‘t2| < Kl/d!+47 o |tl_1‘ < K, ® +4’ ‘tl| > K +4’
34,—v
(€0, \Rkk ety 1oci—t? e have
d—
> .
| det(D, (t))| > |tz,...,g}lﬁoodet Z
j=
> e~ (A=)
Kyd! Kud
S
or, KD
Case d: || < K’j!+4’ |t < KT +4; vy ftaaa] < Ky S +4. We define the
resonant set
34,—v
M ioisctitants s = 16 € Ovoy : | det(Dy }

For fixed k, k, 10, J0,C, 1,2, ..., tq_1, its Lebesgue measure satisfies

34,—v 71/4
i <
meaS(Rkk,iojoctltg...td,l) - K; ’
34,—v
meas | U e RO )
< [t1]seess|ta— 1\<K(d d%)T‘*"L kk,iojoctita...tq_1
(@=Dd=1)7 4 gy 1/4
< 2d IK +4( )’y -
KD
9d—1,1/4
KE—4(d—1) :
. 4(d—1)(d+1)! .
Therefore, if 7 > m, we obtain
34,—v ’71/4
meas(U R c————.
( ti,t2,...,ta_1€ZL kk,ig+t-c,jo+t-c/ — KW
v

According to the above analysis, we obtain the following lemma.
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Lemma 5.11. Let 7 > d!/(2d(d+1)+n+m+1)+ %. Then the total

measure of resonant set should be excluded during the KAM iteration is
meas(U,>oR") = O(y*/*).

6. APPENDIX

Suppose the vector field X (0,1, z,%2) is defined on D,(r,s) = {y = (0,1,2,%2) :
[Tm O] <7 |I] <s, |lzll, <s,|[z]l, < s}
Definition 6.1. Suppose S is an involution map: S? = id. Vector field X is called
reversible with respect to S (or S-reversible), if

DS-X=-XoS,
i.e.,
(DS(y))X(y) = =X(S(y)),y € Dy(r,s),
where DS is the tangent map of S.

Definition 6.2. Suppose S is an involution map: S? = id. Vector field X is called
invariant with respect to S (or S-invariant), if DS-X =X o S.

Definition 6.3. A transformation ® is called invariant with respect to above in-
volution S (or S-invariant), if # oS =S o ®.

Lemma 6.4. (1) If X andY are both S-reversible (or S-invariant), then [X,Y]
is S-invariant.
(2) If X is S-reversible, Y is S-invariant and the transformation ® is S-
invariant, then [X,Y] and ®*X are both S-reversible. In particular, the
flow ¢4 of Y are S-invariant, thus (¢4, )* X is S-reversible.

Lemma 6.5 (Cauchy’s inequality, [I1]). Let 0 < & < r. For an analytic function
f(0,1,2,2) on Dy(r,s), it holds

of c
||870b 5;Dp(r—4,s) < g||f||8;Dp(r,s)7
af c
9 < ¢ ‘
H a]‘b HS,Dp(T,S/Q) — 5 ||fHS,Dp(r7s)7
of c i
H@HS;D,,(T,S/Q) < ngHS;Dﬂ(m)ep\ | o=+
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