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ABSTRACT 

The goal of this dissertation was to investigate the SUHI phenomenon for three 

metropolitan areas of Texas, USA with remote sensing techniques. A GIS-based Local 

Climate Zones (LCZs) classification scheme was developed with the aid of airborne 

Lidar datasets and other freely available GIS data, to map and compare the LCZs for the 

three metropolitan areas: Dallas-Fort Worth (DFW), Austin, and San Antonio. A 

decision-making algorithm was built for LCZs mapping, and LCZs datasets were 

established.  

By linking remotely sensed land surface temperature (LST) with LCZs, the study 

investigated the ability of LCZs for studying SUHI phenomenon and analyzes how 

different LCZs affect the SUHI in three major metropolitan areas. Landsat 8 image data 

was acquired for July 20, 2015 and used to calculate LST as SUHI measurement. Results 

indicated that large LST variations were first demonstrated among LCZs characterized by 

different land cover, and then urban morphological information. The close association 

between LCZs and LST demonstrated that the LCZs mapping was useful for comparing 

and investigating the SUHI.  

The geographically weighted regression (GWR) efficiently and accurately explained 

the underlying factors that contributed to the SUHI based on spatial variation and thus 

demonstrates improved utility for characterizing SUHI compared to global regression. 
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1  INTRODUCTION 

Urban Heat Island (UHI) refers to a city or urban area that is warmer than the 

surrounding rural area. UHIs are continuously drawing attention since they were first 

described in the 1810s (Howard 1818; Oke 1976; Imhoff et al. 2010; Mirzaei 2015).  

Currently, more than half the world’s population lives in cities and this proportion is 

expected to reach 66 percent by the year 2050 (United Nations 2014).  In the urban 

expansion process, natural landscapes are replaced by built-up land and impervious 

surfaces, which changes 1) energy absorption, storage, emittance due lower sky view 

factor, higher heat capacity, and lower albedo; 2) wind turbulence intensity due to 

building configuration, 3) humidity due to lower evapotranspiration due to reduced 

vegetation cover, and 4) anthropogenic energy release, etc. (Bowler et al. 2010; Mirzaei 

and Haghighat 2010; Hart and Sailor 2008). Therefore, the UHI phenomenon has become 

a well-researched topic due to a series of adverse effects on vegetation phenology (Zhou, 

Zhao, et al. 2016), air pollution (Sarrat et al. 2006), logical meteorology (Taha 1997), 

climatic warming (Huang and Lu 2015), energy consumption, and health risks for urban 

residents (Harlan et al. 2007). 

UHI is a multi-scale phenomenon, varying from small scale anthropogenic heat 

release such as from vehicles, to meso-scale atmospheric interactions (Mirzaei and 

Haghighat 2010). Hence, UHI has been defined for different layers of the atmosphere and 

terrestrial surface to integrate these aspects simultaneously with different measurement 

techniques. Basically, there are two types of UHI studies: atmospheric UHI (AUHI) and 

surface UHI (SUHI) (Figure 1.1). After the first AUHI case study in London in 1818 

(Howard 1818), AUHI magnitude in cities has been reported around the world and AUHI 
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has been further subdivided by observation scope: urban boundary layer (UBL) (Barlow 

2014) and urban canopy layer (UCL) (Oke 1995). UCL refers to atmosphere between 

urban surface and building roof, while UBL extends above UCL and it is a mesoscale 

concept as a portion of planetary boundary layer (Oke 1976). Voogt and Oke (2003) 

proposed the term SUHI to refer to UHI study that is measured with land surface 

temperature (LST), which is measured from airborne or satellite-borne sensors.   

1.1 Limitation of traditional UHI investigation 

Traditional UHI investigation has focused on AUHI, where the air temperature 

pattern in an urban area is generally compared to rural areas based on field measurements 

at isolated fixed or mobile stations. Several limitations exist for UHI studies by field 

measurements to quantify AUHI. First, it is time-consuming and expensive to develop 

and maintain monitoring stations and devices. Although some modern devices can 

capture additional parameters like velocity, turbulence, and even pollution concentration, 

limited and isolated stationary networks are not capable of capturing heterogeneous 

thermal characteristics caused by land use and land cover (LULC) (Hu and Brunsell 

2015; Shen et al. 2016). Also, generalization and estimation for inaccessible areas as well 

as considerable observation time periods are needed to accurately describe the AUHI 

phenomenon. Additionally, there are no systematic criteria for experimental design and 

communication for AUHI observation. According to a systematic review of 

methodological quality of 190 AUHI studies published between 1950-2007, half of the 

sample studies fail to sufficiently control confounding effects of weather, topography, or 

time, and three quarters fail to communicate basic metadata such as instrumentation and 

site characteristics (Stewart 2011).  
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In addition, discrete categorization and definitions of urban and rural land adds 

uncertainty to traditional UHI measurement and comparison. Moreover, each city is 

exposed to diverse local and synoptic factors, which makes UHI study complex and 

specific to localities, and therefore difficult for comparison (Ng 2015). The diversity of 

size, shape, height, composition, and spatial arrangement of urban canopy components 

makes it even harder to define a surface datum for AUHI measurements and urban 

gradients still cannot sufficiently describe the site topography and local environment. To 

address this issue, the “local climate zone” (LCZ) classification scheme was designed in 

2012 to describe landscapes (urban and natural) that exhibit distinct thermal climate 

characteristic owing to their surface properties. The LCZ classification standardizes the 

worldwide exchange of urban temperature observations and has been used extensively in 

both AUHI and SUHI studies (Stewart and Oke 2012).   

1.2 Application of remote sensing to UHI studies 

1.2.1 Remote sensing platforms for SUHI measurement 

In contrast to the direct AUHI measurement, SUHI is an indirect measurement 

and the intervening atmosphere and the surface radiative properties need to be considered 

for LST generation. Foremost, LST data is time-synchronized and grid-based for a 

considerable areal extent (Nichol 1996). So far, various remote sensing sensors have been 

used to estimate LST with thermal infrared band/bands from coarse to fine spatial 

resolution (Table 1.1).  
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Table 1.1 Different remote sensing sensors for urban thermal studies. 

Sensor  Spatial 
resolution of 
thermal 
band(s) 

Temporal 
resolution 

 Sensor operator Case studies 

Advanced Very 
High Resolution 
Radiometer 
(AVHRR) 

1.1 km Twice daily National Oceanic 
and Atmospheric 
Administration 
(NOAA) 

(Streutker 
2003; 
Stathopoulou 
and Cartalis 
2009) 

MODerate 
resolution Imaging 
Spectroradiometer 
(MODIS) 

Approximately 
1 km 

Twice daily Aqua/Terra sensors, 
Earth Observing 
System (EOS) of 
National Aeronautics 
and Space 
Administration 
(NASA)  

(Zhang et al. 
2010; Zhou, 
Zhang, et al. 
2016; 
Connors, 
Galletti, and 
Chow 2013) 

Advanced Along 
Track Scanning 
Radiometer 
(AATSR)  

1 km 
 

35 days European Space 
Agency (ESA) 

(Fabrizi, 
Bonafoni, 
and Biondi 
2010) 

Advanced Space 
borne Thermal 
Emission and 
Reflection 
Radiometer 
(ASTER)  

90 m 16 days  Terra (NASA) (Buyantuyev 
and Wu 
2009; Zheng, 
Myint, and 
Fan 2014) 

Thematic Mapper 
(TM), Enhanced 
Thematic Mapper 
Plus (ETM+) 

30 m after 
resampling  

16 days NASA Landsat 5 
and Landsat 7, 
separately  

(Weng, Lu, 
and 
Schubring 
2004; 
Rajasekar 
and Weng 
2009a) 

Thermal Infrared 
Sensor (TIRS) 

30 m after 
resampling 

16 days NASA Landsat 8 (Guo et al. 
2015; Peng 
et al. 2016)   

 

1.2.2 Modeling SUHI with remote sensing data 

UHIs demonstrate temporal characteristics, from daily to annual, and even 

decadal variation. How to make use of remotely sensed thermal data from different 

sources to generate a consistent and long term LST is of importance to understanding the   

environmental and ecological process for a specific urban area. Several studies have 
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successfully conducted spatial sharpening (e.g., image merging, image/data fusion, 

downscaling, and disaggregation) (Weng 2009), by using statistical downscaling with the 

aid of shorter wavelength data (Deng and Wu 2013), or physical downscaling (Guo and 

Moore 1998). The Spatial and Temporal Adaptive Reflectance Fusion Method 

(STARFM) was originally proposed to predict daily surface reflectance and vegetation 

index values by combining MODIS and Landsat (Gao et al. 2006). It has been used to 

assess the seasonal variation of vegetation (Hilker, Wulder, Coops, Seitz, et al. 2009) and 

land use changes (Hansen et al. 2008).   

Based on that, some improvements have been made with more applications. For 

instance, Spatial Temporal Adaptive Algorithm for mapping Reflectance Change 

(STAARCH) was utilized for detecting disturbance related changes in forests (Hilker, 

Wulder, Coops, Linke, et al. 2009). Based on STARFM, Huang et al. (2013) established 

a new weight function, assuming that the bilateral filtering is determined by spatial 

distance as well as photometric similarity, to account for effect of neighboring pixels. 

STARFM has been applied in urban thermal studies and its performance has been proved 

(Liu et al. 2016; Liu and Weng 2012). Weng, Fu, and Gao (2014) modified STARFM by 

considering annual temperature cycles (ATC) as well as landscape heterogeneity. The 

modified algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature 

(SADFAT), was implemented in Los Angeles, California with promising results. Based 

on the improvements of spatial sharpening algorithms, some recent studies have 

contributed to SUHI evaluation analysis with high spatio-temporal LST datasets (Shen et 

al. 2016; Liu et al. 2016).  
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In addition, the complete spatial coverage of LST makes SUHI morphological 

modeling possible. Changes in the UHI shape and structure can be recorded over time to 

provide a qualitative UHI description (e.g., UHI evolution). For example, Streutker 

(2003) modeled and quantified SUHI evolution of Houston, Texas, by applying a 

Gaussian surface to fit AVHRR image data on a planar rural background to measure the 

magnitude, spatial extent, orientation, and central location of the SUHI. SUHI evolution 

also been studied in eight Asian mega cities (Tran et al. 2006), Indianapolis (Rajasekar 

and Weng 2009b), Beijing (Zhou et al. 2011; Quan et al. 2014), Milan (Anniballe, 

Bonafoni, and Pichierri 2014), and Wuhan, China (Wang, Zhan, and Guo 2015).    

Instead of measuring SUHI intensity for an entire city in terms of the SUHI shape 

features, some researchers have focused on identifying SUHI hotspots by focusing on 

LST heterogeneity and variation  (Bottyán and Unger 2003; Zhang and Wang 2008; Lu 

and Weng 2006).  Spatial association has been widely used to quantify spatial patterns, 

particularly to derive LST hotspots or clusters. Whereas global autocorrelation analysis 

yields only one statistical result to summarize the entire area (Wong et al. 2016), some 

recent studies have adopted Local Indicators of Spatial Autocorrelations (LISA) statistics 

(e.g., Local Moran’s I, Getis G) to detect LST clusters. As opposed to a global 

measurement of spatial autocorrelation, local Moran’s I indicates an attribute value of a 

location in relation to values of its neighbors and can be helpful to identify hotspots with 

high influencing effects on adjacent areas (Guo et al. 2015; Xie, Fu, and Wang 2011; Das 

Majumdar and Biswas 2016) and quantify spatial patterns (Chen, Jiang, and Xiang 2015).  

Another direction focuses on time series LST generation and trend analysis from a 

considerable amount of imagery. Along this line, the magnitude, spatial extent, and 
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maximum of thermal patterns have been identified (Keramitsoglou et al. 2011).  Mean 

annual surface temperature, yearly amplitude of surface temperature, and phase shift 

parameters have also been investigated (Bechtel 2012).  

1.2.3 SUHI and AUHI formation studies  

As mentioned in the beginning, UHI is due to various factors including 

urbanization and climatic factors. Remote sensing provides considerable data support to 

empirically study SUHI and related surface characteristics (Table 1.2). First, physical 

land properties influence LST and the SUHI phenomenon (Zhou, Huang, and Cadenasso 

2011; Zheng, Myint, and Fan 2014; Li et al. 2012; Peng et al. 2016; Myint et al. 2015). 

Also, SUHI is strongly related to the urban morphology and building environment 

characteristics (e.g., Chun et al. 2014). Furthermore, associative studies of UHI 

(especially SUHI) and socioeconomic conditions have been increasing with a 

considerable amount of case studies (Table 1.2). Remote sensing technology has 

provided a unique way to study urban thermal character, such as temperature-vegetation 

index (TVX) approach (Das Majumdar and Biswas 2016). 
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Table 1.2 Summary of literature on empirical relationships between SUHI and various factors. 
Factors Methods Empirical case studies 
Land cover and landscape architecture 

Vegetation abundance, 
NDVI, etc. 

• Pearson correlation  
• Ordinary least squares 

(OLS) regression 
• Regression tree 
• Spatial Auto-Regression 

(SAR) 
• Geographically weighted 

regression (GWR) 
• Analysis of variance 

(ANOVA) 
 

• Beijing (Li et al. 2012; Kuang et al. 2014) 
• Shanghai (Yue et al. 2007) 
• Guangzhou (Guo et al. 2015) 
• Wuhan (Wu et al. 2014) 
• Chongqing (Luo and Peng 2016) 
• Milan (Italy), Tampa Bay (Florida), and Las Vegas (Nevada) (Xian and Crane 2006) 
• Indianapolis (Indiana) (Weng, Lu, and Schubring 2004)  
• Phoenix (Myint et al. 2013) 
• Columbus (Chun and Guldmann 2014) 
• Baltimore (Levy 2016)) 
• Toronto (Rinner and Hussain 2011) 
• More than 3000 global settlements (Zhang et al. 2010) 
• Tehran, Iran (Amiri et al. 2009) 
• 419 Global Big Cities (Peng et al. 2012)  

Built-up land intensity 
or impervious surface 
percentage, etc. 

• Adjusted stratified 
stepwise regression  

• OLS regression 
• GWR  

• Shanghai (Zhu et al. 2013) 
• Guangzhou (Guo et al. 2015) 
• Chongqing (Luo and Peng 2016) 
• Phoenix (Myint et al. 2013) 
• Tampa Bay (Florida), and LasVegas (Nevada) (Xian and Crane 2006) 
• Shanghai, Guangzhou, Beijing, Changsha, Lanzhou and Fuzhou (Tang and Xu 

2016) 
• Top 38 most populated urban areas in U.S. (Imhoff et al. 2010) 
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Table 1.2-Continued 
Landscape component 
and configuration, etc.   

• OLS regression 
• Nonlinear regression 
• Regression tree 
• ANOVA 
• SAR 
• Multilevel regression 
• Longitudinal OLS 
• GWR  
• Longitudinal GWR 
• Pearson correlation 

• Beijing (Peng et al. 2016; Song et al. 2014)  
• Shanghai (Zhang et al. 2013; Li et al. 2014; Li et al. 2011) 
• Guangzhou (Guo et al. 2015) 
• Shenzhen (Li et al. 2010) 
• Zhuhai (Du, Xiong, et al. 2016) 
• Wuhan (Wu et al. 2014) 
• Brisbane (Australia) (Deilami, Kamruzzaman, and Hayes 2016)  
• Phoenix (Li et al. 2016; Buyantuyev and Wu 2009)  
• Phoenix and Las Vegas (Myint et al. 2015) 
• Baltimore (Levy 2016) 
• Gwynns Falls watershed, Baltimore (Huang and Cadenasso 2016; Zhou, Huang, and 

Cadenasso 2011) 
• Austin (Kim et al. 2016b) 

Urban morphology 

Topography, etc. • Correlation  
• OLS regression 
• GWR 

• Beijing (Kuang et al. 2014) 
• Shenzhen (Li et al. 2010) 
• Taibei (Wu, Lung, and Jan 2013) 
• European urban regions (Schwarz and Manceur 2014) 

City configuration and 
agglomerations 

• OLS regression 
• Correlation 

• 50 most populous cities in U.S. (Debbage and Shepherd 2015) 
• European urban regions (Schwarz and Manceur 2014) 

City size, etc. • OLS regression • 419 global big cities (Peng et al. 2012)  
• Top 38 most populated urban areas in U.S. (Imhoff et al. 2010) 
• 32 cities of China (Zhou et al. 2014) 
• Yangtze River Delta Urban Agglomeration (Du, Wang, et al. 2016) 
• St. Lawrence Lowland (Oke 1973) 
• Huabei Plain (Tan and Li 2015) 



 

10 

Table 1.2-Continued 
Sky view factor, 
building heights, 
building configuration, 
etc. 

• Multiple linear model 
• SAR 
• Spatial error model (SEM) 
• General spatial 

model(GSM) 

• Szeged (Hungary) (Bottyán and Unger 2003) 
• Columbus (Chun and Guldmann 2014) 
• Atlanta, Georgia (Chun and Guhathakurta 2016) 
• Guangzhou (Guo 2016) 

Albedo, building 
material, etc.  

 

• OLS regression 
•  SAR  

• Beijing (Kuang et al. 2014) 
• 419 global big cities (Peng et al. 2012) 
• Chicago (Coseo and Larsen 2014) 
• Columbus (Chun and Guldmann 2014) 
• Baltimore (Levy 2016) 

Anthropogenic factors 

Population density, 
distribution, income, 
housing units and 
structure, etc. 

• OLS model 
• longitudinal OLS 
• Multiple regression model  
• Stepwise correlation 

analysis 
• Principal component 

regression analysis 
• Correlation 
• Spatial autocorrelation 
• GWR 
• Logic GWR 

• Shanghai (Buyantuyev and Wu 2009; Chen, Jiang, and Xiang 2015; Zhang et al. 
2013) 

• Brisbane (Australia) (Deilami, Kamruzzaman, and Hayes 2016) 
• Greater Athens, Greece (Keramitsoglou et al. 2011) 
• Beijing (Xiao et al. 2008) 
• Yangtze River Delta Urban Agglomeration (Du, Wang, et al. 2016) 
• European urban regions (Schwarz and Manceur 2014) 
• 419 global big cities (Peng et al. 2012) 
• Phoenix (Li et al. 2016; Buyantuyev and Wu 2009; Harlan et al. 2007)  
• Gwynns Falls watershed, Baltimore (Huang and Cadenasso 2016) 
• Hong Kong (Wong et al. 2016) 
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Table 1.2-Continued 
Land use activities, 
anthropogenic heat 
release, energy 
consumption, etc. 

• OLS model 
• Time series analysis 
• Descriptive summary 

• Phoenix (Connors, Galletti, and Chow 2013) 
• Shanghai (Li et al. 2014; Chen, Jiang, and Xiang 2015; Li et al. 2009) 
• Beijing (Fu and Weng 2016; Guo et al. 2012) 
• Nanjing (Wang, Ma, et al. 2016) 
• Yangtze River Delta Urban Agglomeration (Du, Wang, et al. 2016)  

Adjacent heat sources • Regression 
• ANOVA 

• Chicago (Coseo and Larsen 2014) 
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Empirical estimation models remain effective tools for quantitatively 

characterizing SUHI formation (Table 1.2) with less computationally intensity as 

computational simulation models and relatively easily interpreted output. Further, to 

overcome autocorrelation, spatial regression models including the Spatial Auto-

Regression (lag) model (SAR), spatial error model (SEM), and general spatial model 

(GSM) have been employed. For instance, Chun et al. (2016, 2014) evaluated OLS, SAR, 

SEM, and GSM and determined that estimation methods that best represent the SUHI are 

spatial regressions since they can better capture neighboring effects. In addition, GWR 

also used to address the spatial varying relationships. 

Besides the empirical modeling of LST and related surface characteristics (Table 

1.2), thermal remote sensing have advanced our understanding of urban surface energy 

budgets since LST is closely related to the energy balance within the UCL and modifies 

the microclimate of the urban area. Voogt and Grimmond (2000) explored the links 

between LST and surface temperatures and calculations of sensible heat flux using a bulk 

transfer approach. Also, remote sensing data can be used to estimate surface parameters 

related to the soil–vegetation system and surface soil moisture, radiative forcing 

components, and indicators of the surface response to them (i.e., LST) Schmid (1988).  

Remote sensing also contributes to explaining AUHI phenomenon in terms of 

physical modeling and mathematical simulations.  It has promoted the development of 

urban canopy model (UCM) with remotely sensed observations related to surface 

radiative and thermodynamic properties, including moisture, emissivity, albedo, 

irradiative input, etc. (Becker and Li 1995; Voogt and Oke 2003). One of the earliest 
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studies, which combined surface energy modeling and remote sensing approaches, was 

conducted by Carlson et al. (1981). Much of this research is based on landscape matrix or 

vegetation indices (e.g., the Normalized Difference Vegetation Index; NDVI) derived 

from satellite images or high resolution land cover data.  Remote sensing can also be used 

to provide boundary condition and land cover condition for numerical computational 

fluid dynamics (CFD) modeling.  

1.2.4 UHI mitigation and urban planning  

Many studies have reported widely and successfully applied measures on 

mitigating UHI effects with promising financial and environmental benefits. For 

example, Konopacki and Akbari (2002) reported that by mitigating UHI effects in 

Houston it was possible to achieve savings of USD 82 million with a reduction of 730 

MW peak power, together with an annual decrease of 170,000 t of carbon emission. The 

possible mitigating measures could broadly be categorized as relating to: (1) reducing 

anthropogenic heat release (Shahmohamadi et al. 2010); (2) better roof design (e.g., green 

roofs, roof spray cooling, reflective roofs, etc.); and (3) other design factors (e.g., 

humidification, increased albedo, green canopies, etc.) (Bowler et al. 2010; Rizwan, 

Dennis, and Chunho 2008). 

Without taking spatial heterogeneous characteristics into consideration, mitigation 

strategies tend to inefficiently respond to higher temperature problems (e.g., one 

mitigation criteria for the whole city) (Luck and Wu 2002; Wang and Ouyang 2017). 

Inversely, spatially explicit, intra-urban, and neighborhood-level adaptation contributes to 

reducing hot spots and mitigate UHI effect. Studies have shown that LST change is 

correlated to the underlying land cover change (Wang, Ma, et al. 2016; Das Majumdar 

http://www.sciencedirect.com/science/article/pii/S092427160900046X#b11
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and Biswas 2016; Fu and Weng 2016). For example, Das Majumdar and Biswas (2016) 

integrated application of local Moran’s I on LST change and TVX space to delineate the 

regions of acute land transformation. In this sense, identifying the land cover changes 

behind the changing LST hotspots can be used as a decision-making tool for urban land 

planning and UHI mitigation.  

The socioeconomic conditions at the local and even neighborhood scale are 

receiving increased attention in UHI vulnerability studies (Wong et al. 2016). Studies 

have demonstrated that neighborhoods with more ethnic minority residents, residents 

with lower income and education, and an aging population often experience higher LST 

than other neighborhoods (Buyantuyev and Wu 2010; Huang et al. 2011). Remote 

sensing provides data support to this type of neighborhood-level assessment of UHI 

vulnerability. Human comfort and health concerns are far more serious than the other 

potential threats in UHI mitigation. A bunch of studies focused on how to reach 

population who are most vulnerable and at risk to reduce heat-related illness.  

Exploratory mapping approach for neighborhood-level heat vulnerability assessment 

have been contacted for Toronto (Rinner et al. 2010). Wong et al. (2016) identified the 

heat-vulnerable groups and areas of SUHI inequities by integrating methods of remote 

sensing retrieval, logistic regression modelling, and spatial autocorrelation. 

Furthermore, although the importance of urban surface characteristics has been 

taken into consideration in urban planning and UHI mitigation (e. g., urban greening, 

higher surface albedo) in some cities worldwide, other cities hesitate in implementing 

such adaptation strategies (Wang and Ouyang 2017). Without a specific case 

investigation, it is not easy for urban planners to make selections among various 
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mitigation strategies since UHI formation is related to local climate and geographic 

location.  
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2  CONCEPTUAL FRAMEWORK AND RESEARCH QUESTIONS 

Due to the complexity of SUHI formation, there is no single approach to provide 

a comprehensive database for a city, and no feasible principle to describe SUHI 

mechanisms at each scale. However, it is a phenomenon observed in conjunction with the 

urbanization process, which is viewed as a heterogeneous human-environment 

interaction. It is reasonable and necessary to put UHI studies into a boarder urban 

landscape view and incorporate related geographic and ecological theories into UHI 

studies.  In this chapter, a framework to study UHI is built by incorporating related 

theories and concepts from a broader area of knowledge. Subsequently, research 

questions are identified. 

2.1 Key Concepts and Principles 

1) Landscape ecology, urban ecology, and sustainable urban development 

Partly motivated by environmental change issues, landscape ecology is a 

relatively synthetic discipline with new concepts, theory, and methods to reveal the 

importance of spatial heterogeneity on ecological process (Gergel and Turner 2006).  In 

this discipline, the spatial approach of geographers and functional approach of ecologists 

are essentially combined. Urban ecology is the study of understanding the relationship 

between spatial pattern of urbanization and ecological processes (Wu 2014).  Past 

interactions between biophysical and human processes created the current urban 

landscape pattern. Also, urban landscaping and management activities may substantially 

influence the timing, duration, and magnitude of ecological processes.  

Different from other land cover types, urban land is inherently affected by human 

activities. Landscape planning policies and design, dynamics and associated ecological 
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processes across scales need to be emphasized for sustainable urban development (Ahern 

2013; Wu 2014).  

2) Spatial autocorrelation and heterogeneity, and scale issue 

Every place is unique and space is a variable (rather than a parameter) is the 

essence of geography (Harvey 1969; Curran and Atkinson 1998). In geoscience, it is a 

fact that spatial phenomena often involve spatial dependence. For example, values (e.g., 

LST) observed at one place are related to values at adjacent places (e.g., LST in the 

neighborhood due to the land surface heat fluxes). Opposite from autocorrelation, 

heterogeneity means the phenomenon is variable within the space. They can be 

represented and modelled using geostatistical approaches (Redman 1999).  

'Scale' is used to refer both to the magnitude of a study (e.g., its geographic 

extent) and also to the degree of detail (e.g., its level of geographic resolution). It is used 

in the context of space (geographic scale), time (temporal scale), and many other 

dimensions of research (Goodchild and Quattrochi 1997).  

Landscape ecology emphasizes spatial variation and scale-dependency. The 

spatial heterogeneity and scale characteristics have been also addressed in UHI studies. 

For example, the energy budget equation is a function of location and characteristics 

(Nunez and Oke 1977), which are closely related to UHI formation. Also, as an important 

scale matching issue, determining how to quantify SUHI magnitude and intensity by 

pixel-based LST measurement is an challenge in urban thermal remote sensing (Weng 

2009).  The concept of “local climate zones” (LCZs) has emerged within this decade to 

address this heterogeneity. It is an up-to-date classification of urban landscapes for the 

unification of the characterization of the neighborhoods of climate research sites. For 
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urban climate studies, the concept of scale is fundamental to understanding the ways in 

which elements of the urban ‘surface’ interact with adjacent atmospheric layers.  

2.2 Conceptual Framework 

Local climate Zones

Comfort and health

Urban planning

Anthropogenic heat SUHI

Daily, monthly, yearly, 
annually...

Temperature

Humidity
Wind 

Sunlight radiation

Urban morphology 
Built-up land expansion 

Urban landscape

Urban climate

Urbanization

Urban system

Human 

 
Figure 2.1 Conceptual framework to assess interaction between urbanization and climatic factors 

on formation of UHI. 

The framework for UHI investigation and mitigation is based on the above 

concepts and theories. First, urbanization is the most dramatic form of land 

transformation. The increase of built-up land in the urbanization process results in loss of 

moisture content, increased heat storage, and results in changes in chemical composition, 

surface structure, and roughness, all of which affect UHI formation (Majumdar and 
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Biswas 2016; Jiang, Fu, and Weng 2015). For example, vegetation usually has higher 

evapotranspiration than built-up areas, and thus has lower surface temperatures. 

Meanwhile, the roles played by particular factors vary from city to city with 

respect to differences in geographical location, overall size, etc. (Zhao et al. 2014). Local 

temperature, precipitation, humidity, wind, sunlight and other climatic parameters affect 

city design in terms of its general structure, orientation, building forms, materials, etc.  

All the components and the related relationships are influenced significantly by the 

urbanization process which is driven by socioeconomic activities. Thus, the UHI 

phenomenon also changes over time.  

The relationships among urbanization process, local geographic background, and 

human well-being in an urban system are illustrated in the conceptual diagram (Figure 

2.1). The connections among the key components and their linkages across spatial (local-

landscape–region) and temporal (day-year–decade) scales should be considered for UHI 

study. All the components and their relationships are influenced profoundly by the speed 

and spatiotemporal pattern of urbanization that is driven primarily by socioeconomic 

processes. 

Remote sensing provides the main data source for this study. Indicators related to 

remote sensing used in this study are LST, urban morphology, and underlying 

biophysical factors.  

2.3 Research Objectives 

The overall objective of this study is to analyze SUHI with remote sensing 

techniques for three metropolitan areas of Texas, USA: Dallas-Fort Worth (DFW), 

Austin, and San Antonio by answering the following questions:  
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(1) Does the SUHI vary within and among the three major metropolitan areas in Texas 

and how can LCZ be used to improve the characterization of SUHI?  

(2) Can the spatial dynamics of SUHI be explained by the LCZs and underlying factors 

and if so, are the findings uniform among different areas?  

To answer the question, there are three objectives:  

1) Build a GIS-based LCZs classification scheme with the aid of airborne Lidar datasets 

and other freely available GIS data to assess the utility of Lidar to contribute to LCZs 

classification.  

2) Link the Landsat derived LST with LCZs mapping to test if LCZs are able to 

efficiently analyze the LST variation in the three metropolitan areas; and investigate 

how LCZs affect the SUHI phenomenon by facilitating comparative analysis. 

3) Explore how the underlying landscape properties (e.g., land cover and terrain 

morphology) are significantly related to the SUHI phenomena, and how the 

relationship varies within and among different areas.  
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3  APPLICATION OF AIRBORNE REMOTE SENSING DATA ON MAPPING 
LOCAL CLIMATE ZONES: CASES OF THREE METROPOLITAN AREAS 

OF TEXAS, U.S. 

3.1 Introduction 

Currently, more than half the world’s population lives in cities, and this proportion is 

expected to reach 66 percent by the year 2050 (United Nations 2014). In the urban 

expansion process, natural landscapes are replaced by built-up land and impervious 

surfaces. Different from many other land types in the earth system, urban land use and 

land cover (LULC) is characterized by substantial spatial heterogeneity—due in large 

part to differences in the configuration and use of these built landscapes. Crucially, 

variability in urban LULC is linked to heterogeneity in energy absorption, storage and 

emittance, wind turbulence, and anthropogenic energy release, among other phenomena 

(Bowler et al. 2010; Mirzaei and Haghighat 2010; Hart and Sailor 2008). One important 

ecological consequence of urbanization that relates to this observation is urban heat 

islands (UHIs), which have continuously drawn attention since they were first described 

in the 1810s (Howard 1818; Oke 1976; Imhoff et al. 2010; Mirzaei 2015). UHIs are 

generally defined as a city or urban area that is warmer than the surrounding rural area. 

That being said, despite the ample attention paid to UHIs over the past two decades, it 

remains difficult for researchers to obtain reliable UHI measurements. Among other 

reasons, the diversity and spatial arrangement of urban canopy components makes it hard 

for researchers to set a surface datum for UHI measurements (Weng 2009). 

To address this issue, the “local climate zone” (LCZ) classification scheme was 

designed in 2012 to describe urban landscapes from the aspect of the thermal climate 
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characteristics (Stewart and Oke 2012). LCZs are defined as “regions of uniform land 

cover, surface structure, construction material, and human activity that span hundreds of 

meters to several kilometers on a horizontal scale” (Stewart and Oke 2012) (p. 1884). 

LCZ classification aims to standardize the characteristics of urban morphology for urban 

places and locate and build weather stations to capture the heterogeneous nature of urban 

climate processes. Due to this standardized classification, the LCZs concept may be 

applied across the landscape in different regions of the world for the comparison of urban 

climate. Additionally, LCZs mapping can significantly broaden our understanding of UHI 

mechanisms and mitigation by providing a reasonable sampling framework and 

additional underlying details for surface-energy balance models as well as urban climate 

models (Alexander, Mills, and Fealy 2015; Bechtel et al. 2015). 

The 17 standard LCZ classes (see Table A1) are determined by their surface 

characteristics, including: composition (building/tree), structure (permeability), fabric 

(albedo, thermal admittance), and metabolism (e.g., Table 2 on p. 1885 of (Stewart and 

Oke 2012)). Unique combinations of these properties provide a distinctive thermal 

regime for each LCZ (Geletič, Lehnert, and Dobrovolný 2016; Stewart and Oke 2012). 

Researchers have conducted several case studies in cities worldwide to validate the 

practicability of mapping LCZs with different methods (Bechtel and Daneke 2012; 

Leconte et al. 2015; Nassar, Blackburn, and Whyatt 2016; Xu, Ren, Cai, Edward, et al. 

2017; Zheng et al. 2017; Ng 2015).  For example, in an effort to build a worldwide LCZs 

database for UHI-related studies, the WUDAPT (e.g., World Urban Database and Access 

Portal Tools) project has conducted several studies with free software and data (Mills et 
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al. 2015; Bechtel et al. 2015; Bechtel et al. 2016; Xu, Ren, Cai, Edward, et al. 2017; Cai 

et al. 2017).  

To date, there is still no standard or optimal method for LCZs mapping. Among all 

the published case studies by the WUDAPT initiative and other studies, satellite imagery 

has provided the main data source to derive surface properties suggested in Table A1, 

Appendix, largely because of the time and accuracy limitations of field measurements of 

surface characteristics used for LCZs mapping (Ng 2015). Satellite image-based 

technology has been extensively used for LCZs mapping. Although the WUDAPT 

method and other straightforward remote sensing classifications provide a fast way to 

obtain urban morphology information for LCZs mapping (Xu, Ren, Cai, Edward, et al. 

2017; Bechtel et al. 2016; Bechtel and Daneke 2012), subjective delineation of training 

areas in the complex urban settings can result in low-quality LCZ mapping (Geletič and 

Lehnert 2016). Studies have also indicated non-satisfactory results for high-density cities. 

For example, Xu, Ren, Cai, and Wang (2017)) evaluated the WUDAPT mapping 

procedure by Landsat data with a random forest (RF) tree and other remote sensing 

classification methods (e.g., neural network, support vector machine, maximum 

likelihood, etc.), and the experimental results showed that the accuracy merely ranged 

from 59% to 64% in Guangzhou, China.  

Some researchers have presented findings using a GIS-based method, whereby a 

decision-making algorithm delineates LCZs according to thresholds placed on specific 

geometric and surface cover properties based on the LCZs concept. These studies suggest 

some advantages of GIS-based methods relative to remote sensing methods, including 

comprehensiveness of input factors, classification accuracy, standardization, and 
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objectification of the classification procedures (Wang et al. 2017; Zheng et al. 2017; 

Unger, Lelovics, and Gál 2014; Geletič and Lehnert 2016). Aside from the mapping 

methods, more accurate delineation of LCZ classes requires supplementary information 

about building and vegetation structure, considering their indispensable roles in the LCZs 

definitions (Stewart and Oke 2012). Studies have demonstrated lower-quality LCZs 

classification results with limited information on urban structure. For example, LCZs 

mapping in Guangzhou reached around 60% using the WUDAPT method (Xu, Ren, Cai, 

Edward, et al. 2017) and LCZs mapping of Hong Kong demonstrated lower classification 

accuracy when comparing results from the WUDPT method and GIS-based method 

(Wang et al. 2017).  

Light detection and ranging (Lidar) data provide a viable source with which to 

acquire information on structural characteristics of surface features. However, while 

Lidar data have been employed to detect vegetation structure and digitize urban 3D maps, 

its application for LCZs mapping has rarely been studied (Koc et al. 2017); and no 

studies using Lidar for LCZ mapping have been conducted in the U.S. Rather, most 

current publications are related to cities in European and South Asian regions (Geletič, 

Lehnert, and Dobrovolný 2016; Zheng et al. 2017; Cai et al. 2017; Xu, Ren, Cai, Edward, 

et al. 2017; Lehnert et al. 2015; Unger, Lelovics, and Gál 2014). To assess the utility of 

Lidar to contribute to LCZs classification, this study presents a GIS-based LCZs 

classification scheme with the aid of airborne Lidar datasets and other freely available 

GIS data for three major metropolitans in Texas, USA: Dallas-Fort Worth (DFW), 

Austin, and San Antonio. The LCZs classifications were then mapped and compared in 
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an effort to provide a standardized urban morphology classification for future studies of 

surface temperature variability and UHI effects.  

3.2 Materials and Methods  

3.2.1 Study Area 

DFW, Austin, and San Antonio were selected for the LCZs mapping because of their 

hot and humid summers and population concentration (Figure 3.1 and Table 3.1). 

However, there have been few UHI studies within these metropolitan areas, and 

comparisons of UHI results are difficult because of variations in mapping units and land 

cover characteristics. Located in North Texas, Dallas and nearby Fort Worth were 

developed as a result of the construction of major railroad lines through the area. Rapid 

industrialization resulted in accelerated socioeconomic growth and land use changes, 

leading to the consistent rise of the UHI phenomenon (Winguth and Kelp 2013). In 

addition, Dallas is projected to continue to grow rapidly. Growth projections forecast an 

approximate increase of 45% in population, 44% in employment, and 55% in vehicle-

miles traveled from 2013 to 2035.  

Austin, the capital city of Texas, connects the main metropolitan areas (including 

Houston) of Texas with each other. The low unemployment rate and high quality of life 

combine to create a rapidly increasing population. The year 2014 alone witnessed a 2.5 % 

population growth and 5.88 % economic expansion, and Austin is currently ranked 

among the top 20 fastest-growing cities in the U.S. (America’s 20 Fastest-Growing Cities 

last accesed March 21th, 2018). Austin is influenced by a humid subtropical climate, with 

long hot summers and short mild winters.  
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San Antonio is located in south central Texas; situated between the Edwards Plateau 

to the northwest and the Gulf Coastal Plains to the southeast. The city is known for its 

Texas history, culture, and downtown beauty, and it attracts more than one million 

tourists per year (Bremer 2004). Interstate highways (I-35, I-37, and I-10) connect San 

Antonio to major Texas population centers and to primary border crossing points into 

Mexico. 

 
Figure 3.1 Location of the three metropolitan study areas in Texas, USA. 

 
Table 3.1 Population statistics of the study areas from the U.S. Census Bureau. 

 Population, 
Census, 
April 1, 
2010 

Land area 
(square 
miles), 
2010 

Estimated 
population 
(July 1, 
2015) 

Housing 
units  
(July 1, 
2015) 

Estimated 
population 
change (2010-
2015, %) 

Texas Total  25,145,561 261,231.71 27,469,114 10,587,752 9.2 
San Antonio 1,327,407 460.93 1,469,845 524,246 10.7 
Dallas 1,197,816 340.52 1,300,092 516,639 8.5 
Austin 790,390 297.90 931,830 354,241 14.8 
Fort Worth 741,206 339.82 833,319 291,086 12.2 
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3.2.2 Data Derivation and Preprocessing for LCZs Mapping 

 

Figure 3.2 Land use and land cover distributions of three metropolitan areas derived from 
NLCD 2011. 

3.2.2.1 LCZs Preliminary Classification by Surface Cover Properties 

The development of a GIS-based LCZs classification scheme was based mainly on 

the LCZs definition and LCZs delineation criteria (Stewart and Oke 2012). Considering 

that the original proposal of LCZs mapping is to investigate UHI, individual LCZs are 

supposed to be constant throughout the year compared to the seasonal and even annual 

variation of the surface and air temperature. LCZs classes can be categorized as two 

types: built-up cover and natural cover. Hence, a preliminary classification was 

performed based on the 30*30 m resolution 2011 National Land Cover Database 

(NLCD), the thematic accuracy of which has been established in the literature (Wickham 

et al. 2017). First, a customized Arcpy Package was designed by the author to reclassify 
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the surface cover properties from NLCD into LCZs groups or LCZs in the ArcGIS 

environment. Some land cover classes were directly classified or merged into individual 

categories of LCZs (C, D, E, F, and G), while others were classified into LCZ groups 

(LCZs 1-10 built-up type category or LCZ E Bare rock or paved) (Table 3.2).  

Table 3.2 The look-up table of Local Climate Zones (LCZs) pre-classification by NLCD 
classes. 

NLCD code NLCD class name LCZ code LCZ class name 
11  Open Water LCZ G Water 
21  Developed, Open Space 

LCZs 1-10 
LCZ E 

Built-up types 
Bare rock or paved 

22  Developed, Low Intensity 
23  Developed, Medium Intensity 
24  Developed, High Intensity 

31 Barren land LCZ E Bare rock or paved 
LCZ F Bare soil or sand 

41  Deciduous Forest LCZ A 
LCZ B 

Dense trees 
Scattered trees 42  Evergreen Forest 

43  Mixed Forest 
52  Shrub/Scrub LCZ C Bush, scrub 
71  Grass/Herbaceous 

LCZ D Low plants 

81  Pasture/Hey 
82  Cultivated Crops 
90  Woody Wetland 

95 Emergent Herbaceous 
Wetlands 

3.2.2.2 Lidar Data Acquisition and Processing 

Lidar datasets were obtained from the Texas Natural Resources Information System 

(TNRIS), downloaded manually per tile online, or transferred directly from a hard drive. 

They were derived from different projects acquired between 2007 and 2013 (Figure 3.3). 

The point density, horizontal and vertical accuracies, datum and projection information 

are provided in Table 3.3Table 3.3 Metadata of Lidar projects for the study areas.. 
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Table 3.3 Metadata of Lidar projects for the study areas. 

Project Name 
Point 
Space 
(cm) 

Horizontal/ 
Vertical 
Accuracy 
 (cm, MSE) 

Horizontal/ 
Vertical Datum Projection Units Point Classes 

Dallas-Fort Worth         

StratMap 2013 Ellis, 
Henderson, Hill, Johnson, 
Navarro 

50 NA/3.43-6.1 
NAD83, 
NSRS2007/NAVD88, 
GEOID 12A 

UTM Zone 
14N  Meters  1, 2, 3, 4, 5, 6, 7, 9, 

13 

StratMap 2012 TCEQ Dam 
Sites 50 75/25 NAD83/NAVD88, 

GEOID 09  
UTM Zone 
14N  Meters  1, 2, 3, 4, 5, 6, 7, 9, 

13 

FEMA 2011 Parker 100 60/37 NAD83/NAVD88, 
GEOID 09  

UTM Zone 
14N  Meters  1, 2, 7, 9, 10, 11 

StratMap 2011 Collin, 
Denton, Kaufman 50 NA/6.03-

7.13 
NAD83/NAVD88, 
GEOID 09  

UTM Zone 
14N  Meters  1, 2, 4, 6, 7, 9, 13 

Grand Prairie 2009 70 30-45/9.1 NAD83/NAVD88, 
GEOID 03 

State Plane 
Texas North 
Central  

Feet Ground, man-made, 
vegetation 

StratMap 2009 Dallas 100 NA /12-15.9 NAD83/NAVD88 UTM Zone 
14N  Meters  1, 2, 6, 7, 9, 12, 13 

StratMap 2009 Tarrant 50 100/NA NAD83/NAVD88, 
GRS80  

UTM Zone 
14N  Meters  1, 2, 3, 4, 5, 6, 7, 9 

Austin         

CAPCOG 2012 Travis 140 N/A NAD83/NAVD88 State Plane 
Texas Central Feet 1, 2, 3, 4, 5, 6, 7, 9, 

11, 15, 17 
StratMap 2011 Caldwell, 
Gonzales 50 75/15 NAD83/NAVD88 UTM Zone 

14N  Meters  1, 2, 4, 6, 7, 9, 13 

CAPCOG 2008 Bastrop, 
Fayette, Hays 140 100/18.5-37 NAD83/NAVD88 

State Plane 
Texas South 
Central  

Feet Ground/unclassified 
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Table 3.3-Continued 
CAPCOG 2007 Caldwell, 
Travis, Williamson 140 100/18.5 NAD83/NAVD88 State Plane 

Texas Central Feet Ground/unclassified 

San Antonio            

FEMA 2011 Comal, 
Guadalupe 100 60/12.5 

NAD83, 
NSRS2007/NAVD88, 
GEOID 09 

UTM Zone 
14N  Meters  1, 2, 7, 9 ,10, 11 

StratMap 2010 Bexar 50 100/19 NAD83/NAVD88, 
GEOID 09  

UTM Zone 
14N  Meters  1, 2, 6, 7, 9, 12, 13 

CAPCOG 2007 Caldwell, 
Travis, Williamson -- -- -- -- -- -- 

CAPCOG 2008 Bastrop, 
Fayette, Hays -- -- -- -- -- -- 

Notes: NAD refers to North American Datum; UTM refers to Universal Transverse Mercator. Point Classes are based on ASPRS 
classification: Class 1: Unclassified; Class 2: Bare Earth; Class 3: Low Vegetation; Class4: Medium Vegetation; Class5: High 
Vegetation; Class 6:  Buildings; Class 7: Low point/Noise; Class 9: Water; Class10: Rail; Class11: Road Surface; Class 12: 
Overlap; Class 13: Bridges/Culverts; Class 15: Transmission Tower; Class 17: Bridge Deck. – refers to “Same as Above” 
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Figure 3.3 Lidar dataset coverages and project names for DEM production and building 
footprint extraction per metropolitan area. 

All Lidar datasets were delivered with ground points classified. Specific metadata 

regarding acquisition parameters and subsequent project deliverables are provided in 

Table 3.3. Given the variable nominal point spacing of the different Lidar acquisitions, 

digital terrain models (DTMs) with 3m*3m and 1m*1m resolution were generated for the 

three study areas using the “LAS Dataset to Raster” tool in ArcGIS 10.5 Conversion 

Toolbox and “Average Cell Assignment Type” using ground points only. Similarly, the 

digital surface models (DSMs) were generated with 3m*3m and 1m*1m resolution and 
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“Maximum Cell Assignment Type” to represent the surface combined ground, built-up, 

vegetation, etc. DTMs from different sources were merged together after being re-

projected to same spatial reference (NAD UTM Zone 14N) for the three study areas. The 

same procedures were applied to the DSMs. Then, normalized digital surface models 

(nDSMs) with 3m*3m and 1m*1m resolutions were built by subtracting the DTMs from 

the DSMs. Figure 3.4 shows the spatial pattern of nDSMs for the study areas and Figure 

3.5 provides a detailed illustration of nDSMs for a selected area in San Antonio.  

 

Figure 3.4 Normalized digital surface models (nDSMs, unit: meters) with 3m*3m 
resolution of three metropolitan areas. 
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Figure 3.5. Detailed illustration of normalized digital surface models (nDSMs, meters) 
with 1m*1m resolution for a small area in San Antonio. 

Building footprints are very important to distinguish individual LCZs among the 

LCZs 1-10 built-up category, in terms of the building height (high-rise, mid-rise, or low-

rise) and fraction (compact or open). The available datasets from the different sources 

were first checked. Building footprints of the central and south parts of Austin were 

created by the City of Austin Enterprise Geospatial Services. They were digitized mainly 

from 2012/2013 orthoimagery and made available through the official website of the City 

of Austin, but they did not cover the entire metropolitan area. Similarly, building 

footprints for the downtown area of Dallas were digitized from 2009 aerial photography 

and available through “City of Dallas City GIS Services” website (Dallas City GIS 

Services last accessed March 21th, 2018.), but the coverage extent was very small and 

not up-to-date. 

Here, the buildings footprint for the three metropolitan areas was extracted using the 

Lidar mass point clouds. For several projects (e.g., CAPCOG 2007”, “CAPCOG 2008”, 
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and “FEMA 2011 Comal, Guadalupe”), buildings had not yet been classified from the 

mass point clouds (Table 3.3). Also, even though the Lidar point clouds were already pre-

classified for buildings in the StratMap 2010 Bexar Lidar dataset in San Antonio, I found 

that most that the data had a high omission error in this project. Hence, building 

classification was still necessary for this project. The buildings from point clouds for 

Austin and San Antonio were first classified with point cloud task tool “Planar Point 

Filter”, in which the parameters were set after several trial and error runs (Table 3.4). 

Subsequently, together with the Lidar projects (e.g., projects in DFW) in which buildings 

had already been classified, the building outlines were extracted as shapefile polygons 

from Lidar data in LP360, a software for the Lidar data management and post-processing, 

with the automated point cloud task tool “Point Group Tracing and Squaring” for the 

developed areas. 

Table 3.4 Parameter settings for building classification and extraction in LP360. 
Parameters Value Unit 
Building Filter: Planar Point Filter 

Minimum and Maximum Building Height 8/6000 Feet 
N Threshold 0.40 Feet 
Minimum and Maximum Slope 0/45 Degree 
Minimum Plane Edge 10 Feet 
Maximum Grow Window Area 5000 Square Feet 
Plane Fit 0.2 NA 

Building Extractor: Point Group Tracing and Squaring 
Max Planar Patch Area 5000 Square Feet 
Grow Window Size 5.5 Feet 
Trace Window Size 12 Feet 
Minimum Area 100 Square Feet 
Regularization Angle Degrees 30 Degree 

Note: “N Threshold” refers to the distance to consider a point as part of the 
plane. “Plane Fit” refers to the tightness of the fit of the planar surface. 
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To assess the building extraction performance, high-resolution 30cm imagery 

provided by ERSI ArcGIS was chosen as a base map and overlain by the building points. 

The result showed that numerous trees were misclassified as buildings, especially in 

northern Austin and northern San Antonio (Figure 3.6). Additionally, the buildings points 

were not fully classified where the buildings were under trees in some mixed 

development/vegetated areas. From the LCZs definition, single or scattered buildings in 

undeveloped areas or highly vegetated areas (e.g., a single family house located in NLCD 

classes 31-95, and refer to Figure 3.2 for NLCD distribution for the study areas) were 

excluded from potential classification as LCZs 1-10 (Table 3.2). Therefore, to avoid this 

classification error due to the limitation of the algorithm in software and insufficient data 

points due to tree canopy, the buildings located in developed land areas (NLCD 21-24) 

were only considered and extracted in the subsequent building extraction step. 

 

Figure 3.6 Errors of building classification for an area in northern San Antonio.  
(Note: Red outlines demonstrate algorithm identification of buildings, while blue circle 

indicates errors of commission.) 
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To further improve the accuracy of the buildings extraction steps detailed above, I 

manually interpreted and deleted erroneous building outlines with the aid of high-

resolution historical images from Google Earth and base maps in ArcGIS, as well as the 

above-mentioned building footprints for parts of Dallas and Austin. The algorithm also 

identified elevated highways and major roads as buildings, and the large extent of the 

study areas makes it time-intensive to drop them off manually. Considering that the aim 

of building footprints is to calculate the buildings surface fraction, while the material and 

shape of these man-made above ground properties makes them meet the general concept 

of “buildings”, I did not delete these small proportion of properties from the building 

footprints. Figure 3.7 shows examples of the detailed buildings extraction results at 

selected intensively developed areas.  
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Figure 3.7 Detailed illustrations (left) of building extractions from a selected part (right) 
of the three study areas. 

3.2.3 LCZs mapping Scheme 

3.2.3.1 Determination of LCZs Mapping Scale 

It was necessary to set a common scale for different properties calculations as well as 

the further aggregation for LCZs mapping. The NLCD with 30*30 m resolution was the 

original data source for LCZs preliminary classification. Meanwhile, the definition of 

LCZs mentioned uniform region spans “hundreds of meters to several kilometers on a 

horizontal scale” to ensure the homogeneity of the zones. In climatology, this is often 
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referred to as a scale between micro and meso-scales.(Bechtel et al. 2015). This broad 

range of scale definition allows us to customize the scales for the derivation of properties 

to map LCZs according to the data sources and urban characteristics. However, it is 

certain that the smallest unit of LCZs should be a homogenous area in terms of the 

surface conditions related to the local climate formulation, including building structure, 

vegetation types, etc.   

There is more morphological variation for high density building areas within a 

certain distance than other areas in the city environment (Zheng et al. 2017). In this study, 

three sites with the same area of 131.25 square kilometers located at the most intensely 

developed land cover area were selected to test the spatial dependency characteristics of 

the building structure to objectively identify the LCZ mapping scale. The best-fit 

parameters of the variogram models for each sampled dataset were explored using the 

Geostatistical toolset in ArcGIS 10.5.  

3.2.3.2 LCZs properties generation and LCZs mapping 

Using the reclassified NLCD and Lidar-derived datasets, seven geometric and 

surface cover properties (provided in Table A1) were calculated. The ability of the 

threshold, which was codetermined by seven properties, to identify individual LCZ was 

first tested for a fraction of the study area using the “knowledge-based classification” tool 

in ERDAS IMAGINE 2015. It demonstrated that the definition of thresholds of LCZs 

properties in Table A1 cannot be directly used for LCZs classification and that a straight 

combination of all the seven thresholds can lead to a situation in which a substantially 

redundant area will not belong to any LCZ. A similar issue was also identified in other 
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GIS-based LCZs mapping studies (Zheng et al. 2017; Geletič and Lehnert 2016). 

Published case studies confirmed that not all features defined in the LCZs concept are 

equally important for LCZs mapping (Bechtel et al. 2015), and that not all features can be 

included in a GIS-based LCZs delineation algorithm (Geletič, Lehnert, and Dobrovolný 

2016). According to the analysis by Bechtel et al. (Bechtel et al. 2015), the height of 

roughness is the most important characteristic of the urban structure while the pervious 

surface fraction (PSF) is important to represent urban fabric and cover. We referred to 

recent publications and determined three properties which had been most frequently used 

for LCZs mapping: height of roughness (Wang et al. 2017; Unger, Lelovics, and Gál 

2014; Zheng et al. 2017; Geletič and Lehnert 2016; Koc et al. 2017), building surface 

fraction (Wang et al. 2017; Unger, Lelovics, and Gál 2014; Zheng et al. 2017; Geletič 

and Lehnert 2016; Koc et al. 2017), and pervious surface fraction (PSF) (Koc et al. 2017; 

Zheng et al. 2017; Geletič and Lehnert 2016; Unger, Lelovics, and Gál 2014).  

The height of roughness elements was considered as the principal properties for 

LCZs mapping after the pre-classification from NLCD. The height of roughness elements 

refers to the geometric average of building heights (LCZs 1–10) and tree/plant heights 

(LCZs A–F). The absolute height of surface objects (e.g., built-up, vegetation, etc.) was 

calculated based on the nDSMs to extract height of roughness, which was used to 

subdivide the LCZ 1-10 into three groups (e.g., LCZs high-rise 1 and 4, LCZs mid-rise 2 

and 5, as well as LCZs low-rise 3, 6, 7, 8 and LCZ sparsely built) and extract the LCZ D 

low plant from the group LCZ A, B, and D (Figure 3.8). Building surface fraction refers 

to the ratio of building plan area to total plan area. The average building surface fraction 

was calculated as the proportion of building footprints in a 30*30 m2 pixel area. PSF was 
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calculated as the opposite proportion of Impervious Surface Fraction (ISF), gathered from 

the 2011 NLCD.  

Furthermore, due to the lack of specific information, thermal, radiative, and 

metabolic properties, which are important to determine a certain class (e.g, LCZ 10 

Heavy industry), we checked the City GIS Services websites of the related study areas, 

and gathered the city land use planning datasets for recent years. The heavy industry 

areas were extracted and mapped to LCZ 10 Heavy industry. Together with the height of 

roughness, those variables delineate the grouped LCZs in the last step. Python statements 

were used for the automated classification of these grids according to the modified values 

from Table A1. Figure 3.8 shows the overall LCZs decision-mapping scheme by 

considering different properties and in each step. 
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Classification
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Figure 3.8 Overall Local Climate Zones (LCZs) mapping scheme. 
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Sky view factor (SVF), Aspect ratio (H/W), and terrain roughness classes are also 

defined with the specific threshold for LCZs identification (Stewart and Oke 2012). SVF 

varies with height and spacing of buildings and trees and it affects radiational 

heating/cooling. For LCZs identification, it refers to the ratio of the amount of sky 

hemisphere visible from ground level to that of an unobstructed hemisphere (Stewart and 

Oke 2012). In this study, the nDSMs with 3m*3m resolution was used to calculate SVF 

using the open source Relief Visualization Toolbox. The 3m*3m resolution was chosen 

mainly because of the capability of the tool, and the 3m*3m resolution SVF meets the 

accuracy requirement. Aspect ratio (H/W) refers to the mean height-to-width ratio of 

street canyons (LCZs 1–7), building spacing (LCZs 8–10), and tree spacing (LCZs A–G). 

Due to the variation of the city architecture and building geometry, there is no 

standardized method for calculating aspect ratio, especially for LCZ mapping (Houet and 

Pigeon 2011; Zheng et al. 2017). For this study, the maximum height in a 30*30 pixel 

area based on nDSMs was calculated. Areas with height lower than 0.5 meters were 

assumed to be ground, and the average width of the ground surface in a 30*30 pixel area 

was calculated based on nDSMs dataset with 3m*3m resolution. Then, the aspect ratio 

map (maximum height/average width of the ground surface) was calculated as a property 

for LCZs mapping evaluation according to the LCZs definition. The Davenport 

roughness classification method has been adopted as the terrain roughness classes for 

LCZs definition (Stewart and Oke 2012; Davenport et al. 2000). The values of roughness 

length were grouped into eight classes of roughness. The roughness classes with this 

method was defined based on the current database of NLCD and nDSM. Due to the 
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complementarity of ISF and PSF from the data sources, PSF was abandoned for LCZs 

evaluation. 

3.3 Results 

3.3.1 Scale Selections for GIS-based LCZs Mapping 

Considering the role of the height of roughness in LCZs mapping, the major ranges 

of variograms for building heights were compared (Figure 3.9). By performing an 

ordinary prediction, the Gaussian process regression was used to fit the experimental 

variogram to obtain optimized parameters. The variogram shows that the semivariance of 

the height of buildings increases as the distance of the building increase, especially for 

San Antonio, and then stays in the sill when the distance reaches to certain extent (e.g., 

the range of the variogram) (162.87 m, 193.41 m, and 139.18 m for DFW, Austin, and 

San Antonio, respectively). Hence, the scale of the LCZs mapping should be higher than 

the maximum of the ranges of the variograms of building heights for the selected areas to 

ensure homogenous climate zones in terms of the urban morphology.    
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Figure 3.9 Experimental variogram models (left) of building height for selected areas 
(right). 

Additionally, it was also necessary to set a common scale for various parameter 

calculations to further identify possible LCZs. The maximum resolution of the data 

sources for LCZs mapping is 30 meters (e.g., NLCD). Here, the spatial resolution of 90 m 

was considered for LCZs parameters generation. Subsequently, to meet the requirement 

of the homogenous building morphology condition as explored by the variogram models 

and to facilitate LCZs mapping conveniently and efficiently, a 3 × 3 cell (270 m × 270 m) 
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moving window around each cell was used for further aggregation. Hence, in accordance 

with the proposal of LCZs for urban climate study as a uniform of land cover and surface 

structure, the scale for the LCZs mapping was determined to be 270 × 270 meters. 

3.3.2 Spatial Distribution of LCZs Maps 

LCZs were identified and tested with the mapping scheme and the threshold defined 

by Stewart and Oke (2012) (Table A1). Overall, the LCZs maps show a generally similar 

pattern in all the three metropolitans, with LCZ 1-10 “built-up cover” types generally 

surrounded by LCZs A-G “natural cover” types (Figure 3.10). The LCZs mapping results 

were overlaid with the high resolution historical Google Earth imagery to evaluate the 

mapping accuracy. This spatial distribution corresponds with the underlying land cover 

shown with high resolution imagery (e.g., Figure 3.11). As illustrated, profiles of some 

LCZs in Figure 3.11, most of the LCZs were matched correspondingly with the 

representative examples shown in Table 2 in p. 1885 of Stewart and Oke (2012). In our 

mapping, I found that the areas with building fraction less than 15% are usually occupied 

by dense or tall vegetation, leading to the height of roughness elements higher than 15 

meters (Figure 3.11). Thus, the height of roughness threshold was adjusted for LCZ 

Sparsely built identification (Table A1). 
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Figure 3.10 Spatial distribution of LCZs for the three metropolitan areas at Texas.  
(Note: the labels on the map are the locations of the illustrated sites in Figure 3.11 

 with the detailed examination at Google Earth.) 

The LCZs maps capture most of the underlying land cover and urban morphological 

characteristics, with less than 1% of “holes” which were not assigned to LCZs. I noted 

that LCZ E Bare rock or paved is mosaicked with LCZ 1-10 “Built-up cover” types by 

zooming in the LCZs maps, filling in the LCZ 4 Open high-rise in the form of straight 

lines. The more intensely developed city system in DFW along with transportation 

construction (car parking lot, wide traffic roads, railway yards, etc.) lead to a higher 

percentage of LCZ E (e.g., Dallas-Fort Worth airport is distinguishable in Figure 3.10) 

than the other two metropolitans.  
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LCZ 1 Compact high-rise LCZ 4 Open high-rise LCZ 9 Sparsely built 

Figure 3.11 Examples of the typical LCZs for the three metropolitan areas. 
(Note: The first line shows the profiles of DFW, the second line shows the profiles of 

Austin, and the third line shows the profiles of San Antonio.) 

For Austin and San Antonio, LCZs 1-10 are compactly distributed in the central 

urbanized area, and the surrounding rural areas of these two metropolitans shows a large 

percentage of LCZ A and LCZ B relative to LCZ D. LCZ A Dense trees is the typical 

LCZ in the eastern part if the cities, while the LCZ B Scattered trees is concentrated in 
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the southern part, and LCZ D Low plants is concentrated in the western part. For the San 

Antonio area, there is a clear contrast of the northern and southern part, dominated by 

LCZ A Dense trees and LCZ D Low plants, respectively.   

3.3.3 Validation of GIS-based LCZs Mapping  

I examined the SVF, aspect ratio, and terrain roughness of the main LCZs of the 

study areas to evaluate the LCZs mapping result (Figure 3.12). Findings of the 

differences of the SVF and aspect ratio is in agreement with results from a prior GIS-

based LCZs mapping study (Zheng et al. 2017). SVF thresholds of LCZs urban areas 

(especially LCZs compact) are generally lower than LCZs natural types, with noticeable 

variation among them. For most of the major LCZs of the three areas, their mean SVF 

values are within, or close to, the thresholds provided in Table A1, except LCZ 9 

Sparsely built, LCZ A Dense trees, and LCZ G Water. (Figure 3.12). This indicates that 

the SVF is an important factor for LCZs fine delineation. In the SVF calculation, I used a 

DEM with 3 meters resolution and set the diameter to 90 meters, which may lead to SVF 

differences. In addition, I consider the effects introduced by buildings, bridges, or 

vegetation for SVF calculation according to the definition, though some studies exclude 

the impacts of trees when calculating SVF for LCZs “built-up” types delineation. , 

considering that the green cover in suburb areas might affect the calculation (Koc et al. 

2017).  
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Figure 3.12 Boxplot of LCZ parameters of the main LCZs types of three metropolitan 
areas. 

(Note: Please refer to the name of LCZs from Figure 3.10). 

Regarding aspect ratio, LCZ 4 showed higher and wider range of aspect ratio than 

other LCZs built-up types due to the variation in height of tall buildings, and LCZ A also 

demonstrate high aspect radio due to tall trees. However, most of LCZs showed 

considerable variation and departure from the standardized threshold (e.g., LCZ 8 Large 

low-rise, LCZ 9 Sparsely built, and LCZ A Dense trees, and LCZ G Water). So far, there 

is no standard method for the aspect ratio calculation, which lead to the differences from 

thresholds defined by Stewart and Oke (2012). Hence, in future, it is necessary to achieve 
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the consensus in terms of the interpretation of different properties for GIS-based LCZs 

mapping.  

Due to the coarse classification of the terrain roughness classes, its value matches the 

definition of LCZs. 

3.4 Discussion 

3.4.1 Advantages of Lidar for GIS-based LCZs Mapping  

The integration of Lidar data helped to incorporate detailed urban and vegetation 

morphology information for LCZs mapping at the scope of whole metropolitans. So far, 

there has only been one study using Lidar data for LCZs mapping, and it was conducted 

within a small portion of suburban Sydney, Australia, owing mainly to the time and 

expense limitations of data acquisition (Koc et al. 2017). With the free availability of 

Lidar datasets and updated NLCD in the U.S., the study provides evidence that the 

automated GIS-based LCZs mapping can be replicable to other cities in the U.S. by 

extracting and incorporating fine-scale 3D urban morphological information from a 

couple of Lidar-derived products.  

Additionally, Lidar datasets provide detailed urban geomorphology to analyze LCZs 

mapping scale. There are different findings for LCZs mapping scale, indicating that 

spatial characteristics vary worldwide due to urban forms, urban development history, 

geographical location, and hydrogeological setting. For example, the scales for LCZs 

mappings have been assigned with 100 m in a suburb area of Sydney, Australia (Koc et 

al. 2017), and Seoul, South Korea (Lee and Oh 2017), 120 m in Khartoum, Sudan 
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(Bechtel et al. 2016), and 500 m in Szeged (Unger, Lelovics, and Gál 2014). In addition, 

Kotharkar and Bagade (2017) mapped the LCZs of Nagpur, India with different scales 

(e.g., 250 m, 500 m and 1000 m) to explore the appropriate LCZ zoning unit, and they 

found that 250 m led to fragmented LCZs maps for the city with scattered distributions of 

slums (Kotharkar and Bagade 2017). Based on the height of buildings, 270 m was 

defined as a homogeneous scale in this research, and it is in accordance with the 300 m 

LCZs mapping scale in Hong Kong, which was based on a more intensive and 

sophisticated examination of building characteristics (Zheng et al. 2017). However, the 

compatibility and rationality of the mapping zoning still need more verification in the 

future UHI study of the areas. 

With detailed urban morphology information provided by Lidar data, the decision-

making algorithm considers land cover, the height of roughness, building surface 

fraction, pervious surface fraction, and industrial sites from top to done to get LCZs 

maps. This GIS-based mapping scheme ensures that only one LCZ can be assigned to a 

given morphological area without “overlaps” or “holes” caused by parameter 

combinations of all the LCZs properties (Bechtel et al. 2015). In addition, other 

geometric and surface cover properties including SVF in the mapped LCZs are basically 

in accordance with the LCZs definition, which indicates the effectiveness of the LCZs 

mapping. Since the main propose of LCZs maps are for urban climate studies, a 

comprehensive examination of LCZs maps would consider the thermal characteristic 

(e.g., surface or air temperature) in future studies. 
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3.4.2 Uncertainties of the LCZs mapping Method 

For the LCZs mapping itself, the LCZ was defined as an area with uniform land 

cover, surface structure, constructions material, and human activity (Stewart and Oke 

2012). On the one hand, both the urban and natural landscape are heterogeneous, 

meaning that each LCZs is not an absolute homogenous region and there is no clear 

boundary between different LCZs. For instance, the LCZ G Water considers different 

water bodies with the same surface properties in the LCZs definition, given that the LCZs 

were mainly developed for a city environment. Similarly, the LCZ 9 Sparsely built 

showed different landscape characteristic for different sites when linking with Google 

Earth 3D imagery (Figure 3.11). Through they all match the LCZs definitions, their 

corresponding climate can be different due to the different thermal characteristics. LCZ E 

includes two types of land surface cover: Bare rock and paved. Nevertheless, linking the 

LCZs maps with Google Earth showed that most LCZ E in these three metropolitans are 

from urban transportation (roads, highways, parking places, airports, etc.). These 

examples indicate that some types of LCZs might need to be further sub-classified in 

terms of LCZs mapping at the metropolitan level or to fit the characteristics of different 

cities worldwide. Overall, LCZs mapping is a compromise between the universality and 

local accuracy. 

Additionally, the LCZs definition did not consider the seasonal variation, which 

might lead to misinterpreted surface property results. Furthermore, the related properties 

for LCZs mapping were derived from secondary data sources with a time gap. NLCD 

2011 data was derived from 2008-2010 Landsat data whereas Lidar projects were 

conducted by a suite of vendors working for various agencies or clients that all had 
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different accuracy thresholds and acquisition period requirements (Table 3.3). An 

example of how the combination of various projects may manifest in the results is for 

areas dominated by broadleaf deciduous trees to produce spatial inconsistencies in the 

output maps.  

In terms of the geometric and surface cover properties for LCZs definitions, not all 

features can be observed straightforwardly by Earth observation techniques. For example, 

human activities are still challenging to observe from space. I used the land use planning 

data for the industrial sites to represent the anthropogenic heat release, which does not 

take other surface properties into account. Furthermore, the study provided evidence that 

properties in Table A1 cannot be equally utilized to identify an individual LCZ with GIS 

decision-mapping method. In addition, the area along the LCZs boundary can be 

considered as fuzzy areas if the local heterogeneity being considered as mentioned, 

leading to another uncertainty for LCZs delineation. Future work can include the Fuzzy 

membership classification method or incorporate other remote sensing classification 

methods to explore the “cut off” values of LCZs properties. 

3.4.3 Comparative Analysis of LCZs Maps for Three Metropolitan areas   

In this study, LCZs mapping provides a platform to make a comparative analysis of 

the urban morphology and vegetation structure of the three metropolitan study areas. 

Regarding LCZs built-up types, there is a tendency that most of the urbanized area is 

categorized into open LCZs (e.g., LCZ 4 Open high-rise, LCZ 5 Open mid-rise, LCZ 6 

Open low-rise), especially for DFW and San Antonio. Overall, DFW shows more 

diversity in terms of LCZ “built-up cover” types due to the complex regional character 
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compared to other metropolitan areas. The highest urbanization rate of DFW manifested 

itself with the highest percentage of LCZ “built-up cover” types. 

 

Figure 3.13 Statistical summary of the area proportion of LCZ 1-10 “Built-up cover” 
types in the respective LCZs maps of three metropolitan areas. 

Additionally, the LCZs maps indicate an urban develop trajectory and the related 

urban form. DFW has the largest absolute amount and proportion of LCZs 1-10 “built-

up” types. It corresponds to the fact that DFW is one of the largest inland metropolitan 

areas in the country and the economic hub of Texas. The relatively high proportion of 

LCZ 10 Heavy industry for DFW also indicates that the historical railroad construction 

and rapid industrialization led to the development of the DFW metropolis. The LCZs 

“built-up types” is concentric along the Highway I-35 across Austin, which corresponds 

with the function of Austin as the hub of communications to link DFW, Houston, and San 

Antonio. As a fast-growing and economic center similar to DFW, the Austin-Round Rock 

metropolitan area also has a considerable amount of LCZ 4 Open high-rise with 

compacted urban morphological structure concentrated on downtown areas. In contrast, 

the high buildings in San Antonio are loosely distributed, leading to a larger proportion of 

LCZ 5 Open mid-rise intersect with LCZ 6 Open low-rise. As the oldest city with 
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landmark events and a slower pace of economic development, San Antonio-New 

Braunfels metropolitan has maintained this diversely distributed urban form. 

The LCZs “natural types” distribution reflects the slightly different natural 

environment of the natural land of these three metropolitans. Given the geographical 

location and the climate environment, DFW is also different from the other two 

metropolitans regarding LCZs “natural types” diversity. Obviously, LCZ D low plants is 

dominant in the surrounding areas of DFW, which corresponds to the flat topology that 

more than 90% of the area lies in an elevation ranging from 130 meters to 300 meters 

(calculated from DTM) and land coverage with grassland and pasture. In addition, LCZ 

D Low plants and LCZ G Water also play role in intersecting LCZs 1-10 “built-up types” 

for the entire DFW and separating the area into four major city centers: Dallas, Fort 

Worth, Arlington, and Irving in the role of metropolitan “corridors”. Further investigation 

of “corridors” at DFW implies that the main rivers, streams (with a length of more than 

100 kilometers), and water bodies lead to the formation of the strip of LCZ D Low plants 

and LCZ G Water (Figure 3.14). Their role of separating LCZs 1-10 “built-up types” in 

the developed land areas warrants additional investigation, and the role of mitigating 

surface UHI needs further exploration.   
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Figure 3.14 Major rivers, streams, and water bodies of DFW metropolitan areas. 

LCZ A-G “Natural cover” types were generally more diversely distributed at Austin 

and San Antonio. With substantial amount grassland, pasture, and cultivated crops 

distributed along the majority of peripheries, LCZ D is the most typical LCZs types of 

three metropolitan areas (Figure 3.15).  Furthermore, Austin has the highest percentage of 

LCZ A Dense tree, followed by San Antonio. Austin and San Antonio are also dominated 

by LCZ C Bush, scrub. In contrast, it is interesting to note the tiny proportion of LCZ C 

Bush, scrub at DFW, in accordance with the minimal coverage of NLCD class (e.g., 52 

Shrub/Scrub). In addition, all metropolitan areas have slightly few LCZ F Bare soil or 

sand coverage versus other natural cover types, indicating that all of the areas are 

benefited from the LCZ “natural cover” types with the cooling effect of vegetation and 

water. 
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Figure 3.15 Statistical summary of the area proportion of LCZ A-G “Natural cover” types 
in the respective LCZs maps of three metropolitan areas. 

In addition, there is a clear contrast between LCZ A Dense trees and LCZ D low 

plants at Austin and San Antonio, which apparently corresponds with the coverage by 

Trees and Grass or pasture. Further investigation indicates that the phenomenon is 

consistent with the regional geological characteristics. The geological structure of 

limestone and dolomite combination or limestone and clay combination at the eastern 

part of Austin and the northern part of San Antonio contribute to the tree growth and thus 

the distribution of LCZ A Dense trees, while the geological structure with limestone and 

sand combination or clay and fine-grained mixed clastic type combination lead to the 

development of grassland or pasture at western Austin or northwestern San Antonio 

(Figure 3.16). 
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Figure 3.16 The geological structure of Austin and San Antonio metropolitan.  
(Data is from U.S Geological Survey) 

With a high percentage of LCZ A-D in a natural environment and LCZs Open high-

rise and mid-rise in urbanized areas, the LCZs maps contribute to the worldwide LCZs 

studies in a high-density urbanization scenario. LCZs Compact types have been found in 

cities or mega-regions which are the economic hub of the region or the country, including 

Singapore (Ng 2015), Hong Kong (Zheng et al. 2017), the Yangtze River Delta (YRD) 

(Cai et al. 2017), Wuhan and Guangzhou (Xu, Ren, Cai, Edward, et al. 2017), etc. In 

contrast, LCZs characteristics of the study areas have relatively low percentages of LCZ 

compact types but high fragmentation of LCZs open types. There are other LCZs maps 

similar to the LCZs mapping, including Nagpur city (India) with the considerable LCZ 9 

Sparely built (Kotharkar and Bagade 2017), and Szeged (Hungary) with dominant LCZ 6 

Open low-rise followed by LCZ 8 Large low-rise (Unger, Lelovics, and Gál 2014). Since 

each city has own size, and development trajectory, and is exposed to diverse local and 

synoptic factors, the related urban environmental issues are not comparable without a 

standard datum. Here, the above LCZs comparisons indicate that LCZs mapping can be a 
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criteria regarding the land cover character and urban morphology to further analyze and 

comprehensively describe the urban climate with heterogeneous human-environment 

interactions. 

3.5 Conclusions 

In this paper, a methodology for LCZs classification was built based on high-

resolution airborne remote sensing data, national land cover dataset, and city land use 

planning data in the three metropolitan areas of Texas, U.S.: DFW, Austin, and San 

Antonio with different sizes and shape. LCZs mapping scheme is advantageous for the 

incorporation of detailed urban and vegetation morphology information at the scope of 

entire metropolitans. The study provided evidence that Lidar-derived products can 

support automated GIS-based LCZs mapping to identify urban morphological 

information and standardize the mapping scheme for comparative studies of metropolitan 

areas in the U.S.   

Our LCZs mapping extends the LCZs case studies in the world. The key findings of 

LCZs of the study areas are that: 1) Most of the urbanized areas are categorized into LCZ 

open types for all three metropolitans with different proportions and spatial diversity, but 

that DFW shows more diversity in terms of LCZ “built-up cover” types due to the 

complex regional character compared to other metropolitans; 2) LCZ D low plants is 

dominant in the surrounding areas of DFW, and LCZ A Dense trees and LCZ D low 

plants are dominant in Austin and San Antonio with clear regional contrast; 3) LCZs 

maps are in accordance with the underlying regional environment and urban develop 

trajectory of three metropolitans. These findings indicate that the complex urban 
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environment can be comparable by the criteria regarding the land cover character and 

urban morphology to further analyze and comprehensively describe the urban climate. 

Besides the function of the LCZs on measuring UHI effects, it is reasonable and 

necessary to put LCZs mapping studies into a broader urban landscape view to 

understand the urban heterogeneity characteristic and the spatial distribution of thermal 

environment. For example, increasingly confronted with urban heat events, the urban 

planners are being aware of the need of optimizing urban planning processes with respect 

to urban thermal comfort and local climate (Scherer et al. 1999). Hence, a further 

investigation of the thermal behavior characteristic of different LCZs, as the up-to-date 

classification of urban landscapes, is warranted in the next step. Along with this line, 

further studies on applying the LCZs mapping results to study UHI formation and 

evolution are important to fundamentally understand the ways in which elements of the 

urban ‘surface’ interact with adjacent atmospheric layers. 
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4  SURFACE URBAN HEAT ISLAND INVESTIGATION BY LINKING LAND 
SURFACE TEMPERATURE WITH LOCAL CLIMATE ZONES 

4.1 Introduction 

In contrast to the direct AUHI measurement, remotely sensed land surface 

temperature (LST) observation is time-synchronized with pixel values at a considerable 

areal extent (Nichol 1996). Voogt and Oke (2003) proposed the term SUHI to refer to 

UHI that is measured with remotely sensed LST data.  Compared to traditional air 

temperature measurement and AUHI study, LST data contributes to a broader 

understanding of spatial thermal patterns and the influence of surface properties on SUHI 

formation (Buyantuyev and Wu 2009). Whereas, there was a challenge to apply LST to 

estimate the SUHI intensity and analyze its spatial variability without a detailed 

information of the site characteristics. To fill this gap, some urban land cover related 

properties including LULC, the impervious surface percentage, vegetation intensity 

indices have been applied as the criteria to analyze the LST spatial variation and thus 

SUHI intensity. For instance, the LST characteristic of different urban land cover types 

has been examined (Li et al. 2012; Rinner and Hussain 2011; Zhou et al. 2013; Yue et al. 

2007), and the relationships between LST and normalized difference vegetation index 

(NDVI) have been well researched (Weng, Lu, and Schubring 2004; Yue et al. 2007). 

Studies have also found that SUHI is strongly related to urban morphology and building 

characteristics (Chun and Guhathakurta 2016b; Coseo and Larsen 2014). However, these 

studies made the conclusions regarding the spatial variation of SUHI intensity by using 

the self-designed criteria for the relevant cases, which hampered the SUHI 

communication. On the other hand, a comparative analysis of the SUHI intensity is 
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warranted for future urban planning exploration policy initiatives. In terms of 

comparative studies of the spatial variation of SUHI intensity, there have been limited 

case studies with the criteria of built-up land intensity (Zhou et al. 2014), or impervious 

surface area (Imhoff et al. 2010). For instance, the impervious surface area was used to 

investigate the SUHI amplitude and its relationship to development intensity, size, and 

ecological setting for 38 metropolises in the continental United States. However, these 

criteria is just based on one property related to the surface temperature and local climate. 

On the other hand, in order to standardize observation protocols, the Local Climate 

Zones (LCZs) concept was introduced in 2012 to improve the documentation of UHI 

observations (Stewart and Oke 2012). LCZs are defined as “regions of uniform land 

cover, surface structure, construction material, and human activity that span hundreds of 

meters to several kilometers on a horizontal scale” (Stewart and Oke 2012) (p. 1884). The 

LCZ classification intends to standardize the worldwide exchange of urban temperature 

observations. The 17 standard LCZ classes (see Table A1) are determined by their 

surface characteristics, including: composition (building/tree), structure (permeability), 

fabric (albedo, thermal admittance), and metabolism (e.g., Table 2 on p. 1885 of (Stewart 

and Oke 2012)). Unique combinations of these properties provide a distinctive thermal 

regime for each LCZ (Geletič, Lehnert, and Dobrovolný 2016; Stewart and Oke 2012).  

Compared to traditional SUHI investigation, the use of LCZs provides a standardized 

measure, grounded in the zoning practices enacted on urban spaces, by addressing the 

spatial heterogeneity and 3D characteristics of the urban landscape. With this universally 

accepted standard, it became possible to make a comperhensively comparative analysis of 

SUHI. For instance, Geletič et al. (2016) indicated that LCZ classes are distinguishable 
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from each other in terms of surface temperature based on the cases of two central 

European cities. An LCZs mapping study of the Yangtze River Delta megapolitan region 

in China further showed LST variation among LCZs (Cai et al. 2017). More recently, 

Kotharkar and Bagade (2018) assessed the inter-LCZ temperature difference and 

identified LCZs at Nagpur city with stationary meteorological observation and mobile 

surveys. A recent study of Wuhan, China explored the climatic effect of the spatial 

pattern of LCZs by treating the individual LCZ as a homogenous landscape zone, and the 

result indicated that the spatial pattern of LCZs is an important factor of SUHI (Wang et 

al. 2017). Still, relative to plentiful studies on LCZs mapping, little research has been 

done in terms of evaluating and applying LCZs for urban climate studies. 

Further investigation of the thermal behavioral characteristics of different LCZs is 

clearly warranted. This study will incorporate the LCZs concept to study and compare the 

SUHI effect for three major metropolitan areas, considering their limited scientific SUHI 

study. These three areas have several similarities including the similar regional climate 

and relatively flat topography, fast increasing population, top best places to live in U.S., 

etc. Meanwhile, these three metropolitan areas have their own size, shape, development 

trajectory, and urban pattern. Here, a comparative analysis of the SUHI intensity related 

to their LCZs comparison would lead to the communication of the SUHI mitigation 

strategies. Specifically, I attempt to link the Landsat derived LST with LCZs mapping in 

order to 1) test if LCZs are able to efficiently analyze the LST variation in the three 

metropolitan areas; and 2) investigate how LCZs affect the SUHI phenomenon by 

facilitating comparative analysis based on cases of the three study areas.  
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4.2 Methodology 

4.2.1 Background of study areas  

DFW, Austin, and San Antonio are located in the central part of Texas, U.S. (Figure 

4.1). The Interstate highway I-35 passes through the metropolitan areas and connects 

them to other states and to border crossing points into Mexico. They are three of the 

major population and economic centers of Texas. Each city demonstrates high summer 

temperatures with humid weather (Table 4.1).  

 

Figure 4.1 Study boundaries and land cover distributions of three metropolitan areas 
derived from the NLCD 2011.  
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Table 4.1 Summer monthly air temperature and precipitation summary of the study areas 
    June July August 

Austin 
Average high temperature (°C) 33.4 35.3 36.1 
Average low temperature (°C) 22.4 23.6 23.7 
Average precipitation (mm) 110 48 60 

Dallas 
Average high temperature(°C) 32.9 34.8 35.8 
Average low temperature (°C) 19.6 21.6 21.8 
Average precipitation (mm) 118 71 54 

Fort Worth 
Average high temperature (°C) 32.7 35.3 36.1 
Average low temperature (°C) 21.3 23.1 23 
Average precipitation (mm) NA NA NA 

San Antonio 
Average high temperature (°C) 33 34.8 34.8 
Average low temperature (°C) 22 23.3 23.1 
Average precipitation (mm) 109 52 65 

Source: U.S climate data website, http://www.usclimatedata.com/ 

There has been limited scientific research of SUHI within these metropolitan areas, 

although a study by Darby and Senff (2007) found Dallas was almost 2.2ºC warmer than 

the surrounding rural area at nighttime when temperatures were averaged over the time 

period of 2000 to 2006. Their results also indicated that the UHI was more evident in 

Dallas than in Houston in terms of daytime temperatures (Darby and Senff 2007).  The 

climate of DFW was categorized as humid subtropical, with an annual mean temperature 

of 18.8°C, and annual precipitation of 839.91mm (Winguth and Kelp 2013). Another 

study indicated that there was an overall positive trend in the UHI increase of 0.1 

°C/decade in DFW from 2001-2011, and urban climate was influenced by the profound 

inter-annual and decadal variations (North Central Texas Council of Governments 2013). 

To date, the SUHI effect in Austin and San Antonio has not been well studied. One study 

reported that the average LST increased by 4.7 °C from 1993 through 2011, and the 

largest increase occurred for built-up land, barren, and cultivated land cover (Richardson 

2015). A more recent study of Austin by Kim et al. (2016) found that larger and better-

http://www.usclimatedata.com/
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connected landscape spatial patterns were positively correlated with lower LST at the 

neighborhood level. Xie et al. (2005) studied the SUHI effect of the San Antonio area 

using the MODIS/Aqua product from 2002 to 2005, and reported that the downtown San 

Antonio area was 4-5°C higher compared to the entire region at nighttime and 6-8 °C 

higher at daytime 

4.2.2 Land surface temperature retrieval  

Landsat data have become the foremost source for fine scale SUHI studies since 

2008 when the entire archive became freely available. Landsat generally meets the basic 

requirement of a spatial resolution of 50 m or less for SUHI analysis at the district level 

(Sobrino et al. 2012). This relatively fine spatial resolution and multiple spectral bands 

make it an ideal data source to study SUHI by linking the spatial thermal characteristics 

with underlying landscape patterns.  

Considering the obvious adverse impact on the human comfort of hot weather for 

cities in the tropical and subtropical region of the northern hemisphere at summer, we 

focused on the SUHI phenomenon during the summer months. Thus, three images from 

Landsat 8 sensors on July 20, 2015, for the three study areas were obtained to calculate 

LST for SUHI investigation. The TIRS sensor on Landsat 8 has two thermal infrared 

bands in the atmospheric window between 10 and 12μm. Several algorithms (e.g., Plank 

function, radiative transfer equation, split-window algorithm, single channel algorithm) 

can be used to invert LST (Jiménez-Muñoz et al. 2014). A recent study suggested that the 

Planck function and the single channel algorithm showed the best performance for 

Landsat 8 TIRS though comparing the different algorithms of LST extraction (Isaya 

Ndossi and Avdan 2016). In this study, we applied the Planck function for LST 
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calculation and use the normalized LST for SUHI comparison for three study areas. 

Considering band 11 is associated with higher calibration uncertainty and more sensitive 

to water vapor continuum absorption (Coll et al. 2012; Yu et al. 2014), LSTs were 

computed based on band 10 for this study.  

First, the Top of Atmosphere (TOA) radiance (e.g., radiance measured by the 

sensor,𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇,𝜆𝜆) was converted to brightness temperature with the following equation.  

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐾𝐾2

𝑙𝑙𝑠𝑠 � 𝐾𝐾1
𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇,𝜆𝜆

+1�
        (1) 

where 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠is temperature in Kelvin (K), and K1 and K2 are calibration constants specific 

to the Landsat TIRS sensor, which can be obtained from the metadata of the imagery.   

The brightness temperature was further corrected against the land surface emissivity 

(LSE), which is essential for LST inversion due to the notable thermal variation of 

different land surface properties at a large spatial extent. The variation of vegetation 

coverage, surface moisture, surface roughness, and viewing angles leads to different 

LSEs for different cover types (Yu et al. 2014). The NDVI threshold emissivity 

estimation algorithm (Sobrino et al. 1990; Sobrino et al. 2004), a common method for 

LSE estimates was applied in this study. The NDVI values were used to distinguish 

between soil and vegetated pixels before LSE calculation. The TOA radiance values 

converted from digital number of band 4 (Red) and band 5 (NIR) from Landsat OLI were 

used for correspondent NDVI calculation to mitigate the effect from vegetation 

phenology. 
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Specifically, a NDVI threshold for rocks/soil (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠) was assigned with a value of 

0.2, and the NDVI threshold for vegetation (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣) was assigned a value of 0.5 (Peng et 

al. 2016; Yu et al. 2014). Thus, for a pixel with NDVI < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣, it was assumed to be 

bare soil or rock, with 𝜀𝜀𝜆𝜆 value of 0.966; and if NDVI > 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣, it would be assumed to 

be covered by full vegetation, with 𝜀𝜀𝜆𝜆 value of 0.986 (Yu et al. 2014). If the NDVI is 

between 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠 and𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣, then the pixels are considered to be a combination of 

vegetation and rocks/soil. Equations (2-4) were used to represent the relationship between 

NDVI and LSE to calculate the LSE for corresponding pixels.  

𝜀𝜀𝜆𝜆 = 𝜀𝜀𝑣𝑣𝜆𝜆𝑃𝑃𝑉𝑉 + 𝜀𝜀𝑠𝑠𝜆𝜆(1 − 𝑃𝑃𝑉𝑉) + 𝐶𝐶𝜆𝜆      (2) 

where 𝜀𝜀𝑣𝑣𝜆𝜆and 𝜀𝜀𝑠𝑠𝜆𝜆are emissivity of vegetation and soil, respectively. 𝐶𝐶𝜆𝜆 calibrates the 

cavity effect due to surface roughness.  

𝐶𝐶𝜆𝜆 = (1 − 𝜀𝜀𝑠𝑠𝜆𝜆)𝜀𝜀𝑣𝑣𝜆𝜆 𝐹𝐹′(1 − 𝑃𝑃𝑉𝑉)     (3) 

𝐹𝐹′ is a geometrical factor, assigned to 0.55, by assuming different geographical 

distributions (Sobrino et al. 1990), while 𝑃𝑃𝑉𝑉 is vegetation fraction. 

        𝑃𝑃𝑉𝑉 = [ 𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁−𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

]2     (4) 

The Planck's function was used to perform for LSE correction of the substance 

compared to the blackbody.  Thus, the value of brightness temperature was converted to 

LST (Artis and Carnahan 1982; Isaya Ndossi and Avdan 2016).  

   𝑇𝑇𝑇𝑇 = 𝐵𝐵𝑇𝑇
1+𝜆𝜆𝐵𝐵𝑇𝑇𝜌𝜌 𝑙𝑙𝑠𝑠𝜀𝜀𝜆𝜆

         (5) 

where 𝑇𝑇𝑇𝑇 is LST in Kelvin (K), and 𝐵𝐵𝑇𝑇 is brightness temperature (e.g., 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) in this 

study. λ is the wavelength of emitted radiance (band 10 was used for LST calculation, 
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and λ = 10.895 μm for Landsat 8 TRIS), ρ (e.g.,  ℎ∗𝑐𝑐
𝜎𝜎

) =1.438 × 10-2 mK. 𝑇𝑇𝑇𝑇 was then 

converted into Celsius LST (°C). 

4.2.3 Applying LCZs for SUHI investigation  

To explore the application of LCZ mapping for SUHI analysis, we test the 

hypothesis that each LCZ demonstrates unique and typical LST characteristics and that 

LCZs can facilitate intra- and inter-comparisons for SUHI intensity for the three 

metropolitan areas. To obtain independent observations for statistical tests and 

exploration, we first examined the autocorrelation characteristics of the LST pixels by 

using the Geostatistical toolset in ArcGIS 10.5. LST pixels were sampled systematically 

at a 270 m interval for the subsequent analysis to derive independent LST observations 

and match the LCZs scales.  

Overall, differences in mean LST for each LCZ among all the 17 LCZs were 

explored in the context of a one-way analysis of variance (ANOVA). After the overall F-

test of the ANOVA revealed that mean LST is different for at least one pair of LCZs 

under investigation, we further identified specific (statistically significant) pairwise 

differences in mean LST by employing post hoc Tukey’s Honest Significant Difference 

(HSD) test for the three metropolitan areas.  

To make intra- and inter-comparisons of SUHI intensities for the three metropolitans 

by incorporating LCZs mapping results, the “Distribution Index” (DI) method was 

adopted to explore the relative contribution of individual LCZs to the entire SUHI 

phenomenon of the metropolitans (Peng et al. 2016). We focused on “high” LST pixels as 

a direct indicator of the SUHI phenomenon. To quantify “high” LST pixels, the original 
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LSTs were normalized and recoded into four categories from “cool” to “hot” using Jenks 

natural breaks classification (Weng et al. 2008).  

𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚�

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑆𝑆⁄
                                     (6) 

where i means the individual LCZ, ranging from 1 to F, and 𝑁𝑁𝑁𝑁𝑆𝑆 refers to distribution 

frequency of high LST pixels for an 𝐿𝐿𝐶𝐶𝐿𝐿𝑆𝑆. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚⁄  refers to the proportion of 

the area with high LST (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚) in the area of a LCZ (𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚). 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑆𝑆⁄  refers to the 

proportion of the area with high LST (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ) in the entire metropolitan area (𝑆𝑆). A DI 

value of 1 represents an average contribution to the overall hot environment of SUHI 

phenomenon. Therefore, for LCZ 1 to LCZ G, 𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚 larger than 1 means  𝐿𝐿𝐶𝐶𝐿𝐿𝑆𝑆 has a 

heating effect on the SUHI, while 𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚 lower than 1 means the 𝐿𝐿𝐶𝐶𝐿𝐿𝑆𝑆 has a cooling 

effect on the SUHI of the metropolitan area.  

4.3 Results 

4.3.1 Spatial distributions of LST and LCZs  

As meteorological conditions (e.g., synoptic situation) may vary over the three 

metropolitans at different times, the pixel values of the retrieved LST maps were 

standardized using the maximum difference normalization method to obtain the 

normalized temperatures for comparative analysis (Error! Reference source not 

found.). Overall, there was an obvious SUHI phenomenon on July 20, 2015, for all three 

metropolitans, indicated by the similar characteristics of the LST spatial distributions. 

The high surface temperatures for each metropolitan area were most apparent both in 

downtown areas and within isolated urbanized zones (e.g., Plano, DFW; Georgetown, 
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Austin; New Braunfels, San Antonio), while low surface temperatures occurred along the 

central western side of Austin and northern San Antonio, where the topography was more 

complex and large forested areas remained intact. As expected, hotspots of LST were 

primarily located at the downtown areas and were often associated with the distribution 

of built-up land. The surrounding areas exhibited relatively lower LSTs. The coolest 

LSTs corresponded to water bodies (e.g., DFW).  

 
Figure 4.2. Spatial distributions of normalized land surface temperature (LST) for the 

three metropolitan areas, July 20, 2015.  
(Note: The standardized value from 0 to 1, means the LST ranges from low to high.) 

Figure 4.3 depicts LCZs classification results. Overall, by linking the spatial 

distribution of LCZs with Google Earth imagery, LCZs maps were determined to be in 

accordance with the underlying regional environment and land cover distributions. LCZ 

D occupied the largest area (e.g., LCZ D of DFW), composed of grassland and pasture 

(Figure 3.2). LCZ A (Dense trees) and LCZ B (Scattered trees) were also common LCZs 

for Austin and San Antonio, located in the eastern and southern part of the area, 

respectively. There was also a clear contrast between LCZ A (Dense trees) and LCZ D 

(Low plants) for Austin and San Antonio, respectively. 
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Regarding LCZs built-up types, there was a tendency that most of the urbanized area 

was categorized into open LCZs (e.g., LCZ 4 Open high-rise, LCZ 5 Open mid-rise, LCZ 

6 Open low-rise), especially for DFW and San Antonio. The most urbanized areas of 

DFW correspond to spaces with the highest percentage of LCZ “built-up cover” types. 

DFW showed the highest diversity in terms of LCZ “built-up cover” types due to the 

region’s complex regional characteristic. San Antonio is markedly different from the 

other two metropolitan areas in that high buildings are loosely distributed, leading to a 

larger proportion of LCZ 5 (Open mid-rise) adjacent to LCZ 6 (Open low-rise). As the 

oldest city of the three under investigation, and with a comparably slow pace of economic 

development, the San Antonio-New Braunfels metropolitan area has arguably the most 

diverse morphology of the three study areas. 

 
Figure 4.3 Spatial distributions of LCZs for three metropolitan areas in Texas. 
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4.3.2 Linking LST with LCZs mapping result  

The spatial distributions of LCZs and LST indicated that they can be connected to 

further investigate the SUHI. The statistical summary indicated considerable differences 

among LCZs in terms of the mean LST (Figure 4.4). In accordance with the above 

finding of LST patterns, the LSTs for “built-up cover” types (LCZs 1-10) were generally 

higher than those in “natural” cover types (LCZs A-G), for all three metropolitan areas. 

These qualitative LST patterns at LCZs were relatively consistent among the different 

metropolitan areas, despite their quantitative differences in terms of absolute LST values. 

On July 20, 2015, LCZ 1 (Compact high-rise) was the warmest LCZ, followed by LCZ 4 

(Open high-rise, except Austin), while LCZ G (Water) was the coolest zone among all 

zones for all three metropolitan areas, followed by LCZ A (Dense tree). We excluded 

LCZ 7 (Lightweight low-rise) and LCZ 8 (Large low-rise) in the following analysis due 

to low observed frequencies in the study areas. 

We observed LST variation among LCZs with various building densities. For 

example, LCZs compact types showed higher temperatures than LCZ open types (e.g., 

LCZ 1 vs LCZ 4; LCZ 2 vs LCZ 5, LCZ 3 vs LCZ 6), especially in DFW and Austin. 

Additionally, LCZ open types were warmer than LCZ 9 (Sparsely built). LCZs mapping 

helps to differentiate urban morphology characteristics within unique climate regions. 

Figure 4.4 demonstrates that the LCZs high-rise exhibited the highest median 

temperature, followed by LCZs mid-rise (e.g., LCZ 2 vs LCZ 5), and LCZs low-rise then 

LCZ sparsely built (e.g., LCZ 1> LCZ 2> LCZ 3, LCZ 4> LCZ 5> LCZ 6). Compared to 

other LCZs “built-up cover” types, LCZ 10 (Heavy industry) took on an entirely different 

distribution for all three study areas.  
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Figure 4.4 Box-plot summaries of LST values for LCZs for the three metropolitans on 

July 20, 2015.  
(Note 1: Please refer to the name of LCZs from Figure 4.3. Note 2: The line within each 
box represents the median of LST values at the corresponding LCZ, the bottom of the 
box indicates the first quartile of LST values, and the top indicates the third quartile of 

LST values.) 
 

LST values were further evaluated on distribution density for each LCZ to ensure the 

assumption of normality was met for the subsequent ANOVA analysis (Figure 4.5). Most 
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of the LST distributions were Gaussian except LCZ F Bare soil or sand for Austin and 

LCZ G Water for all three metropolitans. Along with greater variation and more outliers 

evident in the box plot summaries, significant departures from the mean LST were also 

demonstrated for the LCZ G Water. The homogeneity of variance assumption was not 

satisfied in the ANOVA; however, a nonparametric K-W test and post hoc Conover tests 

produced results that were qualitatively the same as the ANOVA and Tukey’s HSD. 

Therefore, the latter (parametric) results were presented. The results of the one-way 

ANOVA F-test demonstrated that the differences among LCZs were significant in terms 

of the surface temperature (p < 0.001) (Table 4.2). 

Table 4.2 Summary of ANOVA for testing the difference of LCZs in terms of the LST 
for three metropolitan areas, July 20, 2015. 

 
DF of 
Model 

DF of 
Residuals SSM SSR F p 

Dallas-Fort 
Worth 14 130219 557472 665913 7787 <2e-16  

Austin 14 58586 67197 258722 1087 <2e-16  
San Antonio 14 61708 97066 337060 1269 <2e-16  

DF: degrees of freedom; SSM: Sum of squares of model; SSR: Sum of squares of 
Residuals 

 

 
Figure 4.5 Density distributions of land surface temperature (LST) values for LCZs on 

July 20, 2015, for the three metropolitans. 
 (Note: Please refer to the name of LCZs from Figure 3.10) 
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Results from the Tukey HSD tests are provided in Figure 4.6. An empty space for a 

pair of correspondent LCZs means that they did not show significant differences in terms 

of the LST. Most pairs of LCZs showed significant differences in mean LSTs on July 20, 

2015, with high significance levels. This suggests that LCZs plausibly have utility for 

identifying distinctive, relatively homogeneous LST zones. Among 91 pairs of LCZs, 

there are 78, 82, and 81 pairs of LCZs indicating significant LST differences for each of 

DFW, Austin, and San Antonio, respectively (e.g., 85.71%, 90.11%, and 89.01%).  

Combined, the results suggest that for the three metropolitan areas, LCZ 1 (Compact 

high-rise), LCZ 4 (Open high-rise), LCZ 5 (Open mid-rise), LCZ 6 (Open low-rise), LCZ 

10 (Heavy industry), LCZ A (Dense trees), LCZ B (Scattered trees), LCZ D (Low 

plants), and LCZ G (Water) might have the most discriminatory power for identifying 

different LST zones. For DFW, LCZ E (Bare rock or paved) and LCZ F (Bare soil or 

sand) was not distinguished from each other, as well as some LCZs built-up types, in 

terms of surface temperature. Also, for DFW, LSTs for LCZ 3 (Compact low-rise) could 

not be distinguished from other LCZ open types. For the zones in Austin, most of the 

LCZs built-up types were associated with significant pairwise differences in LST, except 

for LCZ 2 (Compact mid-rise), which was statistically indistinguishable from LCZ 1 

(Compact high-rise), LCZ 3 (Compact low-rise), and LCZ 5 Open mid-rise. However, the 

LCZs “natural cover” types (LCZ A-LCZ G) were all significantly different from each 

other in terms of LST. For San Antonio, most LCZs showed that LSTs were 

distinguished very well, especially for the LCZ 9 (Sparsely built) and LCZ 10 (Heavy 

industry).   
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LCZ 2 ***                
LCZ 3 *** ***               
LCZ 4 ***   ***             
LCZ 5 *** ***  ***            
LCZ 6 *** ***  *** ***              
LCZ 9 *** *** * *** *** ***          
LCZ 10 ***  ** *** *** *** ***         
LCZ A *** *** *** *** *** *** *** ***        
LCZ B *** *** *** *** *** ***  *** ***       
LCZ C *** *** ** *** *** **  *** ***       
LCZ D *** *** *** *** *** *** *** *** *** ***      
LCZ E *** ***  *** ***  *** *** *** *** *** ***    
LCZ F *** ***  *** ***  *** *** *** ** ** ***    
LCZ G *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
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LCZ A *** *** *** *** *** *** *** ***        
LCZ B *** *** *** *** *** *** *** *** ***       
LCZ C *** *** *** *** *** *** ***  *** ***      
LCZ D *** *** *** *** *** *** *** *** *** *** ***     
LCZ E *** *** *** *** *** *** ***  *** ***  ***    
LCZ F *** *** *** *** *** *** *** *** *  *** *** ***   
LCZ G *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
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LCZ 2 ***               
LCZ 3 *** ***              
LCZ 4 *** *** *            
LCZ 5 *** *** ***            
LCZ 6 *** ***  *** ***          
LCZ 9 *** *** *** *** *** ***         
LCZ 10 *** ***     ***        
LCZ A *** *** *** *** *** *** *** ***       
LCZ B *** *** *** *** *** *** *** *** **      
LCZ C *** *** *** *** *** *** *** *** ***      
LCZ D *** *** *** *** *** ***  *** *** *** ***     
LCZ E *** *** *** *** *** ***  *** *** *** *** ***    
LCZ F *** *** *** *** *** ***  *** *** *** ***  ***   
LCZ G *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
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Figure 4.6 Tukey HSD test result for LCZs in terms of the LST differences.  

(Note: ‘***’: significance at 0.001 level; ‘**’: significance at 0.01; ‘*’: significance at 
0.05 level for that pair of LCZs. Empty space implies no significant difference of the 

corresponding LCZs pairs. Pairs with red color indicates the mean value of the column 
LCZ is higher than that of the row LCZ, while the green color indicates the mean value of 

the column LCZ is lower than that of the row LCZ.) 
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4.3.3 Application of LCZs on SUHI investigation  

 
Figure 4.7 Distribution index (DI) of high-temperature centers for LCZs in three 

metropolitans on July 20, 2015.  
(Note:  Please refer to the name of LCZs from Figure 4.3. The horizontal lines indicate 

that DI equals to 2.0 and 1.0, respectively.) 
 

DI values related to “high” LST pixels were calculated to quantify the contributions 

of “hot” LST pixels from various LCZs within each metropolitan and compared to the 

relative contributions of the specific LCZs between metropolitans (Figure 4.7). The DI 

value further demonstrated the heterogeneity LST by LCZ. Overall, “built-up cover” 

types (LCZs 1-10) had DI values greater than 1 on July 20, 2015 except for LCZ 10 

(Heavy industry) and LCZ 9 (Sparsely built) for Austin and LCZ 9 (Sparsely built) for 

San Antonio. LCZ 1 (Compact high-rise), LCZ 2 (Compact mid-rise), LCZ 4 (Open high-

rise), and LCZ 5 (Open mid-rise) demonstrated high detrimental impacts on the thermal 

environment with DI ranges at or exceeding DI=2.  

In contrast, LCZs “natural cover” types had DI values of lower than 1, except LCZ D 

(Low plants) (1.13 in Austin and 1.04 in San Antonio), and LCZ E (Bare rock or paved) 

(1.16 for San Antonio and 1.38 for DFW). In terms of the effect of individual LCZ for the 

overall SUHI high temperature effect, LCZ G (Water) had DI values near 0, followed by 

LCZ A (Dense trees). This finding can be interpreted as there were rarely “high” LST 
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pixels in the normalized LST map on July 20, 2015 for these two LCZs types, indicating 

a clear cooling effect for the corresponding metropolitan areas.    

Overall, we observed a similar tendency of the heating/cooling effect of 

corresponding LCZs for the three metropolitan areas. Nevertheless, some of the inter-

metropolitan differences are noteworthy. In particular, LCZs of Austin demonstrated 

higher DI variation. Compared to DFW and San Antonio, most of the LCZs “built-up 

cover” types of Austin and some LCZ “natural cover” types (e.g., LCZ A Dense trees, 

LCZ C Bush, scrub, and LCZ D Low plants) demonstrated relatively higher DI values, 

indicating higher heating effects than the corresponding LCZs of other the two areas. On 

the other hand, other types of LCZs had higher cooling effect and could serve to mitigate 

the SUHI. For example, in Austin, both LCZ 10 (Heavy industry) and LCZ 9 (Sparsely 

built) had DI values less than 1, and this SUHI cooling effect was not observed in DFW 

or San Antonio.  

4.4 Discussion 

4.4.1 Applicability of LCZs for SUHI characterization  

With generally consistent findings for the three metropolitan areas, the significant 

differences of LSTs among LCZs demonstrated that LCZs mapping can facilitate LST 

variation analysis for SUHI measurement.  

First, LST variations were demonstrated among LCZs characterized by different 

LULC (LCZs “built-up cover” types and individual LCZs “natural cover” types). For 

example, due to the high thermal heat capacity of water relative to other surface 

properties, LCZ G Water had the lowest average surface temperature (around 27°C). LCZ 
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A Dense trees had the next lowest average surface temperature and accounts for a 

considerable proportion of the landscape in Austin and San Antonio. Similar findings 

regarding LST variation among LCZs were also observed in the Yangtze River Delta, 

China (Cai et al. 2017) and Prague, Brno, Czech Republic (Geletič et al. 2016). The 

variations in thermal behavior by different LULC has been well documented for several 

areas (Amiri et al. 2009; Bokaie et al. 2016; Lazzarini et al. 2013; Zhou et al. 2013). 

Together with these findings, the study demonstrates that land cover was the most 

important factor for the spatial variation of LST.  

Aside from LST variation with different land cover, one advantage of evaluating 

LST based on LCZs was that LCZ mapping considered complex urban morphology as 

homogenous climate zones, especially for LCZs “Built-up” types. In terms of the effect 

of the heterogeneous character of the urbanized area on LST spatial variation, previous 

studies have implied that various urban land uses and urban functional zones, such as 

commercial/resource/industrial land/parks and recreational land (Rinner and Hussain 

2011), or residential/commercial/industrial/institutional land (Li et al. 2014), or 

residential/industrial/CBD/ commercial/services/transportation areas (Yue et al. 2007) 

had very different thermal characteristics. The factors for LCZs definition have been 

studied separately, and they have been all reported to affect the LST spatial variation and 

SUHI formation, such as SVF (Chun and Guhathakurta 2016a; Unger 2008), albedo 

(Levy 2016), solar radiations (Chun and Guldmann 2014), etc.  

This study departed from previous research in that it addressed the need to examine 

3D urban morphological information with alternative parameters to derive a uniform 

zone in order to accurately report the LST spatial variation and render the results 
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comparable. First, our results show that LCZs Compact types were warmer than LCZs 

Open types and LCZ 9 Sparsely built. Further, LCZs Open high-rise (e.g., LCZ 1 and 

LCZ 4) were generally warmer than LCZs mid-rise (e.g., LCZ 2 and LCZ 5) and LCZs 

low-rise (e.g., LCZ 3, 6, 7, and 8). Of note, the LCZs differentiated by building density 

(e.g., Compact vs Open vs Sparsely built) demonstrated higher LST variations than those 

differentiated by the height roughness (High-rise vs mid-rise vs low-rise). Hence, the 

LST variation among LCZs 1-10 “Built-up” types suggested that building density had a 

prominent impact on the spatial variation of LST.   

Considering that the warm thermal environment in the urbanized area is due to the 

reduction of evapotranspiration by vegetation cover, the relationship of LST and NDVI 

has been explored in a number of studies to characterize the thermal behavior of 

urbanized areas (Bokaie et al. 2016; Li et al. 2011; Weng and Fu 2014; Weng et al. 2004; 

Yue et al. 2007). We further explored the relationship of LST and NDVI (calculated from 

the same Landsat 8 imagery) to evaluate the thermal behavior of different LCZs. With 

sufficient sampling size and strong statistical significance (p<0.001), the results of 

regression analysis showed a close inverse correlation between mean LST and NDVI for 

different LCZs (Figure 4.8).  
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Figure 4.8 Regression coefficients and coefficient of determinations (R2) for the linear 

regression between LST on July 20, 2015 and NDVI by LCZs.  
(Note 1: Please refer to the name of LCZs from Figure 4.3. Note 2: The LCZ E Bare 

rock, LCZ F Bare soil or sand, and LCZ G Water were excluded due to the low 
vegetation cover.) 

 
There was an apparent difference in the regression coefficient (-6.67 to -11.8) among 

LCZs, which showed the same pattern in the three metropolitans. This finding indicated 

the different thermal environments were formed in different LCZs. Here, LCZ C Bush, 

scrub of DFW showed a strong correlation with LST, which can explain its strong 

cooling effect, a contrast to the slight heating effect from LCZ C for the other two cities 

(Figure 4.8). It is noteworthy that the LCZ C of DFW corresponded to shrub and scrub 

along the river corridor, which run through the urban areas.   

4.4.2 Uncertainties of the LCZs mapping on SUHI analysis  

For each specific metropolitan area, there were several LCZs which cannot be well-

distinguished in terms of their LSTs, including LCZ 3 (Compact low-rise), LCZ E (Bare 

rock and paved), and LCZ F (Bare soil or sand). The phenomenon can partly be 

explained by the LCZs mapping limitation of this study. With relatively small 

composition, LCZ E and LCZ F showed different normalized main temperature ranges 

and heating/cooling effects among the three metropolitans. Also, LCZ F had the highest 
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LST variation. This can be explained by the fact that our GIS-based LCZs mapping 

emphasized the morphological characteristics rather than the surface materials. For 

example, LCZ E included two types of land surface cover: Bare rock and paved, and 

image interpretation in Google Earth showed that some areas of LCZ E belonged to 

transportation related impervious surfaces (highways, parking places, and airports). 

Nevertheless, the bare rock or impervious surface may show different thermal behavior 

of the surface materials during the late morning when Landsat passed over the study 

areas. It indicates that some other types of LCZs may need to be further classified in 

terms of LCZs mapping at the metropolitan level or to fit the characteristics of different 

cities worldwide.  

Compared to other LCZs “built-up cover” types, LCZ 10 (Heavy industry) 

demonstrated different thermal characteristics among the three metropolitan areas.  This 

could be in part because LCZ 10 (Heavy industry) was also sparsely distributed and 

contiguous with other LCZs throughout DFW (and to some extent for San Antonio). 

Also, we delineated LCZ 10 based on city planning data, which did not provide sufficient 

details about the intensity of industrial activities, thus leading to unexpected findings for 

LSTs.  

The uncertainties of LCZs mapping on SUHI investigation is also related to issues of 

scale. The common characteristic for LCZs with undistinguishable LST is the small area 

proportion and high fragmentation of those LCZs, which affected their thermal 

characteristics due to contributions from adjacent land covers. For LCZs mapping, the 

LCZs were defined as areas with uniform land cover and surface structure, construction 

material, and human activity, yet 270 m was assigned as the LCZs mapping scale based 
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on the height of buildings in this study. However, each LCZ was not an absolute 

homogenous region, and there was no clear boundary between them. We used the LST 

values at pixel level as samples for analysis, which might be located along the LCZ 

boundary. In addition, some surface properties may show heterogeneous thermal 

variation at a smaller scale than LCZs. For example, Zhang et al. (2009) reported that 

smaller patches of vegetated area provided less cooling than larger vegetated patches. In 

this study, several outliers of LCZ A Dense trees showed high temperatures, but this 

result was also observed by Geletič et al. (2016). In short, LCZs mapping was a 

compromise between universality and local accuracy. 

4.4.3 The effect of LCZs on SUHI formation 

With a uniform LCZ classification scheme, this study provided evidence that LCZ 

mapping can be replicable for comparative analysis of SUHI phenomenon. DI of high 

temperature further demonstrated that the LCZs mapping result can efficiently facilitate 

intra- and inter-comparisons for SUHI intensity. Apparently, the overall SUHI effect was 

primarily caused by the heating effect of built-up land cover.  Furthermore, this study 

indicates that some LCZs contributed to opposite heating/cooling effects (e.g., LCZ 9 

Sparsely built, LCZ D Low plants). Previous research has found that the effect of LCZ on 

SUHI is related to the geographic location. For instance, the complex and diverse urban 

morphology of LCZ 9 and the corresponding LSTs were also found in the LCZ mapping 

in the Yangtze River Delta, China (Cai et al. 2017).    

Furthermore, the spatial distributions of LCZs on SUHI intensity need be further 

studied. The LCZs distributions reflected the varying spatial arrangements of natural and 

built-up environments which in turn affected the LST spatial variation.  It is noteworthy 
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to recognize that the LCZs at DFW showed a lower capability to distinguish the LST 

variation throughout the region (Figure 4.6).  Specifically, DFW was different from the 

other two metropolitans regarding LCZs “natural cover” diversity and spatial distribution 

due to the geographical location and the climatic environment. Especially, LCZ D (Low 

plants) and LCZ G (Water) intersected with LCZs 1-10 “built-up cover” types with the 

highest proportion compared to the respective composition at Austin and San Antonio. 

They separated the urbanized areas of DFW into four major city centers: Dallas, Fort 

Worth, Arlington, and Irving in the role of metropolitan “corridors”. Further examination 

of the LCZs with Google Earth indicated that the main river and stream basins led to the 

formation of the strip of LCZ D (Low plants) and LCZ G (Water), neighboring with 

built-up land (correspondent with LCZ 4, and LCZ 5). This arrangement of LCZs for 

DFW was in accordance with the LSTs in terms of the low LST outliers in LCZ 4 (Open 

high-rise), LCZ 5 (Open mid-rise), and LCZ D (Low plants) and high LST outliers in 

LCZ G (Water). This intersection effect by different LCZs can also help to explain other 

outliers (e.g., LST in LCZ 9 Sparsely built and LCZ A Dense trees of San Antonio). An 

recent study of Wuhan, China also indicated that landscape layout of LCZs was an 

important factor of the SUHI formation (Wang et al. 2017). The spatial heterogeneity and 

scale characteristics have been also addressed in other SUHI studies (Luo and Peng 2016; 

Zhou et al. 2011). In this sense, further on the spatial heterogeneity and scale 

characteristics of the LCZs is needed in the future to lead a comprehensive finding. 

Our GIS-based LCZs delineation considered the incorporation of detailed urban and 

vegetation morphology information at the scope of entire metropolitan areas. Considering 

that our aims of LCZs mapping are to investigate SUHI, individual LCZs were assumed 
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to be constant throughout the year compared to the seasonal and even annual variation of 

surface temperature. However, some types of vegetation cover were more responsive to 

climate and environmental conditions and likely changed over time, leading to different 

heating/cooling effects for the entire region. Further investigation of the SUHI 

phenomenon at night time and in different seasons would contribute to a better 

understanding of the overall relationship between LCZs and LST.   

4.5 Conclusions 

This study assessed the utility of LCZs for comparative analysis of LST spatial 

variations and analyzed how the different LCZs affect the SUHI phenomenon. The 

linkage of LCZs and LST proved that the LCZs mapping can be used to compare and 

investigate the SUHI. With sufficient 3D urban morphological information, this study 

provided evidence that LCZs mapping can provide a guideline to synthesize SUHI 

studies. It considers the temperature differentiation among LCZ classes rather than 

between the traditional “urban” and “rural” classes. In this study, we delineated the built-

up land based mainly on the height of roughness elements, building surface fraction, 

pervious surface fraction, and city planning study. This study further indicates the 

heterogeneity character of the built-up land in the urban environment, thus different 

LCZs “built-up types” also showed different LST character.  

The study demonstrated the advantage of LCZs mapping on understanding SUHI. 

The intra-urban temperature comparison among different LCZ contributed to 

investigating the influence of heterogeneous urban environment on SUHI phenomenon. 

Since different heating/cooling effect of LCZs on SUHI phenomenon in the metropolitan 
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areas, the spatial distribution of LCZs can further benefit spatially SUHI migration 

strategies. Moreover, they can be incorporated into climatic models to understand the 

UHI formation and dynamics with detailed underlying surface information. 
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5  A GEOGRAPHICALLY WEIGHTED REGRESSION ANALYSIS OF THE 
UNDERLYING FACTORS RELATED TO SURFACE URBAN HEAT 

ISLAND PHENOMENON 

5.1 Introduction 

Examination of how underlying surface characteristics affect SUHI formation has 

become one of the major applications of remote sensing for urban climate studies. 

Supported by remote sensing technology, spectral indices have been used to indicate 

SUHI formation, including the Normalized Difference Vegetation Index (NDVI) (Weng, 

Lu, and Schubring 2004), the Normalized Difference Built-up Index (NDBI) (Chen et al. 

2006), and the Normalized Difference Water Index (NDWI) (Jiang, Fu, and Weng 2015), 

among others. Moreover, several studies have reported that green spaces or water bodies 

mitigate high LSTs (Connors, Galletti, and Chow 2013; Li et al. 2012; Zhou, Huang, and 

Cadenasso 2011; Peng et al. 2016). On the other hand, built-up or impervious land cover 

increases LST and exacerbates SUHI effects (Guo et al. 2015; Peng et al. 2016; Xian and 

Crane 2006). Furthermore, research involving analysis of high-resolution imagery has 

demonstrated the impacts of spatial components and configurations of detailed LULC on 

LST (Zhou, Huang, and Cadenasso 2011; Zheng, Myint, and Fan 2014; Li et al. 2012; 

Peng et al. 2016; Myint et al. 2015). These studies indicate that empirical estimation 

models are effective tools for quantitatively characterizing SUHI formation with less 

computational intensity compared to simulation models.  In addition, empirical 

estimation outputs are relatively easily to interpret. Conventional statistics (e.g., ordinary 

least squares (OLS)) are the primary vehicle for researchers in most studies that 

investigate the impact of underlying factors on SUHI formation. However, the prominent 

limitation of conventional statistics in geoscience is spatial non-stationarity, which refers 
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to the spatially varying relationships between dependent and independent variables 

(Deilami, Kamruzzaman, and Hayes 2016). Moreover, OLS has been shown to be of 

limited utility when spatial data are coupled with highly correlated independent variables 

(Fan, Rey, and Myint 2016). An alternative to conventional regression is Geographically 

Weighted Regression (GWR), which can model spatial variation in relationships between 

dependent and independent variables. Li et al. (2010) first indicated that GWR provides a 

better fit and provides more localized information than a global model when exploring 

the landscape drivers of LST. Additional assessments of GWR have compared to global 

regression (e.g., OLS) with respect to residual spatial autocorrelation and model 

goodness-of-fit has also been explored (Ivajnšič, Kaligarič, and Žiberna 2014; Luo and 

Peng 2016; Li et al. 2017).  

Compared to the numerous studies that analyze SUHI for single cities, SUHI 

research on broader metropolitan areas is far less common. This larger analysis extent 

warrants further investigation since the underlying factors are likely more complex and 

variable in space. On that backdrop, the main objectives of this study are to answer the 

following questions: 1) What underlying landscape properties (e.g., land cover and terrain 

morphology) are significantly related to the SUHI phenomena for Austin and San 

Antonio, Texas, and 2) Compared to a global regression approach, does GWR provide 

improved insight about landscape drivers of LST?   
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5.2 Methods 

5.2.1 Study areas 

As two of the four major metropolitan areas of Texas, the Austin–Round Rock 

(Austin) and the San Antonio–New Braunfels (San Antonio) metropolitan areas are 

located in the Central South region of Texas, U.S. (Figure 5.1). The Interstate highway I-

35, a major transportation corridor, passes north-south through these two metropolitan 

areas. Both areas are characterized by relatively flat terrain to the east, grading to more 

complex topography along the western edge of the Balcones Escarpment. Based on the 

Köppen climate classification, the region is considered humid subtropical with long and 

hot summers, short and mild winters, and warm and rainy Spring and Fall seasons (Peel, 

Finlayson, and McMahon 2007) (Table 5.1). Both the Austin–Round Rock and San 

Antonio-New Braunfels metropolitan areas are located in a unique and narrow 

transitional zone that ranges from semi-arid vegetation cover dominated by trees and 

shrubs in the west to humid and more densely vegetated prairie/grassland to the east.  

Table 5.1 Summary of the geographic, demographic, and climatic characteristics of 
Austin and San Antonio, Texas. 

Areas 

Location 
(the 

center 
point) 1 

Land 
area 

(square 
km2) 1 

Estimated 
population 

(July 1, 
2015) 2 

Bare earth 
elevation 

(approximately
, meters) 3 

Average 
temperatur

e range 
(°C), July 4 

Average 
precipitati
on (mm), 

July 4 

Austin 30.36°N, 
97.78°W 4587.36 931,830 (107, 405) 

 Mean: 235 
(23.6, 35.3) 48 

San 
Antonio 

32.76°N, 
96.97°W 

4752.04 1,469,845 
(116, 579) 

Mean: 263 
(23.3, 34.8) 52 

Sources: 1. Inquired or calculated by the authors in ArcMap based on the projection 
system “WGS 1984 UTM Zone 14N”.  2. U.S. Census Bureau.  3. Derived from 5 m 
Digital Terrain Models (DTMs), built by the authors from lidar data provided by the 
Texas Natural Resources Information System (TNRIS).  4. U.S. climate data website 
(www.usclimatedata.com).  

http://www.usclimatedata.com/
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Figure 5.1 The Austin and San Antonio metropolitan areas in Texas, U.S. 

5.2.2 OLS and GWR analysis 

Unlike a conventional (global) regression model, GWR is able to model spatial 

variation in relationships between dependent and independent variables. A GWR model 

takes the following form: 

  yi = β0(ui, vi) + ∑ βk(ui, vi)xikk + εi     (7) 

where yi, xik, and εi are the dependent variable, the kth independent variable 

(subscripted as k) and random error at the point i (subscripted as subscript i), 

respectively. Location is denoted by the coordinates (ui, vi) of a given point i. The 

coefficients βk(ui, vi) are varying weights on the location, and β0(ui, vi) is the 

geographically varying intercept.  Thus, the GWR extends the global regression model by 
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adding the geographical location parameter to generate the local coefficients to account 

for spatial non-stationarity. The estimates of β0(ui, vi) and βk(ui, vi) are based on the 

unbiased estimation by of a set of observations, in which the weight matrix is used to 

weight the observations differently (Guo, Ma, and Zhang 2008). Here, an adaptive 

Gaussian kernel function was adopted for the analysis, where optimal bandwidth was 

detected through a golden search algorithm in GWR 4.  

Global regression models were also developed to compare to GWR results. The 

coefficient of determination (R2), global Moran’s I of the residuals, Akaike Information 

Criterion (AIC), and the corrected AICc were used to compare the performances of 

global regression models versus the GWR model with respect to goodness-of-fit and 

residual spatial autocorrelation. In this paper, both GWR and global regression models 

were built using the open source platform GWR 4 (Nakaya et al. 2014). 

5.2.3 Explanatory variables derivation and selection 

Based on knowledge from prior SUHI studies (Zhou, Huang, and Cadenasso 2011; 

Zheng, Myint, and Fan 2014; Li et al. 2012; Peng et al. 2016; Myint et al. 2015; Guo et 

al. 2015; Xian and Crane 2006), a suite of potential explanatory variables was selected 

for two models, one each for the metropolitan areas under consideration. Considering the 

variable type, the explanatory variables were categorized into three groups, as 

summarized in Table 5.2.
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Table 5.2 Potential explanatory variables: derivation sources and statistical summary of the observations. 
Variables Derivation sources  Max. Min. Mean S.D. 
Land use/land cover composition variables      
Canopy (tree canopy fraction) 2011 NLCD Tree Canopy 

dataset 
Austin 87.46 1.26 32.89 19.83 
San Antonio 86.48 0.46 32.30 20.00 

ISF (impervious surfaces Fraction) 2011 NLCD ISF dataset Austin 80.83 0.00 9.44 14.25 
San Antonio 86.42 0.00 12.12 17.10 

BF (Buildings fraction) Building footprints Austin 43.96 0.00 5.07 8.43 
San Antonio 51.25 0.00 5.52 8.72 

NDVI (normalized difference 
vegetation index) Landsat 8 OLS, July 20, 2015 Austin 0.53 -0.44 0.31 0.10 

San Antonio 0.57 -0.38 0.30 0.10 
Landscape pattern metrics variables      

CONTAG (Contagion Index) NLCD LULC data Austin 87.34 10.68 40.76 11.08 
San Antonio 97.90 10.18 41.67 11.90 

PD (Patch Density) – Austin 137.22 4.56 53.83 30.26 
San Antonio 128.74 0.65 53.51 30.88 

SHDI (Shannon's Diversity Index) – Austin 2.42 0.25 1.54 0.33 
San Antonio 2.34 0.02 1.49 0.36 

PR (Patch Richness) – Austin 15.00 3.00 8.65 2.12 
San Antonio 15.00 2.00 8.46 2.48 

Terrain variables      

Elevation Aggregated from 5m*5m 
DTMs 

Austin 403.51 113.14 227.66 56.95 
San Antonio 526.87 124.96 255.19 75.88 

Northness Aggregated from 5m*5m 
Northness dataset 

Austin 0.48 -0.66 -0.04 0.13 
San Antonio 0.93 -0.67 -0.06 0.14 

Notes: "Max.": Maximum. "Min.": Minimum. "S.D.": Standard Deviation. "NLCD": National Land Cover Database. "DSM":  
Digital Surface Model. "DTM":  Digital Terrain Model. “–”: “Same as above”. 
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(1) Land use/land cover composition (LULC) variables 

Buildings Fraction (BF), ISF, NDVI, and Canopy were considered for SUHI 

explanatory variables in terms of LULC composition. ISF and Canopy were downloaded 

as independent layers from National Land Cover Database (NLCD) 2011 (Homer et al. 

2015), the thematic accuracy of which has been established in the literature (Wickham et 

al. 2017). BF was derived using the building footprint features based on the Lidar 

datasets.  

(2) Landscape pattern metrics 

Thirty meter NLCD 2011 data was used to compute landscape metrics at the 

landscape level to quantify the general characteristics of the overall mosaic of LULC 

patches (Homer et al. 2015). The LULC types of the study area include Open water, 

Developed land (in four intensity levels), Forest (Deciduous, Evergreen, and Mixed), 

Shrub/Scrub, Grassland/Herbaceous, pasture/Hay, Cultivated land, and Wetlands 

(Woody, Herbaceous).  

Contagion Index (CONTAG) and Patch Density (PD) were applied to describe 

aggregation. CONTAG is inversely related to edge density. For instance, when a single 

class occupies a very large percentage of the landscape (low edge density), contagion is 

high, and vice versa. It is affected by both the dispersion and interspersion of land types. 

PD is the number of patches on the landscape and describes the aggregation and 

subdivision characteristics of the various land covers. Shannon's Diversity Index (SHDI), 

considers the proportional abundance of each patch type across all patch types and Patch 

Richness (PR) quantifies the number of different patch types. These metrics were 
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selected to measure the diversity characteristics on the landscape.  All landscape metrics 

were calculated in FRAGSTATS using a radius of 1000 m centered on sampling points 

distributed throughout the study areas.   

(3) Terrain factors: elevation and Northness 

Air temperatures are influenced by elevation (Khandelwal et al. 2017) and variation 

in elevation results in spatial patterns of LST on the landscape (Li et al. 2010). 

Additionally, landform aspect strongly affects the intensity of solar radiation and has 

been included in several SUHI studies (Li et al. 2010; Ivajnšič, Kaligarič, and Žiberna 

2014). Aspect (the compass direction of a slope) was transformed to Northness to 

mitigate the circular property of the data using Equation 7:  

Northness = cos(𝑎𝑎𝑇𝑇𝑎𝑎𝑇𝑇𝑎𝑎𝑎𝑎)              (8) 

All of the explanatory variables were aggregated or resampled to 90 m resolution to 

match the dependent variable (LST). Furthermore, to mitigate spatial autocorrelation and 

to ensure that the sampling dataset represented the study area with sufficient information 

to understand SUHI patterns, a systematic sampling scheme was designed to obtain 

sampling points for the regression models. We referred the previous SUHI explanatory 

studies at the megacity level and used 1000 m as the sampling interval for further 

exploration (Li et al. 2010). The 1000 m*1000 m grids cells were generated and the 

center points of the cells which were completely within the boundary of the study areas 

were selected as independent observations. Finally, 3887 and 4113 samples were 

generated for the Austin and San Antonio metropolitans, respectively.  
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5.3 Results 

5.3.1 Diagnostics of the regression models 

Prior to modeling, correlation analyses were conducted among the explanatory 

variables to assess for multi-collinearity. variance inflation factors higher than 10 were 

considered highly correlated. Of the total candidate variables, five were used for analysis 

in the following global and local regression analysis: Shannon's Diversity Index (SHDI), 

building fraction (BF), NDVI, Northness, and Elevation. For the sake of comparability 

and interpretation, all the dependent and independent variables for each were transformed 

to a range of values spanning from 1 to 100 as the input for the global and GWR model.  

The global regression models for each of the two study areas estimated statistically 

significant (p<0.001) relationships between LST and all explanatory variables (Table 

5.3). For Austin, the coefficient of determination (R2) for the global regression model was 

estimated to be 0.53. Among the explanatory variables, the SHDI, BF, and Elevation 

were found to vary positively with LST, while NDVI and Northness were negatively 

correlated with LST. The global model for San Antonio resulted in an R2 of 0.45 and 

revealed the same tendencies regarding the explanatory variables and LST with one 

exception—namely, the relationship between SHDI and LST was not statistically 

significant in the San Antonio model. 

Compared to these global regressions, GWR models seem better suited to 

investigating the SUHI and the underlying influencing factors for both study areas. 

Specifically, in the case of the Austin metropolitan area, the higher R2 (0.85) for the 

GWR model suggests that the relationships between LST and the modeled underlying 



 

96 

physical factors may exhibit spatial non-stationarity. Such circumstances are one reason 

why the GWR model seems to outperform the global regressions (Table 5.3). 

Additionally, a full comparison of other diagnostic measures further suggests improved 

performance for GWR compared to the global regression model, including AICc (e.g., 

25271.62 for GWR vs 29740.25 for global model, Austin), F-tests of GWR model 

improvement (34.42, Austin), and the Global Moran's I of the residuals (e.g., 0.44 for 

GWR vs 0.058 for global model, Austin). 
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Table 5.3 Comparison of global regression and GWR: summary of the coefficients and diagnostics. 
  Austin San Antonio  

  Global regression GWR Global regression GWR 
 β S.E. t  Mean β STD  β S.E. t  Mean β STD  
  SHDI                         0.04*** 0.013 3.38 0.04 0.09 0.01      0.007 1.24 -0.01 0.07 
  BF 0.29*** 0.010 29.50 0.28 0.23 0.19*** 0.007 27.42 0.13 0.14 
  NDVI -0.74*** 0.018 -41.08 -0.83 0.46 -0.38*** 0.011 33.66 -0.48 0.14 
  Elevation                    0.20*** 0.010 20.35 0.18 0.20 0.09*** 0.006 14.05 0.09 0.36 
  Northness                   -0.15*** 0.016 -9.41 -0.09 0.10 -0.23*** 0.013 18.59 -0.07 0.10 
  Intercept 104.46*** 1.935 53.97 109.41 40.04 104.62*** 1.154 90.68 109.29 14.87 
Diagnostics   
  Residual sum of squares 476925.15 137817.06 194028.74 55084.50 
  −2 Log likelihood 29726.22 24900.77 27523.09 22344.25 
  Classic AIC 29740.22 25254.64 27537.09 22700.98 
  AICc 29740.25 25271.62 27537.12 22717.25 
  CV 123.72 39.71 47.37 14.70 
  R square 0.53 0.86 0.45 0.84 
  Adjusted R square 0.53 0.85 0.45 0.84 
  Global Moran's I 0.440*** 0.058*** 0.745*** 0.516*** 
  Bandwidth of GWR  52.00  52.00 
  F-tests of improvement 36.42*** 39.20*** 
Notes: Please refer to the full variable names from Table 5.2. ‘β’: The coefficients and intercept in equation (7).  ‘***’: significant at 
0.001 level.  
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5.3.2 The global and spatial non-stationarity relationship 

Ordinary kriging interpolation using the Spatial Analyst Toolbox in ArcGIS 10.5 

was applied to interpret the samples using a resolution of 300 m for the sake of 

visualization. First, both the global and GWR analyses indicated that LULC affected the 

LST variation on July 20, 2015, as indicated by BF (building fraction) and NDVI (Table 

5.3). GWR further revealed strong spatial heterogeneity of their relationships based on 

the coefficient values and t statistics. This covariate relationships were similar for Austin 

and San Antonio, in the same range of estimates of BF coefficients (ranging from 0 to 

0.6). Additionally, the t statistics of BF coefficients for both Austin and San Antonio 

indicated that the relationship between the LST and BF were significant for most of the 

study areas, especially in the urban area. Nevertheless, the effect of BF was more 

prevalent for Austin than for San Antonio, as evidenced from the higher estimates of BF 

coefficients indicated by the global and local models. While the highest values of the 

local estimates of BF coefficients (displayed in red) were located in the isolated natural 

areas (Figure 5.2), the effect of the BF was prevalent and most of the high values were 

distributed in areas with compact human settlements (displayed in yellow and slight 

blue).  

As expected, an increase in NDVI reduces the SUHI effect, as suggested by the 

significantly negative relationship between LST and NDVI across the study areas. The 

estimated coefficient from the global regression was -0.74 for Austin and -0.38 for San 

Antonio, revealing a stronger relationship for LST and NDVI for Austin than San 

Antonio (Table 5.3). This fact was further proved by the GWR analysis, the values of 

local absolute coefficients were overall higher in Austin (e.g., displayed in red for 
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majority of the region) than San Antonio, indicating a higher capacity to mitigate the 

SUHI. However, attention should also be paid to the area around the Lake Travis in 

Austin and nearby the Calaveras Lake in San Antonio, where LST was notably positively 

related to NDVI, and the relationship was not significant in some part of this area as 

indicated by t statistics (Figure 5.2).   

 

 
 

Figure 5.2 Overall spatial variation of the coefficients (left) and the t statistics (right): 
Building Fraction (BF) and NDVI. 

SHDI, as the indicator of the diversity of landscape spatial arrangement, had an 

overall positive effect on LST intensity, as explained by the global regression for Austin 

(Table 5.3). It indicated that the fragmented landscape (e.g., the interaction of different 

land patches) would lead to the decrease of the capacity to mitigate SUHI. This effect 

was further proved by the GWR analysis, from which the regression coefficient was 

positive in most of the area. However, it is notable that the situation was contrary in the 

area around the Lake Travis in Austin, as indicated by the slightly negative local 
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regression coefficients (Figure 5.3). Additionally, the global regression revealed a non-

relationship between SHDI and LST for San Antonio metropolitan area, and GWR 

further found that the effects of SHDI on LST variation was not significant for most of 

the area, as indicted by t statistics (e.g., -1.5 to 1.2, Figure 5.3). Nevertheless, the GWR 

analysis did find some exceptions, where the SHDI was a strong predictor for LST 

variations (e.g., the small area of the southern and northeastern part colored by red, 

Figure 5.3). Linking with Google Earth imagery and the NLCD 2011, we found that 

southern part displayed in red is covered by forest, pasture, and shrub with high 

complexity. Also, this area demonstrates low DSM as indicated by Figure 5.4. 

 

Figure 5.3 Overall spatial variation of the coefficients (left) and the t statistics (right): 
SHDI. 

 
Figure 5.4 Digital surface models (DSMs) with a 5 m resolution for Austin (left), San 

Antonio (middle), and a detailed illustration of DSMs for a selected area of San Antonio 
(right). 
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Terrain factors affected the LST variation on July 20, 2015, as indicated by Elevation 

and Northness. For both Austin and San Antonio, the Elevation exhibited an overall 

slight positive effect by the global regression (e.g., 0.20 and 0.09 of coefficients, Table 

5.3). GWR further helped to explore this unexpected finding by indicating that negative 

coefficients indeed existed in the rural areas for both Austin and San Antonio, especially 

in the areas with low vegetation cover (e.g., the northeastern part of Austin and eastern 

San Antonio colored with blue, Figure 5.5). On the other hand, both the global and local 

regressions yielded the significantly negative coefficient (average coefficient) of 

Northness, which indicated that the Northness was a strong predictor for the LST (Table 

5.3). Again, the effect of Northness was spatially varying and it had a stronger effect on 

San Antonio (-5.34 vs -2.07 indicated by the global regression, Table 5.3), especially in 

the northern part (a larger area colored with red indicated by the GWR, Figure 5.5).  

Spatial patterns of the local determination coefficients (R2) of the GWR model 

highlighted a marked regional heterogeneity. Overall, GWR outperformed global 

regression with local R2 values larger than 0.5 across both study areas. (Figure 5.6). The 

GWR modeling was also characterized by higher local R2 in the city centers (>0.8) while 

relatively lower values were observed (0.5-0.65) in the surrounding areas. Standardized 

residuals, indicating the under- or over-prediction of LST, were distributed with 

significant spatial autocorrelation as tested by the Global Moran's I test in ArcGIS. As 

shown in Figure 5.6, the standardized residuals from both global and local regression 

were distributed in clusters, while the spatial clustering effect resulting from the global 

regressions was much more apparent than those resulting from the GWR. 
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Figure 5.5 Overall spatial variation of the terrain-related coefficients (left) and the t 

statistics (right): Elevation and Northness. 

 

 

 

Figure 5.6 Overall spatial distribution of the local R2 (top), standardized residuals of the 
GWR (bottom left) and global regression (bottom right) as measures of model goodness 

of fit. 
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5.4 Discussion 

5.4.1 What underlying properties are significantly related to the SUHI for Austin, in 
comparison to San Antonio? 

 
Overall, the regression analyses revealed that LULC composition and terrain 

morphology were closely related to SUHI effects for both metropolitan areas. Similarities 

in climate and topography for these metropolitan areas facilitates the comparison of their 

respective SUHIs. First, the composition of land cover was an essential factor influencing 

the LST pattern for both study areas. Our study confirmed previous findings that an 

increase of building density (BF) tends to exacerbate the SUHI effect, while the increase 

of vegetation cover intensity tends to mitigate the SUHI effect (Li et al. 2011; Li et al. 

2017; Yue et al. 2007; Estoque, Murayama, and Myint 2017; Guo et al. 2015; Du, Xiong, 

et al. 2016). Regarding the regional differences, although the effects tended to be similar, 

building density and vegetation cover intensity were more strongly correlated with the 

SUHI phenomenon in San Antonio than Austin metropolitan area as indicated by global 

BF coefficients of 0.29 vs 0.19 and NDVI coefficients of -0.74 vs -0.38, respectively 

(Table 5.3). Furthermore, it is notable that the situation was contrary in the area near the 

water body (e.g., Lake Travis in Austin) as indicated by the slightly negative local 

regression coefficients. The unique character of water bodies regarding the thermal 

characteristic was also consistent with previous studies (Weng, Lu, and Schubring 2004; 

Yue et al. 2007).  

 Both global and local regressions provided unexpected results for Elevation. Our 

results show that an increase in elevation was associated with an overall increase of LST. 

It is different with the fact that temperature decrease with increase in altitude. In fact, it 
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was DTM (e.g., bare earth digital terrain model) that was used as the potential 

explanatory factor for LST variation, while the actual surface temperature of the property 

was what being remotely sensed. Thus, in the areas with dense building or forest cover, 

the effect of Elevation would be not as severe as other factors when incorporating them 

simultaneously in the modeling. Also, most areas of both Austin and San Antonio exhibit 

flat terrain, thus the effect of Elevation was not apparent. Furthermore, the Lidar-derived 

DSM proved to be an effective way to characterize the terrain morphology at the 

microscale (e.g., 5m*5m) for understanding the relation of Northness and SUHI 

variation. Consistent with previous studies, this research also indicated that this effect as 

more apparent for floodplain areas with low and flat terrain for both the Austin and San 

Antonio metropolitan areas (e.g., Li et al. 2010; Ivajnšič, Kaligarič, and Žiberna 2014).  

The effect of landscape configuration on SUHI formulation has drawn attention in 

recent years by incorporating the landscape matrix at the patch, class, or landscape level 

(Zhou, Huang, and Cadenasso 2011; Zheng, Myint, and Fan 2014; Li et al. 2012; Peng et 

al. 2016; Myint et al. 2015; Li et al. 2011). For example, a recent study by Kim et al. 

(2016a) found that larger and better-connected landscape patches have the effect of 

mitigating high LST at the neighborhood level, while fragmented and isolated patches 

have the opposite effect for the city of Austin. Similarly, this study found that the SUHI 

of Austin on July 20, 2015, was also affected by the spatial pattern of LULC, measured 

by SHDI, which was not detected for San Antonio metropolitan area.  

This inconsistent finding may be explained by the fact that the landscape 

characteristics of San Antonio were more aggregated and less diverse as indicated by the 

statistics of potential explanatory variables (Table 5.2). In this study, to balance the 
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spatially detailed characterization of SUHI and the size of samples in the modeling, 1000 

m was set as the sampling interval as well as the window size for landscape matrix 

calculation for both study areas. The fact is that both landscape patterns and LST 

distributions are scale dependent, and studies have drawn different conclusions on the 

suitable scale for further investigation of the relationship (e.g., 700 m for Beijing, China 

(Song et al. 2014); 600 m for Wuhan, China (Wang, Qingming, et al. 2016)). In addition, 

the appropriate scale also depends on landscape matrix selection. For instance, the SHDI 

showed the strongest correlation with LST at 700 m scale, which was not the optimal 

solution if other landscape matrices were taken into account, as indicated by a case study 

of Wuhan, China (Wang, Zhan, and Ouyang 2017). In this sense, further research to 

examine the scale sensitivity of their relationships is needed in the future to lead a more 

comprehensive understanding. 

5.4.2 Compared to the conventional regression model, does the GWR provide improved 
insight of SUHI phenomenon?  

As a natural process, SUHI exhibit high spatial heterogeneity, which is difficult to 

characterize with conventional regression methods. However, most of the previous 

studies derived the aspatial relationship by focusing on individual cities, especially for 

cities in Asia (Li et al. 2011; Li et al. 2017; Yue et al. 2007; Estoque, Murayama, and 

Myint 2017; Guo et al. 2015; Du, Xiong, et al. 2016), and varying heterogeneous impacts 

have been rarely studied and compared. The results reported in this paper suggest 

significant spatial non-stationarity in the relationships between the LST and explanatory 

variables for the two metropolitan areas. Here, the GWR modeling was confirmed as an 

effective method to detect the non-stationarity underlying mechanism, especially for the 
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urban cores of Austin and San Antonio, as well as western San Antonio, with local R2 

higher than 0.8.  

Furthermore, the locally detailed differentiation regarding the underlying mechanism 

of SUHI provided by non-stationarity GWR modeling is conductive for partitioned 

regional landscape planning. With the implementation of GWR, studies have suggested 

site-specific policies designed for effective SUHI mitigation, including land use planning 

considering the distance to roads to alleviate the high LST effect (Li et al. 2010), the 

location and configuration of green spaces in urban areas (Ivajnšič, Kaligarič, and 

Žiberna 2014), etc. Considering natural and socioeconomic factors, Li et al. (2017) 

mapped the potential heat sources and sinks of the megacity and performed GWR 

analysis based on the heat source and sink regions, where the partitioned policies were 

provided.  

Whereas a classic regression method would provide an estimate of the mean value 

for an entire region regardless of spatial pattern, GWR infers a more dynamic approach to 

parameter estimates by using neighborhoods of data to determine model parameters. In 

the case of identifying whether the SUHI phenomenon was influenced by local 

underlying physical factors, this dynamic model approach is desirable, as a “one size fits 

all” approach may not accurately identify the LST variation across a heterogeneous 

metropolitan landscape. In short, compared to conventional regression, GWR has the 

inherent potential to enable a better understanding of SUHI phenomenon and associated 

physical factors across the metropolitan. 
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5.5 Conclusions  

Urbanized area is characterized by a high density of buildings as well as impervious 

surfaces fraction (ISF), and low percentage of vegetation cover. These characteristics 

lead directly to SUHI formation. In this study, we used Landsat imagery for July 20, 

2015, Lidar dataset and derived products, NLCD 2011 land cover and associated 

fractional cover products the main data sources to investigate SUHI spatial distribution 

for the Austin and San Antonio metropolitan areas. This study further explored how the 

underlying surface characteristics affect SUHI phenomenon by using global regression 

and GWR analysis. 

In summary, our results indicate that the GWR was in overall agreement with the 

global regression and both helped to address the contributions a set of specific underlying 

physical factors related to SUHI phenomenon. The composition of land cover was an 

essential factor influencing the LST pattern for both study areas. Furthermore, the Lidar-

derived DSM was proved to be an effective way to characterize the terrain morphology at 

the microscale (e.g., 5m*5m) for understanding the relation of Northness and SUHI 

variation. This study also found that the SUHI of Austin on July 20, 2015, was also 

affected by the spatial pattern of LULC, measured by SHDI, which was not detected at 

San Antonio metropolitan area. Overall, this study contributes to an improved 

understanding of SUHI phenomenon.  

By accommodating spatial non-stationarity and allowing the model parameters to 

vary in space, GWR illustrated the spatial heterogeneity of the relationship of different 

land surface properties and the LST. Particularly, our GWR analysis revealed 



 

108 

considerably stronger relationships in some areas, e.g., some particular LCZs, the areas 

mapped by urban climatic characteristic. Thus, together with the mapping result, the 

GWR analytical method of SUHI phenomenon can provide unique information for site-

specific land planning and policies implementation for SUHI mitigation. 
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6  CONCLUSION 

This chapter provides a summary of the major findings from this dissertation. It also 

discusses key limitations encountered in the study and makes recommendations for future 

research. 

6.1 Summary 

The goal of this dissertation was to investigate the SUHI phenomenon for three 

metropolitan areas of Texas, USA with remote sensing techniques, which was addressed 

by posing the following two main questions. These questions and their associated 

answers are summarized as follows. 

(1) Does the SUHI vary within and among the three major metropolitan areas in 
Texas and how can LCZs be used to improve the characterization of SUHI?  

Prior to answering this question, Chapter 3 developed a GIS-based Local Climate 

Zones (LCZs) classification scheme with the aid of airborne Lidar datasets and other 

freely available GIS data, to map and compare the LCZs for the three metropolitan areas: 

Dallas-Fort Worth (DFW), Austin, and San Antonio. Based on an analysis of the land 

cover and urban morphology, variables including land cover, height of roughness 

elements, building surface fraction, pervious surface fraction (PSF), and land use 

planning codes were generated and selected as LCZs classification properties. A 

decision-making algorithm was built for LCZs mapping, and LCZs datasets were 

established. The key findings of LCZs of the study areas are that: 1) Most of the 

urbanized area are categorized into LCZ open types (characterized by building surface 

fraction of 15-40% and pervious surface fraction of 30-60%) for all three metropolitan 

areas with different proportions and spatial diversity; 2) LCZ low plants class is dominant 
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in the areas surrounding DFW, while LCZ A Dense trees and LCZ D low plants are 

dominant in Austin and San Antonio with clear regional contrast; and 3) LCZs maps are 

in accordance with the underlying regional environment of the areas. Chapter 3 provided 

evidence that Lidar-derived products can support LCZs mapping to identify urban 

morphological information and standardize the mapping scheme for further comparative 

studies of metropolitan areas, although to extend the study beyond this region, Lidar data 

may not be necessary as high-resolution imagery could provide an alternative dataset to 

extract urban morphology with less financial and processing costs. 

Subsequently, the question was able to be answered by linking remotely sensed land 

surface temperature (LST) with LCZs. Chapter 4 investigated the ability of LCZs for 

studying SUHI phenomenon and analyzes how different LCZs affect the SUHI in three 

major metropolitan areas. Landsat 8 image data was acquired for July 20, 2015 and used 

to calculate LST as SUHI measurement. Pairwise comparisons were employed to 

measure the association between LCZs and LST. Results indicated that large LST 

variations were first demonstrated among LCZs characterized by different land cover, 

and then urban morphological information (building density, and the height of 

roughness). The close association between LCZs and LST demonstrated that the LCZs 

mapping was useful for comparing and investigating the SUHI.  

(2) Can the spatial dynamics of SUHI be explained by the LCZs and underlying 
factors and if so, are the findings uniform among different areas? 

Chapter 4 examined the thermal contribution of LCZs in terms of the relative 

proportion of high temperature centers. Results found that there was a similar 

heating/cooling effect for most of the LCZs in three metropolitans, whereas some LCZs 
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in the different metropolitan areas can contribute to the opposite heating/cooling effect, 

due to the spatial arrangements and geographic locations of LCZs. So basically, the 

spatial distribution of LCZs can further benefit spatial SUHI mitigation strategies. 

Chapter 5 investigated how the underlying surface characteristics affect characterization 

of the SUHI phenomenon by assessing different regression methods: global regression 

and geographically weighted regression (GWR). The spatial distribution of LST was 

sought to be estimated based on lidar-derived terrain factors, land cover composition, and 

landscape pattern metrics developed using the NLCD 2011. Result indicated that 1) land 

cover composition and terrain morphology were closely related to SUHI effects for both 

metropolitan areas; 2) the SUHI of Austin on July 20, 2015 was affected by the spatial 

pattern of LULC, which was not detected for San Antonio; and 3) compared to global 

regression, GWR more efficiently and accurately explained the underlying factors that 

contributed to the SUHI based on spatial variation and thus demonstrates improved utility 

for characterizing SUHI compared to global regression.     

6.2 Limitations and Recommendations 

It is important to recognize the multi-scale characteristic of the overall UHI 

phenomenon (including SUHI), varying from small scale anthropogenic heat release to 

meso-scale atmospheric interactions. In this study, the UHI was investigated at the 

surface layer with the indicators of LST, and the term SUHI was used to address this 

unique aspect. Spatial patterns of UHI and SUHI and general characteristics of urban-to-

rural temperature differences have been extensively studied. However, the spatial 

heterogeneity characteristics of the urban environment need to be addressed for both UHI 

and SUHI studies. This dissertation indicates that the measurement of SUHI with remote 
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sensing techniques advanced our understanding of spatial thermal patterns and their 

relationship to surface characteristics. 

1) Besides the multiple measurement of UHI at different boundaries in terms of 

atmospheric UHI and SUHI, the urban environment is heterogeneous. In this 

study, the use of LCZs, which incorporate the urban and vegetation morphology 

and underlying biophysical factors simultaneously with different measurement 

techniques, was incorporated to investigate the SUHI phenomenon. Basically, the 

LCZ concept was used to delineate the heterogeneous urban environment into 

uniform zone in terms of the local climate in the chapter 3. In reality, the scale of 

individual LCZs varies within the individual metropolitan area and between 

different metropolitan areas. Also, the scale of LCZs can vary worldwide due to 

specific urban forms, urban development history, and geographical location. Both 

the urban and natural landscape are heterogeneous and spatially auto-correlated, 

meaning that each LCZs is not an absolute homogenous region and there is no 

clear boundary between different LCZs.  

For comparative analysis, it is necessary to set a common scale to consider 

various parameters to identify possible LCZs. Overall, LCZs mapping is a 

compromise between the universality and local accuracy. The 270 m scale was 

defined as a homogeneous scale in this research based on the semi-variance 

analysis of the property of buildings height and the literature review of previous 

studies. On the other hand, the scale on which the variation of urban and 

vegetation morphology and underlying biophysical factors affects the surface or 

air temperature is not necessarily in accordance with the heterogeneous 
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characteristics of the buildings. Moreover, linking LST with LCZs indicated that 

the surface temperature of some of the LCZs built-up types were not significantly 

different with others. Hence, the LCZs mapping scale still need more verification 

in the future case studies to fit the characteristics of different cities worldwide. 

2) As indicated by the research framework, the SUHI is a spatiotemporal process 

with the interaction among the urbanization, local climate, and human component 

in the urban system. It is important to reflect the temporal variation characteristic 

of SUHI. In the Chapter 4, the LCZs were considered to be temporally invariant 

and representative of the urban environment.  LCZs were built based on several 

properties generated by NLCD 2011 and Lidar projects at different periods. 

NLCD 2011 data was derived from 2008-2010 Landsat data whereas Lidar 

projects were conducted by a suite of vendors working for various agencies or 

clients that all had different acquisition requirements. Nonetheless, the SUHI is 

indicated by the spatial pattern of LST on July 20, 2015. However, both the AUHI 

and SUHI phenomenon depend on weather conditions and it is generally more 

intense during dry seasons when leafless canopies and the dry and bright soil 

increase the albedo. Thus, due to the urban development and urban expansion, the 

urban environment (e.g., LCZs) may change dramatically by the time of SUHI 

investigation in this study. Furthermore, the LCZs were built at different season, 

which could not be reflected by SUHI phenomenon at one time. Further 

investigation of the SUHI phenomenon at night time and in different seasons 

would contribute to a better understanding of the SUHI phenomenon.  
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3) As a spatial process, the analysis of SUHI needs to emphasis the scale issue. For 

instance, Chapter 5 investigated how the underlying surface characteristics affect 

characterization of the SUHI phenomenon for individual sites using a 1000-meter 

sampling interval. For different underlying factors, the influences of lakes and 

greenspaces as cooling elements can extend far beyond their boundaries, while the 

effects of building density may also be beyond the extent for the individual sites. 

Chapter 4 indicated that the significant difference of the thermal behavior within 

LCZs and it’s noted that the influence of some LCZ natural types (e.g., LCZ A 

Dense trees) as cooling elements can extend in the order of hundreds of meters 

beyond their boundaries. The spatial composition and configuration of LCZs 

affect the SUHI phenomenon at a larger scale.  

4) In this study, LCZs mapping provides a platform to make a comparative analysis 

of the urban morphology and vegetation structure of the three metropolitan study 

areas. Also, with a uniform LCZ classification scheme, this study provided 

evidence that LCZ mapping can be replicable for comparative analysis of SUHI 

phenomenon. DI of high temperature further demonstrated that the LCZs mapping 

result can efficiently facilitate intra- and inter-comparisons for SUHI intensity. 

The comparison among the three metropolitan areas indicated that the different 

heating/cooling effect of LCZs on SUHI phenomenon can be further investigated. 

The urban planning and city policy of one metropolitan can as reference to others 

in terms of the effect of the vegetation character in the individual LCZ, and the 

spatial distribution of LCZs on SUHI intensity to benefit spatially SUHI 

migration strategies. Moreover, the uniform LCZs maps can be incorporated into 
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climatic models to understand the UHI formation and dynamics with detailed 

underlying surface information. 
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APPENDIX SECTION 

Table A1. Local climate zones (LCZs) concepts and the related values of geometric and surface cover properties. 

Code Local climate 
zone (LCZ) 

Sky view 
factor 
(SVF) 

Aspect 
ratio 

(H/W) 

Building surface 
fraction 

Impervious 
surface fraction 

(ISF) 

Pervious 
surface fraction 

(PSF) 

Height of 
roughness 
elements 

Terrain 
roughness 

class 

LCZ 1 Compact high-
rise 0.2–0.4 > 2 40–60 40–60 < 10 > 25 8 

LCZ 2 Compact mid-
rise 0.3–0.6 0.75–2 40–70 30–50 < 20 10–25 6–7 

LCZ 3 Compact low-
rise 0.2–0.6 0.75–1.5 40–70 20-50 < 30 3–10 6 

LCZ 4 Open high-rise 0.5–0.7 0.75–1.25 20-40 30-40 30-40 > 25 7-8 
LCZ 5 Open mid-rise 0.5–0.8 0.3– 0.75 20-40 30–50 20-40 10–25 5-6 
LCZ 6 Open low-rise 0.6–0.9 0.3– 0.75 15-25 20-50 30–60 3–10 5-6 

LCZ 7 Lightweight 
low-rise 0.2–0.5 1–2 60–90 < 20 < 30 2–4 4-5 

LCZ 8 Large low-rise > 0.7 0.2–0.4 30–50 40–50 < 20 3–30 5 
LCZ 9 Sparsely built > 0.8 0.2–0.4 5–15 < 20 60–80 3–10 5-6 
LCZ 10 Heavy industry 0.6–0.9 0.2–0.5 20–30 20-40 40–50 5–15 5-6 
LCZ A Dense trees < 0 .4 > 1 < 10 < 10 > 90 3–30 8 
LCZ B Scattered trees 0.5–0.8 0.25–0.75 < 10 < 10 > 90 3–15 5-6 
LCZ C Bush, scrub 0.7–0.9 0.25–1.0 < 10 < 10 > 90 < 2 4-5 
LCZ D Low plants > 0.9 < 0.1 < 10 < 10 > 90 < 1 3-4 

LCZ E Bare rock or 
paved > 0.9 < 0.1 < 10 > 90 < 10 < 2.5 1-2 

LCZ F Bare soil or sand > 0.9 < 0.1 < 10 < 10 > 90 < 2.5 1-2 
LCZ G Water > 0.9 < 0.1 < 10 < 10 > 90 – 1 
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