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k-HESSIAN CURVATURE TYPE EQUATIONS IN SPACE FORMS

JUNDONG ZHOU

Abstract. In this article, we study closed star-shaped (η, k)-convex hyper-

surfaces in space forms satisfying a class of k-Hessian curvature type equations.
Firstly, using the maximum principle, we obtain a priori estimates for the class

of Hessian curvature type equations. Secondly, we obtain an existence result
by using standard degree theory based on a priori estimates.

1. Introduction

Suppose that M is an immersed hypersurface in Euclidean space Rn+1. Define
a (0, 2)-tensor η on M by

ηij = Hgij − hij ,
where gij , hij and H are the first, second fundamental forms and mean curvature
of M respectively. In fact, η is the first Newton transformation of h with respect
to g, see [18]. Let κ = (κ1, . . . , κn) be the vector whose components κi are the
principal curvatures of M . Using λ(η) to denote the vector whose components are
the eigenvalues of η, we have that

λ(η) = (H − κ1, . . . ,H − κn).

Then k-Hessian equation of λ(η) can be written as

σk(λ(η)) = f(X, ν(X)), 1 ≤ k ≤ n, X ∈M, (1.1)

where ν is the normal vector field along M and σk is the k-th elementary symmetric
function

σk(λ) =
∑

i1<···<ik

λi1 . . . λik .

If λ(η) is replaced by the principal curvature vector κ of the hypersurface, Equa-
tion (1.1) becomes the classical prescribed curvature equation

σk(κ) = f(X, ν), for X ∈M ⊂ Rn, (1.2)

which has been widely studied in [2, 3, 6, 9, 10, 11]. In fact, curvature estimates are
the key to the existence of star-shaped k-convex hypersurface satisfying Equation
(1.2). In the case k = 2, Guan, Ren, and Wang [12] obtained a global C2 estimate
for strictly star-shaped 2-convex hypersurfaces. Spruck and Xiao [23] extended
the estimate for 2-convex hypersurfaces to space forms. Further more, Li, Ren,
and Wang [17] showed that the convex hypersurface in [12] can be substituted by
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(k+ 1)-convex hypersurface. Ren and Wang [19, 20] solved the case k = n− 1 and
k = n − 2. For 3 ≤ k ≤ n − 3, the existence of star-shaped k-convex hypersurface
satisfying (1.2) is still open.

Equation (1.1) is motivated by some geometric problems. To ensure the elliptic-
ity of (1.1), so called (η, k)-convex hypersurface is introduced in [5]. Namely

λ(η) ∈ Γk = {λ ∈ Rn : σi(λ) > 0,∀1 ≤ i ≤ k}.

For example, when k = n, it becomes

det(η(X)) = f(X, ν), for X ∈M. (1.3)

The (η, n)-convex hypersurface has been studied intensively by Sha [21, 22], Wu [24],
Harvey and Lawson [14]. (η, n)-convexity is called (n− 1)-convexity in [14, 21, 22].
In complex geometry, when k = n, Equation (1.1) is called the (n − 1) Monge-
Ampère equation, which is related to the Gauduchon conjecture (see [8]). Compared
to (1.2), it is interesting that the curvature estimate of (1.1) can be established for
1 ≤ k ≤ n. Chu and Jiao [5] established curvature estimates for (η, k)-convex
hypersurface and proved the existence for (1.1). Chen, Tu and Xiang [4] extended
it to a class of Hessian quotient equations.

In this article, we give a simpler proof of the result of Chu and Jiao [5], and
extend it to space forms. Let Nn+1(K) be a space form of sectional curvature
K = −1, 0, or 1. It is known that the space forms can be viewed as Euclidean space
Rn+1 equipped with a metric tensor gN , that is,

Nn+1(K) = (Rn+1, gN ), gN = dρ2 + φ2(ρ)dz2,

where

φ(ρ) =


sin(ρ), ρ ∈ [0, π2 ), if K = 1,

ρ, ρ ∈ [0,+∞), if K = 0,

sinh(ρ), ρ ∈ [0,+∞), if K = −1,

where dz2 denotes the standard metric on Sn induced from Rn+1. We define the
vector field V = φ(ρ) ∂∂ρ . In fact, V is a conformal Killing field in Nn+1(K) and

V is just the position vector field in Rn+1. We consider the k-Hessian equation of
λ(η) in Nn+1(K),

σk(λ(η)) = f(V, ν), 2 ≤ k ≤ n, (1.4)

and obtain the main result as follows.

Theorem 1.1. Let f(V, ν) ∈ C2(Γ) be a positive function and Γ be an open neigh-
borhood of the unit normal bundle of M in Nn+1×Sn. Assume that there exist two
positive constants r1, r2 and r1 < 1 < r2, such that

f(V,
V

|V |
) ≤ Ckn(n− 1)k

(φ′(r2)

φ(r2)

)k
, for ρ = r2, (1.5)

f(V,
V

|V |
) ≥ Ckn(n− 1)k

(φ′(r1)

φ(r1)

)k
, for ρ = r1, (1.6)

∂

∂ρ

[
φkf(V, ν)

]
≤ 0, for r1 ≤ ρ ≤ r2. (1.7)

Then there exists a C4,δ closed star-shaped (η, k)-convex hypersurface satisfying
(1.4) for any δ ∈ (0, 1).
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The rest of this article is organized as follows. In Section 2, we give some
definitions and important formulas. In Section 3, we prove C0, C1 and C2 estimates
of (1.4). In Section 4, we give the proof for the existence, that is Theorem 1.1.

2. Preliminaries

In this section, we recall some geometric objects and related formulas on hy-
persurfaces in space forms. Let M be an immersed star-shaped hypersurface in
Nn+1(K), which is expressed as

M = {(z, ρ(z)) : z ∈ Sn}.

Let∇′ and∇ denote the covariant derivatives with respect to the standard spherical
metric and the covariant derivatives with respect to the induced metric on M ,
respectively. Following the notations in [1], the induced metric, its inverse, unit
normal vector and second fundamental form on M are respectively by

gij = φ2eij +∇′iρ∇′jρ, gij =
1

φ2

(
eij − ρiρj

φ2 + |∇′ρ|2
)
, (2.1)

ν =
−∇′ρ+ φ2 ∂

∂ρ√
φ4 + φ2|∇′ρ|2

, (2.2)

hij =
φ√

φ2 + |∇′ρ|2
(
−∇′ijρ+

2φ′

φ
∇′iρ∇′jρ+ φφ′eij

)
. (2.3)

where eij is the standard spherical metric and eij is inverse of it. We define Φ(ρ) =∫ ρ
0
φ(r)dr and u = 〈V, ν〉. Let {e1, . . . , en} be a local orthonormal frame on M . By

direct calculations, we have the following formulas (see [13, 23]):

∇iΦ = 〈V, ei〉, ∇ijΦ = φ′gij − uhij , (2.4)

∇iu = gklhik∇lΦ, (2.5)

∇iju = gkl∇khij∇lΦ + φ′hij − ugklhikhjl, (2.6)

∇iν = gklhikel, (2.7)

∇ijhkl = ∇klhij − hml(himhkj − hijhmk)− hmj(hmihkl − hilhmk)

+Khml(δijδkm − δimδkj) +Khmj(δilδkm − δimδkl).
(2.8)

For simplicity, we denote

G(η) := σ
1/k
k (λ(η)), Gij(η) :=

∂G

∂ηij
, Gij,rs(η) :=

∂2G

∂ηijηrs
, F ii =

∑
k 6=i

Gkk.

If (hij) is diagonal and h11 ≥ · · · ≥ hnn, then

η11 ≤ · · · ≤ ηnn, G11 ≥ · · · ≥ Gnn, F 11 ≤ · · · ≤ Fnn.

3. A priori estimates

In this section, we obtain C0, C1 and C2 estimates for (1.4). Let us consider a
family of functions, for t ∈ [0, 1],

f t(V, ν) = tf(V, ν)+(1− t)Ckn(n−1)k
[(φ′(ρ)

φ(ρ)

)k
+ε
((φ′(ρ)

φ(ρ)

)k−(φ′(1)

φ(1)

)k)]
, (3.1)
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where the constant ε is small sufficiently such that

min
r1≤ρ≤r2

[(φ′(ρ)

φ(ρ)

)k
+ ε
((φ′(ρ)

φ(ρ)

)k − (φ′(1)

φ(1)

)k)] ≥ c0 > 0.

It is easy to see that f t(V, ν) satisfies (1.5), (1.6) and (1.7) with strict inequalities
for 0 < t < 1. To prove Theorem 1.1, we consider the family of equations

σk(λ(η)) = f t(V, ν), 0 ≤ t ≤ 1. (3.2)

3.1. C0 estimates. Now, we prove the following proposition which asserts that
the solutions of (3.2) have uniform C0 bounds.

Proposition 3.1. Let f t(V, ν) ∈ C2(Nn+1 × Sn) is a positive function. Under
assumptions (1.5) and (1.6), if Mt = {(z, ρ(z)) : z ∈ Sn} ⊂ Nn+1(K) is a star-
shaped (η, k)-convex hypersurface satisfying Equation (3.2) for 0 < t < 1, then
r1 < ρt < r2.

Proof. Suppose that ρt(z) attains its maximum at z0 ∈ Sn and ρt(z0) ≥ r2. Then
∇′ρ = 0, at z0. Therefore, from (2.1) and (2.3) we obtain

gij = φ−2eij , hij = −∇′ijρ+ φφ′eij ,

which implies that

hij = gikhkj = −
eik∇′kjρ
φ2

+
φ′

φ
δij ≥

φ′

φ
δij .

It follows that

ηij = Hδij − hij ≥ (n− 1)
φ′

φ
δij .

Noticing that σk is elliptic in Γk, we have

σk(λ(η)) ≥ Ckn(n− 1)k
(φ′
φ

)k
. (3.3)

On the other hand, the unit outer normal vector ν = V
|V | at z0 and f t(V, ν) satisfies

(1.5) with strict inequality for 0 < t < 1. If ρt(z0) = r2, then

Ckn(n− 1)k
(φ′(r2)

φ(r2)

)k
> f t(V,

V

|V |
) = f t(V, ν) = σk(λ(η)). (3.4)

This contradicts (3.3), and shows that . supMt
ρt < r2. Similarly, we prove

infMt
ρt > r1. �

Now, we prove the following uniqueness result.

Proposition 3.2. For t = 0, there exists unique (η, k)-convex solution of Equation
(3.2), namely, M0 is an unit sphere in Nk(K).

Proof. Let M0 be a solution of (3.2) for t = 0. Assume the height function ρ(z) of
M0 achieves its maximum ρmax at z0 ∈ Sn, then

Ckn(n− 1)k
[(φ′(ρmax)

φ(ρmax)

)k
+ ε
((φ′(ρmax)

φ(ρmax)

)k − (φ′(1)

φ(1)

)k)]
= σk(λ(η))

≥ Ckn(n− 1)k
(φ′(ρmax)

φ(ρmax)

)k
,
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which implies
φ′(ρmax)

φ(ρmax)
≥ φ′(1)

φ(1)
. (3.5)

Noting that

φ′(ρ)

φ(ρ)
=


cot(ρ), if K = 1,
1
ρ , if K = 0,

coth(ρ), if K = −1,

we obtain ρmax ≤ 1. Similarly, ρmin ≥ 1. Thus, ρ = 1 is the unique solution of
(3.2) for t = 0. �

3.2. C1 estimates. In this section, we follow the ideas in [3] and [10] to obtain C1

estimates for the height function ρ.

Proposition 3.3. Let M be a closed star-shaped (η, k)-convex hypersurface in
Nk(K) satisfying (3.2). Under assumption (1.7), if ρ has positive upper and lower
bounds, there exists a constant C depending on infMρ, supM ρ, and ‖f‖C1(M) such
that |∇ρ| ≤ C.

Proof. Since

u = 〈V, ν〉 =
φ2

φ2 + |∇′ρ|2
,

it is sufficient to obtain a positive lower bound of u. We consider a test function

ϕ = − log u+ γ(Φ(ρ)),

where γ(t) is a function which will be chosen later. Assume that ϕ achieves its
maximum value at z0 ∈ Sn, we will show that u(z0) = |V (z0)|, that is, V (z0) =
φ(ρ(z0))ν(z0), which implies a uniform lower bound for u on M . If not, we may
choose a local orthonormal frame {e1, . . . , en} around (z0, ρ(z0)) ∈ M such that
〈V, e1〉 6= 0 and 〈V, ei〉 = 0, i ≥ 2. Using (2.5), we have at (z0, ρ(z0)) ∈M ,

0 = ∇iϕ = −∇iu
u

+ γ′∇iΦ = −hi1〈V, e1〉
u

+ γ′〈V, ei〉. (3.6)

It follows from (3.6) that

h11 = uγ′, hi1 = 0, i ≥ 2. (3.7)

Rotate {e2, . . . , en} around (z0, ρ(z0)) ∈ M such that hij is diagonal. Covariantly
differentiating ϕ twice yields

0 ≥ F ii∇iiϕ

= −F ii∇iiu
u

+ F ii
|∇iu|2

u2
+ γ′′F ii|∇iΦ|2 + γ′F ii∇iiΦ

= − 1

u
F ii
(
hii1∇1Φ + φ′hii − uh2

ii

)
+
(
(γ′)2 + γ′′

)
F ii|∇iΦ|2

+ γ′F ii
(
φ′δii − uhii

)
,

(3.8)

where the second equality is given by using (2.4), (2.5) and (2.6). Then

ηii =
∑
j 6=i

hjj
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implies ∑
i

ηii = (n− 1)
∑
i

hii, hii =
1

n− 1

∑
k

ηkk − ηii,

which results in∑
i

F iihii =
∑
i

(∑
k

Gkk −Gii
)( 1

n− 1

∑
k

ηkk − ηii
)

=
∑
i

Giiηii = f1/k(V, ν),
(3.9)

∑
i

F iihiij =
∑
i

Giiηiij . (3.10)

Notice that (1.4) can be written as

G(η) = f1/k(V, ν) = f̃(V, ν). (3.11)

By (2.7) and covariantly differentiating (3.11) with respect to e1, we have

Giiηii1 = dV f̃(∇e1V ) + h11dν f̃(e1). (3.12)

Taking (2.4), (3.9), (3.10) and (3.12) in (3.8) yields

0 ≥ − 1

u

(
dV f̃(∇e1V )〈V, e1〉+ φ′f̃ + h11dν f̃(e1)〈V, e1〉

)
+
(
(γ′)2 + γ′′

)
F 11〈V, e1〉2 + γ′φ′

∑
i

F ii − γ′uf̃

≥ − 1

u

(
dV f̃(∇e1V )〈V, e1〉+ φ′f̃

)
− γ′dν f̃(e1)〈V, e1〉

+
(
(γ′)2 + γ′′

)
F 11〈V, e1〉2 + γ′φ′

∑
i

F ii − γ′uf̃ ,

(3.13)

where the second inequality is obtained by (3.7). Since V = 〈V, e1〉e1 + 〈V, ν〉ν at
z0,

dV f̃(V ) = 〈V, e1〉
(
dV f̃

)
(∇e1V ) + u

(
dV f̃

)
(∇νV ). (3.14)

From this and the assumption (1.7), we see that

0 ≥ ∂

∂ρ

(
φkf(V, ν)

)
= k

(
φf̃
)k−1(

φ′f̃ + dV f̃(V )
)

= k
(
φf̃
)k−1

(
φ′f̃ + 〈V, e1〉

(
dV f̃

)
(∇e1V ) + u

(
dV f̃

)
(∇νV )

)
.

(3.15)

Combining this with (3.13) gives

0 ≥ dV f̃(∇νV ) +
(
(γ′)2 + γ′′

)
F 11〈V, e1〉2 + γ′φ′

∑
i

F ii

− γ′uf̃ − γ′dν f̃(e1)〈V, e1〉.
(3.16)

Now we choose

γ(t) =
α

t
, (3.17)

where α is sufficiently large. Recalling that h11 = γ′u at (z0, ρ(z0)), we have
h11 < 0. Since H > 0, there exists k0 with 2 ≤ k0 ≤ n such that hk0k0 > h11.
Combining this with the definitions of ηii and Gii yields

ηK0k0 < η11, Gk0k0 ≥ G11.
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Thus,

F 11 =
∑
j 6=1

Gjj ≥ 1

2

∑
i

Gii =
1

2(n− 1)

∑
i

F ii ≥ 1

2

(
Ckn
)1/k

. (3.18)

Putting (3.17) and (3.18) in (3.16), we obtain

0 ≥ 〈V, e1〉2

2(n− 1)

(
α2Φ−4 + 4α2Φ−6

)∑
i

F ii − αΦ−2φ′
∑
i

F ii

− αΦ−2
∣∣V ∣∣∣∣dν f̃(e1)

∣∣− ∣∣dV f̃(∇νV )
∣∣, (3.19)

which leads to a contradiction when α is large. Therefore u(z0) = |V (z0)|. �

3.3. C2 estimates. To obtain C2 estimates for (3.2), we prove that the principal
curvatures have uniform bounds.

Proposition 3.4. Let M = {(z, ρ(z)) : z ∈ Sn} be a closed star-shaped (η, k)-
convex hypersurface in Nk(K) satisfying (3.2), where f(V, ν) ∈ C2(Γ) is a positive
function and Γ is an open neighborhood of the unit normal bundle of M in Nn+1×
Sn. If 0 < r1 ≤ ρ(z) ≤ r2, ‖ρ‖C1 ≤ r3, then there exists a constant C depending
on n, k, r1, r2, r3, ‖f‖C2(M) and infM f such that

max
Sn
|κi| ≤ C, for 1 ≤ i ≤ n,

where (κ1, . . . , κn) is the principal curvatures vector of M .

Proof. Since H > 0, it suffices to prove that the largest curvature κmax is uniformly
bounded from above. From Propositions 3.1 and 3.3, we know that

1

C
≤ inf

M
u ≤ u ≤ sup

M
u ≤ C,

where the positive constant C depends on infM ρ and ‖ρ‖C1 . Taking the auxiliary
function

Q =
eβΦκmax

u− a
, (3.20)

where a = 1
2 infM u and β is a large constant to be determined later. Assume

that (z0, ρ(z0)) is the maximum point of the function Q, we can choose a local
orthonormal frame {e1, . . . , en} around (z0, ρ(z0)) such that hij is diagonal and
h11 ≥ · · · ≥ hnn at (z0, ρ(z0)). In the rest of proof, all computations will be carried
out at (z0, ρ(z0)). Since h11 = κmax, the function

logQ = log h11 − log(u− a) + βΦ

has a local maximum at (z0, ρ(z0)). Therefore,

0 =
∇ih11

h11
− ∇iu
u− a

+ β∇iΦ, (3.21)

0 ≥ F ii∇iih11

h11
−
F ii
(
∇ih11

)2
h2

11

− F ii∇iiu
u− a

+
F ii
(
∇iu

)2
(u− a)2

+ βF ii∇iiΦ. (3.22)

By (2.4) and (3.9), we have

βF ii∇iiΦ = βφ′
∑
i

F ii − βuf̃ . (3.23)
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It follows from (2.6) and (3.12) that

−F
ii∇iiu
u− a

= −F
iihiij∇jΦ
u− a

− φ′f̃

u− a
+
uF iih2

ii

u− a

≥ −dV f̃(∇eiV )∇iΦ
u− a

− hiidν f̃(ei)∇iΦ
u− a

− φ′f̃

u− a
+
uF iih2

ii

u− a
.

(3.24)

Applying (2.8) and (3.9), we obtain

F ii∇iih11 = F ii∇11hii − h11F
iih2

ii + F iihiih
2
11

−KF ii(h11δ
2
1i − h11δii + hii − hi1δi1)

= F ii∇11hii − h11F
iih2

ii + f̃h2
11 +Kh11

∑
i

F ii − f̃K.
(3.25)

Covariantly differentiating (3.11) twice yields

F ii∇11hii = Gii∇11ηii ≥ −Gij,rs∇1ηij∇1ηrs+
∑
i

h11idν f̃(ei)−C1(1+h2
11), (3.26)

where the positive constant C1 depends on ‖f‖C2 . The concavity of G and Codazzi
formula give

Gij,rs∇1ηij∇1ηrs ≥ −2
∑
i≥2

G1i,i1|∇1η1i|2 = −2
∑
i≥2

G1i,i1|∇ih11|2. (3.27)

Combining (3.25) and (3.26) with (3.27), we obtain

F ii∇iih11

h11
≥ − 2

h11

∑
i≥2

G1i,i1|∇ih11|2 − F iih2
ii +

h11idν f̃(ei)

h11

+K
∑
i

F ii + h11f̃ −
Kf̃

h11
− C1(

1

h11
+ h11).

(3.28)

Putting (3.23), (3.24) and (3.28) in (3.22),

0 ≥ − 2

h11

∑
i≥2

G1i,i1|∇ih11|2 −
F ii|∇ih11|2

h2
11

+
a

u− a
F iih2

ii +
F ii|∇iu|2

(u− a)2

+
∑
i

(∇ih11

h11
− hii∇iΦ

u− a

)
dν f̃(ei) + (K + βφ′)

∑
i

F ii − C2(1 + h11)

≥ − 2

h11

∑
i≥2

G1i,i1|∇ih11|2 −
F ii|∇ih11|2

h2
11

+
a

u− a
F iih2

ii +
F ii|∇iu|2

(u− a)2

+ (K + βφ′)
∑
i

F ii − C2(β + h11),

(3.29)

where C2 depends r1, r2, r3, and ‖f‖C2 . The second inequality is obtained by
(3.21).

We divide the rest of proof into three steps.

Step 1. We prove that

a

2(u− a)
F iih2

ii +
1

2
(K + βφ′)

∑
i

F ii ≥ C2h11. (3.30)

The proof of step 1 is split into two cases.
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Case 1. |hii| ≤ δh11 for all 2 ≤ i ≤ n, δ is a small constant to be chosen. We
obtain

|η11| ≤ (n−1)δh11,
(
1−(n−2)δ

)
h11 ≤ η22 ≤ · · · ≤ ηnn ≤

(
1+(n−2)δ

)
h11. (3.31)

This shows that

σk−1(η) = σk−1(η|1) + η11σk−2(η|1)

≥ Ck−1
n−1

(
1− (n− 2)δ

)k−1
hk−1

11

− Ck−2
n−1

(
1 + (n− 2)δ

)(
1− (n− 2)δ

)k−2
hk−1

11 .

(3.32)

Choosing δ sufficiently small and using k ≥ 2, we have

σk−1(η) ≥ 1

2
hk−1

11 ≥ 1

2
h11. (3.33)

It follows from (3.33) and the definitions of Gii and F ii that∑
i

F ii = (n− 1)
∑
i

Gii =
(n− 1)(n− k + 1)

k
σ

1
k−1

k (η)σk−1(η)

≥ (n− 1)(n− k + 1)

2k infM f1− 1
k

h11.

(3.34)

Choosing β sufficiently large gives

1

2
(K + βφ′)

∑
i

F ii ≥ C2h11. (3.35)

Case 2. h22 > δh11 or hnn < −δh11. We obtain

a

2(u− a)
F iih2

ii ≥
a

2(supM u− a)

(
F 22h2

22 + Fnnh2
nn

)
≥ aδ2

2(supM u− a)
F 22h2

11.
(3.36)

Applying Maclaurin’s inequality, we have

F 22 =
∑
i 6=2

Gii ≥ 1

2

∑
i

Gii ≥ 1

2
(Ckn)1/k. (3.37)

Inserting into (3.36) yields

a

2(u− a)
F iih2

ii ≥
aδ2

4(supM u− a)
(Ckn)1/kh2

11 ≥ C2h11, (3.38)

where the second inequality is obtained from

h11 ≥
4(supM u− a)

aδ2
(Ckn)−

1
kC2,

otherwise, the proof is complete.

Step 2. We prove that

|hii| ≤ βC3, for 2 ≤ i ≤ n,
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where C3 depends r1, r2, r3, and ‖f‖C2 . Combining step 1 and (3.29) gives

0 ≥ − 2

h11

∑
i≥2

G1i,i1|∇ih11|2 −
F ii|∇ih11|2

h2
11

+
a

2(u− a)
F iih2

ii

+
F ii|∇iu|2

(u− a)2
+

1

2
(K + βφ′)

∑
i

F ii − C2β.

(3.39)

From (3.21) and Cauchy-Schwarz inequality, we have

− F ii|∇ih11|2

h2
11

≥ − 1 + ε

(u− a)2
F ii|∇iu|2 − (1 +

1

ε
)β2F ii|∇iΦ|2. (3.40)

Note that

− 2

h11

∑
i≥2

G1i,i1|∇ih11|2 ≥ 0. (3.41)

Using (3.40) and (3.41) in (3.39) yields

0 ≥
( a

2(u− a)
− ε|∇Φ|2

(u− a)2

)
F iih2

ii − C2β

+
(1

2
(K + βφ′)− (1 +

1

ε
)β2|∇Φ|2

)∑
i

F ii,
(3.42)

where ∇iu = hii∇iΦ. Recalling that

F ii ≥ F 22 ≥ 1

2(n− 1)

∑
i

F ii ≥ 1

2
(Ckn)1/k

and choosing ε sufficiently small such that

a

2(u− a)
− ε|∇Φ|2

(u− a)2
≥ c0 > 0,

we deduce that

0 ≥ c0
2(n− 1)

∑
j≥2

h2
jj +

(1

2
(K + βφ′)− (1 +

1

ε
)β2|∇Φ|2

)
− C2β∑

i F
ii
. (3.43)

Therefore,
∑
i≥2 h

2
ii ≤ β2C2

3 .

Step 3. We show that there exists a constant C depending r1, r2, r3, ‖f‖C2 , and
infM f , such that h11 ≤ C.

From (3.21) and Cauchy-Schwarz inequality, we obtain

− F ii|∇ih11|2

h2
11

≥ − 1 + ε

(u− a)2
F 11|∇1u|2 − (1 +

1

ε
)β2F 11|∇1Φ|2 −

∑
i≥2

F ii|∇ih11|2

h2
11

.
(3.44)

Choosing ε sufficiently small, we obtain

− ε

(u− a)2
F 11|∇1u|2 = − ε|∇1Φ|2

(u− a)2
F 11h2

11 ≥ −
a

16(u− a)
F iih2

ii. (3.45)

Without loss of generality, we assume that

h2
11 ≥ max

{32(supM u− a)β2

aε
|∇Φ|2, β

2C2
3

α2

}
,
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where α will be determined later (α < 1). This gives

− (1 +
1

ε
)β2F 11|∇1Φ|2 ≥ −2

ε
β2F 11|∇Φ|2 ≥ − a

16(u− a)
F iih2

ii. (3.46)

By step 2,

|hii| ≤ αh11, for i ≥ 2, (3.47)

which implies that
1

h11
≤ 1 + α

h11 − hii
. (3.48)

Noting that

−G1i,i1 =
G11 −Gii

ηii − η11
=
F ii − F 11

h11 − hii
,

we have

−
∑
i≥2

F ii|∇ih11|2

h2
11

≥ −
∑
i≥2

F ii − F 11

h2
11

|∇ih11|2 −
∑
i≥2

F 11|∇ih11|2

h2
11

≥ −1 + α

h11

∑
i≥2

F ii − F 11

h11 − hii
|∇ih11|2 −

∑
i≥2

F 11|∇ih11|2

h2
11

=
1 + α

h11

∑
i≥2

Gi1,1i|∇ih11|2 −
∑
i≥2

F 11|∇ih11|2

h2
11

.

(3.49)

Using (3.21), (3.47), and Cauchy-Schwarz inequality we have

−
∑
i≥2

F 11|∇ih11|2

h2
11

≥ −2
∑
i≥2

F 11|∇iu|2

(u− a)2
− 2β2

∑
i≥2

F 11|∇iΦ|2

≥ −2(n− 1)α2|∇Φ|2

a2

aF 11h2
11

u− a
− ε(u− a)

16(supM u− a)

aF 11h2
11

u− a
.

(3.50)

Choosing α sufficiently small gives

−
∑
i≥2

F 11|∇ih11|2

h2
11

≥ −aF
11h2

11

8(u− a)
≥ − aF iih2

ii

8(u− a)
. (3.51)

Putting (3.44), (3.45), (3.46), (3.49), and (3.51) in (3.39) yields

0 ≥ F ii|∇iu|2

4(u− a)2
+

1

2
(K + βφ′)

∑
i

F ii − C2β ≥
C2

2
h11 − C2β. (3.52)

Thus h11 ≤ 2β. �

4. Existence

In this section, we use the degree theory for nonlinear elliptic equation developed
in [16] to prove Theorem 1.1. After establishing the a priori estimates in Proposi-
tions 3.1, 3.3 and 3.4, we know that (3.2) is uniformly elliptic. From Evans-Krylov
estimates [7, 15], and Schauder estimates, we obtain

‖ρ‖C4,δ ≤ C (4.1)
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for any (η, k)-convex solution M = {(z, ρ(z)) : z ∈ Sn} to (1.4). We consider a

family of the mappings for t ∈ [0, 1], F (·; t) : C4,δ
0 (Sn)→ C2,δ(Sn), defined by

F (z, ρ(z); t) = σk(λ(η))− f t(V, ν),

where

f t(V, ν) = tf(V, ν) + (1− t)Ckn(n− 1)k
[(φ′(ρ)

φ(ρ)

)k
+ ε
((φ′(ρ)

φ(ρ)

)k − (φ′(1)

φ(1)

)k)]
,

where the constant ε is sufficiently small such that

min
r1≤ρ≤r2

[(φ′(ρ)

φ(ρ)

)k
+ ε
((φ′(ρ)

φ(ρ)

)k − (φ′(1)

φ(1)

)k)] ≥ c0 > 0,

for some positive constant c0. We set

OR = {ρ ∈ C4,δ
0 (Sn) : ‖ρ‖C4,δ(Sn) < R},

which is an open set of C4,δ
0 (Sn). If R is sufficiently large, F (z, ρ(z); t) = 0 has

no solution on ∂OR by the a priori estimates in (4.1). Therefore, the degree of
deg(F (·; t),OR, 0) is well-defined. Using the homotopic invariance of the degree,
we have

deg(F (·; 1),OR, 0) = deg(F (.; 0),OR, 0).

At t = 0, by Proposition 3.2, ρ0 = 1 is the unique solution of (3.2) in OR. Direct
calculations yields

F (z, ρ; 0) = −εCkn(n− 1)k
((φ′(ρ)

φ(ρ)

)k − (φ′(1)

φ(1)

)k)
.

By the definition of φ(ρ), we obtain

δρ0F (z, ρ0; 0) =
d

ds
|s=1F (z, sρ0; 0)

= −εkCkn(n− 1)k
(φ′(1)

φ(1)

)k−1φ′′(1)φ(1)− φ′(1)φ′(1)(
φ(1)

)2 > 0,

where δF (z, ρ0; 0) is the linearized operator of F at ρ0. Then δF (z, ρ0; 0) takes the
form

δϕF (z, ρ0; 0) = −aij∇′ijϕ+bi∇′iϕ−εkCkn(n−1)k
(φ′(1)

φ(1)

)k−1φ′′(1)φ(1)− φ′(1)φ′(1)(
φ(1)

)2 ,

where (aij) is a positive definite matrix. Clearly, δρ0F (z, ρ0; 0) is an invertible
operator. Therefore,

deg(F (.; 1),OR, 0) = deg(F (.; 0),OR, 0) 6= 0.

It implies that there is a solution of Equation (3.2) at t = 1. This completes the
proof of Theorem 1.1.
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(1984), 495–518.

[9] B. Guan, P. Guan; Convex hypersurfaces of prescribed curvatures, Ann. Math., 156 (2002),
655–673.

[10] P. Guan, C. Lin, X. Ma; The Existence of Convex Body with Prescribed Curvature Measures,

Int. Math. Res. Not., (2009), 1947–1975.
[11] P. Guan, J. Li, Y. Li; Hypersurfaces of prescribed curvature measure, Duke Math. J.,

161(2012), 1927–1942.

[12] P. Guan, C. Ren, Z. Wang; Global C2-estimates for convex solutions of curvature equations,
Comm. Pure Appl. Math., 68(2015), 1287–1325.

[13] P. Guan, J. Li; A mean curvature type flow in space forms. Int. Math. Res. Not., 13(2015),

4716–4740.
[14] F. Harvey and H. Lawson, p-convexity, p-plurisubharmonicity and the Levi problem, Indiana

Univ. Math. J., 62(2013), 149-169.

[15] N. Krylov; Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad.
Nauk SSSR Ser. Mat., 47(1983),75–108.

[16] Y. Li; Degree theory for second order nonlinear elliptic operators and its applications, Comm.

Partial Differential Equations, 14(1989), 1541–1578.
[17] M. Li, C. Ren,Z. Wang; An interior estimate for convex solutions and a rigidity theorem, J.

Funct. Anal., 270(2016), 2691–2714.
[18] R. Reilly; Variational properties of functions of the mean curvatures for hypersurfaces in

space forms, J. Differ.Geom., 8(1973), 465–477.

[19] C. Ren, Z. Wang; On the curvature estimates for Hessian equations, Amer. J. Math., 141
(2019), 1281–1315.

[20] C. Ren, Z. Wang; The global curvature estimate for the n-2 Hessian equation, preprint,
arXiv:2002.08702.

[21] J. Sha; p-convex Riemannian manifolds, Invent. Math., 83 (1986), 437–447.
[22] J. Sha; Handlebodies and p-convexity, J. Differential Geom., 25 (1987), 353–361.

[23] J. Spruck, L. Xiao; A note on starshaped compact hypersurfaces with a prescribed scalar
curvature in space forms, Rev. Mat. Iberoam., 33(2017), 547–554.



14 J. ZHOU EJDE-2022/18

[24] H. Wu; Manifolds of partially positive curvature, Indiana Univ. Math. J., 36 (1987), 525–548.

Jundong Zhou

School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, An-

hui, China.
School of Mathematical Sciences, University of Science and Technology of China,

Hefei 230026, Anhui, China

Email address: zhou109@mail.ustc.edu.cn


	1. Introduction
	2. Preliminaries
	3. A priori estimates 
	3.1. C0 estimates
	3.2. C1 estimates
	3.3. C2 estimates

	4. Existence
	Acknowledgments

	References

