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ABSTRACT 

Mobile Social Networks (MSNs) where people contact each other through mobile 

devices have become increasingly popular.  In this thesis, we study a special kind of 

MSNs formed impromptu (IMSNs) when people gather together at conferences, social 

events, etc.  Multicast is an important routing service which supports the dissemination of 

messages to a group of users.  Most of the existing related multicast algorithms are 

designed for general Delay Tolerant Networks (DTNs) where social factors are neglected.  

Recently, a social-profile-based multicast (SPM) routing protocol that utilizes the static 

social features in user profiles has been proposed.  We believe that in a dynamic 

environment such as the IMSN, static social features may not reflect people’s dynamic 

behavior.  Therefore, in this work, we propose the concept of dynamic social features and 

enhanced dynamic social features to capture people’s contact behavior.  Based on them, 

we design a novel social-similarity-based multicast algorithm (Multi-Sosim) and its 

enhancement (E-Multi-Sosim).  Simulation results using a real conference trace 

representing an IMSN show that the E-Multi-Sosim algorithm performs better than the 

Multi-Sosim algorithm, which outperforms its variations and the existing one using static 

social features.  

 

 

  



1 

 

CHAPTER 1  

Introduction 

 In this chapter, we introduce the concept of delay tolerant networks, mobile social 

networks, and the related routing problems.   

1.1    Delay Tolerant Networks (DTNs) 

 Delay tolerant networks (DTNs) are a special class of wireless mobile networks 

which are characterized by large network delay, frequent mobility, limited cache space, 

lack of continuous network connectivity, etc (Cerf et al., 2007; Jain, Fall, & Patra, 2004).   

In such networks there is no guarantee of contemporaneous end-to-end paths, which 

makes the problem of routing much more complex.  The routing protocols use store-

carry-forward mechanism to propagate messages.  When two nodes move within each 

other’s transmission range, they communicate directly and become neighbors during that 

time period.  When they move out of their ranges, their contact is lost.  The message to be 

delivered needs to be stored in the local buffer until a contact occurs in the next hop. 

 These networks have a variety of applications.  For example, a DTN could appear 

in connected vehicle networks (Burgess, Gallagher, Jensen, & Levine, 2006) where each 

vehicle is equipped with a radio transceiver that allows it to communicate with others.  In 

this network, all vehicles will help each other forward messages.  When a vehicle moves 

into the transmission range of a source, it receives data transmitted by the source.  This 

vehicle can travel again and once it moves into the transmission range of the destination, 

it will forward data to the destination.  Messages will experience significant delays due to 
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the intermittent connectivity of vehicles.  Similarly, DTNs can also be formed in satellite 

communication networks (Wyatt, Burleigh, Jones, Torgerson, & Wissler, 2009), village 

area networks (Pentland, Fletcher, & Hasson, 2004), and mobile social networks (Scott, 

Crowcroft, Hui, & Diot, 2006).   

1.2    Mobile Social Networks (MSNs) 

As more portable, affordable, and powerful mobile devices such as laptops, smart 

phones, and tablets are developed and improved rapidly, mobile social networks (MSNs) 

are more ubiquitous in our daily lives and have become a hot research topic these days.  

In such networks, people move around and contact with one another through their mobile 

devices.  MSN can be considered as a type of DTNs that involve social factors which 

reflect human behavior.  It lacks continuous end-to-end connections between nodes, due 

to node mobility and limited transmission range.  

In this thesis, our research focuses on a special kind of MSNs formed impromptu 

when people gather together at conferences, social events, rescue sites, campus activities, 

etc.  We refer to it as impromptu mobile social networks (IMSNs).  The IMSNs allow 

people to communicate in a lightweight mechanism based on contact opportunities via 

local wireless bandwidth such as Bluetooth without a network infrastructure.   

The links between nodes in IMSNs are time-dependent, unstable, and short-term 

as people come and go at events.  Therefore continuous network connectivity is not 

guaranteed.  To illustrate the characteristics of IMSNs, consider an IMSN formed by 

participants using small Bluetooth devices to record their contact with each other at a 

conference.  They get connected during the conference and disconnected when the 
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conference finishes.  A participant may want to send a file to one or more people 

attending the conference.  The possible transmission path depends on his encounters with 

other users of the IMSN, and hence changes with space and time.  It is also difficult to 

predict the transmission because of the unpredictable movement of the nodes.  For 

example, two participants who have common interests may contact more frequently than 

others.  All of these factors make the routing problems in IMSNs more challenging. 

1.3    Unicast, Broadcast, and Multicast Routing Problems 

In wireless network, there are three communication mechanisms: unicast, 

broadcast, and multicast.  Unicast is the term used to describe the communication where 

the message is sent from a single source to a specified destination in the network.  In this 

case there is just one source, and one destination.  Broadcast is the term used to describe 

the communication where the message is sent from a single source to all other nodes in 

the network.  In this case there is one source, and all other nodes are as destinations.  

Multicast is the term used to describe the communication where the message is sent from 

a single source to a set of destinations in the network.  In this case there are one source 

and multiple destinations.  From the definitions, we can see that both unicast and 

broadcast are special cases of multicast where the group of recipients is one node for 

unicast or the entire network for broadcast.  Therefore, we are going to focus on multicast 

in this thesis. 

Multicast has various and important applications in IMSNs.  For example, in a 

conference, presentations are delivered to inform the participants about the newest 

technology (Hui et al., 2005); In an emergency scenario, information regarding local 
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conditions and hazard levels is disseminated to the rescue workers (Zhao, Ammar, & 

Zegura, 2005); And in campus life, school information is sent to a group of student 

mobile users over their wireless interfaces (Wang & Chen, 2001).   

1.4    Multicast Routing Protocols in IMSNs 

We already know that IMSNs are special cases of DTNs which involve social 

factors.  Nodes in IMSNs can only communicate through a store-carry-forward fashion.  

The conventional ad-hoc network routing schemes, such as DSR (Johnson & Maltz, 

1996), LAR (Ko & Vaidya, 2000), DSDV (Perkins & Bhagwat, 1994), AODV (Perkins, 

Royer, & Das, 2002), etc., would fail.  Routing in IMSNs requires a new model that 

consists of a sequence of independent, local forwarding decisions, based on the current 

connectivity information and the predictions of future connectivity to suit its distributed 

and dynamic nature. 

Most of the existing multicast algorithms focus on general DTNs (Lee, Oh, Lee, 

& Gerla, 2008; Mongiovi, Singh, Yan, Zong, & Psounis, 2012; Wang & Wu, 2012; Xi & 

Chuah, 2009; Zhao et al., 2005) without considering social factors.  There are few 

multicast algorithms specifically designed for IMSNs where people play an important 

role.  The closest we can find is the multicast algorithm proposed for MSNs by Deng, 

Chang, Tao, Pan and Wang (2013).  The researchers found, through the study of the 

Infocom06 trace, that the static social features in user profiles could effectively reflect 

node contact behavior and developed a social-profile-based multicast (SPM) scheme 

based on the two most important social features: affiliation and language they extracted 

from the trace.  In their scheme, social features 𝐹𝑖 can refer to nationality, city, language, 
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affiliation, and so on and these social features can take different values 𝑓𝑖.  For example, a 

social feature can be language and its value could be English.  The intuition is that nodes 

have more common social features tend to meet more often.  So the nodes having more 

common social features with the destination are better forwarders to deliver the message 

to it.   

We believe, in a dynamic environment such as the IMSN, the multicast algorithm 

can be further improved because the static social features may not always capture nodes’ 

dynamic contact behavior.  For example, a student who put New York as his state in his 

social profile may actually attend a conference in Texas.  In that case, the static 

information in his user profile cannot reflect his behavior in Texas.  The information that 

is helpful in making multicast decisions can only be gathered from the nodes’ contact 

behavior at the conference.  Therefore, in this thesis, we extend static social features to 

dynamic social features and enhanced dynamic social features to better reflect nodes’ 

contact behavior and then develop new multicast algorithms based on these new 

concepts.   

Though not formally defined as dynamic social features, the idea of this concept 

was first put forward in our unicast routing algorithm (Rothfus, Dunning, & Chen, 2013).  

In dynamic social features, we not only consider if a node shares the common social 

features with a destination, but also record the frequency this node has met other nodes 

which have the same social feature values as the destination during the time interval we 

observe.  For example, if node A wants to send a message to a person from New York at 

a conference, we not only consider if node A, same as the destination, is a New Yorker, 

but also record that it has met New Yorker 90% of the time during the observation 
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interval at the conference.  Unlike the static social features from user profiles, dynamic 

social features are time-related.  So they change as user contact behavior changes over 

time.  Thus we can have a more accurate way to choose the best forwarders in multicast.  

Take another example in which the destination has social feature values New Yorker and 

student, and we have two candidate nodes A and B, both of which are New Yorkers and 

students.  Nodes A and B are equally good forwarders if we just look at their static social 

feature values.  However, if we know that A has met New Yorkers 90% of the time and 

students 80% of the time and B has met New Yorkers 60% of the time and students 40% 

of the time during the time interval we observe, then obviously A is a better forwarder.  

In the case of the unicast algorithm (Rothfus et al., 2013), both the theoretical analysis 

and simulation results indicate that our algorithm based on the idea of dynamic social 

features performs better than the existing unicast ones using static social features.  

Inspired by these preliminary results in unicast, in this thesis, we apply dynamic social 

features to multicast to further improve its performance. 

The idea of the enhanced dynamic social features is inspired by the fact that we 

need to make a further decision to choose the better forwarder when two nodes have the 

same contact frequency in the above dynamic social features.  In this thesis, we propose 

an enhanced way to calculate the dynamic social features of nodes and also apply them to 

multicast. 

In multicast, a message holder is expected to forward a message to multiple 

destinations.  To reduce the overhead and forwarding cost, a multicast process usually 

results in a tree structure where the destinations share the routing path until the point that 

they have to be separated by some compare-split scheme.  In our multicast, if a message 
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holder meets another node, the compare-split scheme is based on the comparison of the 

social similarity of each of the destinations with the message holder and with the meeting 

node using dynamic social features.  That is, whichever, either the message holder or the 

meeting node, is more socially close to the specific destination will have a higher chance 

to deliver the message to it and thus should relay the message to that destination. 

1.5    Contributions 

 The main contributions of this thesis are summarized as follows: 

1)  We introduce the new concepts of dynamic social features and enhanced 

dynamic social features.  

2)  We propose a novel social-similarity-based multicast (Multi-Sosim) routing 

algorithm using dynamic social features and an enhanced multicast (E-Multi-Sosim) 

using enhanced dynamic social features for IMSNs. 

3)  We discuss two variations of Mutli-Sosim algorithm: Multi-FwdNew which is 

similar to Multi-Sosim but the message holder only considers forwarding the message to 

a newly met node so that destinations can share the paths longer.  And Multi-Unicast 

where multicast is implemented by multiple unicasts with each unicast conducted using 

dynamic social features.   

4)  To evaluate the performance of the Multi-Sosim algorithm, we compare it with 

SPM, Multi-FwdNew, and Multi-Unicast algorithms.  The epidemic algorithm is 

included as a benchmark in the comparison.  Simulation results show that Multi-Sosim 

outperforms SPM with a higher delivery ratio and lower latency with a little increase in 

the number of forwardings, which confirms that using dynamic social features can make 
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better multicast routing decisions than using static social features in IMSNs.  The better 

performance of Multi-Sosim over Multi-Unicast and Multi-FwdNew demonstrates that it 

is better to let the destinations share the paths and it is wise to reconsider a better 

forwarder for each destination whenever a message holder meets another node, 

respectively. 

5)  We also compare the Multi-Sosim algorithm with the E-Multi-Sosim 

algorithm.  Simulation results show that the latter performs better than the former, which 

verifies that using enhanced dynamic social features can further improve the multicast 

performance. 

1.6    Organization 

The rest of the thesis is organized as follows: Chapter 2 references the related 

works; Chapter 3 presents the concepts of dynamic social features and enhanced dynamic 

social features, and different ways to calculate social similarity; Chapter 4 proposes a 

new multicast algorithm and discusses its possible variations; Chapter 5 gives the 

analysis of the Multi-Sosim algorithm; Chapter 6 shows the simulation results; and the 

conclusion is in Chapter 7.  
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CHAPTER 2 

Related Works 

 In this chapter, we introduce multicast algorithms in the literature proposed for 

DTNs and MSNs.    

2.1    Multicast Algorithms in DTNs 

One efficient yet costly routing approach in DTNs is epidemic routing (Vahdat & 

Becker, 2000) where a message holder will forward a message to all of the nodes it 

comes into contact with, so that the message is spread epidemically throughout the 

network until it reaches all of the destinations.  This approach is relatively simple because 

it requires no knowledge about the network.  It provides a large amount of redundancy 

since all nodes receive the message making it achieve high delivery ratio and robustness.  

Additionally, since it tries every path, it delivers the message in the minimum amount of 

time so that the latency is very low.  However, it has inevitable high forwarding cost 

because it uses all available paths instead of just a limited number.  The epidemic 

algorithm will be used as a benchmark in our simulations. 

Another basic algorithm in DTNs is wait (or direct delivery) (Jones & Ward, 

2004), where the source does not forward copies to any intermediate nodes at all.  It just 

waits and sends the message to the destinations when it meets the destination.  It does not 

require any information about the network either.  Due to the simplicity, there is only one 

message generated to each of the destinations in this approach, so the forwarding cost is 
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low.  However, it only works if the source meets the destinations and the latency can be 

very high if it takes the source a long time to meet the destinations. 

Most of other existing related multicast algorithms are designed for DTNs where 

social factors are not considered.  In recent years, Zhao et al. (2005) introduce some new 

semantic models for multicast and conclude that the group-based strategy is suitable for 

multicast in DTNs.  Lee et al. (2008) study the scalability property of multicast in DTNs 

and introduce RelayCast to improve the throughput bound of multicast using mobility-

assist routing algorithm.  By utilizing mobility features of DTNs, Xi and Chuah (2009) 

present an encounter-based multicast routing, and Chuah and Yang (2009) develop a 

context-aware adaptive multicast routing scheme.  Mongiovi et al. (2012) use graph 

indexing to minimize the remote communication cost of multicast.  Wang and Wu (2012) 

exploit the contact state information and use a compare-split scheme to construct a 

multicast tree with a small number of relay nodes.   

2.2    Social-based Multicast Algorithms in MSNs 

As social network applications explode in recent years, analysis of these network 

graphs shows that some nodes are the common acquaintances of other nodes and act as 

communication hubs (Motani, Srinivasan, & Nuggehalli, 2005; Srinivasan, Motani, & 

Ooi, 2006).  Therefore, one promising way of predicting future contact probability is to 

use metrics such as centrality and similarity in network analysis to assess the message 

delivery probability of a node based on the connections in the graphs (Hui, Crowcroft, & 

Yoneki, 2008; Pietilainen & Diot 2012).  Nevertheless, in these network graphs, past 

node contacts have been aggregated into a “static” social graph.  As pointed out by 
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Hossmann, Spyropoulos, and Legendre (2009), Yang and Wu (2013), the “static” social 

graph has the tradeoff between time-related information lost and predictive capability. 

Some other MSN routing algorithms use social features in user profiles to guide 

routing.  Mei, Morabito, Santi, and Stefa (2011) find that individuals with similar social 

features tend to meet more often in MSNs.  The individuals are characterized by high 

dimensional feature profiles, though usually only a small subset of important features are 

extracted and used in routing.  Wu and Wang (2012) provide a systematic multicast 

routing approach by taking advantage of the structural property of hypercubes to resolve 

social feature differences between a source and destinations.  Gao, Li, Zhao and Cao 

(2009) propose a community-based multicast routing scheme by exploiting node 

centrality and social community structures.  Most recently, Deng, et al. (2013) propose a 

social-profile-based multicast (SPM) algorithm that uses social features in user profiles to 

guide the multicast routing in MSNs.  More specifically, the algorithm selects relay nodes 

with a small average affiliation distance or high common language ratio to the 

destinations.   

The advantage of these social-feature-based approaches is that they do not need to 

record nodes’ contact history.  They work well in social networks where the activities of 

individuals follow the information in their social profiles because the social relations 

among mobile users are more likely to be long-term and less volatile.  But they may not 

be suitable for IMSNs where user activities are time-dependent and may deviate from 

their social features in their profiles.  Therefore, in order to capture nodes’ dynamic 

behavior to steer the routing in the right direction, the multicast algorithm for IMSNs 

needs to be rethought about. 
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In this thesis, we propose novel routing algorithms using dynamic social features 

to capture nodes' contact behavior and a compare-split scheme to decide better routing 

paths for the destinations so as to improve multicast efficiency in IMSNs.  To the best of 

our knowledge, this work is the first one that utilizes dynamic social features to guide 

multicast routing in IMSNs.   
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CHAPTER 3 

Dynamic Social Features and Social Similarity 

In this chapter, we first explain static social features as the preliminary for the 

dynamic social features, and then give the definitions of dynamic social features and 

enhanced dynamic social features.  After those, we present the formulas to calculate the 

social similarity of two nodes based on these dynamic social features.   

3.1    Static Social Features 

 To make the definition of dynamic social features more clear and distinguish it 

from static social features (Deng et al., 2013), we look at the latter first and give an 

example to explain how it is used in routing.  Just as the name implies, static social 

features don’t change with the time or space.  For example, assume we consider four 

social features: <𝐹1,  𝐹2, 𝐹3,  𝐹4>, which refer to <nationality, city, affiliation, language>.  

Suppose destination 𝐷’s values in these four social features are: <USA, New York, 

student, English>.  These are the target social features that a source wants to reach, so we 

set the vector of 𝐷 to <1, 1, 1, 1>.  Suppose there is a source that wants to send a message 

to 𝐷.  If it has the same value as 𝐷 for feature 𝐹𝑖, then the value in its 𝐹𝑖 dimension is set 

to 1, otherwise it is set to 0.  Suppose a source has nothing in common with the 

destination, then its vector is set to <0, 0, 0, 0>.  The routing process then attempts to 

resolve the differences between <0, 0, 0, 0> and <1, 1, 1, 1> via intermediate nodes.  A 

possible path, represented by nodes’ static social feature vectors, would be <0, 0, 0, 0> → 

<1, 0, 0, 0> → <1, 0, 0, 1> → <1, 0, 1, 1> → <1, 1, 1, 1>.  In each hop, the message is 
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passed on to a node that shares more common social features with the destination since it 

is expected to have a higher probability to deliver the message to the destination. 

 However, in the applications of IMSNs, people’s static social features do not 

always reflect their dynamic behavior in reality.  For example, consider a student from 

New York attends a conference in Texas.  A simple feature value in his social profile will 

not be sufficient to reflect his dynamic behavior.  Another situation is that in real life, a 

person mostly communicates with others who have more than one social features in 

common.  So if we just look at 1 or 0 difference in their social features, then it is hard to 

tell which one is more socially similar to that person.  Take an example where a message 

needs to be sent to multiple destinations at a conference and we just consider two social 

features <city, affiliation>.  Suppose there is a destination D whose social feature values 

in these two dimensions are <New York, student>.  If two candidate forwarders A and B 

both have the same social feature values as D, then their social vectors will both be set to 

<1, 1>, which makes them indistinguishable.   

Therefore, we propose a more accurate way to evaluate nodes’ delivery 

probabilities by taking their dynamic contact behavior into account.  We look at the 

nodes’ past meeting ratios.  For the above example, if node A meets New Yorkers 90% of 

the time and students 80% of the time, denoted by the frequency vector <90%, 80%>, 

while node B’s frequency vector for the same features are <60%, 40%> during the time 

we observe, then we can tell node A is a better message forwarder than B.  We refer to 

the frequency vector representing a node meeting with other nodes that have the same 

social feature values as the destination as the dynamic social features of that node.  Its 

definition is as follows. 
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3.2    Dynamic Social Features 

Suppose we consider 𝑚 social features 〈𝐹1,  𝐹2, ⋅⋅⋅, 𝐹𝑚〉 of nodes in IMSNs.  We 

associate each individual node with a vector of its dynamic social features.  For 

convenience, we use a node’s label as its vector’s label.  Thus, a node 𝑥 has a vector 𝑥 of 

length 𝑚: 〈𝑥1,  𝑥2, ⋅⋅⋅, 𝑥𝑚〉 and a node 𝑦 has a vector 𝑦 of length 𝑚: 〈𝑦1,  𝑦2, ⋅⋅⋅, 𝑦𝑚〉.  A 

node 𝑥’s dynamic social features are contained in its vector, which is: 

〈𝑥1,  𝑥2, ⋅⋅⋅, 𝑥𝑚〉 = 〈
𝑀1

𝑀𝑡𝑜𝑡𝑎𝑙
,

𝑀2

𝑀𝑡𝑜𝑡𝑎𝑙
,

𝑀3

𝑀𝑡𝑜𝑡𝑎𝑙
, ⋅⋅⋅,

𝑀𝑚

𝑀𝑡𝑜𝑡𝑎𝑙
〉                       (3.1) 

where 𝑀𝑖 is the number of meetings of node 𝑥 with nodes whose value 𝑓𝑖 of feature 𝐹𝑖  is 

the same as that of destination 𝑑, and 𝑀𝑡𝑜𝑡𝑎𝑙 is the total number of meetings of node 𝑥 

with any other node in the history we observe.  Thus 0 ≤ 𝑥𝑖 ≤ 1 for all 1 ≤ 𝑖 ≤ 𝑚. 

Dynamic social features, as can be seen in the definition, not only record if a node 

has the same social feature values as the destination, but also record the frequency this 

node has met other nodes which have the same social feature values as the destination.  

Unlike static social features from user profiles, dynamic social features are time-related, 

so they change as user activities change over time.  And thus we can have more accurate 

information to make routing decisions. 

3.3    Enhanced Dynamic Social Features 

 The above definition of dynamic social features still have a little problem.  For 

example, if node A has met 10 people in total and 6 of them are New Yorkers while B 

has met 100 people and 60 of them are New Yorkers.  Based on the above definition, 
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they have the same frequency to meet New Yorkers, which makes them indistinguishable 

in the likelihood to deliver messages to New Yorkers. 

Therefore, we propose an enhanced way to evaluate the social closeness between 

two nodes.  Similarly, suppose we consider 𝑚 social features 〈𝐹1,  𝐹2, ⋅⋅⋅, 𝐹𝑚〉 of nodes in 

IMSNs.  A node 𝑥 has a vector 𝑥 of length 𝑚: 〈𝑥1,  𝑥2, ⋅⋅⋅, 𝑥𝑚〉, and for all 1 ≤ 𝑖 ≤ 𝑚, 

we calculate  𝑥𝑖 as: 

𝑥𝑖 = (
𝑀𝑖+1

𝑀𝑡𝑜𝑡𝑎𝑙+1
)

𝑝𝑖

∗  (
𝑀𝑖

𝑀𝑡𝑜𝑡𝑎𝑙+1
)

1 − 𝑝𝑖

                             (3.2) 

where 𝑝𝑖 =
𝑀𝑖

𝑀𝑡𝑜𝑡𝑎𝑙
 .  𝑀𝑖 and 𝑀𝑡𝑜𝑡𝑎𝑙 have the same meaning as before.  This definition 

predicts 𝑥𝑖 by looking at the next meeting of node 𝑥 with another node.  So the total 

meeting times will be 𝑀𝑡𝑜𝑡𝑎𝑙 + 1.  The first part (
𝑀𝑖+1

𝑀𝑡𝑜𝑡𝑎𝑙+1
)

𝑝𝑖

 means that there is 𝑝𝑖 

probability that 𝑥 will have a “good” meeting with another node with the same social 

feature 𝑓𝑖 next time.  In this case, 𝑀𝑖 will also be incremented by 1.  The second part 

(
𝑀𝑖

𝑀𝑡𝑜𝑡𝑎𝑙+1
)

1 − 𝑝𝑖

 means that there is 1 − 𝑝𝑖 probability for 𝑥 not to meet a node with the 

same social feature 𝑓𝑖 next time.  In that case, 𝑀𝑖  will remain the same.  The definition 

for 𝑥𝑖  then takes the geometric mean of the two parts.  It is easy to see that each 𝑥𝑖 

satisfies 0 ≤ 𝑥𝑖 ≤ 1. 

3.4    Calculation of Social Similarity Metrics 

 With the node’s dynamic social features defined, the next task is to use some 

similarity metric to compare the social similarity of two vectors.   

To compare the social similarity 𝑆(𝑥, 𝑦) between nodes 𝑥 and 𝑦, we can use the 
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following similarity metrics derived from data mining (Han, Kamber, & Pei, 2012).  In 

our metrics, 1 means 100% identical and 0 means not similar at all.  To deal with various 

values of social data, we normalize the outputs of all metrics to the range of [0, 1].  

3.4.1    Tanimoto Similarity 

 The Tanimoto coefficient to measure the similarity of node 𝑥 and node 𝑦 is: 

𝑆(𝑥, 𝑦) =
𝑥 ⋅ 𝑦

𝑥 ⋅ 𝑥 + 𝑦 ⋅ 𝑦 – 𝑥 ⋅ 𝑦
                                            (3.3) 

where the notation 𝑥 ⋅ 𝑦 is the product of the two vectors.   

For example, suppose we look at three social features: city, language, and position 

in the network.  If the values of social features of destination 𝐷 are: <New York, English, 

student>.  Suppose node 𝑥 has met people from New York 70% of the time, people that 

speak English 93% of the time, and students 41% of the time in the history we observe, 

then node 𝑥 has a vector of 𝑥 = 〈0.7, 0.93, 0.41〉.  And node 𝑦 is the destination who 

has a vector of 𝑦 = 〈1, 1, 1〉.  Using the Tanimoto metric in equation (3.2), we can 

get 𝑆(𝑥, 𝑦) = 0.82. 

3.4.2    Cosine Similarity 

 It measures the similarity of node 𝑥 and node 𝑦 as: 

 

                                                    𝑆(𝑥, 𝑦) =
𝑥 ⋅ 𝑦

√(𝑥 ⋅ 𝑥) (𝑦 ⋅ 𝑦)
                                                (3.4) 
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3.4.3    Euclidean Similarity 

 We can also use the Euclidean distance to measure a node’s social similarity to 

another node.  To make the similarity definition consistent, we normalize the original 

definition of Euclidean similarity to the range of [0, 1] and subtract it from 1.  Now the 

Euclidean similarity of 𝑥 and 𝑦 is defined as:  

𝑆(𝑥, 𝑦) = 1 −
√∑  (𝑦𝑖 − 𝑥𝑖)2𝑚

𝑖=1

√𝑚
                                          (3.5) 

3.4.4   Weighted Euclidean Similarity 

In addition to the basic Euclidean similarity mentioned above, we also employ the 

weighted Euclidean similarity to favor the social features that are more influential to 

the delivery of the message.  To determine the weight of a social feature, we use the 

Shannon entropy (Shannon, Petigara, & Seshasai, 1948) which quantifies the expected 

value of the information contained in the social feature (Wu & Wang, 2012).  The 

Shannon entropy for a given social feature is calculated as:  

   𝜔𝑖 = − ∑ 𝑝(𝑓𝑖) ∙ 𝑙𝑜𝑔2(𝑓𝑖)
𝑘
𝑖=1                                          (3.6) 

where 𝜔𝑖 is the Shannon entropy for feature 𝐹𝑖, vector 〈𝑓1,  𝑓2, ⋅⋅⋅, 𝑓𝑘〉 contains the 

possible values of feature 𝐹𝑖, and 𝑝 denotes the probability mass function of 𝐹𝑖.  The 

weighted Euclidean similarity normalized to the range of [0, 1] is as follows:  

𝑆(𝑥, 𝑦) = 1 −
√∑  𝜔𝑖∙ (𝑦𝑖 − 𝑥𝑖)2𝑚

𝑖=1

√∑ 𝜔𝑖
𝑚
𝑖=1

                                       (3.7) 
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CHAPTER 4 

Social-similarity-based Multicast Routing Protocol 

In this chapter, we propose the social-similarity-based multicast (Multi-Sosim) 

routing algorithm for IMSNs and discuss its two variations. 

4.1    Social-similarity-based Multicast Routing Algorithm 

The pseudo code of Multi-Sosim is shown in Figure 4.1.  In the beginning, a 

source node 𝑠, also the initial message holder 𝑥, has a message to be delivered to a set of 

destinations 𝐷𝑠 = {𝑑1,  𝑑2, ⋅⋅⋅, 𝑑𝑛}.  We refer to 𝐷𝑠 as the destination set of 𝑠.  We 

initialize the destination sets of all of the other nodes to be empty.  The routing process is 

started in a while loop.  As long as not all of the 𝑛 destinations have received the 

message, we repeat the following steps to choose the next best forwarding node for these 

destinations. 

When a message holder x meets a node 𝑦, we first check if 𝑦 is one of the 

destinations.  If it is, 𝑥 will deliver the message to 𝑦 directly.  Next, we will combine the 

destination sets of 𝑥 and 𝑦 into 𝐷𝑥𝑦 and make the destination sets 𝐷𝑥 and 𝐷𝑦 empty.   

Then we use a compare-split scheme to split the destinations in 𝐷𝑥𝑦 and put them into 𝐷𝑥 

and 𝐷𝑦 by comparing the social similarity of each destination 𝑑𝑖 with 𝑥 and with 𝑦.  The 

social similarity 𝑆(𝑥, 𝑦) of two nodes 𝑥 and 𝑦 is calculated based on the dynamic social 

features of nodes.  If 𝑦 is more socially similar to 𝑑𝑖, then 𝑑𝑖 should be placed into 𝐷𝑦, 

meaning 𝑦 will be the next forwarder for the message destined for 𝑑𝑖; Otherwise, 𝑑𝑖 

should be placed into 𝐷𝑥  and 𝑥 will be the next forwarder for the message to 𝑑𝑖.  After 𝑥 
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and 𝑦 regain their destination sets, they become new message holders and will repeat the 

routing process until all of the destinations have received the message. 

 

Figure 4.1: Pseudo code of the Multi-Sosim algorithm 

Starting from the source node 𝑠 and through the splits in the middle, the multicast 

process naturally forms a tree.  It follows the cost reduction intuition that the destinations 

should share the paths on the tree as long as possible until a better node appears to carry 

over some of the destinations, then the destinations split.  This idea can be clearly 

presented in the example shown in Figure 4.2.  In the figure, the label in a solid circle 

represents a node and the label in a dashed circle represents a destination.  Initially, the 
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source node 𝑥 has a message to send to the destination set 𝐷𝑥 = {𝑑1,  𝑑2,  𝑑3,  𝑑4,  𝑑5}.  

When 𝑥 meets a node 𝑦, if destinations 𝑑1,  𝑑3,  𝑑5 are more socially similar to 𝑥 than 𝑦 

based on the dynamic social features, then they will be allocated to 𝐷𝑥, and 𝑑2,  𝑑4 will be 

allocated to 𝐷𝑦 if they are more socially similar to 𝑦.  The notation “𝑆(𝑥,  𝑑𝑖 ∶ 𝑑𝑗 ∶ 𝑑𝑘) >

𝑆(𝑦,  𝑑𝑖 ∶ 𝑑𝑗 ∶ 𝑑𝑘)” is a shortened form of “𝑆(𝑥,  𝑑𝑖) > 𝑆(𝑦,  𝑑𝑖) and 𝑆(𝑥,  𝑑𝑗) > 𝑆(𝑦,  𝑑𝑗) 

and 𝑆(𝑥,  𝑑𝑘) > 𝑆(𝑦,  𝑑𝑘)”.  Later, when 𝑥 meets node 𝑎 and 𝑎 meets node 𝑏, they will 

make decisions following the same rule.  The multicast tree continues expanding until all 

of the destinations are reached. 

 

Figure 4.2: A tree structure showing the multicast process 
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4.2    Two Variations 

In the above Multi-Sosim algorithm, the destinations share the path until the 

message holder meets another node.  Regardless of whether that node is a newly met 

node or a node met before, the destinations will be split.  One alternative is that the 

message holder can only consider splitting the destinations if it meets a new node whose 

destination set is empty.  In that case, the destinations can share the paths longer.  We 

refer to this variation as the Multi-FwdNew algorithm.  

Another opposite alternative is not to let the destinations share any path.  That is, 

the multicast is implemented by multiple unicasts where each destination is reached 

individually.  We refer to this variation as the Multi-Unicast algorithm. 
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CHAPTER 5     

Analysis 

In this chapter, we analyze the Multi-Sosim algorithm in terms of the number of 

forwardings and the number of copies.   

5.1    The Number of Forwardings 

Lemma 1.  In the Multi-Sosim algorithm, if there is only one destination in the 

destination set 𝐷, it takes at most log 𝑛 forwardings to reach that destination on average, 

where 𝑛 is the total number of nodes in the network.  

Proof.  Consider a source node 𝑠 which has a social similarity gap 𝑔 to the 

destination.  To reach the destination, the message will be delivered to a node with a 

smaller gap to the destination in each forwarding.  Suppose the gap is updated 𝑙 times 

before the message reaches the destination, and suppose the gap at the 𝑙th update is 

denoted as the random variable 𝐺𝑙.  Assume the contact rate of nodes is independent of 

node similarity, a node is equally likely to meet another node with any particular 

similarity value.  The next update of the gap occurs when it meets a node with a smaller 

gap than 𝐺𝑙, and all values above this level are equally likely. 

Hence, we can write 

                                        𝐺𝑙+1 = 𝐺𝑙 × 𝑈                                                           (4.1) 

where 𝑈 is independent of 𝐺𝑙 and follows a uniform distribution on (0, 1].  By induction 

we then find the conditional expected value of 𝐺𝑙+1 given 𝐺𝑙 is: 

                                                  𝐸[𝐺𝑙+1|𝐺𝑙] =
𝐺𝑙

2
                                                           (4.2) 
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Hence, the expected value of 𝐺𝑙 is: 

                                                        𝐸[𝐺𝑙] =
𝑔

2𝑙                                                               (4.3) 

 This process is like an expanding binary tree.  The total number of nodes in the 

network is 𝑛 and the depth of the binary tree is 𝑙 = log 𝑛.  Thus, it needs on average 

𝑂(log 𝑛) forwardings to reach a destination. 

 In IMSNs, node contact rate is related to social similarity.  Two nodes contact 

more frequently if they are more socially similar.  The gap 𝐺𝑙 will be reduced more 

quickly than the above assumption case where node contact rate is independent of node 

similarity.  Therefore, the number of forwardingss in the Multi-Sosim algorithm will not 

exceed O(log 𝑛). 

Theorem 1.  The complexity of number of forwardings in the Multi-Sosim 

algorithm is 𝑂(𝑘𝑛 + 2𝑘 − 1) in the worst case and 𝑂(𝑘 log 𝑛 + 2𝑘 − 1) in the average 

case, where 𝑛 is the number of nodes in the network and 𝑘 is the number of 

destinations in the multicast set. 

Proof.  In the Multi-Sosim algorithm, if node 𝑥 multicasts to a destination 

set 𝐷 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑘}, denoted by 𝑥 → 𝐷, there are three cases that 𝑥 → 𝐷 will change 

when 𝑥 meets 𝑦. 

1) Transmission: 𝑦 is in the destination set.  In this case, the message is delivered 

to 𝑦 directly. 

2) Split: 𝑦 is more socially similar to some of the destinations in 𝐷.  In this 

case, 𝑥 → 𝐷1, 𝑦 → 𝐷2, where 𝐷1 ∪ 𝐷2 = 𝐷 and 𝐷1 ∩ 𝐷2 = ∅. 

3) Handover: 𝑦 is more socially similar to all of the destinations in 𝐷 than 𝑥.  In 

this case, node 𝑥 hands over the message and the destination set 𝐷 to 𝑦 and then deletes 
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its own copy. 

A multicast process is composed of the forwardings caused by the above three 

cases which are calculated separately below.  

1) Transmission: The number of transmissions in the multicast process is 𝑘 

because each of the 𝑘 destinations will be reached once.  Each transmission is counted as 

one forwarding.  So the number of forwardings in transmissions is 𝑘. 

2) Split: The number of splits in the multicast is 𝑘 − 1.  This can be proved by 

induction.  In the base case, let 𝑘 = 2 and 𝐷 is split into two sets with only one element 

each, the number of splits is 1, which is 𝑘 −  1.  Assume the claim is correct for 

any 𝑟 < 𝑘.  Now if 𝑟 = 𝑘 and set 𝐷 is split into two sets 𝐷1 and 𝐷2, where 𝐷1 ∪ 𝐷2 =

𝐷 and 𝐷1 ∩ 𝐷2 = ∅.  Suppose the size of 𝐷1 is 𝑟1 and the size of 𝐷2 is 𝑟2.  Both 𝑟1 and 

𝑟2 are less than 𝑘 and 𝑟1 + 𝑟2 = 𝑟 = 𝑘.  According to the assumption, the number of 

splits in set 𝐷1 is 𝑟1 − 1 and the number of splits in set 𝐷2 is 𝑟2 − 1.  Then the number 

of splits when 𝐷 splits into 𝐷1 and 𝐷2 is: 𝑟1 − 1 + 𝑟2 − 1 + 1 = 𝑟 − 1 = 𝑘 − 1.  That 

proves the claim.  Each split is counted as a forwarding, so the number of forwardings in 

splits is 𝑘 −  1. 

3) Handover: The number of handovers in the multicast is about 𝑘  for 𝑘 

destinations.  Eventually there will be a set for each of the 𝑘 destinations.  Then each 

destination will be reached independently.  For a particular destination 𝑑𝑖  , in the 

worst case, the number of forwardings needed for a message holder to reach it is 𝑂(𝑛) 

after using all of the nodes in the network as relays.  The average number of forwardings 

to reach it is 𝑂(log 𝑛) which is explained in Lemma 1.  There are altogether 𝑘 

destinations, so the total number of forwardings needed in handover is 𝑂(𝑘𝑛) for the 
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worst case and 𝑂(𝑘 log 𝑛) for the average case. 

In total, the maximum number of forwardings in the multicast process is the 

summation of all of the above three cases, which is: 𝑂(𝑘𝑛 + 2𝑘 − 1) in the worst case 

and 𝑂(𝑘 log 𝑛 + 2𝑘 − 1) in the average case. 

5.2    The Number of Copies 

 Theorem 2.  The number of extra copies produced in the Multi-Sosim algorithm 

is 2𝑘 − 1, where 𝑘 is the number of destinations in the multicast set. 

Proof.  A multicast process is composed of the copies produced by the above 

three cases which are calculated separately below. 

1) Transmission: The number of transmissions in the multicast process is 𝑘 

because of 𝑘 destinations.  Each destination will eventually get a copy of the message.  

So the number of copies produced by transmissions is 𝑘. 

2) Split: The number of splits in the multicast is 𝑘 − 1.  Each split produces an 

extra copy of the message.  So the number of copies produced by splits is 𝑘 − 1. 

3) Handover: The handover does not produce any number of extra copies since 

the message holder will send a copy to the new message holder and delete its own copy. 

In total, the number of extra copies produced in the multicast process is the 

summation of all of the above three cases, which is 2𝑘 − 1. 
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CHAPTER 6 

Simulations 

In this chapter, we evaluate the performance of the Multi-Sosim algorithm.  We 

first compare different similarity metrics to decide the metric we will use in our 

simulations.  Then we compare the Multi-Sosim algorithm with its two variations and the 

existing algorithms.  Finally we compare the Multi-Sosim algorithm with its 

enhancement. 

6.1    Evaluation Metrics 

We use three important metrics to evaluate the performance of the multicast 

algorithms.  Since a multicast involves multiple destinations, we define a successful 

multicast as the one that successfully delivers the message to all of the destinations. 

1)  Delivery ratio: The ratio of the number of successful multicasts to the number 

of total multicasts generated. 

2) Delivery latency: The time between when the source starts to deliver the 

message to all of the destinations and when all of the destinations receive the message. 

3) Number of forwardings: The number of forwardings needed to deliver the 

message to all of the destinations. 

6.2    The Real Trace 

The simulations were conducted using a real conference trace (Scott, Gass, 

Crowcroft, Hui, Diot, & Chaintreau, 2009) reflecting an IMSN created at Infocom 2006.  
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In total, 78 students and researchers carrying the Bluetooth small devices (iMotes) 

communicated at the IEEE Infocom 2006 conference in Miami for four days.  The trace 

dataset consists of two parts: contacts between the iMote devices and the self-reported 

social features of the participants which were collected using a questionnaire form.  The 

six social features extracted from the dataset were affiliation, city, nationality, language, 

country, and position.  In total, 61 participants provided full social features, while others 

provided incomplete information.  There were 128,979 contacts between the 61 

participants over a period of 340,808 time slots in seconds.  

6.3    Comparison of Social Similarity Metrics 

To find the best fit for our simulated context, we compared Tanimoto, Cosine, 

Euclidean, and Weighted Euclidean similarity metrics in unicast scenario (Rothfus et al., 

2013).  In the routing process, we apply the idea of delegation forwarding proposed by 

Erramilli, Crovella, Chaintreau, and Diot (2008) because it can bring down the expected 

cost of delivering messages.  The main idea of delegation forwarding is that it assigns a 

quality and a level value to each node.  The quality value of a node here is 𝑆(𝑥, 𝑦), and 

the level value is 𝜏.  Initially, the level value of each node is equal to its quality value.  

During the routing process, a message holder compares the quality of the node it meets 

with its own level.  It only forwards the message to a node with a higher quality than its 

own level.  In addition, the message holder raises its own level to the quality of the 

higher quality node.  The result of delegation forwarding is that a node will forward a 

message only if it encounters another node whose quality metric is greater than any seen 

by the node so far. 
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We utilized the first two days of the data as the initial history and performed our 

simulations on the remaining days.  We generated messages from a randomly chosen 

source to a randomly chosen destination every two seconds in the first 24 hours of the 

simulation.  We then averaged five separate simulations of each algorithm with identical 

setups to mitigate the effect of any outliers in the performance.  To perform a fair 

comparison of the algorithms, we set time-to-live of all of the packets to 9, meaning that 

a given packet can be transferred at most nine times so that the delivery ratio will not 

always be 100% during the whole time frame of the trace. 

The simulation results in Figure 6.1 show that all of the similarity metrics 

performed similarly in delivery ratio, latency, and number of forwardings.  We therefore 

decided to use the Euclidean metric since it did not require the calculation of additional 

weighting values and performed slightly better than Tanimoto and Cosine metrics in 

latency. 

  



30 

 

 

Figure 6.1: Comparison of Tanimoto, Cosine,  

Euclidean, and Weighted Euclidean social similarity metrics 
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6.4    Comparison of Multicast Algorithms 

We compared our algorithm with the following related multicast protocols.   

 1) The epidemic algorithm (epidemic) (Vahdat & Becker, 2000): The message is 

spread epidemically throughout the network until it reaches all of the multicast 

destinations. 

 2) The social-profile-based multicast routing algorithm (SPM) (Deng et al., 2013): 

The multicast algorithm based on static social features in user profiles. 

 3) The Multi-Sosim algorithm (Multi-Sosim): Our multicast algorithm based on 

dynamic social features. 

 4) Variation 1 of the Multi-Sosim algorithm (Multi-FwdNew): This algorithm is 

similar to Multi-Sosim but a message holder only forwards the message to a newly met 

node whose destination set is empty. 

 5) Variation 2 of the Multi-Sosim algorithm (Multi-Unicast): The message to 

multiple destinations is delivered by multiple unicasts, where each unicast is conducted 

using dynamic social features. 

 6) The enhanced Multi-Sosim algorithm (E-Multi-Sosim): This algorithm is 

similar to Multi-Sosim but it is based on the enhanced dynamic social features. 

6.5    Simulation Setup 

In our simulations, we divided the whole trace time into 10 intervals.  Thus, 1 

TTL is 0.1 of the total time length and 10 TTLs is the length of the whole trace.  For each 

of the algorithms compared, we tried the sizes of the destination sets to be 2, 5, and 10.  
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In each experiment, we randomly generated a source and its destination set.  We ran each 

algorithm 300 times and averaged the results of the evaluation metrics. 

6.6    Simulation Results 

6.6.1 Comparison Results of Multi-Sosim and the Existing Algorithms 

Figure 6.2, 6.3 and 6.4 show the simulation results of epidemic, SPM, and Multi-

Sosim algorithms with 2, 5, and 10 destinations, respectively.  For the epidemic 

algorithm, the results in all of the three figures show that, as expected, it has the highest 

delivery ratio and lowest delivery latency (almost close to 0 compared with others in the 

figures) but highest number of forwardings. 

The Multi-Sosim algorithm outperforms SPM in having a higher delivery ratio 

and lower latency with a little increase in the number of forwardings.  The little increase 

in the number of forwardings indicates that Multi-Sosim is more active in delivering the 

message to the destinations.  This confirms that using dynamic social features can more 

accurately capture node encounter behavior than using the static ones in IMSNs.   
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Figure 6.2: Comparison of Epidemic,  

SPM, and Multi-Sosim algorithms with 2 destinations 
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Figure 6.3: Comparison of Epidemic,  

SPM, and Multi-Sosim algorithms with 5 destinations 
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Figure 6.4: Comparison of Epidemic,  

SPM, and Multi-Sosim algorithms with 10 destinations 
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6.6.2 Comparison Results of Multi-Sosim and its Variations 

Figure 6.5 and 6.6 show the zoom-in simulation results of Multi-Sosim, Multi-

Unicast, and Multi-FwdNew algorithms with 5 and 10 destinations.  Multi-Sosim has 

similar delivery ratio and latency as Multi-Unicast as their curves are overlapped in the 

figures. But Multi-Sosim decreases the number of forwardings in Multi-Unicast by 

16.7% and 29.9% with 5 and 10 destinations, respectively.  This verifies that letting the 

destinations share the path can reduce the forwarding cost, especially when the number 

of destinations goes up. 

Multi-Sosim outperforms Multi-FwdNew in delivery ratio, latency, and the 

number of forwardings.  With 5 destinations, the Multi-Sosim algorithm increases the 

delivery ratio by 1.5%, decreases latency by 2.0%, and decreases the number of 

forwardings by 6.7% comparing with Multi-FwdNew.  With 10 destinations, the Multi-

Sosim algorithm increases the delivery ratio by 2.8%, decreases latency by 3.9%, and 

decreases the number of forwardings by 11.6%.  This demonstrates that it is wise to 

reconsider the better forwarder for each destination whenever a message holder meets 

another node. 
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Figure 6.5: Comparison of Multi-Sosim,  

Multi-Unicast, and Multi-FwdNew with 5 destinations 
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Figure 6.6: Comparison of Multi-Sosim,  

Multi-Unicast, and Multi-FwdNew with 10 destinations 
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6.6.3 Comparison Results of Multi-Sosim and its Enhancement 

Figure 6.7 and 6.8 zoom in the comparison of Multi-Sosim and E-Multi-Sosim 

algorithms with 5 and 10 destinations.  We can see that E-Multi-Sosim outperforms 

Multi-Sosim in delivery ratio, latency, and the number of forwardings.  With 5 

destinations, the E-Multi-Sosim algorithm increases the delivery ratio by 2.1%, decreases 

latency by 6.4%, and decreases the number of forwardings by 2.7% comparing with 

Multi-Sosim.  With 10 destinations, the E-Multi-Sosim algorithm increases the delivery 

ratio by 4.3%, decreases latency by 2.9%, and decreases the number of forwardings by 

10.6%.  This demonstrates that we can capture nodes’ dynamic contact behavior more 

accurately using enhanced dynamic social features. 
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Figure 6.7: Comparison of Multi-Sosim and E-Multi-Sosim with 5 destinations 
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Figure 6.8: Comparison of Multi-Sosim and E-Multi-Sosim with 10 destinations 
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CHAPTER 7 

Conclusion 

In this thesis, we designed efficient multicast routing protocols for IMSNs where 

node connections are established impromptu and usually time-dependent, short-term, and 

dynamic.  We introduced the concept of dynamic social features to capture nodes’ contact 

behavior more accurately than the static social features.  Then we proposed enhanced 

dynamic social features to further improve the accuracy of capturing nodes’ contact 

behavior.  Based on the dynamic social features and the enhanced one, we designed a 

novel multicast algorithm named Multi-Sosim and its enhancement E-Multi-Sosim for 

IMSNs.  In both algorithms, a compare-split scheme was used to select the best relay 

node for each destination in each hop to improve multicast efficiency in IMSNs.  We also 

studied the two variations of the Multi-Sosim algorithms: Multi-Unicast and Multi-

FwdNew. 

Simulation results using a real trace representing an IMSN showed that the Multi-

Sosim algorithm outperformed the existing SPM algorithm and its variations, which 

verified the advantages of the dynamic social features over the static ones and the 

appropriateness of the compare-split scheme in our multicast algorithm.  The E-Multi-

Sosim algorithm performs better than the Multi-Sosim algorithm, which confirms that we 

can further capture nodes’ dynamic contact behavior more accurately using enhanced 

dynamic social features. 

In our future work, we plan to test our algorithm using more traces in IMSNs as 

they become available. 
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