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ABSTRACT 

 

One of the important applications of data compression is inverted indexes 

compression, which is a lossless compression. Presently, most of the internet search engines 

such as Google and Wikipedia process a large amount of documents and employ information 

retrieval policies through inverted indexes for fast search or query. This might necessitate 

compressing the data in order to store it in physical memory and enable computationally 

effective retrieval of information. Nevertheless, their currently used compression methods 

implement static compression procedures and do not fully exploit dynamic integer 

compression capabilities.  

In this research, we have exploited dynamic Huffman compression method referred 

to as 𝛿-Huffman coding for compressing integers and improved the attainable compression 

ratios. To achieve this, we have explored a combination of static and dynamic compression 

algorithms. To the best of our knowledge this is the first work that combines unbounded 

integer compression methods with Huffman coding and comparatively evaluates their 

performance.  

We have applied compression algorithms on the data-sets drawn from Geometric 

probability distribution function, Poisson distributions, realistic inverted lists, and page-rank 

lists obtained from Wikipedia. Our results show that the bit-rate of 𝛿-Huffman coding is the 

best of all of the tested coding methods including Comma code, Elias Gamma code, Elias 

Delta code, Elias Omega code, Fibonacci code, and Golomb code. Additionally, it is very close 

to the estimated entropy of the test sequences.
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CHAPTER 1 

INTRODUCTION 

 

Storing data in an effective and compact form is one of the most challenging problems 

in present times. Following the formulation of Information theory by Shannon [2], Huffman 

introduced a method for lossless compression of information sources that generate finite 

length strings from a finite alphabet with known probability distribution [3]. During the same 

time, Elias introduced methods for compression of unbounded integers under a relatively 

weak assumption about their probability of occurrence or probability distribution function 

(PDF) [6]. Namely, his assumption is that the PDF of the integers is a monotonically 

decreasing function of these integers. The above stated two methods (Huffman and Elias – 

Gamma, Delta and Omega) are static compression methods [4].  

Later on, the field of lossless data compression underwent tremendous amount of 

theoretical and practical advances including the introduction of numerous static algorithms 

for finite length strings and unbounded integers [5, 7, 11], as well as dynamic algorithms for 

the compression of finite length strings [5, 11].  

Recent developments in computer science include fast web search and information 

retrieval (IR) on a massive scale. In UNIX the “grep” command had initially been used to 

search through text documents, but currently search policies are executed over billions of 

documents and terabytes of data. This makes the IR process challenging. Nevertheless, 

inverted indexes can be used to achieve fast and efficient IR [1, 5, 10]. Presently, most of the 

internet search engines like Google and Wikipedia having a huge amount of documents (or 

data) employ IR policies through inverted indexes for fast search or query. This might 

necessitate compressing the data in order to store it in physical memory and enable 
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computationally effective retrieval of information. Compression methods, mainly in the form 

of integer compression, are currently employed for inverted list compression. Nevertheless, 

these methods use static compression procedures and do not fully exploit dynamic integer 

compression capabilities. 

The problem addressed in this thesis is devising methods for effective retrieval of 

information via data compression. The proposed solution is to explore the possibility of 

combining integer compression methods with a new dynamic Huffman compression 

algorithm referred to as 𝛿-Huffman coding for compressing integers. To this end, we have 

conducted a set of experiments for analyzing and comparing the performance of static 

compression methods Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 

Fibonacci code, and Golomb code as well as 𝛿-Huffman coding (see section 2 for definitions) 

on both synthetic data and real inverted list data [19, 20]. Additionally, we have compared the 

bit-rate of 𝛿-Huffman to the bit-rate of the compression techniques “gzip” and “bzip2” (see 

section 2 for definitions).  

Note that in this research, we are not concerned with the decompression, throughput, 

procedure, and latency of the algorithms. The main goal of this research is to explore ways for 

achieving high compression ratio (or communication rate which is measured as the average of 

total number of the bits/integer which is called as the bit-rate in this thesis). 

The hypothesis of this thesis is that the 𝛿-Huffman code can be implemented on 

inverted lists and provide low bit-rate that is very close to the entropy of the data [2].  

The main contribution of this study is the exploration of achievable compression ratios 

in the context of 𝛿-Huffman encoding. To the best of our knowledge this is the first work that 

combines unbounded integer compression methods with Huffman coding and comparatively 
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evaluates their performance.  

The rest of this thesis is organized as follows: Chapter 2 provides background material. 

Chapter 3 includes literature review. Chapter 4 details the research methodology and the 

experimental procedures. Chapter 5 analyses the results and Chapter 6 includes the conclusion 

and future work.
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CHAPTER 2 

BACKGROUND 

 

In this chapter, we explain the relevant terms related to data compression, integer 

compression, and IR which are implemented in this research.  

2.1 Data Compression 

Data compression is concerned with reducing the number of bits needed to store or 

transmit data. Bit-level compression is generating a variable number of bits for each input 

symbol. Byte-level compression is encoding symbols’ bits and/or bytes into a variable number 

of bytes. One of the important applications of data compression is in the field of IR. 

2.1.1 Entropy 

Suppose that the alphabet of a source 𝑋 is 𝐴𝑥 = {𝑎1, … , 𝑎𝑛} with probabilities 

(𝑝1 … 𝑝𝑛) then the entropy (𝐻(𝑋) ) is given by, ∑ 𝑝𝑖 𝑙𝑜𝑔2 (
1

𝑝𝑖
)𝑛

1 . The entropy rate of a data 

source is a lower bound on the average number of bits per symbol / integer needed to encode 

it.  

2.1.2 Prefix Codes and Universal Codes 

A code is a mapping and it maps source symbols into code words. Mathematically, a 

source of messages is a pair (𝑀, 𝑃) where 𝑀 is possibly an infinite set of messages and 𝑃 is a 

function that assigns a nonzero probability to each message [20]. A message is mapped into a 

bit string whose length depends on the quality of the compression and on the probabilities of 

the individual symbols. A code is universal if it compresses messages to code words whose 

average length is bounded by 𝐶1𝐻1 + 𝐶2 where 𝐶1 and 𝐶2 are constants greater than or equal 

to 1. A code with 𝐶1  =  1 is called asymptotically optimal.  
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2.2 Types of Compression 

2.2.1 Lossy Compression 

High compression ratios can be achieved with lossy compression, which discards some 

of the information. Lossy compression is useful when the information lost does not cause any 

significant distortion. In most cases of IR, one cannot afford losing information.  

2.2.2 Lossless Compression 

Lossless compression is a class of data compression algorithms where the original data 

can be perfectly reconstructed from the compressed data. Nevertheless, the compression ratio 

might be smaller than that of lossy compression. A code is uniquely decodable (UD) if it is a 

prefix code [21, 22]. Integer compression is a special case of lossless compression.  

2.2.3 Byte-level Compression and Bit-level Compression 

Compression of data into a variable number of bits is considered bit-level 

compression. Compression of data into a variable number of bytes is considered as byte-level 

compression. Several byte-level coding techniques exist. In one of the variants of the byte-

level codes, a non-negative integer 𝑛 is encoded as a sequence of bytes. In each byte the lower 

7 bits are used to code the magnitude of 𝑛 and the most significant bit is reserved as a flag bit 

indicating whether the next byte is still a part of the current magnitude [6, 17]. All of the 

compression methods used in this thesis are bit-level compression techniques. 

2.3 Integer Compression Algorithms 

Several integer compression methods employ lossless compression on integers under 

the assumption that the probability of occurrence of “small integers” is larger than the 

probability of the occurrence of “large integers” [2]. That is, 𝑝(𝑛) ≥ 𝑝(𝑛 + 1) . These 

techniques assign variable length code (VLC) to integers allocating more bits to larger integers. 

Nevertheless, using VLC requires special provisions to ensure that the code is UD [2, 3, 6].  
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Numerous lossless compression methods, including Huffman Compression, 

dictionary based LZ compression, and arithmetic coding exist [3]. These methods are generally 

not suitable for integer compression and assume finite alphabet with known probabilities. For 

example, static Huffman coding requires knowledge of the precise distribution of integers 

beforehand and dynamic Huffman coding cannot readily handle unbounded integers.  

There are numerous integer compression methods, including Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, Golomb code, Unary 

code, and Variable Byte code. These methods are reviewed in the next paragraphs.  

2.3.1 Unary Code 

In Unary code a positive integer 𝑛 is encoded as 𝑛 bits of ‘1’ (‘0’) followed by a single 

bit of ‘0’ (1). Hence the 0-bit (1-bit) serves as a comma [5]. This code is not universal and may 

have high compression ratio only under a restrictive set of assumptions about the input 

integers probability distribution function (PDF). 

2.3.2 Fibonacci Code 

The Fibonacci code exploits the fact that each integer has a unique representation as 

a sum of nonconsecutive elements of the Fibonacci sequence. It is a universal code. For any 

positive integer 𝑛, it can be represented as 𝑛 = 𝑏1𝐹1 + 𝑏2𝐹2 + ⋯ ⋅ 𝑏𝑛𝐹𝑛 where 𝐹𝑛 is the 

𝑛𝑡ℎ Fibonacci number and ‘𝑏’ is either 0 𝑜𝑟 1. This is called Fibonacci representation of 

integer. 

For example, 33 =  1 +  3 +  8 +  21, which is expressed as 1010101. The Fibonacci 

representation has important property, that the representation does not contain any adjacent 

1’𝑠 since …01100… can be represented as …00010… from the definition of Fibonacci 

numbers,𝐹 = 𝐹𝑛−1 + 𝐹𝑛−2 . Fibonacci code of the positive integer is the Fibonacci 
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representation of 𝑛 with additional 1 appended to right end. For example, the Fibonacci code 

of 33 𝑖𝑠 1010101|1, 𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑜𝑓 5 𝑖𝑠 0001|1. Since Fibonacci representation does not contain 

adjacent 1’𝑠, it’s obvious that a pair 11 means the end of the code, which makes the code 

uniquely decodable. 

2.3.3 Elias Gamma Code 

In Elias Gamma code, a non-negative integer 𝑛 is represented by the length part and 

the data part [7]. The data part (𝐵(𝑛)) is the binary representation of 𝑛. The length 

part (|𝐵(𝑛)| − 1), where |𝐵(𝑛)| is the number of bits in 𝐵(𝑛), is encoded using |𝐵(𝑛)| − 1 

zeros. It provides the number of bits (minus 1) used in the binary representation of 𝑛.  

Elias Gamma code can be used to encode positive unbounded integers. Elias Gamma 

code provides high compression when the data-set is having small integers and rare large 

integers. Elias Gamma code is a universal code. 

2.3.4 Elias Delta Code 

An integer 𝑛 is represented by encoding the |𝐵 (𝑛)|−1 field of the Elias Gamma using 

Gamma code, followed by 𝐵(𝑛) without its most significant bit. Elias Delta code is relatively 

efficient and it is asymptotically optimal.  

Example: For N = 17, its binary representation is 10001 (𝑓𝑖𝑣𝑒 𝑏𝑖𝑡𝑠). Remove the 

leftmost 1 and prepend 5 =  101 yields 1010001 and number of newly added bits is 3. 

Prepending 2 𝑧𝑒𝑟𝑜𝑠 to the code makes it 001010001. This is the Elias Delta code for 17. 
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2.3.5 Elias Omega Code 

Elias Omega code apply recursion by employing Gamma Code to the element |𝐵 (𝑛)|.  

2.3.6 Golomb Code 

Golomb code (GC) for a non-negative integer 𝑛 depends on the choice of a parameter 

(divisor) 𝑑. It encodes the integer into two parts. If the parameter is a power of 2 then the 

code is referred to as Rice Code. According to the Golomb algorithm, the integer part of 

𝑛/𝑑 (𝑞) is stored as unary code using 𝑞 + 1 bits and the remainder part 𝑟 is coded using 

efficient binary code [7]. If the parameter is not a power of 2 use, then 𝑟 is can be represented 

by using variable length bits. Let b=⌈𝑙𝑜𝑔2𝑑⌉. If 𝑟 < 2𝑏 − 𝑑, then we use 𝑏 –  1 bits to encode 𝑟, 

else we use 𝑏 𝑏𝑖𝑡𝑠 to encode 𝑟.  

For example, 𝑑 =  3, N = 24 is represented by 1111111011. When 𝑑 =  3, it produces 

the possible remainders 0, 1, 2 which are coded as 0, 10, 11. For N = 10, the quotient (24 – 1) 

/ 3 = 7 is coded as unary code (11111110) and the remainder 3 is coded as binary (11). Hence 

GC with parameter d = 3 for N = 24 is 1111111011. 

2.3.7 Ternary Comma Code 

Binary (𝑏𝑎𝑠𝑒 2) numbers are based on the two bits 0 𝑎𝑛𝑑 1. Similarly, ternary (𝑏𝑎𝑠𝑒 3) 

numbers are based on the three digits (𝑡𝑟𝑖𝑡𝑠) 0, 1 𝑎𝑛𝑑 2. Each 𝑡𝑟𝑖𝑡 can be encoded in two bits, 

but two bits can have four values. In ternary number system where each 𝑡𝑟𝑖𝑡 is represented by 

two bits and in addition to the three trits there is a fourth symbol, a 𝑐𝑜𝑚𝑚𝑎 implemented as 

“11” [19]. The comma code of 𝑛 is simply the ternary representation of 𝑛 –  1 followed by 

𝑐𝑜𝑚𝑚𝑎.  

2.3.8 GZIP  

GZIP is a compression utility which implements a variant of the LZ77 [21]. The GZIP 
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algorithm looks for repeating strings of length up to 256 bytes within a 32kB sliding window. 

It uses two Huffman trees, the first tree compresses the distances in the sliding window and 

the second one is used to compress the length of strings. The second tree is also used to 

compress individual bytes that were not part of any sequence.  

2.3.9 BZIP2  

BZIP2 is a lossless compression utility which implements the block sorting algorithm 

described by Burrows and Wheeler [22]. It compresses data in blocks, where the block size is 

adjustable. It uses the Burrows-Wheeler transform to convert frequently occurring character 

sequences into strings and then uses a move-to-front transform and Huffman coding for 

compressing the data. Before providing the output for a block BZIP2 performs several 

operations on the block to improve the compression ratio.  

2.3.10 Evaluation of Compression Quality 

For evaluating the quality of compression algorithms we have compared the averages 

of total number of bits (bit-rate) to the estimated entropy of the input data. Compression 

algorithms having the bit-rate close to the entropy are considered as the best compressor 

providing the best bit-rate. We have also applied the compression techniques “gzip” and 

“bzip2” on the datasets of GPDF (0.5, 0.1, 0.01), PD, and gaps of sorted inverted lists and 

compared its bit-rate to the compression algorithms. To compare the compression techniques 

“gzip” and “bzip2” to the compression techniques implemented in this research, we have 

converted the total bytes (of the compressed data files compressed by “gzip” and “bzip2”) to 

the bit-rate as below: 

𝑏𝑖𝑡 − 𝑟𝑎𝑡𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 =
total number of output_bits

number of integers (input)
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2.3.11 Huffman Code 

Huffman Code (HC) is a prefix code that requires apriori knowledge of the set of 

probabilities of symbols. The Huffman procedure for a given alphabet and a set of probability 

values can be described as follows.  

1. Construct a forest by starting with each symbol in its own tree  

2. Unify the two trees that have the two smallest probabilities; proceeding iteratively until 

a single tree is left.  

3. The number of bits in the Huffman code of a symbol is the depth of that symbol in 

the tree, and its code is a description of the path from the root (e.g., using 0 for a left 

branch and 1 for a right branch).  

2.3.12 Dynamic Huffman Code 

In Dynamic Huffman coding, neither the encoder nor the decoder know the 

probabilities of occurrences of symbols in the source sequence. These probabilities are 

estimated during the encoding. The ‘𝑁𝑌𝑇’ is a special node used to represent symbols / 

integers which are ‘not yet transmitted’. It is assumed to have a weight of 0. This weight is 

unchanged. Upon the arrival of an un-encountered symbol (say 𝑎), 𝑎 is removed from the 

𝑁𝑌𝑇. It is added to the “already transmitted” (𝐴𝑇) list with a weight of 1. The Huffman code 

of the 𝑁𝑌𝑇 along with the fixed length code of 𝑎 are transmitted to the decoder [6]. Next, 

using the updated 𝐴𝑇, the current encoder/decoder Huffman trees are efficiently updated 

(e.g., using the sibling property). If 𝑎 is in the 𝐴𝑇, then its code in the tree is transmitted its 

weight is incremented by 1 and the 𝐴𝑇 tree is efficiently updated. The update procedure can 

use the sibling property [21] and is designed to ensure that the encoder and the decoder obtain 

the same tree. 
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2.3.13 Delta-Huffman Code 

Our version of the dynamic Huffman (𝛿-Huffman) algorithm on unbounded integers 

is as follows. The ‘𝑁𝑌𝑇’ contain symbols / integers which are ‘not yet transmitted’. Upon the 

arrival of an un-encountered integer (say 𝑗), 𝑗 is removed from the 𝑁𝑌𝑇. It is added to the 𝐴𝑇 

list with a weight of 1. The Huffman code of the 𝑁𝑌𝑇 along with the Elias Delta code of 𝑗 are 

transmitted to the decoder [6]. Next, using the updated 𝐴𝑇, the current encoder/decoder 

Huffman trees are efficiently updated. If 𝑗 is in the 𝐴𝑇, then its code in the tree is transmitted 

and its weight is incremented by 1 and the 𝐴𝑇 tree is efficiently updated. The update procedure 

is the same as in the dynamic Huffman algorithm. 

The following example explains the algorithm of 𝛿-Huffman encoding. 

Example: Input  “1, 2, 3, 2” Step 0: 𝑁𝑌𝑇 “0”  

Step 1: The Input is “1”, which is a new integer, send  <𝐶 (𝑁𝑌𝑇), 𝛿 (1))> <01> [Since 

the Code (𝑁𝑌𝑇) = “0” from previous step and 𝛿 (1) = “1”].  

Now, update the tree 

 1  1          0   Code (1) = “0”   

 𝑁𝑌𝑇  0         1   Code (𝑁𝑌𝑇) = “1” 

Step 2: Input is “2”, which is a new integer, send  <C (𝑁𝑌𝑇), 𝛿 (2))> <”10100”> [Since 

the Code (𝑁𝑌𝑇) = “1” from previous step and 𝛿 (2) = “0100”].  

Now, update the tree 

 1 1                   0        Code (1) = “0”   

 2 1       0                   1  Code (2) = “10” 

 𝑁𝑌𝑇 0       1            Code (𝑁𝑌𝑇) = “11” 
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Step 3: Input is “3”, which is a new integer, send  <C (𝑁𝑌𝑇), 𝛿 (3))> <”110101”> [Since 

the Code (𝑁𝑌𝑇) = “11” from previous step and 𝛿 (3) = “0101”].  

Now, update the tree 

 1 1                                  0   Code (1) = “0”   

 2 1             0                 1 Code (2) = “10” 

 3 1       0  1           Code (3) = “110” 

 𝑁𝑌𝑇 0       1            Code (𝑁𝑌𝑇) = “111” 

Step 4: Input is “2”, which is already on the tree, send  <C (2) <10> [Since, Code (2) = 

“10” from previous step].  

Now, update the tree 

 2 2                           0      Code (1) = “10”   

 1 1                   0               1 Code (2) = “0” 

 3 1       0          1          Code (3) = “110” 

 𝑁𝑌𝑇 0       1            Code (𝑁𝑌𝑇) = “111” 

The final output is:  

Integer 𝛿-Huffman 

1 01 

2 10100 

3 110101 

2 10 
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2.4 Inverted Index 

In this section, we provide explanation about inverted index (inverted lists) and the 

construction of inverted index is provided.  

An inverted list is a data structure used in the context of IR for storing mappings in 

the form of indices, from content such as key-words or terms, to the parts of a documents 

where they reside. In inverted indexes, the dictionary is a data structure which consists of all 

the individual words or terms. The terms appearing in a document for each item in the list are 

called a posting. The list of all the postings is called the postings list or the inverted list. 

Generally, the dictionary is stored in memory with pointers to each postings list which is stored 

on the disk.  

Within a document collection, each document is associated with a unique serial 

number, an integer, known as the document identifier (DocID). During the index 

construction, each new document is assigned with successive IDs, when it is first encountered. 

The D-gap is the successive difference between the document Id’s in the postings list. 

As the inverted list occupies a massive amount of memory for storing the dictionary 

file and the posting files, compression techniques can be used to reduce the space required by 

the inverted index thereby reducing disk and memory volume and access time.  

Most current techniques for IR are using byte-level compression and in general achieve 

a rate that is about two times the entropy of the data [17]. We implement bit-level compression 

algorithm that achieves a rate that is close to the entropy of the data. 

To illustrate, consider the inverted indexes as the index part of a book. The index 

contains key words (the set of key words can be referred to as dictionary) and the page 

numbers where they appear. Inverted indexes use similar concept and for each term in the 

dictionary the posting list contains the ID of webpages where the tem appears. In the page-
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rank experiments, we have used postings list that are ordered according to the page-rank 

algorithm.  

2.4.1 Index Construction 

In order to gain the speed benefits of indexing at the retrieval, one needs to construct 

the index list in advance. The main steps comprise:  

1. Collecting the documents to be indexed. 

2. Tokenizing the text, and turning each document into a list of tokens.  

3. Normalizing the tokens by linguistic preprocessing [1]. 

4. Indexing the document for each term that occurs by creating an inverted index list 

consisting of a dictionary and postings.  

Generally, the next step is lexicographically sorting the list of terms. Multiple 

occurrences of the same term from the same document are then merged. Instances of the 

same term are grouped and the result is split into a dictionary and postings.  

Transferring data in an uncompressed form might take more time than transferring 

the data in compressed form [1]. Hence, the speed and efficiency of a search engine or IR 

systems depends on the index construction, index compression and decompression, query 

processing, and the ranking algorithm.  

2.5 Geometric Probability Distribution Function (GPDF) 

The GPDF is the probability distribution of the number of failures in a random event 

before the first success, supported on the set {0, 1, 2, 3….}. It is the probability that the first 

occurrence of success, in a set of binary independent trials, is encountered after 𝑋 trials, each 

with success probability 𝑝. It is given by 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑋 = 𝑘) = (1 − 𝑝)𝑘−1𝑝, for 𝑘 =

 1, 2, 3, …  
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2.6 Poisson Distribution (PD) 

Poisson distribution is a discrete probability distribution function that expresses the 

probability of a given number of events occurring in a fixed interval of time and/or space if 

these events occur with a known average rate and independently of the time since the last 

event. It is given by 𝑃 (𝑘 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)  =  
𝜆𝑘ⅇ−𝜆

𝑘!
 Where, 𝜆 is the average number of 

events per interval. 

2.7 Zero Padding and Difference Sequence 

Zero padding is adding zeroes to the beginning of an input stream. Subtracting 

successive integers produces a difference sequence (referred to as set of gaps). For example, 

for the input data 3, 6, 8, 10. The successive differences are 3, 3, 2, 2. 

If the sequence is not sorted, we can get negative differences. However, all the 

methods discussed so far can only represent natural numbers. The code words for many of 

the methods start with “0”. 

In the next section, we explain the procedures for signed numbers representation. 

2.8 Signed Number Representation 

In several cases the difference sequence contains negative numbers (e.g., for un-sorted 

data). Our experimental setup has explored two types of mapping signed differences into 

integers. 

2.8.1 Sign and Magnitude Representation 

Note that in some cases the negative sign or the positive sign can be eliminated. Recall, 

that in many of the cases positive numbers start with “0” and there is no representation for 

zero. Hence: 

The sign and magnitude representation to the differences (including positives and 

negatives) is as below: 
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Golomb code: positive differences ‘ +  𝑛’ = Golomb code (𝑛), negative differences ‘ −  𝑛’ = 1 

Golomb code (|𝑛| + 1|) 

Fibonacci code: positive differences ‘ +  𝑛’ = 0 Fibonacci code (𝑛), negative differences ‘ −

 𝑛’ = 1 Fibonacci code (|𝑛| + 1|) 

For Elias codes, except for the code for “1” every other code starts with “0”. Hence: 

𝛾 code: positive differences ‘ +  𝑛’ = 𝛾 (𝑛 + 1), negative differences ‘ −  𝑛’ = 1 𝛾 (|𝑛| + 1|) 

𝛿 code: positive differences ‘ +  𝑛’ = 𝛿 (𝑛 + 1), negative differences ‘ −  𝑛’ = 1 𝛿 (|𝑛| + 1|) 

Ω code: positive differences ‘ +  𝑛’ = Ω (𝑛 + 1), negative differences ‘ −  𝑛’ = 0 Ω (|𝑛| + 1|) 

𝛿-Huffman code: positive differences ‘ +  𝑛’ = Code (𝑁𝑌𝑇) 𝛿 (𝑛 + 1), negative differences 

‘ −  𝑛’ = Code (𝑁𝑌𝑇) 1 𝛿 (|𝑛| + 1|) 

Comma code: positive differences ‘ +  𝑛’ = 0 Comma code (𝑛), negative differences ‘ −  𝑛’ = 

1 Comma code (|𝑛|).  

2.8.2 Odd-Even Mapping 

We have represented signed differences of data by mapping negative integers 

(including ‘0’) to odd integers and positive integers to the even integers as below: 

Negative integers ‘ − 𝑛’ =  2 ∗  |𝑛|  +  1 

Positive integers ‘ + 𝑛’ =  2 ∗  |𝑛| 
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CHAPTER 3 

LITERATURE REVIEW 

 

In this section, we analyze and compare our methodology and techniques to the 

techniques implemented by different authors in the areas of integer compression algorithms. 

We discuss how the previous compression methods are compared to the entropy. We 

conclude with how, our research is different from others compression techniques and yet 

provide better compression rate than the other compression techniques that is one times the 

entropy. 

Anh et al. have proposed a new schema for compressing lists of integers in IR systems. 

Their method uses fixed binary codes for D-gaps [9]. They have shown that the computation 

can be very fast, as a relatively small number of masking and shifting operations are required 

per code word. However, they did not exploit dynamic data reordering.  

Domnic at al. have proposed the use of the Extended Golomb code (EGC) for 

inverted list compression [4]. They, have considered neighbors in the list and have performed 

data reordering. They have not considered dynamic data compression. More often, EGC is 

actually Elias Gamma code. 

Scholer et al. have proposed using byte-aligned codes instead of bit-aligned codes for 

storing lists of integers [10]. With the new method, they have proved that the average query 

response time is halved. However, they did not exploit the variety of types of variable-byte 

codes, the special properties of the data, and different techniques of dynamic compression.  

Burtscher has done numerous experiments with lossless compression of floating-point 

numbers [14, 15]. Burtscher was mainly concerned with time performance and real time 
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performance willing to sacrifice compression quality for complying with time constraints. In 

our work, we deal with integers. We are more concerned with compression quality than with 

compression speed.  

Jenkins et al. have proposed a new solution for lossless compression of floating-point 

data using PForDelta algorithm [16-18]. Floating point numbers are encoded using three 

components: a sign bit, an exponent field, and a significand field. The authors split each 64-

bit double value into upper 𝑘 bytes and lower 8 − 𝑘 bytes. The values in data are classified by 

upper part. Each class with same upper parts forms a bin. That is, a bin is the set of values in 

the data-set with same upper parts. In each bin, because all elements have same upper parts, 

it’s only needed to store lower parts of values are stored. Their main goal is the decompression 

speed and they only deal with fixed length data. Nevertheless, they did not work on unbounded 

integers and variable length integers. However, our main goal and concentration of our 

research is to, improve the compression ratios using 𝛿-Huffman compression technique. PFor 

and PForDelta are also used for inverted index compression, yet it is a byte-level algorithm 

[18].  

Lemire et al. have compared and analyzed different byte-level compression algorithms 

for fast decompression of the data [17]. The authors used several byte-level compression 

methods and list compression rate of twice to the entropy as a “good” result. Their trade off 

was the compression ratio and their main goal was to increase the decompression speed. 

Indeed, for achieving high speed, their technique requires special decompression hardware 

(SIMD). However, our goal is to improve achievable compression ratio by the exploitation of 

Huffman coding. We are less concerned about complexity. Our technique (𝛿-Huffman) is a 

bit-level compression and achieves compression ratio that is close to one times the entropy.  
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CHAPTER 4  

EXPERIMENTAL SETUP, EXPERIMENTS, RESULTS,  

AND EVALUATION 

 

In this chapter, we detail the list of experiments performed along with the experimental 

setup and provide the results, and evaluation of each experiment results. 

4.1 List of Experiments 

Experiment 1 

In this experiment, we have used the data-set of 1 𝑡𝑜 10, 000 consecutive integers and 

data-set of powers of 2 from 21 to 260. Note that we have only used powers of 2 integers for 

a total input of 60 entries.  

Experiment 2 

In this experiment, we have used the data-sets of GPDF with probabilities of 0.5, 0.1, 

0.01 and PD with 𝜆 = 128.  

Experiment 3 

In this experiment, we have used the data-sets of gaps of GPDF with probabilities of 

0.5, 0.1, 0.01 and PD with 𝜆 = 128.  

Experiment 4 

In this experiment, we have used the data-sets of gaps of gaps of GPDF with 

probabilities of 0.5, 0.1, 0.01 and PD with 𝜆 = 128.  

Experiment 5 

In this experiment, we have used the data-sets of gaps of realistic inverted lists 

obtained from Wikipedia. We have taken the top 15 data-sets of inverted lists which appeared 

in the most frequently occurring words in Wikipedia in the year 2015.  
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The data-sets are listed below: 

1. “2015” contains 324, 888 entries. The minimum entry of the data-set is 1 and 

maximum is 75, 130.  

2. “Bollywood” contains 10, 605 entries. The minimum entry of the data-set is 1 and 

maximum is 474, 315.  

3. “Film” contains 470, 269 entries. The minimum entry of the data-set is 1 and 

maximum is 66, 129. 

4. “Grei” contains 49, 973 entries. The minimum entry of the data-set is 1 and maximum 

is 421, 836.  

5. “India” contains 470, 269 entries. The minimum entry of the data-set is 1 and 

maximum is 66, 129. 

6. “Rousei” is the smallest data-set contains 211 entries. The minimum entry of the data-

set is 211 and maximum is 754. 

7. “State” is the biggest data-set which contains more than million entries (1, 237, 789 

entries). The minimum entry of the data-set is 1 and maximum is 37, 064.  

8. “Stephen” contains 94, 033 entries. The minimum entry of the data-set is 1 and 

maximum is 192, 999. 

9. “Walker” 50, 874 entries. The minimum entry of the data-set is 1 and maximum is 

423, 541.  

10. “War” contains 540, 639 entries. The minimum entry of the data-set is 1 and maximum 

is 183, 097.  

11. “West” contains 540, 639 entries. The minimum entry of the data-set is 1 and 

maximum is 183, 097.  

12. “World” contains 843277 entries. The minimum entry of the data-set is 1 and 
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maximum is 86, 200.  

13. “Facebook” contains 25, 451 entries. The minimum entry of the data-set is 1 and 

maximum is 438, 117.  

14. “Iraq” contains 32,488 entries. The minimum entry of the data-set is 1 and maximum 

is 422, 977.  

15. “Obama” contains 17, 153 entries. The minimum entry of the data-set is 1 and 

maximum is 227, 613.  

Experiment 6 

In this experiment, we have used the data-sets of gaps of gaps of realistic inverted lists 

of the terms “2015,” “Bollywood,” “Film,” “Grei,” “India,” “Rousei,” “State,” “Stephen,” 

“Walker,” “War,” “West,” and “World” obtained from Wikipedia. 

Experiment 7 

In this experiment, we have used the data-sets of gaps of realistic page-rank lists (see 

background section) of the terms “Facebook,” “Grei,” “Iraq,” and “Obama” obtained from 

Wikipedia. We have compared the bit-rate of the gaps of page-rank lists to the bit-rate of the 

gaps of inverted lists. 

Experiment 8 

In this experiment, we have used the data-sets of GPDF with probabilities of 0.5, 0.1, 

0.01, PD with 𝜆 = 128, and the gaps of sorted inverted lists of the terms “Bollywood,” “Grei,” 

“Rousei,” “Walker,” “Facebook,” “Iraq,” “Obama,” “2015,” “Film,” “India,” “War,” “West,” 

“World,” “State,” and “Stephen”. We have compared the bit-rate of compression algorithms 

Elias Delta code, 𝛿-Huffman code to the compression techniques “gzip” and “bzip2”.  

Experiment 9 

In this experiment, we have compared the performance of the compression algorithms 
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Elias Delta code, 𝛿-Huffman code, and Aging-Huffman code on the data-sets of GPDF (0.01) 

and on the gaps of sorted inverted lists of the terms “Obama,” “Rousei,” and “Walker.” 

4.2 Experimental Setup 

We have used the Intel Core i5-5200U CPU @2.20 GHz with 4GB RAM on a 64-bit 

operating system under Windows 10 for all the experiments. For all the experiments, we have 

used Java SE – Version: 8 as the programming language and Eclipse Java EE IDE – Version: 

Mars.2 Release (4.5.2) as the development environment. 

In all of the listed experiments, we have performed integer compression techniques 

Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, 

Golomb code (with parameters 2, 4, 8, 16), and 𝛿-Huffman code (except for experiments 1 

and 2 which did not include 𝛿-Huffman code). In experiment 1, we have performed Golomb 

coding with parameter 64. We have provided the histograms for all the experiments, except 

for experiments 1 and 2. From the histograms we have calculated a fitted curve and the R-

Squared value of the fit. R-squared is a statistical measure of how close the data to the fitted 

curve. We have calculated the average, variance, and entropy (see background section) for each 

of the experiments (we did not calculate the trivial entropy for experiment 2.)  

For experiments 2, 3, and 4 we have used the data-sets drawn from GPDF with the 

probabilities (0.5, 0.1, 0.01) and PD with 𝜆 = 128. The main reasons for using these 

probabilities with these parameters are: 

1. Several papers in the literature use the data-sets of GPDF and PD with these 

parameters [ref]. 

2. The data-sets of GPDF are a good representation for the inverted lists gaps. The 

averages of the bit-rate in most of the gaps of the realistic data-sets are closer or 

equal to the averages of bit-rate of gaps of GPDF (mainly GPDF 0.01)  
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For experiments 5, 6 we have used the data-sets of sorted inverted lists obtained from 

Wikipedia. We have identified the 15 most commonly occurring words in Wikipedia searches 

in the year of 2015 and have used the inverted lists of these words (see background section, 

for the detailed explanation of inverted index).  

In experiment 9, we have modified the 𝛿-Huffman code by adding the functionality 

of aging. In the Huffman tree, if any integer is not repeated for 𝑘 steps (𝑘 = 100 in our 

experiments), we have decremented that weight of the particular integer by 1 in each 

consecutive step. This method is referred to as Aging-Huffman. 

The next section details the experiments with the results performed in this research.  

4.3 Experiments, Results, and Evaluation  

4.3.1 Experiment 1 

Experiment 1.1: 

In experiment 1.1, we have used the data-set of 1 𝑡𝑜 10, 000 consecutive integers. 

Figures 1.1(a), 1.1(b) provide the total number of bits of the Golomb coding and other classical 

integer compression algorithms. Figures 1.1(c), 1.1(d) provide the bit-rate of the Golomb 

coding and other classical integer compression algorithms. 

  

Figure 1.1(a): The total number of bits of the Golomb coding – 1-10,000 
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Figure 1.1(b): The total number of bits of the compression algorithms – 1-10,000 

  

Figure 1.1(c): The bit-rate of the Golomb coding – 1-10,000 

To better understand the performance of the Golomb coding with different 

parameters for different data-sets, we provide the bit-rate of the Golomb coding with varying 

parameters for GPDF (0.1).  

Figure 2.2(b) provides the bit-rate of the Golomb coding for GPDF (0.1). 
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Figure 2.2(b): The bit-rate of the Golomb coding - GPDF (0.1) 

  Comparing figures 1.1(c) and 2.2(b), we can observe that the Golomb coding provides 

a low bit-rate with the high parameter (64) for the data-set of 1-10, 000 integers but in the case 

of GPDF (0.1), Golomb coding with the high parameter (16) provides the high bit-rate. From 

this, we can infer that, ideally, for effective Golomb coding prior knowledge of the data-sets 

should be available.  

  

Figure 1.1(d): The bit-rate of the compression algorithms – 1-10,000 
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From figure 1.1(c) we can observe that among the varying parameters (2, 4, 8, 16, 64) 

Golomb coding with parameter 64 is achieving a low bit-rate with an average of 84.64 bits per 

integer. Golomb coding with parameter 2 is achieving a high bit-rate with an average of 2502 

bits per integer. Using Golomb coding to provide low bit-rate without the knowledge of the 

data-set and the parameter is not practical in real time applications. To observe this particular 

behavior of the Golomb coding (with different parameters) in this research we have provided 

the graphs of the bit-rate of the Golomb coding (with different parameters) for every data-set. 

From figure 1.1(d) we can observe that the Comma code is the best compressor in 

experiment 1 with an average of 18.03 bits per integer. The calculated entropy for experiment 

1 data-set is 11.85 bits per integer. Fibonacci code is competitive and it is the second best 

compressor in this experiment with an average of 18.23 bits per integer. Elias Gamma code is 

the lowest performer in this experiment with an average of 23.73 bits per integer. 

 Experiment 1.2: 

In experiment 1.2, we have used the data-set of powers of 2 from 21 𝑡𝑜 260. Note that 

we have used powers of 2 integers for an input of 60 entries.  

Figure 1.2(a) provides the total number of bits of Comma code, Elias Gamma code, 

Elias Delta code, Elias Omega code, and Fibonacci code. Figure 1.2(b) provides the bit-rate 

of the compression algorithms such as Comma code, Elias Gamma code, Elias Delta code, 

Elias Omega code, and Fibonacci code. 
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Figure 1.2(a): The total number of bits of the compression algorithms – 21𝑡𝑜 260 

  

Figure 1.2(b): The bit-rate of the compression algorithms – 21𝑡𝑜260 

From figures 1.2(a) and 1.2(b) we can observe that the Elias Delta code is the best 

compressor in this experiment with an average of 39.13 bits per integer. Comma code is the 

second best compressor with an average of 40.85 bits per integer. Whereas, Elias Gamma code 

is the lowest performer in this experiment with an average of 61.00 bits per integer. 
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4.3.2  Experiment 2 

In this experiment, we have used the data-sets of GPDF with the probabilities of 0.5, 

0.1, 0.01, and PD with 𝜆 = 128. 

In previous experiments, we did not implement 𝛿-Huffman code, because the data-

sets do not have any repetition of input integers. Hence 𝛿-Huffman code provides a result that 

is inferior to fixed length coding. From the current experiment and on we include the 𝛿-

Huffman code in the reported results. For all the data-sets used in this section of experiments, 

we provide the histograms, the bit-rate of the Golomb coding and the bit-rate of the Comma 

code, Elias Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-

Huffman code. At the end of the experiment, we provide observations and analysis of the 

results.  

Figure 2.1 (a) provides the histogram of GPDF (0.5). Figures 2.1(b) – 2.1(c) provide 

the bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 2.1(a): The histogram of GPDF (0.5) 
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   Figure 2.1(b): The bit-rate of the Golomb coding - GPDF (0.5) 

  

  Figure 2.1(c): The bit-rate of the compression algorithms- GPDF (0.5) 

From figure 2.1(a) we can observe that the data is distributed in the first few bins and 

clustered around 0 and 1 bins. The distribution of the data decreases in the latter half of the 

bins. The data-set contains very small integers with significant amount of repetitions. The 

maximum of the input is 14 and the minimum is 1. The average value of the input data-set is 
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repetitions of input integers. The equation of the curve is 𝑦 =  −0.027𝑙𝑛(𝑥)  +  0.1085. The 

R-squared value (see section 4.1) is 𝑅² =  0.1931. In general, the high the R-squared, it can be 

considered as a better fit with values of 0.5 considered as the minimum accepted and 0.7 and 

above as good fit. In this case, we can observe that the 𝑅² value is low, hence it is not a good 

fit. 

Figure 2.2 (a) provides the histogram of GPDF (0.1). Figures 2.2(b) – 2.2(c) provide 

the bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 2.2(a): The histogram of GPDF (0.1) 
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Figure 2.2(b): The bit-rate of the Golomb coding - GPDF (0.1) 

  

  Figure 2.2(c): The bit-rate of the compression algorithms - GPDF (0.1) 

From figure 2.2(a) we can observe that the data is distributed in the initial bins and 

clustered near the first 10 bins. The data-set contains medium small integers with repetitions. 

The maximum of the input is 99 and minimum is 1. The averages of the input data-set are 

10.13, from which it can be observed that the data-set contains medium small integers with 

numerous repetitions. The equation of the curve is 𝑦 =  −0.019𝑙𝑛(𝑥)  +  0.0793. The 𝑅² of 

the curve is 0.7327. In this case, the 𝑅² is high, so it can be considered as a good fit. In the 
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latter experiments, we have compared the equation of the curves of GPDF to the equations 

of the sorted inverted lists and used it to determine which of the equations of GPDF are close 

to the equations of gaps of sorted inverted lists. 

Figure 2.3 (a) provides the histogram of GPDF (0.01). Figures 2.3(b) – 2.3(c) provide 

the bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 2.3(a): The histogram of GPDF (0.01) 

 

Figure 2.3(b): The bit-rate of the Golomb coding - GPDF (0.01) 
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   Figure 2.3(c): The bit-rate of the compression algorithms – GPDF (0.01) 

From figure 2.3(a) we can observe that the data is distributed in the bins near 0 and 

100. The maximum of the input is 826 and minimum is 1. The averages of the input data-set 

are 101.29, from which it can be observed that the data-set contains medium small to medium 

large integers with numerous repetitions. The equation of the curve is 𝑦 =  −0.016𝑙𝑛(𝑥)  +

 0.0699. The 𝑅² of the curve is 0.7546. Among all the GPDF with different probabilities, 

Geometric distribution with probability of 0.01 has the high 𝑅² value and it is the best fit. 

Figure 2.4 (a) provides the histogram of PD. Figures 2.4(b) – 2.4(c) provide the bit-

rate of the Golomb coding and compression algorithms such as Comma code, Elias Gamma 

code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 
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Figure 2.4(a): The histogram of Poisson Distribution (PD) 

 

Figure 2.4(b): The bit-rate of the Golomb coding - PD 
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  Figure 2.4(c): The bit-rate of the compression algorithms - PD 

From figure 2.4(a) we can observe that the distribution of the data is not concentrated 

in the initial bins. The data is distributed from the middle segment of bins near 112 and 140. 

The maximum of the input is 147 and minimum is 89. The averages of the input data-set are 

127.78, from which it can be observed that the data-set contains medium to medium large 

integers with numerous repetitions. The equation of the curve is 𝑦 =  61.651𝑙𝑛(𝑥)  −  125.84. 

The 𝑅2 of the curve is 0.1853. With the low 𝑅² value of Poisson, it is not a good fit. 

From the results of GPDF with the probabilities of 0.5, 0.1, and 0.01 we can observe 
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and GPDF with the probability of 0.01 contains larger input integers with few repetitions. In 

all of the probabilities, regardless of the integer distribution there are quite a lot of repetitions, 
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tree and requires small number of bits to encode compared to the encoding of new integers. 

In all of these cases, it can be observed that 𝛿-Huffman code provides the best bit-rate which 

is relatively close to the entropy. 

Compared to the PD and GPDF, the PD has integers with the highest average value. 

In spite of this, its entropy is relatively low and the 𝛿-Huffman code requires an average of 

5.46 bits per integer which is close to the entropy of 5.35 bits per integer. Among all the 

distributions of Geometric and Poisson, 𝛿-Huffman code provides the highest bit-rate in 

GPDF (0.01). Whereas, for GPDF (0.5) 𝛿-Huffman code provides the lowest bit-rate. 

We have drawn the data-sets from GPDF and PD, since they have been described in 

the literature as good approximations for realistic data, in specific GPDFs provide good 

approximation for the gaps of inverted lists. In all the cases 𝛿-Huffman code provides the best 

bit-rate which is relatively close to the entropy compared to the other compression algorithms. 

4.3.3 Experiment 3 

In this experiment, we have used the data-sets of gaps of GPDF with the probabilities 

of 0.5, 0.1, 0.01, and gaps of PD with 𝜆 = 128. For the differences, we have applied the sign 

and magnitude representation and the odd-even mapping (except for GPDF (0.5)). In all of 

the following figures in this section, [S-M] refers to the sign and magnitude representation and 

[O-E] refers to the odd-even mapping. 

For all the data-sets used in this section of the experiments, we have provided the bit-

rate of the Golomb coding and the bit-rate of the Comma code, Elias Gamma code, Elias 

Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. At the end of the 

experiment, we have provided observations and analysis of the results.  

Figures 3.1(a) – 3.1(b) provide the bit-rate of the Golomb coding and compression 

algorithms such as Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 
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Fibonacci code, and 𝛿-Huffman code. 

 

Figure 3.1(a): The bit-rate of the Golomb coding – Gaps of GPDF (0.5) [S-M] 

  

Figure 3.1(b): The bit-rate of the compression algorithms – Gaps of GPDF (0.5) [S-M] 

From the results of GPDF (0.5) to the gaps of GPDF (0.5), we can observe that the 

𝛿-Huffman code requires fewer bits to compress GPDF (0.5) than the gaps of GPDF (0.5). 

In the gaps, the integers are in closer intervals with numerous repetitions. In both of the cases, 

𝛿-Huffman code provides the best bit-rate which is relatively close to the entropy.  
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Figures 3.2(a) – 3.2(b) provide the bit-rate of the Golomb coding and compression 

algorithms such as Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 

Fibonacci code, and 𝛿-Huffman code. 

 

Figure 3.2(a): The bit-rate of the Golomb coding – Gaps of GPDF (0.1) [O-E] 

  

Figure 3.2(b): The bit-rate of the compression algorithms – Gaps of GPDF (0.1) [O-E] 
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Yet in both of the cases 𝛿-Huffman code provides the best bit-rate which is relatively close to 

the entropy. 

Figures 3.3(a) – 3.3(b) provide the bit-rate of the Golomb coding and compression 

algorithms such as Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 

Fibonacci code, and 𝛿-Huffman code. 

 

Figure 3.3(a): The bit-rate of the Golomb coding – Gaps of GPDF (0.1) [S-M] 

  

Figure 3.3(b): The bit-rate of the compression algorithms – Gaps of GPDF (0.1) [S-M] 

From the experimental results reported in sections 3.2 and 3.3, we can observe that 
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treated differently. We can observe that mapping the differences to the odd-even integers gives 

an entropy of 5.70 bits per integer, whereas using the sign and magnitude representation gives 

an entropy of 4.70 bits per integer. From this, we can conclude that the sign and magnitude 

representation is better for the compression of negative differences than implementing the 

odd-even mapping.  

Figures 3.4(a) – 3.4(b) provide the bit-rate of the Golomb coding and compression 

algorithms such as Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 

Fibonacci code, and 𝛿-Huffman code. 

 

Figure 3.4(a): The bit-rate of the Golomb coding – Gaps of GPDF (0.01) [O-E] 
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Figure 3.4(b): The bit-rate of the compression algorithms – Gaps of GPDF (0.01) [O-E] 

Figures 3.5(a) – 3.5(b) provide the bit-rate of the Golomb coding and compression 

algorithms such as Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 

Fibonacci code, and 𝛿-Huffman code. 

 

Figure 3.5(a): The bit-rate of the Golomb coding – Gaps of GPDF (0.01) [S-M] 

11.62

13.72

12.34
13.39

11.06
10.43

9.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

B
it

-r
at

e

Comma Elias Gamma Elias Delta Elias Omega

Fibonacci 𝛿-Huffman Entropy

52.99

28.50

16.75

11.39

0.00

10.00

20.00

30.00

40.00

50.00

60.00

B
it

-r
at

e

GC (2) GC (4) GC (8) GC (16)



 

42 
 

 

  

Figure 3.5(b): The bit-rate of the compression algorithms – Gaps of GPDF (0.01) [S-M] 

 

From the experimental results reported in sections 3.4 and 3.5, we can observe that 

the data-sets are drawn from the gaps of GPDF (0.01). But in each experiment the gaps are 

treated differently. We can observe that by mapping the differences to the odd-even integers 

provides an entropy of 9.00 bits per integer, whereas using the sign and magnitude 

representation provides an entropy of 8.05 bits per integer. This explains that sign and 

magnitude representation provides the best compression rate for all the compression 

algorithms.  

Figures 3.6(a) – 3.6(b) provide the bit-rate of the Golomb coding and compression 

algorithms such as Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 

Fibonacci code, and 𝛿-Huffman code. 
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Figure 3.6(a): The bit-rate of the Golomb coding – Gaps of PD [O-E] 

  

Figure 3.6(b): The bit-rate of the compression algorithms – Gaps of PD [O-E] 

Figures 3.7(a) – 3.7(b) provide the bit-rate of the Golomb coding and compression 

algorithms such as Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, 

Fibonacci code, and 𝛿-Huffman code. 
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Figure 3.7(a): The bit-rate of the Golomb coding – Gaps of PD [S-M] 

  

Figure 3.7(b): The bit-rate of the compression algorithms – Gaps of PD [S-M] 

 

From the experimental results reported in sections 3.6 and 3.7, we can observe that 

the data-sets are drawn from the gaps of Poisson Distribution with 𝜆 = 128. But in each 

experiment the gaps are treated differently. We can observe that mapping the differences to 

odd-even integers provides an entropy of 6.01 bits per integer, whereas using the sign and 

magnitude representation provides an entropy of 5.01 bits per integer. 
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 4.3.4 Experiment 4 

In this experiment, we have used the data-sets of gaps of gaps of GPDF with 

probabilities of 0.5, 0.1, 0.01, and PD with 𝜆 = 128. Along with, we have compared 

compression techniques Elias Delta code, 𝛿-Huffman code, and the entropy on the gaps vs. 

gaps of gaps. For the differences, we have used the sign and magnitude representation (see 

section 4.2.1). This is because, the sign and magnitude representation provides better 

compression than the odd-even mapping. In all of the following graphs, “O” refers to the 

data-set of the original distributions, “G” refers to gaps of distributions and “GG” refers to 

gaps of gaps of distributions. 

Figures 4(a), 4(b), 4(c), and 4(d) provide the bit-rate of the Elias Delta code, 𝛿-

Huffman code, and entropy performed on gaps of gaps of GPDF with probabilities of 0.5, 

0.1, 0.01 and PD with 𝜆 = 128.  

In all of the following graphs in this experiment, the left column bar (light blue) refers 

to the compression techniques performed on the original data-set, the middle column bar 

(Gray) to the compression techniques performed on the gaps of the data-set and the right 

column bar (dark blue) refers to the compression techniques performed on the gaps of gaps 

of the data-set. 
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Figure 4(a): The bit-rate of GPDF (0.5) original vs. gaps vs. gaps of gaps 

  

Figure 4(b): The bit-rate of GPDF (0.1) original vs. gaps vs. gaps of gaps 
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Figure 4(c): The bit-rate of GPDF (0.01) original vs. gaps vs. gaps of gaps 

  

Figure 4(d): The bit-rate of PD original vs. gaps vs. gaps of gaps 
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original data-set and the gaps are widely separated. But in the case of PD, the original data-set 

contains large integers with less repetitions. By applying gaps, the integers are in closer intervals 

with numerous repetitions. This has provided the best bit-rate compared to the original data-

set of PD or gaps of gaps of PD. In all the cases of GPDF and PD, 𝛿-Huffman code provides 

the best bit-rate relatively close to the entropy. 

4.3.5 Experiment 5 

In this experiment, we have used the data-set of gaps of sorted inverted lists obtained 

from Wikipedia [from the year 2015].  

For all the data used in this section of experiments, we provide the bit-rate of the 

Golomb coding and the bit-rate of the Comma code, Elias Gamma code, Elias Delta code, 

Elias Omega code, Fibonacci code, and 𝛿-Huffman code. At the end of the experiment, we 

provide observations and analysis of the results.  

Figure 5.1 (a) provides the histogram of “2015”. Figures 5.1(b) – 5.1(c) provide the 

bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

 Figure 5.1(a): The histogram of 2015 
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 Figure 5.1(b): The bit-rate of the Golomb coding – 2015 

  

Figure 5.1(c): The bit-rate of the compression algorithms – 2015 

The R-squared value of the “2015” histogram is 0.7571. Hence, it is a good fit. The 

equation of “2015” histogram, which is 𝑦 =  −8𝐸 − 04𝑙𝑛(𝑥)  +  0.0058 is close to the 

equation of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 
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code of GPDF (0.01) is 8.86 bits per integer. In this case, we can observe that the averages are 

almost equivalent.  

Figure 5.2 (a) provides the histogram of “Bollywood”. Figures 5.2(b) – 5.2(c) provides 

the bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code and 𝛿-Huffman code. 

 

  

 Figure 5.2(a): The histogram of Bollywood 
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Figure 5.2(b): The bit-rate of the Golomb coding – Bollywood 

  

Figure 5.2(c): The bit-rate of the compression algorithms – Bollywood 

 

The R-squared value of the “Bollywood” histogram is 0.1354 and it is not a good fit. 

The equation of “Bollywood” do not have a close match with the equations of GPDF. 
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Figure 5.3(a) provides the histogram of “Film”. Figures 5.3(b) – 5.3(c) provide the bit-

rate of the Golomb coding and compression algorithms such as Comma code, Elias Gamma 

code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 5.3(a): The histogram of Film 

 

Figure 5.3(b): The bit-rate of the Golomb coding – Film 
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Figure 5.3(c): The bit-rate of the compression algorithms – Film 

The R-squared value of the “Film” histogram is 0.7809 and it is a good fit. The 

equation of “Film” histogram, which is 𝑦 =  −0.003𝑙𝑛(𝑥)  +  0.0248 is close to the equation 

of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 

Comparing the equations of the histograms, we can expect that the data-sets would 

have 𝛿-Huffman code averages within a close margin or range. The calculated average of the 

𝛿-Huffman code of “Film” is 8.12 bits per integer. The calculated average of the 𝛿-Huffman 

codeof GPDF (0.01) is 8.86 bits per integer. In this case, we can observe that the averages 

vary by an average of 0.74 bits per integer.  

Figure 5.4(a) provides the histogram of “Grei”. Figures 5.4(b) – 5.4(c) provide the bit-

rate of the Golomb coding and compression algorithms such as Comma code, Elias Gamma 

code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 
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Figure 5.4(a): The histogram of Grei 

 

Figure 5.4(b): The bit-rate of the Golomb coding – Grei 
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Figure 5.4(c): The bit-rate of the compression algorithms – Grei 

The R-squared value of the “Grei” histogram is 0.5325 and it is a medium good fit. 

The equation of “Grei” histogram is 𝑦 =  −0.003𝑙𝑛(𝑥)  +  0.0192. The equation of “Grei” 

do not have a close match with the equations of GPDF. 

Figure 5.5(a) provides the histogram of “India”. Figures 5.5(b) – 5.5(c) provide the bit-

rate of the Golomb coding and compression algorithms such as Comma code, Elias Gamma 

code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

 Figure 5.5(a): The histogram of India 
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Figure 5.5(b): The bit-rate of the Golomb coding – India 

  

Figure 5.5(c): The bit-rate of the compression algorithms – India 

The R-squared value of the “India” histogram is 0.5425 and it is a medium good fit. 

The equation of the “India” histogram, which is 𝑦 =  −0.001𝑙𝑛(𝑥)  +  0.0084 is close to the 

equation of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 
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Huffman code of “India” is 9.48 bits per integer. The calculated average of the 𝛿-Huffman 

code of GPDF (0.01) is 8.86 bits per integer. In this case, we can observe that the averages 

differ by 0.62 bits per integer.  

Figure 5.6(a) provides the histogram of “Rousei”. Figures 5.6(b) – 5.6(c) provide the 

bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 5.6(a): The histogram of Rousei 
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Figure 5.6(b): The bit-rate of the Golomb coding – Rousei 

  

Figure 5.6(c): The bit-rate of the compression algorithms – Rousei 

The R-squared value of the “Rousei” histogram is 0.00001 and it is not a good fit. 

The R-squared value (the exponential curve – red color) of the “Rousei” histogram is 0.1419, 
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Figure 5.7(a) provides the histogram of “State”. Figures 5.7(b) – 5.7(c) provide the bit-

rate of the Golomb coding and compression algorithms such as Comma code, Elias Gamma 

code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 5.7(a): The histogram of State 

 

Figure 5.7(b): The bit-rate of the Golomb coding - State 
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Figure 5.7(c): The bit-rate of the compression algorithms - State 

 

The R-squared value of the “State” histogram is 0.5462 and it is a better fit. The 

equation of the “State” histogram, which is 𝑦 =  −6𝐸 − 04𝑙𝑛(𝑥) +  0.0039 is close to the 

equation of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 

Comparing the equations, we expect that the data-sets would have a 𝛿-Huffman code 

averages within a close margin or range. The calculated average of the 𝛿-Huffman code of 

“State” is 6.65 bits per integer. The calculated average of the 𝛿-Huffman code of GPDF (0.01) 

is 8.86 bits per integer. In this case, we can observe that the averages vary by an average of 

2.21 bits per integer.  
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Figure 5.8(a) provides the histogram of “Stephen”. Figures 5.8(b) – 5.8(c) provide the 

bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

 

  Figure 5.8(a): The histogram of Stephen 

 

Figure 5.8(b): The bit-rate of the Golomb coding - Stephen 
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Figure 5.8(c): The bit-rate of the compression algorithms - Stephen 

 

The R-squared value of the “Stephen” histogram is 0.6549 and it is a good fit. The 

equation of the “Stephen” histogram, which is 𝑦 =  −0.003𝑙𝑛(𝑥)  +  0.0182 is close to the 

equation of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 

Comparing the equations, we expect that the data-sets would have an 𝛿-Huffman code 

averages within a close margin or range. The calculated average of the 𝛿-Huffman code of 

“Stephen” is 11.04 bits per integer. The average of the 𝛿-Huffman code of GPDF (0.01) is 

8.86 bits per integer.  

Figure 5.9(a) provides the histogram of “Walker”. Figures 5.9(b) – 5.9(c) provide the 

bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

12.51

15.13

13.21
14.22

12.07
11.04

10.23

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

B
it

-r
at

e

Comma Elias Gamma Elias Delta Elias Omega

Fibonacci 𝛿-Huffman Entropy



 

63 
 

 

  

Figure 5.9(a): The histogram of Walker 

 

Figure 5.9(b): The bit-rate of the Golomb coding – Walker 
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Figure 5.9(c): The bit-rate of the compression algorithms – Walker 

 

The R-squared value of the “Walker” histogram is 0.6261 and it is a good fit. The 

equation of the “Walker” histogram, which is 𝑦 =  −0.003𝑙𝑛(𝑥)  +  0.0199 is close to the 

equation of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 

Comparing the equations, we expect that the data-sets would have an 𝛿-Huffman code 

averages within a close margin or range. The calculated average of the 𝛿-Huffman code of 

“Walker” is 12.96 bits per integer. The calculated average of the 𝛿-Huffman code of GPDF 

(0.01) is 8.86 bits per integer. In this case, we can observe that the averages differ by 4.1 bits 

per integer.  

Figure 5.10(a) provides the histogram of “War”. Figures 5.10(b) – 5.10(c) provide the 

bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 
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Figure 5.10(a): The histogram of War 

 

Figure 5.10(b): The bit-rate of the Golomb coding – War 
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Figure 5.10(c): The bit-rate of the compression algorithms – War 

 

The R-squared value of the “War” histogram is 0.8009 and it is the best fit. The 

equation of the “War” histogram, which is 𝑦 =  −0.001𝑙𝑛(𝑥)  +  0.0087 is close to the 

equation of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 

Comparing the above equations, we can expect that the data-sets would have an 𝛿-

Huffman code averages within a close margin or range. The calculated average of the 𝛿-

Huffman code of “War” is 7.83 bits per integer. The calculated average of the 𝛿-Huffman 

code of GPDF (0.01) is 8.86 bits per integer. In this case, we can observe that they vary by an 

average of 1.03 bits per integer.  

Figure 5.11(a) provides the histogram of “West”. Figures 5.11(b) – 5.11(c) provide the 

bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 
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Figure 5.11(a): The histogram of West 

 

Figure 5.11(b): The bit-rate of the Golomb coding – West 
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Figure 5.11(c): The bit-rate of the compression algorithms – West 

 

The R-squared value of the “West” histogram is 0.6263 and it is a better fit. The 

equation of the “West” histogram, which is 𝑦 =  −0.001𝑙𝑛(𝑥)  +  0.0083 is close to the 

equation of GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 

Comparing the above equations, we can expect that the data-sets would have an 𝛿-

Huffman code averages within a close margin or range. The calculated average of the 𝛿-

Huffman code of “West” is 7.85 bits per integer. The calculated average of the 𝛿-Huffman 

code of GPDF (0.01) is 8.86 bits per integer. In this case, we can observe that they vary by an 

average of 1.11 bits per integer.  

Figure 5.12(a) provides the histogram of “World”. Figures 5.12(b) – 5.12(c) provide 

the bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 
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Figure 5.12(a): The histogram of World 

 

Figure 5.12(b): The bit-rate of the Golomb coding – World 
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Figure 5.12(c): The bit-rate of the compression algorithms – World 

 

The R-squared value of the “World” histogram is 0.8134 and it is the best fit. The 

equation of the “World”, which is 𝑦 =  −9𝐸 − 04𝑙𝑛(𝑥)  +  0.0061 is close to the equation of 

GPDF (0.01) which is 𝑦 =  −0.016𝑙𝑛(𝑥)  +  0.0699. 

Comparing the above equations, we expect that the data-sets would have a 𝛿-Huffman 

code averages within a close margin or range. The calculated average of the 𝛿-Huffman code 

of “World” is 7.22 bits per integer. The calculated average of the 𝛿-Huffman code of GPDF 

(0.01) is 8.86 bits per integer. In this case, we observe that they vary by an average of 1.64 bits 

per integer.  

Figure 5.13(a) provides the histogram of “Facebook”. Figures 5.13(b) – 5.13(c) provide 

the bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 
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Figure 5.13(a): The histogram of Facebook  

 

Figure 5.13(b): The bit-rate of the Golomb coding – Facebook 
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Figure 5.13(c): The bit-rate of the compression algorithms – Facebook 

The R-squared value of the “Facebook” histogram is 0.1406 and it is not a good fit. 

The equation of “Facebook” do not have a close match with the equations of GPDF. 

Figure 5.14(a) provides the histogram of “Iraq”. Figures 5.14(b) – 5.14(c) provide the 

bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 5.14(a): The histogram of Iraq 
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Figure 5.14(b): The bit-rate of the Golomb coding – Iraq 

  

Figure 5.14(c): The bit-rate of the compression algorithms – Iraq 

The R-squared value of the “Iraq” histogram is 0.4264 and it is not a good fit. The 

equation of “Iraq” do not have a close match with the equations of GPDF.  
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Figure 5.15(a) provides the histogram of “Obama”. Figures 5.15(b) – 5.15(c) provide 

the bit-rate of the Golomb coding and compression algorithms such as Comma code, Elias 

Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 𝛿-Huffman code. 

  

Figure 5.15(a): The histogram of Obama 

 

Figure 5.15(b): The bit-rate of the Golomb coding – Obama 
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Figure 5.15(c): The bit-rate of the compression algorithms – Obama 

 

The R-squared value of the “Obama” histogram is 0.2342 and it is not a good fit. The 

equation of “Obama” do not have a close match with the equations of GPDF. 
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 4.3.6 Experiment 6 

In this experiment, we have used the data-sets of gaps of gaps of sorted inverted lists. 

Along with, additionally we have compared the compression techniques Elias Delta code and 

𝛿-Huffman code to the entropy on gaps vs. gaps of gaps. For the differences, we have 

implemented the sign and magnitude representation (see section 4.2.1). In all of the following 

graphs in this section, “G” refers to gaps and “GG” refers to gaps of gaps, the left column 

bar (blue) have provided the results of the compression techniques applied to the data-set of 

gaps and the right column bar (yellow) have provided the results of the compression 

techniques applied to the data-set of gaps of gaps. 

Below, we have provided the graphs of gaps vs. gaps of gaps of 10 sorted inverted 

lists. In all of the graphs, we have compared Elias Delta code and 𝛿-Huffman code to the 

entropy. 

Figure 6.1 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “2015”. 

 

       Figure 6.1: The bit-rate of 2015 gaps vs. gaps of gaps 
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Figure 6.2 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “Bollywood”. 

 

       Figure 6.2: The bit-rate of Bollywood gaps vs. gaps of gaps 

Figure 6.3 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “Film”. 

 

       Figure 6.3: The bit-rate of Film gaps vs. gaps of gaps 
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Figure 6.4 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “Grei”. 

 

       Figure 6.4: The bit-rate of Grei gaps vs. gaps of gaps 

Figure 6.5 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “India”. 

 

       Figure 6.5: The bit-rate of India gaps vs. gaps of gaps 

13.87(G)
12.98(G)

10.87(G)

14.58(GG)
15.12(GG)

10.99(GG)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Delta Delta-Huffman Entropy

B
it

-r
at

e

11.70(G)

9.48(G) 9.19(G)

12.30(GG)

10.63(GG)

9.23(GG)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Delta Delta-Huffman Entropy

B
it

-r
at

e



 

79 
 

 

 

Figure 6.6 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “Rousei”. 

 

       Figure 6.6: The bit-rate of Rousei gaps vs. gaps of gaps 
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       Figure 6.7: The bit-rate of State – gaps vs. gaps of gaps 
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Figure 6.8 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “Stephen”. 

 

       Figure 6.8: The bit-rate of Stephen gaps vs. gaps of gaps 

Figure 6.9 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “Walker”. 

 

       Figure 6.9: The bit-rate of Walker – gaps vs. gaps of gaps 
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Figure 6.10 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “War”. 

 

       Figure 6.10: The bit-rate of War gaps vs. gaps of gaps 

Figure 6.11 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “West”. 

 

       Figure 6.11: The bit-rate of West gaps vs. gaps of gaps 
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Figure 6.12 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps and gaps of gaps of inverted list – “World”. 

 

       Figure 6.12: The bit-rate of World gaps vs. gaps of gaps 
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4.3.7 Experiment 7 

In this section of experiments, we have compared and analyzed Elias Delta code and 

𝛿-Huffman code to the entropy on the gaps of sorted inverted lists vs. gaps of page-rank lists. 

For all the differences, we have implemented the sign and magnitude representation. 

For all of the graphs depicted in this section, the left column bar (blue) is the 

compression techniques applied on the data-set of gaps of sorted inverted lists and the right 

column bar (yellow) is the compression techniques applied on the data-set of gaps of page-

rank lists. 

Below, we have provided the graphs of gaps of 4 sorted inverted lists vs. gaps of 4 

page-rank lists. In all of the graphs, we have compared compression techniques Elias Delta 

code and 𝛿-Huffman code to the entropy. In all of the following figures, “II” refers to gaps 

of inverted lists where as “PI” refers to page-rank lists. 

Figure 7.1 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps of inverted list and gaps of page-rank list – “Facebook”. 

 

       Figure 7.1: The bit-rate of Facebook II vs. PI 
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Figure 7.2 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps of inverted list and gaps of page-rank list – “Grei”. 

 

      Figure 7.2: The bit-rate of Grei II vs. PI 

Figure 7.3 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps of inverted list and gaps of page-rank list – “Iraq”. 

  

       Figure 7.3: The bit-rate of Iraq II vs. PI 
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Figure 7.4 provides the bit-rate of the compression algorithms Elias Delta code and 

𝛿-Huffman code for the gaps of inverted list and gaps of page-rank list – “Obama”. 

 

       Figure 7.4: The bit-rate of Obama II vs. PI 
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results compared to the gaps of inverted lists. 

4.3.8 Experiment 8 

In this section, we have compared and analyzed the performance of compression 

algorithms “gzip,” “bzip2,” Elias Delta code, and 𝛿-Huffman code on the data-sets of GPDF 

(0.5, 0.1, 0.01), PD, and on the gaps of sorted inverted lists. 
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Figure 8.1 provides the bit-rate of the compression algorithms gzip, bzip2, Elias Delta 

code, and 𝛿-Huffman code for the GPDF (0.5, 0.1, 0.01), and PD. 

    

              Figure 8.1: gzip vs. bzip2 vs. Delta vs. 𝛿-Huffman – Distributions 
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 Figure 8.2: gzip vs. bzip2 vs. Delta vs. 𝛿-Huffman – Inverted Lists (1/4) 
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Figure 8.3 provides the bit-rate of the compression algorithms gzip, bzip2, Elias Delta 

code, and 𝛿-Huffman code for the gaps of inverted lists – “Walker,” “Facebook,” “Iraq,” and 

“Obama.” 

 

       Figure 8.3: gzip vs. bzip2 vs. Delta vs. 𝛿-Huffman – Inverted Lists (2/4) 

Figure 8.4 provides the bit-rate of the compression algorithms gzip, bzip2, Elias Delta 
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       Figure 8.4: gzip vs. bzip2 vs. Delta vs. 𝛿-Huffman – Inverted Lists (3/4) 
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Figure 8.5 provides the bit-rate of the compression algorithms gzip, bzip2, Elias Delta 

code, and 𝛿-Huffman code for the gaps of inverted lists – “West,” “World,” “State,” and 

“Stephen.” 

 

       Figure 8.5: gzip vs. bzip2 vs. Delta vs. 𝛿-Huffman – Inverted Lists (4/4) 
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(211 entries),” “Walker (50,874),” “Facebook (25,451),” “Iraq (32,488 entries),” and “Obama 

(17,153 entries)” “bzip2” is achieving the best bit-rate compared to the 𝛿-Huffman code. 

From this, we can observe that for the large data-sets 𝛿-Huffman code provides relatively 

better bit-rate compared to the other compression techniques. The reason is, the gaps 

produces closer intervals with numerous repetitions of integers. Where as in the case of smaller 

data-sets, there are very less repetitions of integers and 𝛿-Huffman code provides inferior bit-

rate. 

4.3.9 Experiment 9 

In this section, we have compared the performance of the compression algorithms 

Elias Delta code, 𝛿-Huffman code, and Aging- Huffman (see section 4.1 Experimental setup) 

on the data-sets of GPDF (0.01) and on the gaps of sorted inverted lists of the terms “Obama,” 

“Rousei,” and “Walker.” 

Figure 9 provides the bit-rate of the compression algorithms Elias Delta code, 𝛿-

Huffman code, and Aging-Huffman for the data-set of GPDF (0.01) and data-sets of gaps of 

inverted lists – “Obama,” “Rousei,” and “Walker.” 

 

Figure 9: Elias Delta vs. 𝛿-Huffman vs. Aging-Huffman – Inverted Lists 
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From the above figure we can observe that on the data-sets examined the performance 

of 𝛿-Huffman code is equal to Aging-Huffman. This can be explained via the observation that 

in these data-sets there are frequently occurring numerous repetitions and the count is not 

decremented. In future work we plan to further examine the Aging-Huffman algorithm with 

several aging parameters.  
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CHAPTER 5 

RESULTS EVALUATION 

 

The following observations were made based on the results of the experiments 

performed in this thesis research. 

 Golomb code with high parameters (e.g., 16) provides low bit-rate for linearly increasing 

integers. For small data-sets with small input integers, Golomb code with low value parameter 

(e.g., 2) is a good fit. Additionally, in order to get a better bit-rate for the Golomb code, 

knowledge on the data-sets should be obtained prior to the actual compression. This might 

necessitate a two-pass or offline implementation.  

 Comma code is a good option for compressing large data-sets which contain no repetitions of 

input integers. For small data-sets with small input integers, Comma code exhibits low 

compression ratio.  

 Among the Elias codes, for large data-sets with medium to large input integers and few 

repetitions, Elias Delta code provides the best bit-rate. This also holds, for large data-sets with 

small input integers and high level of repetitions. Elias Gamma code provides the best bit-rate 

for small data-sets with small input integers. 

 Fibonacci code provides low bit-rate for medium to large data-sets with medium to large input 

integers and with few repetitions. 

 𝛿-Huffman code provides the best bit-rate, which is almost equal to the entropy, in the data-

sets of GPDF and PD, gaps of GPDF and PD, as well as gaps of gaps of GPDF and PD. The 

same holds for the gaps of sorted inverted lists, gaps of gaps of sorted inverted lists. 𝛿-

Huffman code provides better bit-rate than “gzip” in every experiment performed.  
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 Compared to “bzip2,” 𝛿-Huffman code produces a better bit-rate in large data-sets with 

numerous repetitions. In the small data-sets with no repetitions, “bzip2” provides the best bit-

rate, whereas 𝛿-Huffman code provides bit-rate that is smaller than “bzip2” but higher than 

“gzip”. Note, however, that “bzip2” and “gzip” are two-pass algorithms while the 𝛿-Huffman 

is a single pass procedure. 

 Compression of gaps of large data-sets provides better compression than compression of gaps 

of small data-sets, because the gaps are in clustered in closer range. 

 For the signed gaps, e.g., those obtained from the unsorted data, the sign and magnitude 

representation provides lower bit-rate than the odd-even mapping. With the sign and 

magnitude representation, the 𝛿-Huffman compression of the gaps provides bit-rate that is 

almost equal to the entropy. This is explained by the fact that the 𝛿-Huffman is highly efficient 

with small integers but the odd-even mapping produces relatively large integers. 

 The 𝛿-Huffman code provides high bit-rate for page-rank lists because the page-rank lists have 

very large input integers containing none or very few repetitions. In this case, Comma code 

provides relatively low bit-rate. 

 The 𝛿-Huffman code is the lowest performer in small data-sets with few or no repetitions. 

 The bit-rate of the 𝛿-Huffman code required to compress gaps of large data-sets of sorted 

inverted lists is almost equal to the bit-rate of the 𝛿-Huffman code require to compress data-

set of GPDF (0.01). 

 Many of the algorithms discussed above require apriori knowledge concerning the data-set 

and the best parameters for compressing it. In contrast the 𝛿-Huffman is a single pass 

algorithm that does not require prior knowledge about the data.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

This thesis presents an approach to increase the achievable compression ratios in 

integer compression algorithms. Compression ratio is our main emphasis and we are less 

concerned with the computation complexity. We have devised a new integer coding algorithm, 

𝛿-Huffman coding, by exploiting the properties of Elias Delta code and Huffman code and 

combining the two methods. To the best of our knowledge, this is the first work that combines 

the unbounded integer compression methods proposed by Elias with Huffman coding and 

comparatively evaluates their performance. 𝛿-Huffman code can be used effectively for IR 

applications via lossless data compression. To evaluate the utility of 𝛿-Huffman in IR 

applications, we have applied the compression algorithms on numerous data-sets drawn from 

GPDF, PD, sorted inverted lists, and page-rank lists obtained from Wikipedia. Our 

experimental results demonstrate that the bit-rate of 𝛿-Huffman code is very close to the 

estimated entropy and it is the best among other integer compression techniques such as 

Comma code, Elias Gamma code, Elias Delta code, Elias Omega code, Fibonacci code, and 

Golomb code. 𝛿-Huffman code provides the best bit-rate compared to the compression 

technique “gzip” and better than “bzip2” in most of the cases, when there are large data-sets 

with numerous repetitions.  

We plan to further explore the algorithms detailed in this thesis and evaluate other 

features of their performance including asymptotic optimality as well as cost/effectiveness in 

terms of compression ratio, throughput, latency, energy consumption, and implementation 

cost. Furthermore, we plan to expand the set of experiments to include additional methods. 

Moreover, we plan to further examine the Aging-Huffman algorithm with several aging 
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parameters. Finally, we plan to explore practical (yet not necessarily optimal) algorithms as 

well as dynamic unbounded integer compression when the probability of occurrence of 

integers is known. 
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