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A necessary and sufficient condition for the

diagonalization of multi-dimensional quasilinear

systems ∗

De-xing Kong

Abstract

In this paper, the author obtains a necessary and sufficient condition
on the diagonalization of multi-dimensional quasilinear systems of first
order, and gives some physical applications.

1 Introduction

Consider the following multi-dimensional quasilinear system

∂u

∂t
+

m∑
i=1

Ai(u)
∂u

∂xi
= 0 , (1.1)

where u = (u1, . . . , un)
T is the unknown vector function, Ai(u) =

(
aijk(u)

)
is

an n × n matrix with suitable smooth elements aijk(u) (i = 1, . . . ,m; j, k =
1, . . . , n), m and n are two integers ≥ 1.
We say system (1.1) is diagonalizable, if there exists a smooth transformation

w = (w1(u), · · · , wn(u))
T
with non-vanishing Jacobian such that (1.1) can be

equivalently rewritten as the following coupled system

∂wj

∂t
+

n∑
i=1

λij(w)
∂wj

∂xi
= 0 (j = 1, . . . , n), (1.2)

where λij(w) (i = 1, . . . ,m; j = 1, . . . , n) are smooth functions of w.
Such functions wj = wj(u) (j = 1, . . . , n) are called strict Riemann in-

variants, and λij(w) is called the xi-directional speed of wj (i = 1, . . . ,m; j =
1, . . . , n).
The diagonal quasilinear system (1.2) is special and important system pos-

sessing many good properties. For instance, it is easier to find exact solutions
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and to establish the existence and uniqueness theory of solutions, etc. ([CH],
[Ho], [L1]). However, not all quasilinear systems are diagonalizable. Hence, it
is interesting and significant to discuss the following two kinds of problems

(I) Under which conditions is system (1.1) diagonalizable? If it is diagonaliz-
able, what are the Riemann invariants?

(II) Under which conditions is system (1.1) not diagonalizable?

In this paper, we consider these problems for the multi-dimensional quasi-
linear system (1.1) and give a necessary and sufficient condition for its diagonal-
ization. Moreover, in order to illustrate that our criterion is effective, we give
some applications.
In the case of one space dimension, it is well known that every quasilinear

hyperbolic system with two partial differential equations and with two unknown
functions is always diagonalizable ([CH], [L1]). For general quasilinear systems
in one space dimension, this result is obtained by making use of Nijenhuis tensor
N ijk of the matrix A1(u):

N ijk =
n∑
l=1

[
a1lj
∂a1ik
∂uj

− a1lk
∂a1ij
∂ul
− a1il

(
∂a1lk
∂uj

−
∂a1lj
∂uk

)]
(i, j, k = 1, . . . , n) ,

(1.3)
and introducing the tensor

T ijk =

n∑
p,q=1

(
N ipqa

1
pja
1
qk −N

p
jqa
1
ipa
1
qk −N

p
qka

1
ipa
1
qj +N

p
jka
1
iqa
1
qp

)
, (1.4)

where i, j, k = 1, . . . , n. Haantjes [Ha] proved that (1.1) with m = 1 is diago-
nalizable if and only if

T ijk ≡ 0 (i, j, k = 1, . . . , n). (1.5)

Applications of this criterion were discussed in [Fe], [FT] and [T]. The advantage
of the criterion is that we do not need to calculate eigenvalues and eigenvectors
of matrix A1(u). However, it seems to me that it is not easy to generalize the
criterion to multi-dimensional system. Moreover, we do not know how to solve
the Riemann invariants. Employing the eigenvalues and the eigenvectors of
matrix A1(u), Serre [S] considered this problem and gave another necessary and
sufficient condition. Assuming for simplicity that the Spectrum (A1(u)) consists
of n distinct real values, he proved that (1.1) (in which m = 1) is diagonalizable
if and only if the Frobenius conditions li{rj , rk} = 0 (i, j, k = 1, . . . , n; j, k 6=
i) hold, where li and ri denote the left and right eigenvectors related to the
eigenvalue λi(u) of A1(u), and {·, ·} is the Poisson bracket of vector fields in
u-space. By enlarging the system, Garabedian observed that every quasilinear
system in one space dimension can be diagonalized and hence solved locally
by Picard iteration ([G.Page 100]), although the diagonalizable system may be
inhomogeneous.
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For nonlinear systems in several space dimensions, only a few results are
known. Dafermos [D] and Lopes Filho & Nussenzweig Lopes [LN] examined
the system of two partial differential equations in several space variables, and
obtained some results on Riemann invariants, characteristic structure and the
stability of admissible L∞ solution. These results were started by an observation
in [Ra] that only systems with commuting matrices can possess BV estimates.

This paper aims to generalize Serre’s result to quasilinear system that might
be multi-dimensional, that is to say, to give a necessary and sufficient condition
on diagonalization of (1.1).

The main results of this paper are presented and proved in Section 2. Section
3 is devoted to the applications of the main results to some physical systems
such as the system of gas dynamics, the system of multicomponent chromatog-
raphy, the system of electrophoresis and the quasilinear hyperbolic system of
conservation laws with rotational invariance.

2 Main results

Lemma 2.1 We can derive from (1.1) a partial differential equation in diagonal
form

∂R(u)

∂t
+

m∑
i=1

λi(u)
∂R(u)

∂xi
= 0 (∇uR(u) 6= 0), (2.1)

where λi(u) (i = 1, . . . ,m) are smooth functions, if and only if there exists a
smooth row vector l = l(u) (l(u) 6= 0) such that l(u) is a common left eigenvector
of Ai(u) (i = 1, . . . ,m), the corresponding eigenvalue is λi(u), and it holds that

L(u) ∧ dL(u) = 0, (2.2)

where

L(u) = l(u)du. (2.3)

Such a smooth function R = R(u) is called one strict Riemann invariant.
Obviously, system (1.1) is diagonalizable if and only if there exist n independent
strict Riemann invariants.

Proof of Lemma 2.1 Necessity: Suppose that there exists a smooth func-
tion R = R(u) (∇uR 6= 0) such that (2.1) holds. Thus, from (2.1) we have

∇uR(u)

(
∂u

∂t
+

m∑
i=1

λi(u)
∂u

∂xi

)
= 0. (2.4)

On the other hand, multiplying (1.1) by ∇uR(u) from the left gives

∇uR(u)

(
∂u

∂t
+
m∑
i=1

Ai(u)
∂u

∂xi

)
= 0. (2.5)
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The combination of (2.4) and (2.5) yields

∇uR(u)Ai(u) = λi(u)∇uR(u) (i = 1, . . . ,m). (2.6)

(2.6) shows that ∇uR(u) is a common left eigenvector of Ai(u) (i = 1, . . . ,m)
and the corresponding eigenvalue is λi(u). Taking l(u) = ∇uR(u), we get (2.2)
immediately.
Sufficiency: Suppose that l(u) is a common left eigenvector of Ai(u) (i =

1, . . . ,m) and λi(u) is the corresponding real eigenvalue. Multiplying (1.1) by
l(u) from the left gives

l(u)

(
∂u

∂t
+

m∑
i=1

λi(u)
∂u

∂xi

)
= 0. (2.7)

On the other hand, (2.2) implies that the equation L(u) = 0 is completely
integrable. Hence, by the well-known Frobenius Theorem, there exists a smooth
function R = R(u) (∇uR(u) 6= 0) such that l(u)//∇uR(u). Thus, from (2.7) we
get (2.1) immediately. This finishes the proof. �
Remark 2.1 The proof of the sufficiency in Lemma 2.1 provides a method
to obtain the strict Riemann invariant. The first integral of a common left
eigenvector of Ai(u) (i = 1, . . . , n) is a strict Riemann invariant.

By Lemma 2.1, we have

Theorem 2.1 System (1.1) is diagonalizable if and only if there exist n inde-
pendent row vectors lj(u) = (lj1(u), · · · , ljn(u)) (j = 1, . . . , n) such that each
lj(u) is a common left eigenvector of Ai(u) (i = 1, . . . ,m) and

Lj(u) ∧ dLj(u) = 0, (2.8)

where
Lj(u) = lj(u)du. (2.9)

Corollary 2.1 If system (1.1) is diagonalizable, then

Ai(u)Ai′ (u) = Ai′(u)Ai(u) (i, i
′ = 1, . . . ,m). (2.10)

Proof. By Theorem 2.1, there exist n independent row vectors lj(u) (j =
1, . . . , n) such that

lj(u)Ai(u) = λ
i
j(u)lj(u),

lj(u)Ai′(u) = λ
i′

j (u)lj(u), (2.11)

where i, i′ = 1, . . . ,m; j = 1, . . . , n, and λij(u) is the eigenvalue of Ai(u) corre-
sponding to the common left eigenvector lj(u).
Multiplying the first (resp. second) equation of (2.11) by Ai′ (resp. Ai) from

the right gives

lj(u)Ai(u)Ai′ (u) = lj(u)Ai′ (u)Ai(u) (j = 1, . . . , n). (2.12)

Noting the fact that lj(u) (j = 1, . . . , n) are independent, from (2.12) we get
(2.10) immediately. This completes the proof. �
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Remark 2.2 Diagonal system of partial differential equations is hyperbolic.
But when m > 1, it is not strictly hyperbolic in the sense of Majda ([M]). In fact,
if all Ai(u) (i = 1, . . . ,m) are diagonal matrices, then for any given u on the
domain under consideration, there is at least one unit vector ω = (ω1, · · · , ωm)
such that the matrix

∑n
i=1 ωiAi(u) does not have n distinct real eigenvalues.

Not only that, it can not have any non-degenerate wave cones whatsoever ([D],
[LN]). This is different from non-diagonal systems ([L2]).

In what follows, we discuss three special but important cases.
Case I. Hyperbolic systems with at least one-directional strict hyperbol-

icity
For simplicity of statement, we introduce

Definition 2.1 We say an n × n matrix A(u) is hyperbolic, if A(u) has n
real eigenvalues and is diagonalizable for any given u on the domain under
consideration; A(u) is strictly hyperbolic, if A(u) has n distinct real eigenvalues.

Lemma 2.2 Suppose that matrix A(u) is strictly hyperbolic and B(u) is hyper-
bolic. Then there exist n independent row vectors lj(u) = (lj1(u), · · · , ljn(u)) (j =
1, . . . , n) such that each lj(u) is a common left eigenvector of A(u) and B(u),
if and only if

AB = BA. (2.13)

Proof. The proof of the necessity is the same as that of Corollary 2.1, moreover,
we do not require that A(u) is strictly hyperbolic.
It remains to prove the sufficiency.
Let λAj (j = 1, . . . , n) be the n distinct real eigenvalues of A(u). Without

loss of generality, we may suppose that

λA1 (u) < · · · < λ
A
n (u). (2.14)

Moreover, let lAj (u) be the left eigenvector of A(u) corresponding to λ
A
j (u) (j =

1, . . . , n) and introduce

LA =



lA1 (u)
...

lAn (u)


 .

Thus, we have

LAA
(
LA
)−1
= diag

(
λA1 (u), · · · , λ

A
n (u)

)
. (2.15)

On the other hand, by (2.13) we have(
LAA

(
LA
)−1)(

LAB
(
LA
)−1)

=
(
LAB

(
LA
)−1)(

LAA
(
LA
)−1)

. (2.16)

Noting (2.14) and (2.15), from (2.16) we see that LAB
(
LA
)−1
is a diagonal

matrix. This finishes the proof. �
Therefore, by Theorem 2.1 we have
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Corollary 2.2 Suppose that Ai(u) (i = 1, . . . ,m−1) are hyperbolic and Am(u)
is strictly hyperbolic. Then system (1.1) is diagonalizable if and only if

Ai(u)Am(u) = Am(u)Ai(u) (i = 1, . . . ,m− 1) (2.17)

and

LAmj (u) ∧ dL
Am
j (u) = 0 (j = 1, . . . , n), (2.18)

where LAmj (u) = l
Am
j (u)du, in which l

Am
j (u) is a left eigenvector of Am(u)

corresponding to λAmj (u).

Such a system is called the hyperbolic system with at least one-directional
strict hyperbolicity.

Case II. Symmetric systems

The following Lemma is well known.

Lemma 2.3 Suppose that A(u) and B(u) are n × n real symmetric matrices.
Then the conclusion of Lemma 2.2 is still valid.

Hence, by Theorem 2.1 we get

Corollary 2.3 Suppose that Ai(u) (i = 1, . . . ,m) are n × n real symmetric
matrices. Then system (1.1) is diagonalizable if and only if

Ai(u)Ai′(u) = Ai′ (u)Ai(u) (i, i
′ = 1, . . . ,m) (2.19)

and (2.8) holds, where Lj(u) = lj(u)du, in which lj(u) stands for a common
left eigenvector of Ai(u) (i = 1, . . . ,m) corresponding to λ

i
j(u).

Case III. Systems with constant multiplicity eigenvalues

Now we turn to consider the case that Ai(u) (i = 1, . . . ,m) have constant
multiplicity eigenvalues. Without loss of generality, we suppose that

λi(u)
4
= λi1(u) ≡ · · · ≡ λ

i
pi
(u) < λipi+1(u) < · · · < λ

i
n(u) (i = 1, . . . ,m),

(2.20)
where pi is an integer > 1.

Suppose that there exist n independent smooth row vectors
lj(u) = (lj1(u), · · · , ljn(u)) (j = 1, . . . , n) such that Ai(u) (i = 1, . . . ,m) can be
diagonalized simultaneously, namely,

L(u)Ai(u)L
−1(u) = diag

(
λi1(u), · · · , λ

i
n(u)

)
(i = 1, . . . ,m), (2.21)

where L(u) = (ljk(u)) is an n × n matrix and λij(u) is the eigenvalue of Ai(u)
corresponding to the left eigenvector lj(u).

We have
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Theorem 2.2 Under the hypotheses (2.20)-(2.21), system (1.1) is diagonaliz-
able if and only if

L1(u) ∧ · · · ∧ Lp(u) ∧ dLα(u) = 0 (α = 1, · · · , p) (2.22)

and
Lβ(u) ∧ dLβ(u) = 0 (β = p+ 1, . . . , n), (2.23)

where p = mini=1,...,m {pi} and Lj(u) = lj(u)du (j = 1, . . . , n).

Proof. Necessity: Noting (2.20)-(2.21), from (1.1) we have

lα(u)

(
∂u

∂t
+

m∑
i=1

λi(u)
∂u

∂xi

)
= 0 (α = 1, · · · , p). (2.24)

By the fact that (1.1) is diagonalizable, there exists a p × p smooth invertible
matrix C(u) = (Cµν(u))

p
µ,ν=1 and smooth functions wα = wα(u) (α = 1, · · · , p)

such that
p∑
µ=1

Cαµ(u)Lµ(u) = dwα(u) (α = 1, · · · , p). (2.25)

Then, it follows from (2.25) that

p∑
µ=1

Cαµ(u)dLµ(u) +

p∑
µ=1

dCαµ(u) ∧ Lµ(u) = 0 (α = 1, · · · , p). (2.26)

Thus, we have

p∑
µ=1

Cαµ(u)L1(u) ∧ · · · ∧ Lp(u) ∧ dLµ(u) = 0 (α = 1, · · · , p). (2.27)

Noting the fact that C(u) is invertible, by (2.27) we get (2.22) immediately.
The proof of (2.23) is the same as that of Theorem 2.1.
The sufficiency can be proved in a manner similar to the proof of the suffi-

ciency of Lemma 2.1. For brevity, we omit it here. This completes the proof.
�

Remark 2.3 When p = n − 1, (2.22) becomes trivial, namely, (2.22) holds
automatically; When p = n, (2.22) and (2.23) always hold, so system (1.1) is
always diagonalizable in this case.

Remark 2.4 When m = 1, Theorem 2.1 goes back to a Serre’s result in [S].

3 Applications

In this section, we give the applications of the results presented in Section 2 to
some physical systems.
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System of gas dynamics

Consider the system of gas dynamics in three space dimensions ([CH])

∂U

∂t
+A(U)

∂U

∂x
+B(U)

∂U

∂y
+ C(U)

∂U

∂z
= 0, (3.1)

where

U =



ρ
u
v
w
S


 , A(U) =



u ρ 0 0 0
1
ρ
∂p
∂ρ u 0 0 1

ρ
∂p
∂S

0 0 u 0 0
0 0 0 u 0
0 0 0 0 u


 , (3.2)

B(U) =



v 0 ρ 0 0
0 v 0 0 0
1
ρ
∂p
∂ρ 0 v 0 1

ρ
∂p
∂S

0 0 0 v 0
0 0 0 0 v


 , C(U) =



w 0 0 ρ 0
0 w 0 0 0
0 0 w 0 0
1
ρ
∂p
∂ρ

0 0 w 1
ρ
∂p
∂S

0 0 0 0 w


 ,

ρ > 0 is the density, (u, v, w) is the velocity, S is the entropy, p is the pressure
and the state equation is

p = p(ρ, S) > 0, (3.3)

in which p(ρ, S) satisfies that on each finite domain of ρ > 0,

∂p

∂ρ
(ρ, S) > 0. (3.4)

By a simple calculation, we observe that there is one and only one indepen-
dent row vector

l5(U)
4
= (0, 0, 0, 0, 1) (3.5)

such that l5(U) is a non-zero common left eigenvector of A(U), B(U) and C(U),
and it holds that

L5(U) ∧ dL5(U) = 0, (3.6)

where L5(U) = l5(U)dU . Hence, by Lemma 2.1 we obtain

Theorem 3.1 From system (3.1), one and only one non-trivial partial differ-
ential equation in diagonal form can be reduced, namely, the entropy equation
of conservation law.

Remark 3.1 Similarly, it is easy to check that the system of isentropic flow
in two space dimensions is not diagonalizable. However, it is well known that
the system of isentropic flow in one space dimension is always diagonalizable
([CH]).
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System of multicomponent chromatography

The following system arises in multicomponent chromatography (see [RA] or
[T] for the case of one space dimension)

∂ui

∂t
+
m∑
j=1

∂

∂xj

(
ajiui

1 +
∑n
k=1uk

)
= 0 (i = 1, · · · , n), (3.7)

where ui = ui(t, x) (i = 1, . . . , n) are the non-negative unknown functions,
aji (i = 1, . . . , n; j = 1, . . . ,m) are positive constants satisfying

0 < aj1 < a
j
2 < · · · < a

j
n (j = 1, . . . ,m). (3.8)

Define nonlinear functions wjk by

n∑
i=1

ui

wjk − a
j
i

+
1

wjk
= 0, ajk−1 < w

j
k < a

j
k (k = 1, . . . , n; j = 1, . . . ,m), (3.9)

where aj0
4
= 0. Moreover, we may rewrite (3.7) as

∂u

∂t
+

m∑
j=1

Aj(u)
∂u

∂xj
= 0, (3.10)

where u = (u1, . . . , un)
T .

It is easy to check that the eigenvalues of Aj(u) are

λjk(u) =
wjk(u)

1 +
∑n
i=1ui

(k = 1, . . . , n) (3.11)

and the left eigenvector corresponding to λjk(u) can be chosen as

ljk(u) =

(
1

wjk(u)− a
j
1

, · · · ,
1

wjk(u)− a
j
n

)
. (3.12)

Obviously,

0 < λj1(u) < λ
j
2(u) < · · · < λ

j
n(u) (j = 1, . . . ,m). (3.13)

Noting (3.12) and the definitions of wjk(u), we see that Aj(u) (j = 1, . . . ,m)
share the same set of n linearly independent left eigenvectors, say, l1(u), · · · , ln(u),
if and only if

aji = cjai (i = 1, . . . , n; j = 1, . . . ,m), (3.14)

where ai and cj are positive constants with

0 < a1 < · · · < an.

Moreover, it is easy to check that (2.8) always hold. Therefore, by Theorem 2.1
we have
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Theorem 3.2 System (3.7) is diagonalizable if and only if (3.14) holds.

In fact, if (3.14) holds, then system (3.7) can be reduced to

∂wi

∂t
+

m∑
j=1

cjλj(w)
∂wi

∂xj
= 0 (i = 1, · · · , n), (3.15)

where wi is defined by

n∑
k=1

uk

wi − ak
+
1

wi
= 0, ai−1 < wi < ai (a0

4
= 0) (3.16)

and

λj(w) =
wj

1 +
∑n
k=1uk

=

(
n∏
k=1

ak

)−1
wj

n∏
k=1

wk. (3.17)

Remark 3.2 In system (3.7), ui stands for the fluid-phase concentration of the
solute species Si, and a

j
i denotes the limiting value of the solid-phase concen-

tration of Si in the xj-direction. For any j ∈ {1, . . . ,m}, let (a
j
1, · · · , a

j
n) be

the vector composed of the limiting values aji of the solid-phase concentrations

of Si (i = 1, . . . , n) in the xj-direction. (3.14) implies that (a
j
1, · · · , a

j
n) =

cj(a1, · · · , an) (j = 1, . . . ,m), that is to say, the vectors (a
j
1, · · · , a

j
n) (j =

1, . . . ,m) parallel each other. Therefore, Theorem 3.2 shows that system (3.7)
is diagonalizable if and only if (aj1, · · · , a

j
n) (j = 1, . . . ,m) parallel each other.

In the case of (3.14), system (3.7) possesses certain symmetry.

Remark 3.3 We have a similar result for the following system arising in elec-
trophoresis (see [S] or [T] for the case of one space dimension)

∂ui

∂t
+

m∑
j=1

∂

∂xj

(
ajiui∑n
k=1uk

)
= 0 (i = 1, · · · , n), (3.18)

where ui = ui(t, x) (i = 1, · · · , n) are the non-negative unknown functions satis-
fying

n∑
k=1

uk > 0,

and aji (i = 1, · · · , n; j = 1, · · · ,m) are positive constants satisfying

0 < aj1 < a
j
2 < · · · < a

j
n (j = 1, . . . ,m).

Quasilinear hyperbolic system of conservation laws with ro-
tational invariance

Consider the following quasilinear hyperbolic system

∂u

∂t
+
m∑
i=1

∂

∂xi
(fi(|u|)u) = 0, (3.19)
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where u = (u1, . . . , un)
T , fi ∈ C2 (R+,R) and satisfies

f ′i(r) > 0, ∀ r > 0, (3.20)

m is an integer ≥ 1. System (3.19) can be used to describe the propagation of
waves in various situations in mechanics (such as the reactive flows, magneto-
hydrodynamics and elasticity theory, etc.) at least for the case that m = 1
([B], [F1], [KK], [LW]). It is no longer strictly hyperbolic, and possesses the
eigenvalues with constant multiplicity even for the case that m = 1. When
m = 1 and n = 2, system (3.19) was first studied by [KK] and [LW]. Freistühler
[F1]-[F2] considered the Riemann problem and the Cauchy problem for system
(3.19) with m = 1 and n ≥ 1.
Rewrite (3.19) as

∂u

∂t
+

m∑
i=1

Ai(u)
∂u

∂xi
= 0, (3.21)

where

Ai(u) =




fi(r) +
f ′i(r)
r
u21

f ′i(r)
r
u1u2 · · · f ′i (r)

r
u1un

f ′i (r)
r u1u2 fi(r) +

f ′i (r)
r u

2
2 · · · f ′i (r)

r u2un
...

...
. . .

...
f ′i (r)
r
u1un

f ′i(r)
r
u2un · · · fi(r) +

f ′i(r)
r
u2n


 , (3.22)

in which r = |u| > 0.
In what follows, we consider the case that r > 0. Without loss of generality,

we may suppose that u1 6= 0. It is easy to calculate that

λi(u)
4
= λi1(u) ≡ · · · ≡ λ

i
n−1(u) = fi(r) (3.23)

is an eigenvalue of Ai(u) with constant multiplicity n− 1. Ai(u) (i = 1, . . . ,m)
have n−1 independent common left eigenvectors corresponding to the eigenvalue
λi(u):

l1(u) = (−u2, u1, 0, · · · , 0), l2(u) = (−u3, 0, u1, 0, · · · , 0),
· · · · · · ,

ln−2(u) = (−un−1, 0, . . . , u1, 0), ln−1(u) = (−un, 0, · · · , 0, u1).
(3.24)

Moreover,

λin(u)
4
= fi(r) + rf

′
i(r) (3.25)

is another eigenvalue of Ai(u), and

ln(u) = (u1, . . . , un) (3.26)

is a common left eigenvector of Ai(u) corresponding to the eigenvalue λ
i
n(u).

Obviously, lj(u) (j = 1, . . . , n) given by (3.24) and (3.26) are independent. On
the other hand, when r > 0, we have

λin(u) > λ
i(u) (i = 1, . . . ,m). (3.27)
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It is easy to check that system (3.19) satisfies all conditions required by Theorem
2.2. Hence, by Theorem 2.2 we have

Theorem 3.3 Consider system (3.19) on the domain of r > 0. If (3.20) holds,
then system (3.19) is always diagonalizable.

In fact, let

u = rs, (3.28)

where r = |u|, s = (s1, · · · , sn)T ∈ Sn−1. Then system (3.19) can be rewritten
as

∂s

∂t
+

m∑
i=1

fi(r)
∂s

∂xi
= 0, (3.29)

∂r

∂t
+

m∑
i=1

∂

∂xi
(rfi(r)) = 0. (3.30)

Remark 3.4 A method for finding exact solutions to system (3.29)-(3.30) was
given by [KN] at least for the case that m = 1.

Remark 3.5 In this paper, we introduce the multi-dimensional system (3.7) of
multicomponent chromatography, the multi-dimensional system (3.18) of elec-
trophoresis and the multi-dimensional system (3.19) of conservation laws with
rotational invariance. When m = 1, they go back to the classical one-dimensional
systems. Therefore, systems (3.7), (3.18) and (3.19) can be regarded as the
generalization of the classical one-dimensional systems. The further study for
systems (3.7), (3.18) and (3.19) remains to be done.
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