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EXPONENTIAL STABILITY OF SOLUTIONS OF NONLINEAR
FRACTIONALLY PERTURBED ORDINARY DIFFERENTIAL

EQUATIONS

EVA BRESTOVANSKÁ, MILAN MEDVEĎ

Communicated by Mokhtar Kirane

Abstract. The main aim of this paper is to prove a theorem on the expo-

nential stability of the zero solution of a class of integro-differential equations,
whose right-hand sides involve the Riemann-Liouville fractional integrals of dif-

ferent orders and we assume that they are polynomially bounded. Equations

of that type can be obtained e.g. from fractionally damped pendulum equa-
tions, where the fractional damping terms depend on the Caputo fractional

derivatives of solutions. The set of initial values of solutions that converge

to the origin is also determined. We also prove an existence and uniqueness
theorem for this type of equations, which we use in the proof of the stability

theorem.

1. Introduction

Recently, fractional differential equations with fractional derivatives and frac-
tional integrals of different types have attracted many scientists from various disci-
plines due to their wide applications. The most known are the Riemann-Liouville
and the Caputo derivatives and differential equations with these derivatives. The
basic theory of fractional differential equations and many references can be found
in the monographs [8, 23, 29]. These derivatives are defined as follows:

The Riemann-Liouville fractional derivative of a function u : [0,∞) → R of an
order α ∈ (0, 1) is

RLDαu(t) :=
1

Γ(α)
d

dt

∫ t

0

(t− s)α−1u(s)ds (1.1)

and the Caputo derivative is

CDαu(t) :=
1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds, (1.2)
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where u′(t) = du(t)
dt ,Γ(z) =

∫∞
0
τz−1e−τdτ is the Euler Gamma function and the

integral

RLIαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds (1.3)

is called the Riemann-Liouville fractional integral of order α of the function u(t),
provided that the right-hand sides of (1.1), (1.2) and (1.3), respectively, exist.

If u : [0,∞)→ RN , u(t) =
(
u1(t), u2(t), . . . , uN (t)

)
, then, we define the Riemann-

Liouville fractional derivative of the mapping u(t) of order α as

RLDαu(t) =
(RL

Dαu1(t),RLDαu2(t), . . . ,RLDαuN (t)
)

(1.4)

and the Riemann-Liouville fractional integral as

RLIαu(t) =
(RL

Iαu1(t),RL Iαu2(t), . . . ,RL IαuN (t)
)
. (1.5)

An influence of viscous fluids on vibrating systems is often modeled by using the
Riemann-Liouville or Caputo fractional derivative. These derivatives play the role
of damping force, called the fractional damping. The well known Bargley-Torvik
equation (see [2])

u′′(t) +ACD
3
2u(t) = au(t) + φ(t), (1.6)

modelling the motion of a rigid plate immersing in a viscous liquid, is one of the
equations descibing the motion with the fractional damping term ACD

3
2u(t).

It is well known that the system of linear fractional differential equations

Dαx(t) = Ax(t), x(t) ∈ RN , α ∈ (0, 1), (1.7)

where Dαx(t) is the Riemann-Liouville or the Caputo derivative of x(t) of the order
α ∈ (0, 1) and A is a constant matrix, do not have exponentially stable solutions, but
asymptoticall stable only. The equilibrium x = 0 of this equation is asymptotically
stable if and only if | arg(λ)| > απ

2 for all eigenvalues of the matrix A. In this case
all components of x(t) decay towards 0 like t−α (see [11, 12, 20, 21, 9]).

We will show that fractional integro-differential equations of the form

ẋ(t) = Ax(t) + f
(
t, x(t),RL Iα1x(t), . . . ,RL Iαmx(t)

)
, x(t) ∈ RN (1.8)

can have exponentially stable solutions, where the solution is defined as in the next
definition.

Definition 1.1. A mapping x : [0, T )→ RN , where 0 < T ≤ ∞, is a solution of the
equation (1.8) satisfying the initial condition x(0) = x0 ∈ RN if it is continuously
differentiable on the interval (0, T ), continuous on [0, T ) and it satisfies the equality
(1.8) for all t ∈ (0, T ). If T =∞, then this solution is called global.

Equations of the form (1.8) can be obtained from the following linear multi-
fractional pendulum equation

u′′(t) + λ1(t)CDβ1u(t) + · · ·+ λm(t)CDβmu(t) + λu′(t) + ω2u(t) = 0 (1.9)

with m fractional and one ordinary damping terms, which can be written as a
system of the form (1.8) with

A =
(

0 1
−ω2 −λ

)
, x(t) =

(
x1(t)
x2(t)

)
,
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f(t, x(t),RL Iα1x(t), . . . ,RL Iαmx(t))

=
(

0
−λ1(t)RLIα1x2(t)− · · · − λm(t)RLIαmx2(t)− λ(t)x2(t)

)
,

where x1(t) = u(t), x2(t) = u′(t), βi ∈ (0, 1), αi = 1− βi, λi(t) i = 1, 2, . . . ,m are
continuous functions on [0,∞) and λ > 0, ω > 0 are constants.

Let us recall an analysis of the fractional vibration equation

u′′(t) + bCDαu(t) + cu(t) = 0, α ∈ (0, 1), (1.10)

where b > 0, c > 0 are constants, given in the papers [10] and [18]. It is proven in
[18] that if u(t) is a solution of the equation (1.10) satisfying the initial conditions
u(0) = u0, u′(0) = u1, then its Laplace transform is

L[u(t)] = U(s) =
s+ bsα−1 + c

s2 + bsα + c
u0 +

1
s2 + bsα + c

u1,

the characteristic equation
s2 + bsα + c = 0 (1.11)

has a couple of complex conjugate roots

s1,2 = β ± iσ = r±iΘ, β < 0, σ > 0, r =
√
β2 + σ2 > 0,

π

2
< Θ < π

and the fundamental solution φ1(t) with

L[φ1(t)] = Φ1(s) =
s+ bsα−1 + c

s2 + bsα + c

has the form

φ1(t) = Ceβt cosσt+Deβt sinσt+
∫ ∞

0

Kα(τ)e−τtdτ,

where C,D are functions of the variables r,Θ. The function

f1(t) = Ceβt cosσt+Deβt sinσt

represents a decaying oscillation along the t-axis, where the amplitude decays ex-
ponentially. The function L[φ1(t)] = Φ1(s) has the asymptotic representation
Φ1(s) ∼ b

cs
α−1 as s → 0 and hence the function f2(t) =

∫∞
0
Kα(τ)e−τtdτ has

the asymptotic representation f2(t) ∼ b
c

t−α

Γ(1−α) as t → ∞. The derivative u′(t)

has a similar asymptotic representation u′(t) ∼ b
c

(−α)t−α−1

Γ(1−α) as t → ∞. We con-
clude that the solution u(t) of the equation (1.10) decays towards 0 as t→∞ like
t−α and u′(t) has similar asymptotic properies. This means that the equilibrium
x = (x1, x2) = (u, u′) = (0, 0) of the system of equations, corresponding to the the
solution u(t) of the equation (1.10), is asymptotically stable, but not exponentially.

We were motivated by the paper [25], where an existence and uniqueness result
for the initial value problem

Au′′ +
N∑
k=1

Bk
cDαku(t) = f(t), u(0) = u0, u′(0) = c1 (1.12)

with 0 < αk < 2, k = 1, 2, . . . , N is proved. The Caputo fractional derivatives in
the equation (1.12) play there the role of damping terms.

In the paper [5] the initial value problem
RLDαx(t) = f(t, x(t)), t > 0, lim

t→0
t1−αx(t) = b, α ∈ (0, 1), b ∈ R, (1.13)
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where f : R+ × R → R, φ : R+ → R+ are continuous functions, is studied. It is
assumed there that

|f(t, x)| ≤ tµφ(t)e−σt|u|m, for all (t, u) ∈ R+ × R, (1.14)

where µ ≥ 0, m > 1, σ > 0. Using the desingularization method, proposed in [14]
and the Bihari inequality, it is proven there that if

‖φ‖q =
∫ ∞

0

φ(s)qds < L :=
Γ(α)

21+m−α|b|m−1

( 2m

m− 1

)1/q[ (σp)λ1

Γ(λ1)(1 + λ1
λ2

)

]1/p
,

where pq = p+q, λ1 = 1+p(µ−(1−α)m], λ2 = 1+p(α−1), then any solution x(t)
of the initial value problem (1.13) is global and there exists a constant c > 0 such
that |x(t)| ≤ c

t1−α for all t ∈ (0,∞). This means that the trivial solution x0(t) ≡ 0
is asymptotically stable. It is obvious that similar results for more general type of
power nonlinearities are extraordinary complicated. In the paper [15] the equation

ẋ(t) = Ax(t) + f
(
t, x(t),RL Iα1 [g1x](t), . . . ,RL Iαm [gmx](t)

)
, x(t) ∈ RN , (1.15)

where f : R×RN ×RN → RN is a continuous mapping, gi : R×RN → RN , (t, x) 7→
gi(t, x), i = 1, 2, . . . ,m are continuous mappings and

RLIαi [gix](t) :=
1

Γ(αi)

∫ t

0

(t− s)αi−1gi(s, x(s))ds, 0 < αi < 1, i = 1, 2, . . . ,m

(1.16)
is studied. A sufficient condition for the exponential stability of the trivial solution
x(t) ≡ 0 of this equation is proven there. In the paper [16] a sufficient condition
for the non-existence of blow-up solutions for a fractional functional-differential
equations of the form

ẋ(t) = Ax(t) + h
(
t, x(t), xt, (Iα1 [g1x])(t), . . . , (Iαm [gmx])(t)

)
, t > 0,

x(t) = Φ(t), t ∈ [−r, 0],
(1.17)

where r > 0, Φ ∈ Cr := C([−r, 0], X), X is a Banach space, x(t) ∈ X, xt ∈ C,
xt(Θ) := x(t+ Θ) t > 0, Θ ∈ [−r, 0], A is the infinitesimal generator of a strongly
continuous semigroup {S(t)}t≥0, S(t) := eAt, h : R+ ×X ×Cr ×Xm → X, Xm :=
X × · · · × X (m times) is a continuous map, R+ = [0,∞), gi : R+ × X → X,
(t, x) 7→ gi(t, x), i = 1, 2, . . . ,m are continuous maps, is proved

In this paper, we study equation (1.15) with gi(t, x) ≡ x(t), i.e., we have the
Riemann-Liouville fractional integrals of x(t) in the equation (1.8) instead of the
nonlinear functions gi(t, x(t)). Moreover, the mapping f is more general than in
[15]. The aim is to give some conditions under which the trivial solution of this
equation is exponentially stable.

2. Existence and uniqueness result

In this section, we prove a local existence and uniqueness result concerning the
initial value problem

ẋ(t) = Ax(t) + f
(
t, x(t),RL Iα1x(t), . . . ,RL Iαmx(t)

)
, t > 0,

x(t) ∈ RN , x(t0) = x0.
(2.1)

Many papers are devoted to the fractional initial value problem
RLDαx(t) = f(t, x(t)), x(t0) = x0, (2.2)
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where the right-hand side is independent of fractional derivatives and fractional
integrals, respectivelly. Some basic existence results for the problem (2.2) can be
found in the monograph [8], where they are proved by using the classical Picard
method of successive approximations. Many local and global existence results for
various classes of fractional differential equations are proved by using fixed point
theorems (see, e.g., the monograph [29], [6] and the paper [30]). Some existence
results for the second-order abstract differential equations on Banach spaces, in-
volving several fractional derivatives on their right-hand sides are proved in the
papers [7, 27, 28]. In its proof, we use the method of Picard successive approx-
imations. There is a problem to apply the Banach fixed point theorem without
the assumption of the global boundedness of the mapping f , because there are
fractional integrals of the unknown function x(t) in its arguments.

Theorem 2.1. Let G ⊂ R × RN be a region, Hm ⊂ Rm is a region with 0 ∈ Hm

and f ∈ C(G×Hm,RN ) be a continuous locally Lipschitz mapping. Then for any
(t0, x0) ∈ G, t0 ≥ 0, there exists a δ > 0 such that the initial value problem (2.1)
has a unique solution x(t) on the interval Iδ = [t0, t0 + δ).

Proof. Let

G0 =
{

(t, x, u1, . . . , um) ∈ G×Hm : t0 ≤ t ≤ t0 + a, t0 ≥ 0,

‖x− x0‖ ≤ b, ‖ui‖ ≤ ‖x0‖+ b, i = 1, 2, . . . ,m
}
,

(2.3)

for some a > 0, b > 0. Let

M1 = max
‖x−x0‖≤b

‖Ax‖, M2 = max
(t,x,u1,...,um)∈G0

‖f(t, x, u1, . . . , um)‖

and the mapping f satisfies the condition

‖f(t, x, u1, u2, . . . , um)−f(t, y, v1, v2, . . . , vm)‖ ≤ L0‖x−y‖+
m∑
i=1

Li‖ui−vi‖ (2.4)

for all (t, x, u1, u2, . . . , um), (t, y, v1, v2, . . . , vm) ∈ G0. Let

0 < δ = min
{
a,

b

M1 +M2
, c,

1
‖A‖+ L0 +

∑m
i=1 Li

}
,

where c = min1≤i≤m
[
Γ(αi)αi

] 1
αi . Let Cδ := C(Iδ,RN ) be the Banach space of

continuous mappings from Iδ into RN endowed with the metric d(h, g) := ‖h−g‖ :=
maxt∈Iδ ‖h(t) − g(t)‖. Let us define the successive approximations {xn}∞n=0, xn ∈
Cδ := C(Iδ,RN ), Iδ = [t0, t0 + δ], by

x0(t) ≡ x0,

xn+1(t)

= x0 +
∫ t

t0

Axn(s)ds+
∫ t

t0

f
(
s, xn(s),

1
Γ(α1)

×
∫ s

0

(s− τ)α1−1xn(τ)dτ, . . . ,
1

Γ(αm)

∫ s

0

(s− τ)αm−1xn(τ)dτ
)
ds,

n = 0, 1, 2, . . . t ∈ Iδ.

(2.5)
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First, let us prove that ‖xn(t)−x0‖ ≤ b for all n ≥ 1, t ∈ Iδ. From the definition
of the number c it follows that

1
Γ(αi)

∫ t

0

(t− s)αi−1ds ≤ 1
Γ(αi)

δαi

αi
≤ 1

Γ(αi)
cαi

δαi
≤ 1

Γ(αi)
Γ(αi)αi
αi

= 1 (2.6)

for i = 1, 2, . . . ,m; and so, we have

‖ 1
Γ(αi)

∫ t

t0

(t− τ)αi−1x0dτ‖ ≤
1

Γ(αi)
δαi

αi
[‖x0‖+ b] ≤ ‖x0‖+ b, (2.7)

for i = 1, 2, . . . ,m, t ∈ Iδ, and i = 1, 2, . . .m. Hence, the first approximation x1(t)
is well defined and

‖x1(t)− x0‖ ≤M1δ +M2δ = (M1 +M2)δ ≤ (M1 +M2)
b

M1 +M2
= b,

for t ∈ Iδ. This yields the inequality

‖x1(t)‖ ≤ ‖x0‖+ b for all t ∈ Iδ.

and thus(
t, x1(t),

1
Γ(α1)

∫ t

0

(t− τ)α1−1x1(τ)dτ, . . . ,
1

Γ(αm)

∫ t

0

(t− τ)αm−1x1(τ)dτ
)
∈ G0

for all t ∈ Iδ. Now, we find by using the Lipschitz condition (2.4) and inequality
(2.6) that

‖x2(t)− x1(t)‖ ≤ δ(‖A‖+ L0)‖x1(t)− x0(t)‖

+
m∑
i=1

Li
Γ(αi)

∫ t

t0

∫ s

0

(s− τ)αi−1‖x1(τ)− x0(τ)‖dτds

≤ δ(‖A‖+ L0)‖x1 − x0‖

+
m∑
i=1

Li
Γ(αi)

(∫ t

t0

∫ s

0

(s− τ)αi−1dτds
)
‖x1 − x0‖

≤ δk‖x1 − x0‖,

(2.8)

where k = ‖A‖+ L0 +
∑m
i=1 Li and so, we get

‖x2 − x1‖ ≤ kδ‖x1 − x0‖.

Now assume that the estimate

‖xn(t)− xn−1(t)‖ ≤ (kδ)n−1

holds for n > 2. Then, using this inequality, the Lipschitz condition (2.4) and the
inequality (2.6), one can get

‖xn+1(t)− xn(t)‖ ≤ (kδ)n‖x1 − x0‖

and so, we have
‖xn+1 − xn‖ ≤ (kδ)n‖x1 − x0‖.

Since

xn(t) = x0(t) +
n∑
i=1

[xi(t)− xi−1(t)] with x0(t) ≡ x0, (2.9)
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we obtain

‖x0(t) +
n∑
i=1

[xi(t)− xi−1(t)]‖ ≤ ‖x0‖+
n∑
i=1

‖xi(t)− xi−1(t)‖

≤
(
‖x0‖+

n∑
i=1

(kδ)i
)
‖x1 − x0‖,

(2.10)

for all t ∈ Iδ. From the definition of δ it follows that kδ < 1, and so the series
‖x0‖+

∑∞
i=1(kδ)i is convergent. This yields the uniform convergence of the sequence

{xn(t)}∞i=0 on the interval Iδ to a continuous mapping x ∈ Cδ. This implies

lim
n→∞

1
Γ(αi)

∫ s

0

(s− τ)αi−1xn(τ)dτ

=
1

Γ(αi)

∫ s

0

(s− τ)αi−1x(τ)dτ for i = 1, 2, . . . ,m, s ∈ Iδ
(2.11)

and therefore

lim
n→∞

f
(
s, xn(s),

1
Γ(α1)

∫ s

0

(s− τ)α1−1xn(τ)dτ,

. . . ,
1

Γ(αm)

∫ s

0

(s− τ)αm−1xn(τ)dτ
)
ds

= f
(
s, x(s),

1
Γ(α1)

∫ s

0

(s− τ)α1−1x(τ)dτ,

. . . ,
1

Γ(αm)

∫ s

0

(s− τ)αm−1x(τ)dτ
)
ds for all s ∈ Iδ.

(2.12)

Therefore from (2.5) it follows that x(t) is a solution of the initial value problem
(2.1), defined on the interval Iδ. Now let us prove its uniqueness. Assume that
there are two different solutions x, y ∈ Cδ of the initial value problem (2.1). Let
w(t) := ‖x(t)− y(t)‖, t ∈ Iδ and W = maxt∈Iδ w(t). Then, by using the Lipschitz
condition (2.4) and the inequality (2.6) we obtain

w(t) ≤ (‖A‖+ L0)
∫ t

t0

w(s)ds+
m∑
i=0

Li
Γ(αi)

∫ t

t0

∫ s

0

(s− τ)αi−1‖x(τ)− y(τ)‖dτds

+ δ
(
‖A‖+ L0 +

m∑
i=0

Li
Γ(αi)

∫ t

t0

(t− τ)αi−1dτ
)
W

≤ δ
(
‖A‖+ L0 +

m∑
i=0

Li

)
W

= (δk)W for all t ∈ Iδ
(2.13)

and this yields the inequality W ≤ (kδ)W < W . This is a contradiction and hence,
we have x(t) = y(t) for all t ∈ Iδ. �

3. Stability Theorem

In this section, we prove a result on the exponential stability of the trivial solution
x(t) ≡ 0 of the equation (1.8). In its proof, we apply a desingularization method,
proposed in the paper [14], where it is applied in the study of nonlinear integral
inequalities with weakly singular kernels.
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We assume that the following conditions are satisfied:
(A1)

‖eAtx‖ ≤ Ke−at‖x‖ for all t ≥ 0, x ∈ RN ,
where K > 0, a > 0 are constants;

(A2) The mapping f : R × RN × RmN → RN is continuous and it satisfies the
condition

‖f(t, x, u1, u2, . . . , um)‖ ≤ µ1(t)e−γ1t‖x‖+
m∑
i=1

λi1(t)e−γi1t‖ui‖

+
l∑

j=2

µj(t)‖x‖kj +
l∑

j=2

m∑
i=1

λij(t)‖ui‖kj
(3.1)

for all (t, x, u1, u2, . . . , um) ∈ R × RN × RmN , where µj(t), λij(t), i =
1, 2, . . . ,m, j = 1, 2, . . . , l are nonnegative continuous functions on [0,∞),
γ1 > 0, γi1 > a + 1, i = 1, 2, . . . ,m, 1 = k1 < k2 < · · · < kl, ‖z‖ =
max{|z1|, |z2|, . . . , |zN |};

(A3) There exist numbers pi > 1, i = 1, 2, . . . ,m such that

pi(αi − 1) + 1 > 0, i = 1, 2, . . . ,m

and

ωj :=
∫ ∞

0

µj(s)qds <∞, j = 1, 2, 3, . . . , l, (3.2)

where q = q1q2 . . . qm, qi = pi
pi−1 , i = 1, 2, . . . ,m;

(A4)

ηi1 :=
∫ ∞

0

e−[γi1−(a+1)]sλi1(s)ds <∞,

ηij :=
∫ ∞

0

e(a+kj)ss
kj−1
qi λij(s)ds <∞, i = 1, 2, . . . ,m, j = 2, 3, . . . , l,

(3.3)

where q1, q2, . . . , qm are defined as in (A3).
(A5) The mapping f(t, x, u1, u2, . . . , um) is locally lipschitz with respect to the

variables x, u1, . . . , um.
In the proof of the main result, we use the following corollary of the Pinto’s

inequality (see [22, Theorem 1], [1, Theorem 10.2] and [26, Example 5]). We present
it in the form of the next lemma also with its proof, because we did not find this
formulation in literature.

Lemma 3.1. Let c > 0 be a constant, Ψj(t), j = 1, 2, . . . , l be continuous, nonneg-
ative functions on [a,∞) and u(t) be a continuous nonnegative function satisfying
the integral inequality

u(t) ≤ c+
l∑

j=1

∫ t

a

Ψj(s)u(s)kjds, t ∈ [a,∞),

where a ∈ R, 1 = k1 ≤ k2 < · · · ≤ kl. Let the following conditions be satisfied:

(kj − 1)(cDj)kj−1

∫ ∞
a

Ψjs)ds < 1, j = 2, 3, . . . , l,
∫ ∞

0

Ψ1(s)ds <∞, (3.4)
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where

D1 = e
R∞
0 Ψ1(s)ds,

Dj =
(

1− (kj − 1)(Dj−1c)kj−1

∫ ∞
a

Ψj(s)ds
)− 1

kj−1
, j = 2, 3, . . . , l.

(3.5)

Then
u(t) ≤ cD1D2 . . . Dl, for all t ∈ [a,∞). (3.6)

Proof. By [22, Theorem 1] (see also [26, Example 5]),

u(t) ≤W−1
l

[
Wl(cl−1(t)) +

∫ t

a

Ψl(s)ds
]
, (3.7)

where

c0(t) ≡ c, ci(t) = W−1
i

[
Wi(ci−1(t)) +

∫ t

a

Ψi(s)ds
]
,

Wi(z) =
∫ z

ui

dy

yki
, y ≥ ui > 0, i = 1, 2, . . . , l.

(3.8)

One can calculate that

W1(y) =
1

1− k1

[
y1−k1 − c1−k1

]
, W−1

1 (u) =
[
c1−k1 − (k1 − 1)u

]− 1
k1−1

and

c1(t) = W−1
1

[
W1(c) +

∫ t

a

Ψ1(s)ds
]
≤ cD1. (3.9)

From the assumption (3.4) it follows that 0 < D1 <∞. Using the inequality (3.9),
we obtain

c2(t) ≤W−1
2

[
W2(c1(t)) +

∫ t

a

Ψ2(s)ds
]
≤W−1

2

[
W2(cD1) +

∫ t

a

Ψ2(s)ds
]

≤
[
(D1c)1−k2 − (k2 − 1)

∫ t

a

Ψ2(s)ds
]− 1

k2−1 ≤ cD1D2,

(3.10)

where

D2 =
[
1− (k2 − 1)(cD1)k2−1

∫ ∞
a

Ψ2(s)ds
]− 1

k2−1
.

Now, assume that
cl−1(t) ≤ cD1D2 · · ·Dl−1.

Using the same arguments as above one can prove inequality (3.6). �

Theorem 3.2. Let conditions (A1)–(A5) be satisfied and ‖x0‖ < ρ, where ρ =∞,
if l = 1 and if l > 1, then

ρ = sup
{
z ∈ R : |C(z)Dj−1(z)| <

[ 1
(kj − 1)Gj

] 1
kj−1

, i = 2, 3, . . . , l
}
, (3.11)

where
C(z) = dqKqzq, d = m(l + 1) + 2, D1(z) ≡ G1,

D2(z) =
[
1− (k2 − 1)[C(z)D1(z)]k2−1G2

]− 1
k2−1 ,

Dj(z) =
[
1− (kj − 1)

[
C(z)Dj−1(z)

]kj−1
Gj
]− 1

kj−1 , j = 3, . . . , l,

(3.12)
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G1 = dq−1Kq
{( 1

γ1p

)q/p
ω1 +

m∑
i=1

( Qi
Γ(αi)

)q
ηqi1

( 1
aqip̂i

) 1
p̂i 1
q

}
,

Gj = dq−1Kq
{[ 1

(kj − 1)ap

]q/p
ωj +

m∑
i=1

( Qi
Γ(αi)

)kjq
ηqij

( 1
aqip̂ikj

) 1
p̂i 1
kjq

}
,

(3.13)

j = 2, 3, . . . , l, pi > 1, qi = pi
pi−1 , i = 1, 2, . . . ,m, q = q1q2 . . . qm, p = q

q−1 ,
q̂i = q1 . . . qi−1qi+1 . . . qm, p̂i = q̂i

q̂i−1 ,

Qi =
(Γ(pi(αi − 1) + 1)

p
pi(αi−1)+1
i

)1/pi
. (3.14)

Then for the solution x(t) of the equation (1.8), satisfying the condition x(0) = x0,
the following inequality holds:

‖x(t)‖ ≤ Ψ(‖x0‖)e−at for all t ∈ [0,∞), (3.15)

where the function Ψ(w) is defined as

Ψ(w) =
[
C(w)D1(w)D2(w)D2(w) . . . Dl(w)

]1/q
, |w| < ρ,

for which limw→0 Ψ(w) = 0 and if l > 1, then limw→ρ− Ψ(w) =∞.

Proof. Let x(t) be the maximal solution of the equation (1.8), defined on the interval
[0, d), satisfying the condition x(0) = x0 ∈ RN . From Theorem 2.1 it follows that
this solution exists. Then

x(t) = eAtx0 +
∫ t

0

eA(t−s)f
(
s, x(s),RL Iα1x(s), . . . ,RL Iαmx(s)

)
ds, t ∈ [0, d)

and the conditions (A1), (A2) yield

‖x(t)‖ ≤ Ke−at‖x0‖+Ke−at
∫ t

0

e−(γ1−a)sµ1(s)‖x(s)‖ds

+Ke−at
m∑
i=1

∫ t

0

e−(γi1a)sλi1(s)‖RLIαix(s)‖ds

+Ke−at
∫ t

0

eas
( l∑
j=2

µj(s)‖x(s)‖kj +
l∑

j=2

m∑
i=1

λij(s)‖RLIαix(s)‖kj
)
ds.

(3.16)
If u(t) = eat‖x(t)‖, then ‖x(t)‖ = e−atu(t), ‖x(t)‖kj = e−akjtu(t)kj ,

‖RLIαix(s)‖ =
1

Γ(αi)

∥∥∥∫ t

0

(t− s)αi−1x(s)ds
∥∥∥

≤ 1
Γ(αi)

∫ t

0

(t− s)αi−1‖x(s)‖ds

≤ 1
Γ(αi)

∫ t

0

(t− s)αi−1e−asu(s)ds,

(3.17)
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‖RLIαix(s)‖kj =
1

Γ(αi)kj

∥∥∥∫ t

0

(t− s)αi−1x(s)ds
∥∥∥kj

≤ 1
Γ(αi)kj

(∫ t

0

(t− s)αi−1‖x(s)‖ds
)kj

≤ 1
Γ(αi)kj

(∫ t

0

(t− s)αi−1e−asu(s)ds
)kj

.

(3.18)

Now, we apply the desingularization method as follows:∫ t

0

(t− s)αi−1ese−se−asu(s)ds

≤
(∫ t

0

(t− s)pi(αi−1)episds
)1/pi(∫ t

0

e−qise−aqisu(s)qids
)1/qi

(3.19)

with qi = pi
pi−1 , pi(αi − 1) + 1 > 0. By the following inequality, proved in [14] (see

also [17]), (∫ t

0

(t− s)pi(αi−1)episds
)1/pi

≤ Qiet,

where the number Qi is given by (3.14),we obtain the inequality(∫ t

0

(t− s)αi−1‖x(s)‖ds
)kj
≤ Qkji e

kjt
(∫ t

0

e−qise−aqisu(s)qids
)kj/qi

. (3.20)

Then the Hölder inequality yields(∫ t

0

e−qise−aqisu(s)qids
)kj
≤ tkj−1

∫ t

0

e−qikjse−aqikjsu(s)kjqids, j > 2

and hence, we have the inequality

‖RLIαix(s)‖kj ≤
( Qi

Γ(αi)

)kj
ekjss

kj−1
qi

(∫ s

0

e−qikjτe−aqikjτu(τ)kjqidτ
)1/qi

.

Thus, we obtain the inequality

u(t) ≤ K‖x0‖+K

∫ t

0

e−γ1sµ1(s)u(s)ds

+K

m∑
i=1

Qi
Γ(αi)

∫ t

0

e−[γi1−(a+1))s]λi1(s)
(∫ s

0

e−qiτe−aqiτu(τ)qidτ
)1/qi

ds

+K

l∑
j=2

∫ t

0

e−(kj−1)a)sµj(s)u(s)kj
)
ds+K

l∑
j=2

m∑
i=1

( Qi
Γ(αi)

)kj
×
∫ t

0

λij(s)e(a+kj)ss
kj−1
qi

(∫ s

0

e−qikjτe−aqikjτu(τ)kjqidτ
)1/qi

ds.

If q = q1q2 . . . qm and d = m(l+1)+2, then the inequality (z1 +z2 + · · ·+zd)q ≤
dq−1(zq1 + zq2 + · · ·+ zqm), valid for any z1, z2, . . . , zd ≥ 0, yields

u(t)q

≤ dq−1Kq‖x0‖q + dq−1Kq
(∫ t

0

e−γ1sµ1(s)u(s)ds
)q

+ dq−1Kq
m∑
i=1

( Qi
Γ(αi)

)q[ ∫ t

0

e−[γi1−(a+1)]sλi1(s)
(∫ s

0

e−qiτe−aqiτu(τ qidτ
)
ds
]q
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+ dq−1Kq
l∑

j=2

[ ∫ t

0

e−(kj−1)asµj(s)u(s)kjds
]q

+ dq−1Kq
l∑

j=2

m∑
i=1

( Qi
Γ(αi)

)kjq
×
[ ∫ t

0

λij(s)e(a+kj)ss
kj−1
qi

(∫ s

0

e−aqikjτe−kjqiτu(τ)kjqidτ
)1/qi

ds
]q

≤ dq−1Kq‖x0‖q + dq−1Kq
( 1
γ1p

)q/p ∫ t

0

µ1(s)qu(s)qds

+ dq−1Kq
m∑
i=1

( Qi
Γ(αi)

)q
ηi1

(∫ t

0

e−qiτe−aqiτu(τ)qidτ
)q̂i

+ dq−1Kq
l∑

j=2

m∑
i=1

( Qi
Γ(αi)

)kjq
ηqij

(∫ t

0

e−qikjτe−aqikjτu(τ)qikjdτ
)q̂i

,

where q̂i = q1q2 . . . qi−1qi+1 . . . qm.
Using Hölder’s inequality with q̂i, p̂i = q̂i

q̂i−1 and with p, q, we obtain

(∫ t

0

e−γ1sµ1(s)u(s)ds
)q
≤
(∫ t

0

e−γ1psds
)q/p ∫ t

0

µ1(s)qu(s)qds

≤
( 1
γ1p

)q/p ∫ t

0

µ1(s)qu(s)qds,
(3.21)

(∫ t

0

e−[γi1−(a+1)]sλi1(s)u(s)ds
)q
≤
( 1

[γi1 − (a+ 1)]p

)q/p ∫ t

0

µi1(s)qu(s)qds,

(∫ t

0

easµj(s)e−kjasu(s)kjds
)q
≤
(
e−(kj−1)apsds

)q/p ∫ t

0

µj(s)qu(s)kjqds

≤
[ 1

(kj − 1)ap

]q/p ∫ t

0

µj(s)qu(s)kjqds,

[ ∫ t

0

λij(s)e(a+kj)ss
kj−1
qi

(∫ s

0

e−aqikjτe−kjqiτu(τ)kjqidτ
)1/qi

ds
]q

≤
(∫ t

0

λij(s)e(a+kj)ss
kj−1
qi ds

)q(∫ t

0

e−aqikjτe−kjqiτu(τ)kjqidτ
)q̂i

,

(3.22)

(∫ t

0

e−aqikτe−kjqiτu(τ)kqidτ
)q̂i

≤
(∫ t

0

e−aqip̂ikτdτ
) 1
p̂i
(∫ t

0

e−kjqτu(τ)kjqdτ
)

≤
( 1
aqip̂ikj

) 1
p̂i

∫ t

0

e−kjqτu(τ)kjqdτ.

(3.23)
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The above inequalities yield

u(t)q

≤ dq−1Kq‖x0‖q + dq−1Kq
( 1
γ1p

)q
p

∫ t

0

µ1(s)qu(s)qds

+ dq−1Kq
m∑
i=1

( Qi
Γ(αi)

)q
ηqi1

( 1
aqip̂i

) 1
p̂i

∫ t

0

e−qτu(s)qds

+ dq−1Kq
l∑

j=2

[ 1
(kj − 1)ap

]q/p ∫ t

0

µj(s)qu(s)kjqds

+ dq−1Kq
l∑

j=2

m∑
i=1

( Qi
Γ(αi)

)kjq
ηqij

( 1
aqip̂ikj

) 1
p̂i

∫ t

0

e−kjqτu(τ)kjqdτ.

(3.24)

Therefore v(t) = u(t)q satisfies the integral inequality

v(t) ≤ dq−1Kq‖x0‖q +
l∑

j=1

∫ t

0

Fj(s)v(s)kjds, (3.25)

where

F1(t) = dq−1Kq
{( 1

γ1p

)q/p
µ1(t)q +

m∑
i=1

( Qi
Γ(αi)

)q
ηqi1

( 1
aqip̂i

) 1
p̂i
e−qt

}
,

Fj(t) = dq−1Kq
{[ 1

(kj − 1)ap

]q/p
µj(s)q +

m∑
i=1

( Qi
Γ(αi)

)kjq
ηqij

( 1
aqip̂ikj

) 1
p̂i
e−kjqτ

}
.

Obviously,∫ ∞
0

F1(s)ds = dq−1Kq
{( 1

γ1p

)q/p
ω1 +

m∑
i=1

( Qi
Γ(αi)

)q
ηqi1

( 1
aqip̂i

) 1
p̂i 1
q

}
,

∫ ∞
0

Fj(s)ds = dq−1Kq
{[ 1

(kj − 1)ap

]q/p
ωj +

m∑
i=1

( Qi
Γ(αi)

)kjq
ηqij

( 1
aqip̂ikj

) 1
p̂i 1
kjq

}
,

i.e., Gj =
∫∞

0
Fj(s)ds <∞, j = 1, 2, . . . , l.

From Lemma 3.1 it follows that if ‖x0‖ < ρ, where ρ > 0 is defined by (3.11),
then

v(t) ≤ Ψ0‖x0‖) = C(‖x0‖)D1(‖x0‖)D2(‖x0‖)D2(‖x0‖) . . . Dl(‖x0‖), (3.26)

for t ∈ [0, d), where

C(‖x0‖) = dqKq‖x0‖q, D1(‖x0‖) =
∫ ∞

0

F1(s)ds,

D2(‖x0‖) =
[
1− (k1 − 1)[C(‖x0‖D1(‖x0‖)]k1−1

∫ ∞
0

F2(s)ds
]− 1

k1−1
,

Dj(‖x0‖) =
[
1− (kj − 1)

[
C(‖x0‖)Dj−1(‖x0‖)

]kj−1
∫ ∞

0

Fj(s)ds
]− 1

kj−1
,

(3.27)

for j = 3, . . . , l.
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Obviously, the right hand side of the inequality (3.26) is finite if ‖x0‖ < ρ and
it is going to ∞ for ‖x0‖ → ρ, if l > 1. If l = 1, then it is defined for all x0 ∈ RN .
Hence, we have the estimate

v(t) = u(t)q =
(
‖x(t)‖eat

)q ≤ Ψ0(‖x0‖), t ∈ [0, d),

i.e.,
‖x(t)‖ ≤ Ψ(‖x0‖)e−at, t ∈ [0, d). (3.28)

From this inequality it follows that limt→d x(t) = d− < ∞ and by Theorem 2.1
there is an ε > 0 such that the inial value problem (2.1) has a unique solution w(t),
defined on the interval [0, d+ ε). This is a contradiction with the maximality of the
solution x(t). Hence, the inequality (3.28) holds for all t ∈ [0,∞) and the proof is
complete. �

4. Illustrative example

Let us apply Theorem 3.2 to the fractionally perturbed pendulum equation

v′′(t) + 2v′(t) + 4v(t) + 3e−4tCD1/3v(t) + 5e−4t
[
CD1/2v(t)

]2
= 0. (4.1)

We can write this equation in the form of system (1.8), where x(t) = (x1(t), x2(t)) =
(v(t), v′(t)), m = 2, α1 = 1− 1

3 = 2
3 , α2 = 1− 1

2 = 1
2 ,

A =
(

0 1
−4 −2

)
, f(t, x, u1, u2) =

(
0

−3e−4tu12 − 5e−4tu2
22,

)
,

where u1 = (u11, u12), u2 = (u21, u22),

f(t, x(t),RLIα1x(t),RLIα2x(t)) =

(
0

−3e−4tRLI
2
3x2(t)− 5e−4t

[
RLI1/2x2(t)

]2
.

)
,

Obviously,
‖f(t, x, u1, u2)‖ ≤ 3e−4t‖u1‖+ 5e−4t‖u2‖2. (4.2)

The system has the form

ẋ(t) = Ax(t) +

(
0

−3e−4tRLI
2
3x2(t)− 5e−4t

[
RLI1/2x2(t)

]2) . (4.3)

Now, let us find the constants a > 0 and K > 0 from condition (A1). The Jordan
block of the matrix A has the form(

α β
−β α,

)
,

where α = −1, β = 1. One can prove by using the Putzer’s method (see [24]) that

eAtx = eαt
(

cos(βt)I +
1
β

sin(βt)(A− I)
)
x, (4.4)

where I is the unit matrix. This yields the estimate

‖eAtx‖ ≤ e−t
(
‖I‖+ ‖A− I‖

)
‖x‖, (4.5)

where we use the norm ‖C‖ = max{|c11| + |c12|, |c21| + |c22|} of a 2 × 2 matrix
C = (cij). For this norm the inequality ‖Cy‖ ≤ ‖C‖‖y‖ is valid for any y = (y1, y2)
with the norm ‖y‖ = max{|y1|, |y2|}. Since ‖I‖ = 1, ‖A − I‖ = 7, from (4.4) we
obtain

‖eAtx‖ ≤ 8e−t‖x‖ for all x ∈ R2, (4.6)



EJDE-2017/280 EXPONENTIAL STABILITY 15

i.e., we have a = 1 and K = 8. This means that the condition (A1) is satisfied with
a = 1,K = 8.

From (4.2) it follows that the mapping f has the form

‖f(t, x, u1, u2)‖ ≤ λ11(t)e−γ11t‖u1‖+ λ12(t)‖u2‖k2 (4.7)

with λ11(t) = 3, γ11 = 4, λ12(t) = e−4t, k2 = 2. This means that the condition
(A2) is satisfied . The condition (A3) is trivially satisfied because all ωj are equal
zero. The condition (A4) is also satisfied because

η11 =
∫ ∞

0

e−[γ11−(a+1)]sλ11(s)ds = 3
∫ ∞

0

e−2sds =
3
2
, (4.8)

η12 =
∫ ∞

0

e[a+k2]ss
k2−1
q λ12(s)ds =

∫ ∞
0

e3ss1/qe−4sds

=
∫ ∞

0

s1/qe−s = Γ
(

1 +
1
q

) (4.9)

with q = q1q2, where we define q1 = 2, q2 = 3, i.e., q = 6. For the numbers
p1 = q1

q1−1 = 2 and p2 = q2
q2−1 = 3

2 , q̂1 = q2 = 3, q̂2 = q1 = 2, p̂1 = q̂1
q̂1−1 = 3

2 ,
p̂2 = q̂2

q̂2−1 = 2, we have

p1(α1 − 1) + 1 =
1
3
, p2(α2 − 1) + 1 =

1
4
.

Since the mapping f is smooth in all its variables, the condition (A5) follows from
the Lagrange mean value theorem.

Now let us calculate the numbers Q1, Q2, G1, G2 from the assumptions of Theo-
rem 3.2:

Q1 =
[Γ(p1(α1 − 1) + 1)

p
p1(α1−1)+1
1

]1/p1
=
[Γ( 1

3 )
21/3

]1/2
=

Γ( 1
3 )1/2

21/6
, (4.10)

Q2 =
[Γ(p2(α2 − 1) + 1)

p
p2(α2−1)+1
2

]1/p2
=
[Γ( 1

4 )

2
1
4

]1/3
=

Γ( 1
4 )1/3

31/12
(4.11)

and since m = 2, l = 2, d = m(l + 1) + 2 = 8, η11 = 3
2 , η12 = Γ

(
1 + 1

q

)
= Γ

(
7
6

)
,

α1 = 2
3 , α2 = 1

2 , we have

G1 = 85 · 86
(Γ( 1

3 )1/2

21/6

1
Γ( 2

3 )

)6(3
2

)6( 1
3 · 2 · 3

2

) 3
2 1

6
, (4.12)

G2 = 85 · 86
(Γ( 1

4 )1/3

31/2

1
Γ( 1

2 )

)12

Γ
(7

6

)6( 1
3 · 2, 2

)1/2 1
2 · 6

, (4.13)

D2(z) =
1

1− [C(z)D1(z)]G2
=

1
1− dqKqzqG1G2

=
1

1− 86 · 86zqG1G2
, (4.14)

where D1(z) ≡ G1. Therefore

ρ = sup
{
z ∈ R : dqKq|z|qG1 <

1
G2

}
= sup

{
z ∈ R : 86 · 86|z|6 ·G1 <

1
G2

}
,

i.e.,

ρ = sup
{
z ∈ R : |z| < 1

(86 · 86 ·G1 ·G2)
1
6

}
,
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where G1, G2 are given by (4.12) and (4.13), respectively, and

Ψ(w) = [C(w)D1(w)D2(w)]1/q =
dKw

[1− dqKqwqG1G2]1/q
.

By Theorem 3.2,

‖x(t)‖ ≤ dK‖x0‖
[1− dqKq‖x0‖qG1G2]1/q

e−t =
8 · 8‖x0‖

[1− 86 · 86‖x0‖qG1G2]1/6
e−t (4.15)

for the solution x(t) of the equation (4.3) satisfying the initial condition x(0) = x0

with ‖x0‖ < ρ.
This means that for the solution v(t) of the equation (4.1), which is the first

coordinate of the solution x(t) = (v(t), v′(t)), the inequality (4.15) holds.
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[15] Medveď, M.; Exponential stability of solutions of nonlinear differential equations with

Riemann-Liouville fractional integrals in the nonlinearities, Proceedings of 4-th Scientific
Colloquium, Prague June, 24–26 (2014), 10–20.
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