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Neumann and periodic boundary-value problems

for quasilinear ordinary differential equations

with a nonlinearity in the derivative ∗

Petr Girg

Abstract

We present sufficient conditions for the existence of solutions to Neu-
mann and periodic boundary-value problems for some class of quasilinear
ordinary differential equations. We also show that this condition is nec-
essary for certain nonlinearities. Our results involve the p-Laplacian, the
mean-curvature operator and nonlinearities blowing up.

1 Introduction

The semilinear boundary-value problems

u′′(t) + g(u′(t)) + h(u(t)) = f(t) t ∈ (0, T ) , (1.1)

u(0) = u(T ) , u′(0) = u′(T ) , (1.2)

and

u′′(t) + g(u′(t)) = f(t) t ∈ (0, T ) , (1.3)

u′(0) = 0 , u′(T ) = 0 , (1.4)

have been extensively studied by many authors (see e.g. [4, 6, 16]). In this
paper we extend their results to the quasilinear boundary-value problems:(

ϕ(u′(t))
)′
+ g(u′(t)) + h(u(t)) = f(t) t ∈ (0, T ) , (1.5)

subject to (1.2) or to (1.4).
Overall, we will assume the following:

(P) ϕ is an increasing homeomorphism of I1 onto I2, where I1, I2 ⊂ R are open
intervals containing zero and ϕ(0) = 0,
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(G) g is a continuous real function,

(H) h is a continuous, bounded real function having limits in ±∞:

h(−∞) := lim
ξ→−∞

h(ξ) < lim
ξ→+∞

h(ξ) =: h(+∞) .

We also need to impose some of the following assumptions to prove several
particular results.

(P’) the inverse of ϕ (denoted by ϕ−1) is continuously differentiable,

(P”) ϕ′−1(0) > 0,

(PH) ϕ is odd and there exist c, δ > 0 and p > 1 such that for all z ∈ (−δ, δ) ∩
Domϕ : c|z|p−1 ≤ |ϕ(z)|,

(G’) g is a continuously differentiable real function.

The results presented involve blow-up-type nonlinearities such as ϕ(z) = tan(z),
bounded nonlinearities of the type ϕ(z) = arctan(z), the p-Laplacian when
ϕ(z) = |z|p−2z, 1 < p <∞, and include of course the classical results ([4, 6, 16])
where ϕ is considered to be an identity mapping on R. As for the Neumann
conditions, we obtain new results even in the semilinear case with ‘ϕ = Identity’
on R. To extend known results for (1.5)–(1.2) or (1.5)–(1.4), we mainly combine
and modify methods from [4, 6, 16].
Since boundary-value problems (BVPs) of the type (1.5)–(1.2) and (1.5)–

(1.4) appear in a wide variety of applications, our extension of known results is
interesting not only from the theoretical point of view but also from a practical
one. For instance the p-Laplacian with p 6= 2 arises in the study of nonlinear
diffusion. Blow-up-type nonlinearity ϕ(z) = z/

√
1− z2 comes from the model-

ing of mechanical oscillations with relativistic correction. As an application of
bounded nonlinearity let us mention the mean curvature (or capillary surface)
operator ϕ(z) = z/

√
1 + z2, which occurs in problems of mathematical physics.

Related topics are the subjects of studies by many authors. Among others
let us mention the recent paper [14] in which the authors study the existence
of periodic solutions of systems of quasilinear ordinary differential equations
(ODEs) at resonance. Let us also mention papers [9, 10]; even thought the
results of those papers are of different nature, some of the techniques used are
similar. The resonance problems for the p-Laplacian in partial derivatives are
treated in [2] and [3].
The paper is organized as follows. We begin by stating our main results

concerning the existence of the solution (Theorems 1-4) and discuss their ap-
plicability to various problems arising from physics in Section 2. Proofs of
Theorems 1–3 can be found in Section 3. A proof of Theorem 4 is presented
in Section 4. Finally, we present some results concerning the uniqueness of the
solution in Section 5.
Before proceeding to the results we shall establish the notation that is used

throughout the paper:



EJDE–2000/63 Petr Girg 3

For measurable functions defined on [0, T ] we define:

Lp :=
{
u : ‖u‖Lp :=

(∫ T
0

|u(t)|pdt

) 1
p

<∞
}
, 1 ≤ p < +∞ ,

L∞ :=
{
u : ‖u‖∞ := inf

N ⊂ (0, T )
measN = 0

sup
t∈(0,T )\N

|u(t)| <∞
}
.

For functions with domain [0, T ], with distributional derivatives, we define:

W 1,p :=
{
u ∈ Lp : u′ ∈ Lp

}
,

W 1,p
T :=

{
u ∈ W 1,p : u(0) = u(T )

}
.

For a given k ≥ 0, let

CkT :=
{
u : u ∈ Ck[0, T ], u(0) = u(T ), u′(0) = u′(T ), . . . ,

u(k−1)(0) = u(k−1)(T )
}
,

where Ck[0, T ] is the standard space of k-times continuously differentiable func-

tions defined on [0, T ], endowed with the norm ‖u‖Ck :=
∑k
i=0 ‖u

(i)‖∞ (C[0, T ] :=
C0[0, T ], CT := C0T ). By C

∞
0 (0, T ) we denote the set of functions u defined on

(0, T ), possessing derivatives of any order in (0, T ) and such that the closure of
{t ∈ (0, T ) : u(t) 6= 0} is a subset (0, T ).
To formulate our results, we use the decomposition

f = f̃ + f , with f =
1

T

∫ T
0

f(t) dt (1.6)

and the following function spaces

C̃[0, T ] :=
{
u ∈ C[0, T ] :

∫ T
0 u(t)dt = 0

}
,

C̃T := CT ∩ C̃[0, T ], C̃1[0, T ] := C1[0, T ] ∩ C̃[0, T ], C̃1T := C
1
T ∩ C̃[0, T ].

Since we deal with the quasilinear equation, we shall work with a more
general concept of solutions of ODE than that of the classical solutions.

Definition 1.1 A function u ∈ C1[0, T ] is called a solution of (1.5)–(1.2) or
(1.5)–(1.4) if ϕ(u′) ∈ C1[0, T ], u satisfies (1.5) pointwise in (0, T ) and u(0) =
u(T ), u′(0) = u′(T ) or u′(0) = 0, u′(T ) = 0, respectively.

2 Main results

In the following we will consider the range of ϕ to be an interval (a, b), where a
and b could be −∞ and +∞, respectively.
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Let us consider (1.5)–(1.2) and (1.5)–(1.4) with h ≡ 0. Substituting w =
ϕ(u′) in (1.5) we obtain the semilinear first order equation:

w′(t) + g
(
ϕ−1

(
w(t)

))
= f(t) . (2.1)

Now it remains to find how this substitution affects the boundary conditions.
Taking into account

u(T )− u(0) =

∫ T
0

u′(t)dt =

∫ T
0

ϕ−1
(
w(t)

)
dt

and the fact that ϕ is an increasing homeomorphism, the periodic conditions
(1.2) are transformed as follows:∫ T

0

ϕ−1
(
w(t)

)
dt = 0 , w(0) = w(T ) . (2.2)

Analogously, an equivalent form of the Neumann conditions (1.4) reads

w(0) = 0 , w(T ) = 0 . (2.3)

Theorem 2.1 Let the assumptions (P), (G) be satisfied and h ≡ 0. Then, for

any f̃ ∈ C̃T : ‖f̃‖L2 <
√
3
T
min{−a, b}, there exists precisely one s(f̃) ∈ R such

that (2.1)–(2.2) has a solution if and only if

f = s(f̃) .

In this case the periodic boundary-value problem for (1.5) has a family of so-

lutions uc(t) = u(t) + c, where u(t) =
∫ t
0
ϕ−1

(
w(f̃ , τ)

)
dτ, c ∈ R is arbitrary

and w(f̃ , ·) is the solution of (2.1)–(2.2). Moreover, the mapping s : C̃T → R,

f̃ 7→ s(f̃) is continuous and the absolute value of s(f̃) satisfy

|s(f̃)| ≤ max

{
|g(ξ)| : ϕ−1

(
−

√
T

3
‖f̃‖L2

)
≤ ξ ≤ ϕ−1

(√
T

3
‖f̃‖L2

)}
.

(2.4)

Remark 2.1 Let us observe that if ϕ is an homeomorphism of interval (α, β),

α < 0 < β onto R, then (2.4) yields an uniform bound for s(f̃):

|s(f̃)| ≤ max
ξ∈[α,β]

|g(ξ)| .

Theorem 2.2 Suppose that (P),(P’),(G) are satisfied and h ≡ 0. Then the
assertion of Theorem 2.1 is valid and u ∈ C2T . If also (G’) holds true then the

solution w(f̃ , ·) of (2.1)–(2.2) is unique. The mappings w : C̃T → C1T , f̃ 7→

w(f̃ , ·) and s : C̃T → R, f̃ 7→ s(f̃) are continuously differentiable at any f̃ ∈

C̃[0, T ] : f̃ 6≡ 0. If (P”) is satisfied then w and s are continuously differentiable

also at f̃ ≡ 0.
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Theorem 2.3 Let the assumptions (P), (G) be satisfied and h ≡ 0. Then, for

any f̃ ∈ C̃[0, T ]: ‖f̃‖L2 <
√
3
T min{−a, b}, there exists precisely one s(f̃) ∈ R

such that (2.1)–(2.3) has a solution if and only if f = s(f̃). In this case the
Neumann boundary-value problem for (1.5) has a family of solutions uc(t) =

u(t) + c, where u(t) =
∫ t
0 ϕ−1

(
w(f̃ , τ)

)
dτ, c ∈ R is arbitrary and w(f̃ , ·) is the

solution of (2.1)–(2.3). The mapping s : C̃[0, T ] → R, f̃ 7→ s(f̃) is continuous

and the absolute value of s(f̃) is estimated by (2.4). If (P’) is satisfied then

u ∈ C2T . If also (G’) holds true then mappings w : C̃T → C1T , f̃ 7→ w(f̃ , ·) and

s are continuously differentiable at any point f̃ ∈ C̃[0, T ].

Remark 2.2 Let us see that we do not need the assumption (P”) in Theorem

2.3 in order to get that w : f̃ 7→ w(f̃ , ·) and s : f̃ 7→ s(f̃) are continuously

differentiable at f̃ ≡ 0, as we do in Theorem 2.2. The reason is the following
one: The boundary conditions (2.3) of the first order semilinear problem corre-
sponding to the Neumann BVP are linear. Thus, they provide more regularity
than the nonlinear ones (2.2) corresponding to the periodic BVP.

Since the results considering (1.5)–(1.2) and (1.5)–(1.4), respectively, have
the same formal structure, we need to formulate them for the BVP (1.5)–(1.2)
only. However, the statement, corresponding to the BVP (1.5)–(1.4), can be
obtained by replacing the expressions standing in front of brackets with the
bracketed ones in Theorem 2.4. We keep this notation in Section 4, when
formulating Lemmas 4, 6, 7 used in the proof of Theorem 4. Note, that in the
following theorem we suppose that ϕ is an odd mapping, so that b = −a.

Theorem 2.4 Assume (P), (PH), (G), (H) and√
3

T
b−
√
T sup
ξ∈R
|h(ξ)| > 0 . (2.5)

Then for any f̃ ∈ C̃T ( f̃ ∈ C̃[0, T ] ) satisfying

‖f̃‖L2 <

√
3

T
b−
√
T sup
ξ∈R
|h(ξ)| (2.6)

the BVP (1.5)–(1.2) ( (1.5)–(1.4) ) has a solution if

s(f̃) + h(−∞) < f < s(f̃) + h(+∞) , (2.7)

where s(f̃) is given by Theorem 2.1 ( Theorem 2.3 ).
Suppose, moreover, that

h(−∞) < h(ξ) < h(+∞) for all ξ ∈ R .

Then, if (2.7) is false and f̃ ∈ C̃T ( f̃ ∈ C̃[0, T ] ) satisfies (2.6), the BVP
(1.5)–(1.2) ( (1.5)–(1.4) ) does not admit any solution.
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Remark 2.3 As one can expect, an analogous result to Theorem 2.4 holds true
also for h satisfying

h(+∞) < h(−∞) .

In this case, for any f̃ ∈ C̃T ( f̃ ∈ C̃[0, T ] ) satisfying (2.6), the sufficient
condition on f reads as follows:

s(f̃) + h(+∞) < f < s(f̃) + h(−∞) . (2.8)

If moreover h satisfies

h(+∞) < h(ξ) < h(−∞) for all ξ ∈ R

then (2.8) is also necessary.
This is in full agreement with the semilinear case for the periodic BVP

studied in [6].

Remark 2.4 Notice, that if the range of ϕ is R then b = +∞ and the conditions
(2.5) and (2.6) are satisfied identically. On the other hand, if b < +∞ then one

can apply Theorem 2.4 provided that T <
√
3b

supξ∈R |h(ξ)|
. Observe that the bigger

T is, the weaker condition (2.6) is.

Remark 2.5 Since we treat the problems (1.5)–(1.2) and (1.5)–(1.4) using
transformed problems (2.1)–(2.2) and (2.1)–(2.3), respectively, we need suitable
additional condition, which ensure that solution w of (2.1)–(2.2) or (2.1)–(2.3),
respectively, satisfies w(t) ∈ Imϕ for all t ∈ [0, T ]. One of such a possible con-

dition is ‖f̃‖L2 <
√
3
T min{−a, b} (which is a consequence of (3.3)) provided

h ≡ 0.
However, we would like to point out that the restrictive condition on the

‘greatness’ of f̃ is given not only by the specific limitation of the employed
method, but that it also arises directly from the nature of the problem. Let
us consider (1.5)–(1.2) or (1.5)–(1.4), respectively. Taking into account the
boundary conditions (1.2) or (1.4), respectively, there exists t0 ∈ [0, T ] : u′(t0) =
0. Hence integrating (1.5) we find:

ϕ(u′(t)) =

∫ t
t0

(
f̃(τ) + f − g (u′(τ)) − h (u(τ))

)
dτ ,

which requires

a <

∫ t
t0

(
f̃(τ) + f − g (u′(τ)) − h (u(τ))

)
dτ < b . (2.9)

Integrating (1.5) from 0 to T we also find

f =
1

T

∫ T
0

(g(u′(t)) + h(u(t))) dt ,
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which implies

inf
ξ∈R

g(ξ) + inf
ξ∈R

h(ξ) ≤ f ≤ sup
ξ∈R

g(ξ) + sup
ξ∈R

h(ξ) . (2.10)

Suppose, in addition, that g is bounded. If f does not satisfy (2.10) or one
of the following two inequalities holds:

sup
t0∈[0,T ]

inf
t∈[0,T ]

{∫ t
t0

(
f̃(τ) + f − inf

ξ∈R
g(ξ)− inf

ξ∈R
h(ξ)

)
dτ

}
< a , (2.11)

inf
t0∈[0,T ]

sup
t∈[0,T ]

{∫ t
t0

(
f̃(τ) + f −max

ξ∈R
g(ξ)−max

ξ∈R
h(ξ)

)
dτ

}
> b , (2.12)

then the BVP (1.5)–(1.2) or (1.5)–(1.4), respectively, does not admit any solu-

tion with f = f̃ + f . Compare also with results in [11].

Remark 2.6 It is worth noting that if we consider the periodic BVP for quasi-
linear ODE:

(ϕ(u′))′ + λu′ + h(u) = f, t ∈ (0, T ) ,

where λ ∈ R, then the condition (2.7) from Theorem 2.4 is reduced to

h(−∞) < f < h(+∞) . (2.13)

It means that we obtain the Landesman-Lazer condition as a particular result.
Here we present a proof. If g(z) ≡ λz, where λ ∈ R, then integrating (2.1)

from 0 to T and using boundary conditions (2.2) we find 0 =
∫ T
0 f(t)dt = (Tf).

Since (2.1)–(2.2) has a solution if and only if f = s(f̃) (see Theorem 2.1), we

have that s(f̃) ≡ 0. Consequently, if g(z) ≡ λz then the condition (2.7) is
reduced to (2.13).

Note, that in order to get s(f̃) ≡ 0 for the Neumann boundary-value prob-
lem, we have to impose g(z) ≡ 0.

Example 2.1 Consider ϕ(z) = m0z/
√
1− z

2

c2 , m0 > 0 and g, h ∈ C(R,R), h

has finite limits h(−∞) < h(+∞). Then it follows from Theorem 2.4 that the
periodic BVP for m0u

′(t)√
1− (u

′)2(t)
c2

′ + g(u′(t))+ h(u(t)) = f̃(t) + f
has a solution for every couple f̃ , f satisfying condition (2.7):

h(−∞) + s(f̃) < f < h(+∞) + s(f̃) ,

where s : C̃T → R comes from Theorem 2.1.
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Let us remark that the conditions (2.5) and (2.6) are satisfied for any f̃ ∈ C̃T .
This follows from the fact that the range of ϕ is R (i.e. b = +∞).
It is worth noting that this problem arises from the relativistic dynamics

and describes damped oscillations.

Example 2.2 With respect to Theorem 2.1 for all f̃ ∈ CT there exists unique
f such that the periodic boundary-value problem for

u′′(t) + k
(
u′(t)

)2
= f̃(t) + f

has a solution. This boundary-value problem describes a steady-state process
of gas burning in jets of rockets (cf. [17]).

Example 2.3 Consider the following periodic boundary-value problem:(
u′(t)− (u′(t))3

)′
+ u′(t) + arctan(u(t)) = f̃(t) + f in (0, T ) ,

u(0) = u(π), u′(0) = u′(π) .

Let
√
3
T
2
√
3
9 −

π
2

√
T > 0. Then, for all f̃ ∈ C̃T : ‖f̃‖L2 <

√
3
T
2
√
3
9 −

π
2

√
T ,

this problem has a solution if and only if f ∈ R satisfy

−
π

2
< f <

π

2
. (2.14)

To prove this result, we can use Theorem 2.4. Indeed, ϕ is odd homeomor-

phism of (− 1√
3
, 1√
3
) onto (− 2

√
3
9 , 2

√
3
9 ), so that b = −a =

2
√
3
9 . Moreover,

lim
z±∞
arctan z = ±

π

2
and −

π

2
< arctan z <

π

2
, for all z ∈ R .

Hence the condition (2.14) follows from (2.7), where s(f̃) ≡ 0, because g(z) ≡ z
(see Remark 2.6).
This problem describes forced oscillations of voltage u in an electrical cir-

cuit with ferro-resonance (see e.g. [12]). Such nonlinear circuits are used in
radiotechnics.

Table 1 illustrates the applicability of Theorems 2.1–2.4 for some particular
nonlinearities ϕ. The symbol A (applicable) indicates that the corresponding
assumption is satisfied and thus using an appropriate Theorem one obtains the
desired conclusion; on the other hand NA (not applicable) indicates that the
corresponding assumption is not satisfied and that the selected Theorem is not
applicable in that case). We also relate our results to the results already known.
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Periodic, g(s) = s3 Neumann, g(s) = s3 both, h(s) = arctan s
ϕ(z) Thm 1 Theorem 2 Theorem 3 Theorem 4

(P)+(G) +(P’) +(G’) +(P”) (P)+(G) +(P’) +(G’) (P)+(G)+(PH)

|z|p−2z,
1 < p < 2

A A NA A A

z
A : [6, Thm 1],

[4, Thm 3.4], [16, Thm 4]
A : [4, Thm 3.3],
[16, Thm 1]

A

[6, Thm 2]#

|z|p−2z,
p > 2

A NA A NA A

z√
1−z2

A A A A

z√
1+z2

A∗ A∗ A∗
T < 2

√
3
π

A†
T > 2

√
3
π

NA

exp
(
1
|z|

)
z A A NA A NA

Table 1: Legend: # With periodic conditions only,
∗ Provided that ‖f̃‖L2 <

√
3
T ,

† Assuming that ‖f̃‖L2 <
√
3
T −

π
2

√
T .

3 Proofs of Theorems 2.1 – 2.3

We start this section with the following lemma:

Lemma 3.1 Let f ∈ C[0, T ], q : J1 → J2 be continuous, where J1, J2 are
nonempty intervals and J1 contains zero in its interior. Let w ∈ C1[0, T ],
w(0) = w(T ) and w satisfies

w′(t) + q(w(t)) = f(t), t ∈ (0, T ) (3.1)

then
|w(t)− w(s)| ≤ |t− s|

1
2 ‖f̃‖L2 . (3.2)

Moreover, if there exists t0 ∈ [0, T ] such that w(t0) = 0 then

‖w‖C ≤

√
T

3
‖f̃‖L2 . (3.3)

Remark 3.1 The previous lemma will be used to estimate solutions of (2.1)–
(2.2) or (2.1)–(2.3), respectively. Indeed, the second of (2.2) yields w(0) = w(T )
directly. On the other hand, the first of (2.2), the continuity of w and the fact,
that ϕ satisfies (P) imply that there exists t0 ∈ [0, T ] such that w(t0) = 0. In
the case of (2.3) we have w(0) = w(T ) = 0.

Proof Using the Cauchy–Schwarz inequality it is easy to show that

|w(t) − w(s)| =

∣∣∣∣∫ t
s

w′(τ)dτ

∣∣∣∣ ≤ |t− s| 12 ‖w′‖L2 . (3.4)
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Multiplying both sides of equation (2.1) by w′, integrating from 0 to T , split-

ting f as in (1.6) and using w(0) = w(T ), we find that ‖w′‖2L2 =
(
f̃ , w′

)
L2

(where
(
f̃ , w′

)
L2
:=
∫ T
0
f̃w′ is the scalar product in L2). The Cauchy-Schwarz

inequality yields ‖w′‖L2 ≤ ‖f̃‖L2 , which together with (3.4) establishes (3.2).
Now we are going to estimate ‖w‖C .Decompose the function w as w = w̃+w,

where
∫ T
0
w̃(t)dt = 0 and w ∈ R. Since w̃ ∈ C1[0, T ] ⊂ W 1,2[0, T ] and w(0) =

w(T ), the Sobolev inequality [15, Proposition 1.3] yields ‖w̃‖C ≤
√
T
12‖w

′‖L2 ≤√
T
12‖f̃‖L2 . Since we assume that there exists a t0 ∈ [0, T ] such that w(t0) = 0,

it shall be |w| ≤ ‖w̃‖C . Hence ‖w‖C ≤ 2
√
T
12‖f̃‖L2 =

√
T
3 ‖f̃‖L2 , which is the

desired inequality (3.3). ♦

Now we proceed to proofs of Theorems 2.1–2.3.

Proof of Theorem 2.1 We divide the proof into six steps:

Step 1 Let q be a continuously differentiable and bounded real function. We
prove that for all f̃ ∈ C̃T there exists f ∈ R such that the equation

w′(t) + q
(
w(t)

)
= f̃(t) + f (3.5)

has a solution w ∈ C1[0, T ] satisfying (2.2).

Let f̃ ∈ C̃T be given. Since q is continuously differentiable and bounded
function, the solution ( denoted by w(t, f , α) ) to the initial-value problem

w′(t) + q
(
w(t)

)
= f̃(t) + f, (3.6)

w(0) = α

exists on (0, T ), it is unique and is continuously differentiable with respect to
parameters α and f (see e.g [5]). Let M = supy∈R |q(y)|. Taking f > M + ε

and integrating (3.5) from 0 to T, we find w(T, f , α) > α. On the other hand,
if f < −M − ε then we get w(T, f , α) < α. Since w depends continuously on
f , for all α ∈ R, there exists fα ∈ R such that w(T, fα, α) = α. Moreover, the
partial derivative with respect to the parameter f , wf (t, f , α), is a solution to
the linear initial-value problem

z′(t) = 1− q′
(
w(t, f , α)

)
z(t) , (3.7)

z(0) = 0 .

The explicit formula of the solution of (3.7) yields wf (T, f , α) > 0, which means

that w(T, ·, α) is increasing and fα is unique. Thus, we can define the mapping
ψ1 : R → [−M,M ] by α 7→ fα. As wf (T, f, α) > 0, by the abstract implicit
function theorem (see [1, Theorem 2.2.3]), we find that ψ1 : R → [−M,M ] is
continuous.
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Rewrite (3.6) as an integral equation:

w(t) =

∫ t
0

(
f̃(τ) − q(w(τ))

)
dτ + ft+ α .

Taking α >
∫ T
0
|f̃(τ)|dτ + 2TM , we see that w(t, f , α) > 0 for all t ∈ [0, T ]

and f ∈ [−M,M ]. Consequently
∫ T
0
ϕ−1

(
w(τ, f , α)

)
dτ > 0. Conversely, if

α < −
∫ T
0 |f̃(τ)|dτ−2TM then w(t, f , α) < 0 for all t ∈ [0, T ] and f ∈ [−M,M ].

Hence
∫ T
0 ϕ−1

(
w(τ, f , α)

)
dτ < 0. Since ϕ−1 is a continuous real function, the

mapping α 7→
∫ T
0 ϕ−1

(
w(t, f , α)

)
dt is continuous and there exists at least one

αf ∈ R such that
∫ T
0 ϕ−1

(
w(t, f , α)

)
dt = 0. Moreover the partial derivative of

w(t, f , α) with respect to initial condition α, wα(t, f , α), is the solution of the
linear initial-value problem

v′(t) + q′
(
w(t, f , α)

)
v(t) = 0 , (3.8)

v(0) = 1 .

Taking into account explicit formula of the solution of (3.8), it is easy to verify
that wα(t, f, α) > 0 for all t ∈ [0, T ] and f, α ∈ R. Thus, for all f ∈ R there

exists unique α = αf such that
∫ T
0
ϕ−1

(
w(t, f , αf )

)
dt = 0. By the same reason

as above, the mapping ψ2 : R→ R defined by f 7→ αf is continuous.
Let us consider the continuous mapping ψ1 ◦ψ2 : [−M,M ]→ [−M,M ]. Due

to the Brouwer fixed point theorem there exists at least one f0 ∈ [−M,M ] such
that ψ1

(
ψ2(f0)

)
= f0. Hence the function w(t, f0, ψ2(f0)) is a solution of the

equation (3.5) subject to (2.2).

Step 2 We show that if (P), (G) are satisfied then, for all f̃ ∈ C̃T , there exists
at least one f ∈ R such that the boundary-value problem for the equation

w′(t) + g
(
ϕ−1

(
w(t)

))
= f̃(t) + f (3.9)

subject to (2.2) has at least one solution.
Let w be the solution of (3.9)–(2.2). Integrating (3.9) from 0 to T and then

dividing by T , we obtain

1

T

∫ T
0

g
(
ϕ−1(w(t))

)
d t = f .

With respect to (3.3) (consider q := g◦ϕ−1 in Lemma 3.1) the following a priori

bound on w results: ‖w‖C ≤
√
T
3 ‖f̃‖L2 . Hence we estimate f as follows:

|f | ≤ sup

{
|g(ξ)| : ϕ−1

(
−

√
T

3
‖f̃‖L2

)
≤ ξ ≤ ϕ−1

(√
T

3
‖f̃‖L2

)}
. (3.10)

As ‖w‖C ≤
√
T
3 ‖f̃‖L2 , the restriction of g ◦ ϕ−1 on I =

[
−
√
T
3 ‖f̃‖L2 ,√

T
3 ‖f̃‖L2

]
is essential in further considerations. Note that the assumption
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‖f̃‖L2 ≤
√
T
3min{|a|, b} imply I ⊂ (a, b) (= Domϕ−1); hence g ◦ ϕ−1 is well

defined on I. Let us introduce the following sequence of functions γn(x) :=
n
∫
I
%
(
x−y
n

)
g
(
ϕ−1(y)

)
dy, where % : R→ R is the regularization kernel given by

%(x) :=

{
c0e

1
|x|2−1 for |x| < 1 ,

0 for |x| ≥ 1 ,
(3.11)

where c0 is a constant such that
∫ 1
−1 %(x)dx = 1. It is easy to verify that

{
γn
}∞
n=1

converges to g◦ϕ−1 uniformly on I, that γn is continuously differentiable for any
n ∈ N and that ‖γn‖C(I) ≤ ‖g◦ϕ−1‖C(I) ( C(I) denotes the space of continuous
real functions defined on I ).
From the first step we know that there exist wn and fn such that

w′n(t) + γn
(
wn(t)

)
= f̃(t) + fn

and ∫ T
0

ϕ−1
(
wn(t)

)
dt = 0, wn(0) = wn(T ).

Utilizing (3.3) and ‖γ‖C(I) ≤ ‖g ◦ ϕ−1‖C(I) < +∞ we find that
{
fn
}∞
n=1
is

a bounded sequence. By (3.3), wn are equibounded and, by (3.2), wn are
equicontinuous (we apply Lemma 3.1 with q := γn for each n ∈ N, employing
the fact that resulting inequalities do not contain q). Hence we can select
subsequences wnk , fnk such that wnk → w in CT and fnk → f . Since

wnk(t) = wnk(0) +

∫ t
0

(
f̃(τ) + fnk − γnk(wnk(τ))

)
dτ ,

passing to the limit we obtain

w(t) = w(0) +

∫ t
0

(
f̃(τ) + f − g

(
ϕ−1(w(τ))

))
dτ .

As the integrand in the right-hand-side is continuous, w ∈ C1T and satisfies (3.9)
in (0, T ). Thus Step 2 is over.

Step 3 We prove that if f1, f2 ∈ R and the equation (2.1) with f = f̃ + f i, i =
1, 2 has a solution satisfying (2.2), then f1 = f2. Conversely, assume that
f1 > f2 and there exists wi ∈ C

1
T , i = 1, 2 such that w

′
i(t) + g (ϕ−1(wi(t))) =

f̃(t) + f i, i = 1, 2 subject to (2.2). Then from (1.2) it follows that the function
ϕ−1

(
w1(t)

)
− ϕ−1

(
w2(t)

)
is a T -periodic function with mean value zero, so

that there exist t0 and δ1 > 0 such that ϕ−1
(
w1(t0)

)
− ϕ−1

(
w2(t0)

)
= 0 and

ϕ−1
(
w1(t)

)
− ϕ−1

(
w2(t)

)
< 0 for all t0 < t < t0 + δ1 (note that as we consider

the periodic problem, we can shift the problem suitably in t if it is necessary).
Taking into account that ϕ is an increasing homeomorphism, we get w1(t0) =
w2(t0) and w1(t)−w2(t) < 0 for all t0 < t < t0+δ1. Since w1(t0) = w2(t0), f1 >
f2 and since the functions g (ϕ−1(w1(·))) and g (ϕ−1(w2(·))) are continuous,
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there exists δ2 > 0 such that |g (ϕ−1(w1(t)))− g (ϕ−1(w2(t)))| < (f1 − f2)/2
for any t0 < t < t0 + δ2. Taking δ = min{δ1, δ2}, we arrive at

(w1 − w2)
′
(t) = f1 − f2 + g(ϕ−1(w1(t))) − g(ϕ−1(w2(t))) > 0

for all t0 < t < t0 + δ. However, w1(t) − w2(t) < 0 for all t0 < t < t0 + δ, a
contradiction.
Step 4 Estimate (2.4).
The estimate (2.4) is a direct consequence of (3.10).

Step 5 Continuity of s.
The proof of the continuity of s is analogous to that one in [6] (page 256,

step 5) and so is omitted.
Step 6 Completion of the proof of Theorem 2.1.
Taking into account the relation between the solution u of the problem (1.5)–

(1.2) with h ≡ 0 and the solution w of the problem (2.1)–(2.2): u′ = ϕ−1(w),
the assertion of Theorem 2.1 follows. ♦

Proof of Theorem 2.2 Since u′ = ϕ−1(w), using (P’) we get u ∈ C2T .
Assumptions (P’) and (G’) imply that g ◦ϕ−1 : (a, b)→ R is a continuously

differentiable real function. Let q be a continuously differentiable and bounded

real function satisfying q(y) = g
(
ϕ−1(y)

)
for all |y| ≤

√
T
3 ‖f̃‖L2 .

Taking into account a priori bound (3.3) and our definition of q, any solution
of (2.1)–(2.2) satisfies (3.5)–(2.2) and vice versa. Thus we are reduced to prove
the uniqueness of the solution to (3.5)–(2.2). Due to Theorem 2.1, for each

f̃ ∈ C̃T : ‖f̃‖CT <
√
3
T min{|a|, b}, there exists precisely one s(f̃) ∈ R such that

(2.1)–(2.2) possesses solution; s(f̃) is also the unique value corresponding to f̃
such that (3.5)–(2.2) has solution. Since q satisfies assumptions of the Step 1 of
the proof of Theorem 2.1, the initial value w(0) = α is uniquely determined by

α = φ2(s(f̃ )). Now, as q is a continuously differentiable function, the solution

of the initial value problem (3.6), with f = s(f̃), α = φ2(f), is unique (see [5])

and so is that of (3.5)–(2.2) with f = s(f̃).
What remains to prove is that w and s are continuously differentiable with

respect to f̃ . Following the idea of the proof of Theorem 3.4 in [4] we define

G : CT × R× R× C̃T → CT × R× R by the formula

G(w, f , α, f̃) :=

 w(t)− ft−
∫ t
0 f̃(τ)dτ +

∫ t
0 q
(
w(τ)

)
dτ − α∫ T

0
ϕ−1

(
w(τ)

)
dτ

w(T )− α

 . (3.12)

As in [4] one can check that the operator equation

G(w, f , α, f̃) = 0 (3.13)

is equivalent to the boundary-value problem (3.5)–(2.2). As a consequence of

this fact we obtain that for all f̃0 ∈ C̃T there exists a unique triple (w0, f0, α0) ∈

C1T × R× R such that G(w0, f0, α0, f̃0) = 0.
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Now applying the abstract implicit function theorem we conclude the proof.
To do this we shall prove: The assumptions of the implicit function theorem (see

[1, Theorem 2.2.3]) are satisfied at any point (w0, f0, α0, f̃0) ∈ C
1
T ×R×R×C̃T ,

f̃0 6≡ 0 (and if (P”) also for f̃0 ≡ 0), at which the equation (3.13) holds.
One can see that the operator G and the partial Fréchet derivatives G(w,f,α)

and G
f̃
(the first partial Fréchet derivatives of G with respect to (w, f , α) and f ,

respectively) are continuous in the neighbourhood of (w0, f0, α0, f̃0). By a direct

calculation, we get that the partial Fréchet derivative G(w,f,α)(w0, f0, α0, f̃0) :

C1T × R× R→ C1T × R× R, is given by the formula:

(ω, σ, κ) 7→

 ω(t) +
∫ t
0 q
′
(
w0(τ)

)
ω(τ)dτ − σt− κ∫ T

0
ϕ−1

(
w0(τ)

)
ω(τ)dτ

ω(T )− κ

 . (3.14)

Let (φ̃, β, r) ∈ C̃T × R× R. Then the operator equation

G(w,f,α)

(
w0, f0, α0, f̃0

)
(ω, σ, κ) =

(∫ t
0

φ̃(τ) dτ , β , r

)T
is equivalent to the initial-value problem

ω′(t) + q′
(
w0(t)

)
ω(t) = σ + φ̃(t) , (3.15)

ω(0) = κ ,

subjected to the additional conditions∫ T
0

ϕ′−1
(
w0(τ)

)
ω(τ)dτ = β , ω(T ) = κ+ r. (3.16)

Let A(t) := e
∫
t
0
q′(w0(τ))dτ > 0. The solution of the linear initial value prob-

lem (3.15) has the explicit form:

ω(t) = κ
1

A(t)
+
1

A(t)

∫ t
0

φ̃(s)A(s)ds+ σ
1

A(t)

∫ t
0

A(s)ds . (3.17)

Substituting (3.17) into (3.16) we obtain system of two linear equations for σ
and κ. This system can be uniquely solved if corresponding determinant D is
different from zero. By a straightforward calculation we obtain:

D =
1

A(T )

[ ∫ T
0

A(s)ds

∫ T
0

ϕ′−1 (w0(t))

A(t)
dt (3.18)

−

∫ T
0

ϕ′−1(w0(t))

A(t)

∫ t
0

A(s) ds dt
]
+

∫ T
0

ϕ′−1(w0(t))

A(t)

∫ t
0

A(s) ds dt

=
1

A(T )

∫ T
0

A(s)

∫ s
0

ϕ′−1(w0(t))

A(t)
dt ds+

∫ T
0

ϕ′−1
(
w0(t)

)
A(t)

∫ t
0

A(s) ds dt .
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Since ϕ−1 : I2 → I1 is an increasing homeomorphism, it follows that ϕ
′
−1(z) > 0

a.e. in I2. By a contradiction, one can show that if f̃ 6≡ 0 then w0 satisfying
(2.1)–(2.2) is not a constant function. Thus ϕ′−1 (w0(t)) > 0 on some subset of
[0, T ] of positive measure, which taking into account (3.18) implies D > 0.

Now let us consider f̃ ≡ 0. We have to impose ϕ′(0) > 0 to conclude D > 0.
The reason consists in the fact that w0 ≡ 0 is the unique solution of (2.1)–(2.2)

with f̃ ≡ 0.
We proved that G(w,f,α)(w0, f0, α0) : C

1
T ×R×R→ C1T ×R×R is bijective

linear mapping. Then the inverse of G(w,f,α)(w0, f0, α0) is continuous due to

the Banach open mapping theorem (see [18]). Thus G(w,f,α)(w0, f0, α0) is an

isomorphism of C1T × R × R onto itself and the assumptions of the implicit
function theorem [1, Theorem 2.2.3] are satisfied. This completes the proof of
Theorem 2.2. ♦

Proof of Theorem 2.3 At first we perform the proof under the assumptions
(P), (P’) and (G’). Considering (3.3) we can define continuously differentiable

and bounded function q satisfying q(y) = g
(
ϕ−1(y)

)
for all |y| ≤

√
T
3 ‖f̃‖L2 .

Since the related first order problem (2.1)–(2.3) is the same as that one

considered in [4], the existence of the solution and the differentiability of w(f̃ )

and s(f̃) follows from [4, Theorem 3.4].

The assumption (P’) can be omitted and the assumption (G’) can be replaced
by (G) using the same argument as in the Step 2 of the proof of Theorem 2.1.
From [16, Theorem 3] we obtain the uniqueness of f corresponding to a fixed

f̃ . The continuity of s(f̃) can be proved in the same manner as in Step 5 of the
proof of Theorem 2.1. A priori bound (2.4) is a consequence of (3.3) (cf. Step
4 in the proof of Theorem 2.1). ♦

4 Proof of Theorem 2.4

To prove Theorem 2.4, we need the following comparison results:

Lemma 4.1 Let v′(t)+g

(
ϕ−1

(
v(t)

))
≤ α+ f̃(t) on [0, T ] and v satisfies (2.2).

Then α ≥ s(f̃) (where s(f̃) comes from Theorem 2.1).

Proof Assume conversely that α < s(f̃). Let w satisfies (2.1) and (2.2). Since

ϕ−1(v(0))− ϕ−1(w(0)) = ϕ−1(v(T ))− ϕ−1(w(T ))

and ∫ T
0

(
ϕ−1

(
v(t)

)
− ϕ−1

(
w(t)

))
dt = 0 ,
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there exists a t0 ∈ [0, T ) and δ > 0 such that ϕ−1
(
v(t0)

)
− ϕ−1

(
w(t0)

)
= 0

and ϕ−1
(
v(t)

)
− ϕ−1

(
w(t)

)
> 0 for all t0 < t < t0 + δ (note that we consider

periodic problem so if necessary we can shift suitably the problem in t). Taking
into account that ϕ is an increasing homeomorphism, we get v(t0) = w(t0) and
v(t) > w(t) for all t0 < t < t0 + δ. On the other hand, there exists δ

′ > 0 such
that

(v′ − w′)(t) ≤ α− s(f̃)− g

(
ϕ−1

(
v(t)

))
+ g

(
ϕ−1

(
w(t)

))
< 0

for all t : |t − t0| < δ′. Since v(t0) = w(t0), we obtain v(t) − w(t) < 0 for all
t0 < t < t0 + δ

′, which is a contradiction. ♦

Lemma 4.2 Let v′(t)+g

(
ϕ−1

(
v(t)

))
≤ α+ f̃(t) on [0, T ] and v satisfies (2.3),

then α ≥ s(f̃) (here s(f̃) is taken from Theorem 2.3).

Proof Suppose the contrary, i.e. α < s(f̃). Let w satisfies (2.1)–(2.3), then

v′(0) ≤ −g

(
ϕ−1

(
v(0)

))
+ f̃(0) + α < −g

(
ϕ−1

(
w(0)

))
+ f̃(0) + s(f̃) = w′(0).

From here and (2.3) we get that there exists ε > 0, such that v(t) < w(t) for all
t ∈ (0, ε).
If v(t) < w(t) for all t ∈ (0, T ] then v(T ) < w(T ) and either v or w can not

satisfy (2.3) at T . Thus ε ≤ T and there exists t0 ∈ (0, T ] such that

v(t) < w(t) for all t ∈ (0, t0) and v(t0) = w(t0) .

For t ∈ (0, t0) we have

v(t)− v(t0)

t− t0
>
w(t) − w(t0)

t− t0
,

i.e. v′(t0) ≥ w′(t0). On the other hand, we have

w′(t0) = −g
(
ϕ−1

(
w(t0)

))
+ f̃(t0) + s(f̃)

= −g
(
ϕ−1

(
v(t0)

))
+ f̃(t0) + s(f̃)

> −g
(
ϕ−1

(
v(t0)

))
+ f̃(t0) + α ≥ v

′(t0) ,

which is a contradiction. ♦

Remark 4.1 It is possible to show that the assertions of Lemmas 4.1 and
4.2 hold true also with inverted inequalities. This is in agreement with the
semilinear periodic problem studied in [6]. These inequalities are used to prove
the ‘dual’ version of Theorem 2.4 with h(+∞) < h(−∞).
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Lemma 4.3 Let ϕ be an increasing homeomorphism of R onto itself and there
exist c, C > 0 and p > 1: c|z|p−1 ≤ |ϕ(z)| ≤ C(|z|p−1 + 1) for all z ∈ R.
Then, for any y ∈ CT ( y ∈ C[0, T ] ), there exists exactly one u ∈ C1[0, T ] with
ϕ(u′) ∈ C1[0, T ] and satisfying(

ϕ(u′(t))
)′
− ϕ(u(t)) = y(t) t ∈ (0, T ) (4.1)

subject to (1.2) ( (1.4) ).

Proof For the sake of brevity we present the proof only for the periodic con-
ditions. In the case of the Neumann conditions, the proof is analogous.

At first we prove that, for any given y ∈ CT , there exists precisely one weak
solution of (4.1)–(1.2), where the weak solution of (4.1)–(1.2) is any function
u ∈ W 1,p

T such that the following identity∫ T
0

{ϕ(u′)v′ + ϕ(u)v} = −

∫ T
0

yv (4.2)

is satisfied for each v ∈W 1,p
T . Then, using an regularity argument, we show that

this function u is smooth enough and satisfies (4.1)–(1.2) in the sense indicated
in the assertion of the lemma.

Existence and uniqueness of the weak solution. Let us define ψ : W 1,p
T →

Lp
′
(where p′ := p/(p−1)) by u 7→ ψ(u) if and only if 〈ψ(u), v〉 =

∫ T
0
ϕ(u′)v′ ,

u, v ∈ W 1,p
T for all v ∈ W 1,p

T . Since |ϕ(z)| ≤ C(|z|p−1 + 1) for all z ∈ R, it is
easy to verify that ψ is a continuous operator; this follows from the Nemitskii
theorem (see [1, Theorem 1.2.2]). From the fact that ϕ is an increasing function
we get strict monotonicity of ψ. Since any monotone continuous operator is
also hemicontinuous (see [18]), we get that ψ is a hemicontinuous one. The
assumption |ϕ(z)| ≥ c|z|p−1 for all z ∈ R implies that ψ is weakly coercive.
Now the existence and uniqueness of the weak solution of (4.1)–(1.2) follows
from [18, Theorem 32.H].

Regularity. Suppose that u is a weak solution of (4.1)–(1.2). We show that
u ∈ C1T , ϕ(u

′) ∈ C1[0, T ] and that (4.1) holds pointwise in (0, T ). Integrating
by parts we can rewrite the equation (4.2) into the form:∫ T

0

(
ϕ(u′(t))−

∫ t
0

[
ϕ
(
u(τ)

)
+ y(τ)

]
dτ

)
v′(t)dt+ (4.3)[∫ t

0

(
ϕ
(
u(τ)

)
+ y(τ)

)
dτ v(t)

]T
0

= 0 .

Let us define a function M : [0, T ]→ R,

t 7→ ϕ(u′)−

∫ t
0

[
ϕ
(
u(τ)

)
+ y(τ)

]
dτ.
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It is easy to see that M ∈ Lp
′
and from (4.3) we get∫ T

0

M(t)v′(t)dt = 0 for all v ∈ C∞0 (0, T ) .

Hence ∫ T
0

δM

δt
v = 0 for all v ∈ C∞0 (0, T ),

where δMδt denotes the distributional derivative ofM . SinceM ∈ L
p′ ↪→ L1 and

δM
δt = 0, we obtain that M(t) = k a.e. in [0, T ] and k ∈ R. Thus

ϕ(u′(t))−

∫ t
0

[
ϕ
(
u(τ)

)
+ y(τ)

]
dτ − k = 0 a.e. in [0, T ] . (4.4)

Since ϕ is an increasing homeomorphism of R onto itself, we can rewrite the
previous equation into the following form

u′(t)− ϕ−1

(∫ t
0

[
ϕ
(
u(τ)

)
+ y(τ)

]
dτ − k

)
= 0 . (4.5)

Now let us define a function F : R× [0, T ]→ R,

(z, t) 7→ z − ϕ−1

(∫ t
0

[
ϕ
(
u(τ)

)
+ y(τ)

]
dτ − k

)
.

It is possible to show that F is continuous on R × [0, T ]. Moreover, F (·, t0) is
an increasing function for all t0 ∈ [0, T ], and

lim
z→−∞

F (z, t0) = −∞, lim
z→+∞

F (z, t0) = +∞ .

Hence for each t ∈ [0, T ] there exists exactly one z(t) ∈ R, such that

F (z(t), t) = 0 .

Since ∂F∂z is continuous and
∂F
∂z = 1 6= 0, we can apply the implicit function

theorem to show that z(·) ∈ C[0, T ]. From (4.5) we get

F (u′(t), t) = 0 a.e. in [0, T ] .

Thus we arrive at
z(t) = u′(t) a.e. in [0, T ] .

Since u ∈W 1,p
T is absolutely continuous, this identity holds true for all t ∈ [0, T ]

and thus u ∈ C1[0, T ] ∩W 1,p
T .

Now it remains to prove that ϕ(u′) ∈ C1[0, T ]. Let us define G : R× [0, T ]→
R,

(z, t) 7→ z −

∫ t
0

(
ϕ(u(τ)) − y(τ)

)
dτ − k .
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The function G is continuous on R× [0, T ]. Moreover, for all t0 ∈ [0, T ], G(·, t0)
is an increasing function and limz→±∞G(z, t0) = ±∞. Hence for each t ∈ [0, T ]
there exists exactly one z(t) such that

G
(
z(t), t

)
= 0 .

Since u ∈ C1[0, T ] and y ∈ C[0, T ], the partial derivatives ∂G∂z and
∂G
∂t are

continuous; moreover ∂G∂z = 1 6= 0. Then the implicit function theorem yields
z(t) ∈ C1[0, T ]. Taking into account (4.4) and the fact that u ∈ C1[0, T ], we
see that z(t) = ϕ(u′) for all t ∈ [0, T ]; thus ϕ(u′) ∈ C1[0, T ]. Now, since
u ∈ C1[0, T ] ∩W 1,p

T and ϕ(u′) ∈ C1[0, T ], integrating (4.2) by parts we show
that u satisfies (4.1) in (0, T ) and that u′(0) = u′(T ). This concludes the proof.
♦

Now we can define a solution operator K : CT → C1T ,

y 7→ K(y) , (4.6)

where K(y) is the solution of (4.1)–(1.2). Analogously we can define a solution
operator K ′ : C[0, T ]→ C1[0, T ] corresponding to the Neumann problem (4.1)–
(1.4).

Lemma 4.4 Let K and K ′ be defined as above. Then K is compact as a map-
ping between CT and C

1
T and K

′ is compact as a mapping between C[0, T ] and
C1[0, T ].

Proof We prove the compactness of K. The proof of the compactness of K ′

is analogous.
Let us consider the following sequence of equations:

(ϕ(u′n(t)))
′
− ϕ(un(t)) = yn(t) , (4.7)

subject to (1.2), where {yn}∞n=1 ⊂ C[0, T ] is bounded. We are going to show
that one can select a convergent subsequence from {un}∞n=1 ⊂ C

1
T . Multiplying

the equation (4.7) by un, integrating from 0 to T , integrating the first term in
the left-hand-side by parts and using the periodic conditions (1.2), we obtain

−

∫ T
0

{
ϕ(u′n(t))u

′
n(t) + ϕ(un(t))un(t)

}
dt =

∫ T
0

yn(t)un(t)dt . (4.8)

Since we assume that |ϕ(z)| ≥ c|z|p−1 for all z ∈ R, we find that

‖un‖
p

W 1,p
T

≤
1

c

∫ T
0

{
ϕ(u′n(t))u

′
n(t) + ϕ(un(t))un(t)

}
dt .

Using this we estimate the terms on the left-hand side of (4.8). The right hand-
side of (4.8) is estimated by the Hölder inequality. Therefore we find that

‖un‖
p

W 1,p
T

≤
1

c
‖yn‖Lp′‖un‖Lp ≤

1

c
‖yn‖Lp′‖un‖W 1,p

T
,
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which implies

‖un‖W 1,p
T
≤
1

c
(‖yn‖Lp′ )

1
p−1 . (4.9)

Thus {un}∞n=1 is bounded in W
1,p
T . Since W

1,p
T is compactly imbedded in CT ,

we can select {unk}
∞
k=1 such that unk → w in CT . Let hk(t) = ynk(t) −

ϕ
(
unk(t)

)
. One can see that there exists β > 0 such that ‖hk‖C ≤ β. Hence

‖
(
ϕ
(
u′nk
))′
‖C ≤ β. It follows from (1.2) that there exists tk0 ∈ [0, T ], such

that u′nk(t
k
0) = 0. From (4.7) we obtain ϕ(u

′
nk
(t)) =

∫ t
tk0
hk(τ)dτ and conse-

quently ‖ϕ(u′nk(t))‖C ≤ Tβ. Thus ϕ(u′nk(t)) is bounded in C
1
T norm. Due to

the compact imbedding of C1T into CT we can select ϕ(u
′
nkj
)→ v in CT . Since

u′nkj
= ϕ−1

(
ϕ(u′nkj

)
)
and ϕ−1 is continuous, u

′
nkj
→ ϕ−1(v) in CT . On the

other hand, unkj can be written in the form

unkj (t) = unkj (0) +

∫ t
0

ϕ−1

(
ϕ(u′nkj

(τ))
)
dτ .

Since unkj → w as nkj → in CT , we find that w(t) = w(0) +
∫ t
0 ϕ−1 (v(τ)) dτ .

As the integrand is continuous, differentiating the former equation we get w′ =
ϕ−1(v). Thus unkj → w in C1T . This ends the proof. ♦

Remark 4.2 The proof of the previous lemma is based on the ideas from [7].

Let g, h, f̃ , T be as in Theorem 2.4 and let z0 := 2 supξ∈R |g(ξ)|+ |h(+∞)|+

|h(−∞)|+ 2 supξ∈R |h(ξ)|+ ‖f̃‖C . We define a function l : R→ R by

l(z) :=

{
z for 0 ≤ z ≤ z0 ,
z0 for z > z0 ,

(4.10)

for z ≥ 0 and l(z) = −l(−z) for z < 0. We also define:

Γ(p, c, F ) :=
∣∣∣√T

3

F

c

∣∣∣p−1 (4.11)

for any p > 1, c > 0, F ≥ 0.

Lemma 4.5 Let ϕ be an increasing homeomorphism of R onto R and there exist
c, C > 0 and p > 1: c|z|p−1 ≤ |ϕ(z)| ≤ C

(
|z|p−1 + 1

)
. Let (G) be satisfied and

g be bounded. Then, for any λ ∈ [0, 1] and |f | ≤ supξ∈R |h(ξ)| + supξ∈R |g(ξ)|,
all solutions of (

ϕ(u′)
)′
+ λg(u′) + l(u) = λ(f̃ + f) (4.12)

subject to (1.2) ( (1.4) ) are a priori bounded by

‖u‖C1 ≤ (1 + 2T ) Γ
(
p, c, ‖f̃‖L2 +

√
Tz0

)
+ z0.
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Proof We rewrite the equation (4.12) as(
ϕ(u′)

)′
+ λg(u′) = λ(f̃ + f)− l(u) .

Then it follows from (3.3) (consider q := λg in Lemma 3.1) that any solution u
of (4.12)–(1.2) satisfy

‖ϕ(u′)‖C ≤

√
T

3

∥∥∥λf̃ − l(u)∥∥∥
L2

.

Taking into account the assumption |ϕ(z)| ≥ c|z|p−1, the following inequality

c|u′|p−1 ≤ |ϕ(u′)| ≤

√
T

3

∥∥∥λf̃ − l(u)∥∥∥
L2

is satisfied for any t ∈ [0, T ]. This implies

‖u′‖C ≤

(
1

c

√
T

3

∥∥∥λf̃ − l(u)∥∥∥
L2

) 1
p−1

.

Since ‖λf̃ − l(u)‖L2 ≤ ‖f̃‖L2 +
√
Tz0 (recall that ‖λf̃‖L2 = |λ|‖f̃‖L2 , where

λ ∈ [0, 1] and ‖l(u)‖L2 ≤
√
T supξ∈R |l(ξ)| =

√
Tz0), we get

‖u′‖C ≤ Γ
(
p, c, ‖f̃‖L2 +

√
Tz0

)
. (4.13)

Let us split the function u as u = ũ + u, where u = 1
T

∫ T
0
u(t)dt. As

‖ũ‖C ≤
∫ T
0
|u′| ≤ T ‖u′‖C , from (4.13) we have

‖ũ‖C ≤ T Γ
(
p, c, ‖f̃‖L2 +

√
Tz0

)
. (4.14)

Now rewrite (4.12) as(
ϕ(u′)

)′
= λ

(
f̃ + f − g(u′)

)
− l(u)

and suppose that u > z0+T Γ
(
p, c, ‖f̃‖L2 +

√
Tz0

)
. Then (4.14) implies u(t) >

z0 for all t ∈ [0, T ] and, by the definition of l, we have that l(u) = z0 for all
t ∈ [0, T ]. Hence we can rewrite (4.12) as

(ϕ(u′))
′
= λ

(
f̃ + f − g(u′)

)
− z0 .

Integrating from 0 to T , using g(u′) < supξ∈R |g(ξ)| and f̃ < ‖f̃‖C we get that

ϕ(u′(T )) <

(
λ(‖f̃‖C + f + sup

ξ∈R
|g(ξ)|)− z0

)
T + ϕ(u′(0)) .
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Since λ ∈ [0, 1] and z0 > supξ∈R |g(ξ)| + ‖f̃‖C + f , we find that ϕ(u
′(T )) <

ϕ(u′(0)), which contradicts the periodic conditions. Analogously as above, the

possibility u < −z0 − T Γ
(
p, c, ‖f̃‖L2 +

√
Tz0

)
leads to a contradiction. Hence

|u| < z0+T Γ
(
p, c, ‖f̃‖L2 +

√
Tz0

)
. Now, taking into account ‖u‖C1 ≤ ‖ũ‖C +

|u|+ ‖u′‖C , the assertion follows. ♦

Lemma 4.6 Assume that ϕ is an odd increasing homeomorphism of R onto
itself, there exist c, C > 0 and p > 1: c|z|p−1 ≤ |ϕ(z)| ≤ C(|z|p−1 + 1) for all
z ∈ R, g satisfies (G) and is bounded. Let us define V : C1T → C1T ( C

1[0, T ]→
C1[0, T ] ) by

u 7→ u−K
(
−ϕ(u)− g(u′)− l(u) + f

)
,

where the operator K is defined by (4.6) for the periodic ( the Neumann ) BVP.
Then there exists R0 > 0 such that, if V (u) = 0 then ‖u‖C1 ≤ R0. More-
over the Leray–Schauder degree deg(V,B(0, R), 0) is well defined and non-zero
if B(0, R) = {u ∈ C1T ( C

1[0, T ] ): ‖u‖C1 < R} with any R > R0.

Proof Let us define U : C1T × [0, 1]→ C1T by

(u, λ)→ u−K
(
−ϕ(u)− λg(u′)− l(u) + λf

)
.

Since, by Lemma 4.4, K : CT → C1T is compact and

−ϕ(u)− λg(u′)− l(u) + λf

is an continuous operator from C1T to CT , U(·, λ) is a compact perturbation
of the identity of C1T onto itself for all λ ∈ [0, 1]. Furthermore, it follows that
V = U(·, 1) from the definition of U .
It is easy to see that the operator equation U(·, λ) = 0 is equivalent to the

equation (4.12): (
ϕ(u′)

)′
+ λg(u′) + l(u) = λf

subject to (1.2). Due to Lemma 4.5, for any λ ∈ [0, 1], all solutions of (4.12)–

(1.2) satisfy ‖u‖C1 ≤ (1 + 2T )Γ
(
p, c, ‖f̃‖L2 +

√
Tz0

)
+ z0 =: R0.

Hence the degree is well defined for every ball B(0, R) with radius R > R0.
Since ϕ and l are odd functions, U(·, 0) is odd mapping; consequently

deg(M(·, 0), B(0, R), 0) 6= 0 .

Finally, the homotopy invariance property of the degree implies that

deg(U(·, λ), B(0, R), 0) 6= 0 for all λ ∈ [0, 1].

♦

Now, we prove Theorem 2.4. The method follows the idea of the proof of
Theorem 2 in [6]. For the sake of brevity we will present a proof for the periodic
conditions. The argument for the Neumann conditions is analogous.
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Proof of Theorem 2.4 The proof is divided into three steps:
Step 1 First, we will prove the theorem under additional assumptions: Domϕ =
R, there exists c, C > 0 and p > 1 such that c|z|p−1 ≤ |ϕ(z)| ≤ C(|z|p−1 + 1)
for all z ∈ R and g is bounded.
We use the degree argument. Define the operator N : C1T × R→ C1T by

(u, λ) 7→ u−K
(
−ϕ(u)− g(u′)− λh(u)− (1− λ)l(u) + f̃ + f

)
,

where K : CT → C1T is introduced after Lemma 4.3 and l : R → R is defined
by (4.10). Now we can rewrite the boundary-value problem (1.5)–(1.2) into an
equivalent operator equation N(u, 1) = 0.
From the definition of N it follows that N(·, λ) is a compact perturbation of

the identity of C1T onto itself for all λ ∈ [0, 1]. We start our homotopy argument
with λ = 0. Then N(·, 0) = V , where V is defined in Lemma 4.6. Hence, by
Lemma 4.6, there exists R0 > 0 such that if u is a solution of N(u, 0) = 0 then
‖u‖C1 ≤ R0; moreover, deg(N(·, 0), B(0, R), 0) 6= 0 provided that R > R0. We
show later that there exists R′0 > R0 > 0 such that, for all λ ∈ [0, 1], every
solution u of the operator equation N(u, λ) = 0 satisfies ‖u‖C1 < R′0. Then
deg(N(·, λ), B(0, R′0), 0) is well defined for all λ ∈ [0, 1] and due to the homotopy
invariance property deg(N(·, λ), B(0, R′0), 0) = deg(N(·, 0), B(0, R

′
0), 0) 6= 0 for

all λ ∈ [0, 1].
Since ‖u‖C1 = ‖u‖C + ‖u

′‖C , we shall prove that both ‖u‖C and ‖u′‖C are
estimated by some constants independent of λ. The equation N(u, λ) = 0 is
equivalent to

(ϕ(u′))
′
+ g(u′) = f − λh(u)− (1− λ)l(u)

subject to (1.2).
An argument similar to that in the proof of Lemma 4.5 shows that we can

find A > 0, independent of λ, such that ‖u′‖C ≤ A. Therefore ‖ũ‖C ≤ AT and
it remains to prove that there exists a constant j > 0, independent of λ such

that |u| ≤ j. Let γ := 1
2

(
h(+∞) + s(f̃)− f

)
; by (2.7) γ > 0. Hence we can

find m > 0 (independent of λ) such that

(1− λ)h(y) + λl(y) > h(+∞)− γ (4.15)

for all y ≥ m and 0 ≤ λ ≤ 1. Assuming that u > m+AT , we find

(ϕ(u′))
′
+g(u′) = f+ f̃−(1−λ)h(u)−λl(u)< f+ f̃−h(+∞)+γ = s(f̃)−γ+ f̃ .

Taking α = s(f̃)−γ we see from Lemma 4.1 that s(f̃)−γ ≥ s(f̃), a contrary to
γ > 0. Thus u ≤ m+AT . Similarly, we exclude the possibility u ≥ −m−AT .
Hence ‖u‖C ≤ AT +m =: j and ‖u‖C1 ≤ A(1+T )+m, where A and m do not
depend on λ. So that the desired radius is any R′0 > max{A(1 + T ) +m,R0}.
Step 2 Now we remove the additional assumptions on ϕ and g.
Let us take fixed f̃ ∈ CT and define

M := ϕ−1

(√T

3

(
‖f̃‖L2 +

√
T sup
ξ∈R
|h(ξ)|

))
> 0 .
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Note that (2.6) imply that 0 < ϕ(M) < b (= −a). As a consequence [−M,M ] ⊂
Domϕ (= I1). Define ψ : R→ R by

ψ(y) :=

{
ϕ(y) if |y| ≤M ,

ϕ
(
M sgn(y)

)
+ y|y|p−2 −Mp−1 sgn(y) otherwise

and q : R→ R by

q(y) :=

{
g(y) if |y| ≤M ,
g(M sgn(y)) otherwise .

Observe that both ψ and q satisfy conditions of Step 1.
Thus, due to Step 1, the following problem(

ψ(y′)
)′
+ q(y′) = f̃ + f − h(y) , (4.16)

y(0) = y(T ) , y′(0) = y′(T )

has a solution provided that

r(f̃) + h(−∞) < f < r(f̃ ) + h(+∞) , (4.17)

where r(f̃ ) is the (only admissible) value of the integral 1
T

∫ T
0
f(t)dt such that

the associated first order problem:

v′ + q (ψ−1(v)) = f , (4.18)∫ T
0 ψ−1(v(t))dt , v(0) = v(T )

has a solution (note that the existence and uniqueness of such r(f̃ ) follows from
Theorem 2.1 by setting ϕ := ψ and g := q in Theorem 2.1).

Using (3.3) we estimate v by ‖v‖C ≤
√
T
3 ‖f̃‖L2 < ϕ(M), which, by definition

of ψ, implies ψ−1(v) = ϕ−1(v). Then the definition of q and the fact that

M > ϕ−1

(√
T
3 ‖f̃‖L2

)
yield q(ϕ−1(v)) = g(ϕ−1(v)). So that any solution to

(4.18) satisfies also

v′ + g(ϕ−1(v)) = f̃ + s(f̃) , (4.19)∫ T
0
ϕ−1(v(t))dt = 0 , v(0) = v(T )

and vice versa. Integrating equations in (4.18) and (4.19),respectively, from 0
to T and taking into account corresponding boundary conditions, we arrive at

s(f̃) =
1

T

∫ T
0

q (ψ−1(v(t))) dt =
1

T

∫ T
0

q (ϕ−1(v(t))) dt = r(f̃ ) .

Thus (4.17) becomes (2.7):

s(f̃) + h(−∞) < f < s(f̃) + h(+∞) .
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Now let us look at the equation (4.16) again. Using (3.3) we estimate the
norm of ϕ(y′) by

‖ϕ(y′)‖C ≤

√
T

3

(
‖f̃‖L2 +

√
T sup
ξ∈R
|h(ξ)|

)
;

hence ‖y′‖C ≤ M . So that ψ(y′) = ϕ(y′) and any solution of (4.16) satisfy
also (1.5)–(1.2). Since (4.16) possesses solution provided that (2.7), so does
(1.5)–(1.2). This concludes Step 2.
Step 3 Assume that h(−∞) < h(ξ) < h(+∞) for all ξ ∈ R. An argument
similar to that of [6, Theorem 4] shows that the condition (2.7) is necessary for
the existence of a solution to (1.5)–(1.2). Details are left to the reader. We note
that one should use Lemma 4.1 instead of Lemma 2 from [6]. ( Lemma 4.2 shall
be used in the case of the BVP (1.5)–(1.2) ). ♦

5 Some remarks about uniqueness

In this section we would like to present one result concerning the uniqueness of
the solution to the BVPs studied in the precedent sections. At first we formulate
and prove two more general statements:

Proposition 5.1 Suppose that F : [0, T ]× R2 → R is continuous, F (0, ·, ·) =
F (2π, ·, ·) and

ξ > η implies F (·, ξ, ·) > F (·, η, ·) , (5.1)

then there exists at most one solution of the BVP:

(ϕ(u′))
′
= F (t, u, u′) , t ∈ (0, T ) (5.2)

u(0) = u(2π), u′(0) = u′(2π) .

Proof If u1, u2 are two distinct solutions of (5.2) then

(ϕ(u′1))
′
− (ϕ(u′2))

′
= F (t, u1, u

′
1)− F (t, u2, u

′
2) . (5.3)

Set z = u1 − u2; obviously z ∈ C[0, T ] and hence z attains its maximum value,
say at tM on [0,T]. Without lost of generality, we can suppose that u1(tM ) >
u2(tM ). This implies maxt∈[0,T ] z(t) > 0. Since z(0) = z(T ), we may assume
tM ∈ [0, T ). Taking into account that z ∈ C1[0, T ] and that z satisfies (1.2), it
follows that z′(tM ) = 0, which is equivalent to u

′
1(tM ) = u

′
2(tM ).

Upon integrating from tM to t, the equation (5.3) becomes

ϕ
(
u′1(t)

)
− ϕ

(
u′2(t)

)
=

∫ t
tM

(
F
(
τ, u1 (τ) , u

′
1 (τ)

)
− F

(
τ, u2 (τ) , u

′
2 (τ)

))
dτ .

Considering u1(tM ) > u2(tM ), u
′
1(tM ) = u

′
2(tM ), the continuity of

F
(
t, u1(t), u

′
1(t)
)
− F

(
t, u2(t), u

′
2(t)

)
and (5.1), we find that there exists δ > 0

such that
ϕ(u′1(t))− ϕ(u

′
2(t)) > 0 for all t ∈ (tM , tM + δ) .
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Hence u′1(t) > u′2(t) for all t ∈ (tM , tM + δ), which implies z′(t) > 0 for all
t ∈ (tM , tM + δ), a contrary to z(tM ) ≥ z(t) for all t ∈ [0, T ]. ♦

Proposition 5.2 Suppose that F : [0, T ]× R2 → R is continuous and satisfies
(5.1). Then the BVP

(ϕ(u′))
′
= F (t, u, u′) , t ∈ (0, T ) (5.4)

u′(0) = 0, u′(T ) = 0

admits at most one solution.

Proof The only difference to the proof of Proposition 5.1 is that we have to
exclude the possibility tM = T .
Suppose that z = u1 − u2 attains its maximum at T . Integrating (5.4) we

find that

ϕ(u′1(t)) − ϕ(u
′
2(t)) = −

∫ T
t

(
F
(
τ, u1 (τ) , u

′
1 (τ)

)
− F

(
τ, u2 (τ) , u

′
2 (τ)

))
dτ .

Taking into account u1(T ) > u2(T ) , u′1(T ) = u′2(T ) = 0 , the continuity of
F (t, u1(t), u

′
1(t)) − F (t, u2(t), u

′
2(t)) and (5.1), we find that there exists δ > 0

such that
ϕ(u′1(t))− ϕ(u

′
2(t)) < 0 for all t ∈ (T − δ, T ) .

Hence u′1(t) − u
′
2(t) < 0 for all t ∈ (T − δ, T ), which implies z

′(t) < 0 for all
t ∈ (T − δ, T ), a contrary to z(T ) ≥ z(t) for all t ∈ [0, T ]. ♦

Taking a particular function F (t, u, v) = −h(u)−g(v)+f , where h ∈ C(R,R),
is bounded and strictly decreasing, g ∈ C(R,R) and f ∈ C[0, T ], we obtain
uniqueness for the BVPs (1.5)–(1.2) and (1.5)–(1.4) studied previously:

Theorem 5.3 Suppose (P), (G), f ∈ CT ( f ∈ C[0, T ] ), h ∈ C(R,R) and
moreover impose that h is strictly decreasing. Then the BVP (1.5)–(1.2) (
(1.5)–(1.4) ) admits at most one solution.

We would like to point out that the monotonicity assumption, h being de-
creasing, was essential to prove the uniqueness. The following simple example
shows that there are no analogous statements to the previous theorem assuming
h increasing, even not for semilinear BVP:

Example 5.1 Consider BVP:

u′′(t) + h(u(t)) = cos 2t , t ∈ (0, T )
u(0) = u(2π), u′(0) = u′(2π)

(5.5)

with

h(s)

{
s for |s| ≤ 1
(2− 1

|s|)sgn(s) for |s| > 1

then u = − 13 cos(t) + c sin(t + φ), with parameters |c| ≤
2
3 and φ ∈ [0, 2π), is a

two dimensional subset of the set of all solutions to (5.5).

For some particular results in this direction (the semilinear problem) we refer
to [6].
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