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ABSTRACT 

 

EMPIRICAL RESEARCH INTO THE INTRACTABILITY OF FINITE STATE 

MACHINE 

by 

Ngozi Ihemelandu, B.S. 

Texas State University-San Marcos 

May 2011 

SUPERVISING PROFESSOR: CARL MULLER 

 Much of the high reliability and safety critical software applications use various 

forms of Finite State Machines (FSM) to describe their behavior.  Testing software with 

state behavior presents a number of challenges to development organizations.  One of the 

challenges in testing state behavior is to verify that the application has entered a specific 

state.  A theoretical proof has established that State Verification is a PSPACE-complete 

problem, but the proof did not provide an empirical verification.  A primary objective of 

this research is to provide the empirical evidence to support the theoretic proof that the 

State Verification problem is PSPACE-complete.  A secondary objective of this research 

is to investigate how states and transition affect the time to derive a Unique Input Output



 

xi 

(UIO) sequence.  In addition to the investigation of the intractability of the state 

verification problem, the suitability of using McCabe‟s Cyclomatic number to predict the 

performance of the algorithm generating the UIO sequences was explored.  Based on the 

empirical results, the State Verification testing problem is a PSPACE problem and not 

PSPACE-complete problem, but only for fully specified FSM are UIO sequences 

appropriate.  In addition, the Cyclomatic number did not predict the time necessary to 

derive UIO sequences. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

Computers and software systems affect almost every facet of modern society. The use of 

software ranges from mundane tasks, such as information processing or air flight 

booking, to use in the medical field, such as in life saving devices like implanted-cardiac 

defibrillators.  Because of the deep-seated role of software in almost every aspect of our 

daily lives, a small defect in a software application may result in severe financial losses 

and in some cases life loss. 

The new Denver International Airport was to be a wonder of modern engineering.  Its 

opening was delayed for almost a year, at a cost to the airport authority of over $1 million 

a day due to software-related failure of the automated baggage (Gibbs, Wayt, W. 1994).  

There are other documented real-life instances that illustrate the disastrous effect of 

software failures (Gallagher 2007; Gleick 1996; Leveson 1995). 

Most of the disastrous software failures in recent years are as a result of inadequate 

testing.  Finite state machines are used to model external system behavior (black box



2 

 

view) or detailed execution of specific implementation (white box view) (Tian 2005). 

1.2 Thesis Statement 

Evaluating software with state behavior is a major research issue in software testing.  

State verification is one of the challenges in testing FSMs in which we know the state 

diagram of the system under test, and this machine is assumed to be in a particular state.  

The objective of the state verification experiment is to check that the assumption that a 

machine is in a particular state s is correct.  An input sequence that solves this problem is 

known as the Unique Input Output Sequence (UIO) (Broy and others 2005; Lee and 

Yannakakis 1996, 1090-1123; Lee and Yannakakis 1994, 306-320; Sabnani and Dahbura 

1988, 285-297).  One of the most frequently cited papers on testing software with state-

behavior is “Testing Finite-State Machines: State Identification and Verification”, in 

which Lee proved that it is PSPACE-complete to determine if a specific state „s‟ of a 

given FSM „M‟ has a UIO sequence (Lee and Yannakakis 1994, 306-320).  PSPACE-

complete problems are a set of problems in which there are presumably no efficient, 

polynomial time, algorithm for the general solution of the problem.  Hence, a general 

solution would require an exponential amount of time to process as the number of the 

elements in the problem increases (Sipser 1997).  It is interesting to note that this theorem 

advocated by Lee holds even when the FSM is restricted to binary input and output 

alphabets (Lee and Yannakakis 1994, 306-320).   

The focus of this research is an investigation on the complexity of FSM with 

demonstrations that: 
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1. The State Verification testing challenge is PSPACE-complete as proved 

theoretically by Lee (Lee and Yannakakis 1994, 306-320).   

2. The following factors contribute to the PSPACE intractability characteristic of the 

UIO generation algorithm 

I. Transitions types: loop and reflexive transition  

II. Number of states  

III. Input size 

3. There exists a correlation between the cyclomatic number of a FSM and the time 

it takes to generate the UIO sequence. 

Much work has been done on the generation of UIO sequence, but not much research has 

been done with respect to the causes of PSPACE-complete intractability in a classic 

solution to the state verification problem.  Chapter II of this work introduces some 

concepts in graph theory and automata that lays the foundation for the intended research.  

Chapter III details the theoretical background and hypothesis of the research.  Chapter IV 

describes the experimental analysis of the hypothesis developed in Chapter III.  Chapter 

V lays out the findings of the research and the analysis of these findings.  
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CHAPTER II 

BACKGROUND 

In this Chapter, we shall focus on understanding some fundamental concepts of finite 

state machines, extended finite state machines, graph theory, successor tree, and 

McCabe‟s Cyclomatic number.  We shall attempt to establish the relationship that exists 

among them.  By establishing these relationships, concepts from graph theory will be 

applied in the analysis of FSM, Successor tree and McCabe‟s Cyclomatic number.  To 

study the complexity of an FSM, we shall focus on the State Verification FSM testing 

problem. 

2.1 State Machines 

The Chomsky hierarchy is a nested hierarchy of classes of formal grammars.  Each level 

of the Chomsky hierarchy specifies both the grammar formalism and the computational 

structure of the formal language class.  The basis for the Chomsky hierarchy is the 

amount and organization of the memory required to process the languages at each level 

(Rich 2008). 

The Chomsky hierarchy consists of the following levels: 

 Type 0 (semi-decidable): no memory constraint 

 Type 1 (context-sensitive): memory limited by the length of the input string
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 Type 2 (context-free): unlimited memory but accessible only in a stack (so only a 

finite amount is accessible at any point) 

 Type 3 (regular): finite memory (Rich 2008) 

The Chomsky hierarchy makes an obvious suggestion:  Different grammar formalisms 

offer different descriptive power and may be appropriate for different tasks (Rich 2008).  

In other words, Chomsky hierarchy gives a platform that specifies the differences in state 

machines.  The EFSM falls within the outermost level (type 0) of the Chomsky hierarchy 

because the set of variables V provides unlimited working memory for storing the results 

of intermediate steps of the computation.  EFSM is a representation of the Turing 

machine.  

context-sensitive 

(Type 1)

semi-decidable 

(Type 0) 

Linear Bounded 

Automaton

(LBAs)

Turing 

Machines

Regular

(Type 3)

FSMs

Push Down 

Automata

(PDAs)

Context-Free

(Type 2)

 

Figure 1 The Chomsky Hierarchy 
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2.1.1 Finite State Machines 

A finite state machine (FSM) is a model of behavior using states and state transitions. It 

is a widely used model in just about every area of the software industry and is particularly 

popular with designers of telecommunication systems, communication protocols, 

embedded systems and control systems.  There are two types of finite state machines: 

Mealy machines and Moore machines (Lee and Yannakakis 1996, 1090-1123).  FSMs are 

typically modeled as Mealy machines, which are deterministic machines that produce 

outputs on their state transitions after receiving inputs.  An FSM M is a quintuple M = (I, 

O, S, δ, λ), where I, O, and S are finite and nonempty sets of input symbols, output 

symbols, and states, respectively. 

δ: S x I → S is the state transition function; 

λ: S x I → O is the output function (Lee and Yannakakis 1994, 306-320). 

FSMs originate from Finite Automata which are defined as a quintuple (Q, Σ, δ, q0, F) 

1. Q is a finite set called the states 

2. Σ is a finite set called the alphabet 

3. δ: Q x Σ → Q is the transition function 

4. q0 Є Q is the start state, and 

5. F ⊆ Q 

Finite Automata are primarily used in parsing for recognized languages.  Input strings 

that are members of a given language should turn an Automaton to its final states but all 

other input strings turn the Automaton to states other than the final states (Sipser 1997).  

FSMs have output, while automata do not.  
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FSMs can be represented by state transition diagrams which are directed multigraphs 

where the vertices correspond to the states of the FSM and the edges correspond to the 

state transitions.  A directed graph that has multiple directed edges connecting the same 

vertices are called multigraphs.  Formally, a directed graph (V, E) is defined as a 

nonempty set of vertices V and a set of directed edges E.  Each directed edge is 

associated with an ordered pair of vertices.  The directed edge associated with an ordered 

pair (u, v) is said to start at u and end at v (Rosen 2007).  A path in a directed graph is a 

sequence of edges where the terminal vertex of an edge is the same as the initial vertex in 

the next edge in the path (Rosen 2007).  A path can pass through a vertex more than once 

and an edge can occur more than once in a path.  In most graph theory literature, loops 

are defined as edges that connect a vertex to itself and a circle or circuit is defined as a 

path that begins and ends at the same vertex (Rosen 2007).  However, in this paper, 

circles or circuits will be referred to as loops and loops will be referred to as reflexive 

transitions.  A directed graph G is strongly connected if there is a path from x to y and 

from y to x whenever x and y are vertices in the graph.  Although this graphical 

representation of an FSM is intuitive and easy to interpret by human subjects, it becomes 

impractical when the number of states becomes large.  State diagrams with more than 20 

or 30 states are messy and hard to trace.  Consequently, tabular representations are often 

used (Tian 2005).  

FSM is used to study the intended system to be implemented and is also used in the 

testing phase of product development to generate complete test suites to check 

conformance of the model and the actual implementation.  To deduce lacking information 

from an FSM, a sequence of input symbols are provided to it and the resulting output 
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symbols produced are observed.  The State Identification testing problem attempts to 

identify the current state of a given FSM with known states and transitions but an 

unknown current state.  This is not always possible as there are FSMs for which no test 

exists that will allow us to identify their current states.  The input sequence that solves 

this problem, if it exists, is called the distinguishing sequence (Lee and Yannakakis 1996, 

1090-1123; Lee and Yannakakis 1994, 306-320). 

Formally defined, a preset distinguishing sequence for a machine is an input sequence x 

such that the output sequence produced by the machine in response to x is different for 

each initial state, i.e., λ(si , x) ≠ λ(sj , x) for every pair of states si, sj, i ≠ j (Lee and 

Yannakakis 1996, 1090-1123; Lee and Yannakakis 1994, 306-320).  Lee and Yannakakis 

showed that solving the preset distinguishing sequence challenge is PSPACE-complete 

(Lee and Yannakakis 1994, 306-320).  They also proved that there are machines for 

which the shortest preset distinguishing sequence has exponential length.  However, they 

presented a deterministic polynomial time algorithm and polynomial length for the 

adaptive distinguishing sequence problem. The state verification is a more restricted 

problem than the state identification problem because it narrows the problem to that of 

verifying that an FSM is in a given state.  Hence, given an FSM M, it is assumed to be in 

a particular state s ∈ S.  The objective is to check that this assumption is correct.  This is 

possible if, and only if, that state has a Unique Input Output (UIO) sequence.  Formally 

defined, a UIO sequence of a state s0 is an input sequence x0 such that the output 

sequence produced by the machine in response to x0 from any state other than s0 is 

different than that from s0, i.e., λ(si , x0) ≠ λ(s0, x0) for any si ≠ s0 (Lee and Yannakakis 

1996, 1090-1123; Lee and Yannakakis 1994, 306-320). 
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If an FSM has a preset or an adaptive distinguishing sequence, then all states have UIO 

sequences.  For a given machine, it is possible that no state has a UIO sequence, that 

some states have a UIO sequence and some do not, or all states have a UIO sequence; but 

there is no preset or adaptive distinguishing sequence (Lee and Yannakakis 1996, 1090-

1123; Lee and Yannakakis 1994, 306-320).  For instance, in the FSM shown in Figure 1, 

there exists no preset distinguishing sequence since states s2 and s3 give the same output 

for any input starting with an a; and s1 and s4 give the same output when the input starts 

with a b.  However, all states have UIO sequences.  Figure 2 shows an FSM in which 

some states have UIO sequences and others do not, and Figure 3 shows an FSM in which 

no state has a UIO sequence (Broy and others 2005). 

UIO sequences can verify a larger class of machines than distinguishing sequence, this is 

one of the reasons for studying state verification.   These sequences were introduced by 

Hsieh, and algorithms for finding them have been studied by Lee and Sabnani (Broy and 

others 2005; Lee and Yannakakis 1994, 306-320; Sabnani and Dahbura 1988, 285-297).  

Lee and Yannakakis proved that this problem is PSPACE-complete (Lee and Yannakakis 

1994, 306-320).  This thesis focuses on the results of these studies.   
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s1

a/0a/0

s2

s3

s4

b/1

a/1

b/1

a/0

b/0

b/1

 

Figure 2 An FSM in which all states have UIO sequences, but there exist no preset 

distinguishing sequence 

s1

a/0a/1

s2 s4

b/1

b/0

a/0

b/0

 

Figure 3 An FSM in which states s1 and s2 have UIO sequences, but s4 does not 
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s1

b/1a/1

s2

s3

s4

a/0

b/0

b/0

a/0

a/1

b/1
 

Figure 4 An FSM in which no state has a UIO sequence 

Though the distinguishing sequences and UIO sequences provide solutions to the state 

identification and verification problems respectively, these sequences have been useful in 

the development of techniques to solve the conformance testing problem, otherwise 

known as the fault detection problem.  The main use for the state verification is as a part 

of the algorithms for conformance testing.  Hence, UIO sequences are mainly used as part 

of conformance testing algorithms for the construction of checking sequences (Lee and 

Yannakakis 1994, 306-320; Sabnani and Dahbura 1988, 285-297).  In a conformance 

testing challenge, given an FSM M that models a specification and a black box 

implementation machine B, we want to check that B is a correct implementation of M.  

The sequence that solves this problem is known as the checking sequence.  Formally 

defined, a checking sequence for an FSM M is an input sequence that distinguishes the 

class of machines equivalent to M from other machines (Broy and others 2005; Lee and 

Yannakakis 1996, 1090-1123).  The checking sequence attempts to detect faulty 

transitions in the implementation machine by checking whether each state and edge in the 

FSM exists in the implementation and whether each edge has a correct label.  

Conformance is formally defined as equivalence or isomorphism.  The checking 



12 

 
 

sequence consists of three parts: initial sequence, state recognition sequence and the 

transition checking sequence.  The checking sequence brings M to a state and applies a 

sequence of inputs to recognize the state reached.  Recognizing states can be based on 

distinguishing sequences or unique input-output (UIO) sequences.  There are many 

proposed checking sequence generation procedures that are based on UIO sequences. 

2.1.2 Extended Finite State Machines 

A number of software applications require variables to provide a complete specification.  

Extended Finite State Machine Model (EFSM) is an enhanced state machine model based 

on the traditional finite state machine (FSM), which uses variables.  This additional 

feature of an EFSM models the robust memory found in a software environment more 

closely.  EFSMs are at the top of the Chomsky hierarchy because of the inclusion of 

variables in the model  

An extended finite state machine (EFSM) is formally defined as a tuple  

M = (Σ, V, Q, SI, SF, T) 

where: 

Σ is a finite, nonempty set of events or operations, 

V is a finite set of variables, 

Q is a finite, nonempty set of states, 

SI is the initial state in the model where sI ∈ Q, 

SF is the finial state in the model where sF ∈ Q, 

T is a finite nonempty set of transitions, where each transition t is represented by 

the tuple: 
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t = {SO(t), ST(t), e(t), C(t), A(t)} 

where: 

SO(t) is the transition‟s originating state, 

ST(t) is the transition‟s terminating state, 

e(t) is an event or operation causing the transition, 

C(t) is the enabling conditional expression that enables the transition, 

A(t) is a sequence of actions associated with a specific transition (Mueller 2003, 

59-61). 

In an EFSM, the set of transitions T describes how the set of states Q, events Σ and 

variables V are used. In each transition element t, there is an event e(t) ∈ Σ that provides 

the basic predictor for selecting one transition over another. The set of variables V 

provides storage for information necessary for the enabling condition C(t). The 

originating state SO(t) ∈ Q describes where the transition originates, and the terminating 

state ST(t) ∈ Q describes where the transition ends. The action sequence A(t) establishes 

values for variables found in V and other action statements necessary to describe the 

operation of the model (Mueller 2003, 59-61). 

2.2 State Verification 

In the previous section, we introduced three finite state machine testing problems.  To 

study the complexity of a FSM we shall focus on the state verification testing problem.  

In the state verification FSM testing problem, the state diagram of the system under test is 

known, and it is assumed that the FSM is in a particular state.  The objective of the test is 

to verify that the assumption made about the current state of the FSM is correct.  To 
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achieve this, an input sequence is passed through the system under test, and the state 

verification experiment is used to verify that the sequence took the system to the expected 

state.  The search process for finding the UIO sequence for a state of an FSM uses a tree 

known as the successor tree.  By the definition of UIO sequences, different states of an 

FSM may have different UIO sequences; hence, many trees may be constructed for an 

FSM where each tree searches for the UIO sequence for a particular state.  Before 

examining the structure of the UIO successor tree, it is imperative to define some 

concepts that will be used in the analysis of the UIO successor tree. 

2.2.1 Partial Specification and Completeness Assumption 

Finite State Machines are of two types:  (i) deterministic and (ii) non- deterministic (Broy 

and others 2005).  A deterministic FSM is one in which for every state, there can be one 

and only one transition for a particular input.  A non-deterministic FSM is a FSM in 

which for any state, there can be more than one transition with the same input (Sun, Shen, 

and Feng 1997; Sipser 1997).  In this paper, only the deterministic FSMs are considered.  

Deterministic FSMs are divided into two categories: 

i. Completely (fully) specified 

ii. Incompletely (partially) specified. 

An FSM is completely specified if for every state and every valid input, the behavior of 

the FSM is specified.  If on the other hand, the behavior for a particular input for a state 

in the FSM is not specified, the FSM is said to be incompletely or partially specified 

(Sun, Shen, and Feng 1997).  Most FSMs are incompletely specified, and the specified 

state-input behavior of an FSM is referred to as core behavior (Sabnani and Dahbura 

1988, 285-297).  For an input applied in a state of an FSM for which the output and the 
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next state behavior are not specified in the core behavior, it is assumed that a null output 

is produced and it remains in its current state.   This assumption is called the 

Completeness Assumption (Broy and others 2005; Sabnani and Dahbura 1988, 285-297).  

An alternate completeness assumption of a specification FSM generates an error output 

and enters the error state whenever it receives an input in a state for which the behavior is 

not specified by the core behavior (Sabnani and Dahbura 1988, 285-297).  In this paper, 

the completeness assumption concept adopted is strictly of the former type.  An edge 

from each state corresponding to a non-core input is a self-loop with a null output in its 

label.  These non-core edges are not shown in the directed graph representation of the 

randomly generated FSM.  It is impossible to develop a technique for FSM state 

verification testing without any assumptions.  Hence, for all machines considered in this 

paper, it is assumed that they are minimized, strongly connected and completely 

specified.  A Mealy machine is minimized if it has no equivalent states (Broy and others 

2005).  If an FSM is not minimized, then there will always be states that do not have UIO 

sequences since there are at least two states that produce the same outputs for every input 

sequence.  The classical algorithm for UIO sequence generation analyzed in this paper 

assumes that the FSMs are fully specified.  For every state in the FSM, there must be a 

path to it from every other state.  This ensures the absence of deadlock states in the FSM.  

By restricting the FSM for consideration to deterministic machines where the next 

operation and next state depend solely on the current state and input, it is assumed that 

there are no control variables or counters manipulated by the control operations which 

might influence transitions from a state as a response to input. 
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2.2.2 Initial and Current State Uncertainty 

Given a machine M = (I, O, S, δ, λ) and an input sequence x, x induces a partition  (x) on 

the set of states S of M, where two states si, sj are placed in the same block B of the 

partition if and only if they are not distinguished by x, i.e., λ(si, x) = λ (si, x).  This 

partition  (x) is called the initial state uncertainty of x (Lee and Yannakakis 1996, 1090-

1123).  The elements of the initial state uncertainty      are called blocks.  Formally 

defined, blocks are nonempty subset of states (Broy and others 2005).  |    | = number 

of blocks;      is called a partition because any two blocks in      are disjointed and the 

union of all blocks is the entire set of states S.  Consider M with a set of states S = 

{a,b,c,d}, if M can initially be in any of this states then the initial state uncertainty   = 

(abcd) (Kohavi 1978).  The aim of   is to identify or verify the initial or current state of 

M, by reducing the initial state uncertainty   until each block B in   is a singleton or the 

states in B of    cannot be further distinguished.  A singleton is a component or block of 

a partition   that contains a single state. 

The current state uncertainty of x: σ(x) = { δ(B,x) | B ∈ π(x) } (Lee and Yannakakis 

1996, 1090-1123).  σ(x) is not necessarily a partition; i.e., the sets in σ(x) are not 

necessarily disjointed. The output produced by M in response to the input sequence x 

tells us to which member of σ(x) the current state belongs (Lee and Yannakakis 1996, 

1090-1123).   

For example, consider the machine M shown in Figure 3.  Initially the initial state is 

unknown and could be any of the states. 

initial state uncertainty      = {{s1, s2, s3}} (where   is the empty string) 

input symbol b induces the partition        = {{s1, s2}1, {s3}0} 
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current state uncertainty    σ(b)  = {{s2, s3}1, {s1}0} 

input symbol a induces the partition        = {{s1}11, {s2}10, {s3}00} 

current state uncertainty    σ(ba)  = {{s2}11, { s3}10, {s1}00} 

The subscript denotes the output for each block. 

In terms of UIO sequences, this means that distinct states si, in the same block and 

partition with s0 (where s0 is the state for which a UIO sequence is considered) cannot be 

distinguished by the input sequence x.  Hence, we say that our uncertainty about state s0 

of M has been reduced to a block of states.  However, if the block is a singleton then our 

uncertainty is totally reduced.   

2.2.3 The UIO Successor Tree 

The concepts of trees in graph theory are applied in the techniques used for the derivation 

of UIO sequence.  A tree is a connected undirected graph with no circuits, multiple edges 

or loops.  Therefore, there exists a unique simple path between two of its vertices (Rosen 

2007).  A tree with a particular vertex designated as the root, every edge directed away 

from the root and a unique path from the root to each vertex of the graph is called a 

rooted tree.  Thus, a rooted tree is a directed graph.  A rooted tree is called a full m-ary 

tree if every internal vertex has exactly m children (Rosen 2007).  In this paper, only 

rooted full m-ary trees will be considered which are referred to as successor trees in 

literatures on FSM model based testing.  The successor tree of a specified machine M is a 

tree showing the behavior of the machine starting from all possible initial states (which is 

the set of states of the considered machine) under all possible input sequence (Lee and 

Yannakakis 1996, 1090-1123).  Each node of the successor tree has exactly as many 

outgoing edges as the number of inputs of the machine.  Every internal node is annotated 
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with a current state uncertainty which corresponds to the input sequence defined by the 

path starting from the root of the successor tree to the node under consideration.  For 

example, consider the successor tree (shown in Figure 6), associated with the FSM M in 

Figure 5. 

s1

s2 s3

a/0

a/0a/1

b/1

b/1

b/0

 

Figure 5 Transition diagram of a finite state machine M 

The root of the successor tree is annotated with the set of states S of M which is a one 

block partition. 

  = {{s1, s2, s3}} 

The input a refines the partition   to 

  (a) = {{s1, s3}, {s2}} 

Where the block or partition {s1, s3} corresponds to the output 0 and {s2} to 1.  The left 

child node of the Root node in the successor tree T is annotated with the current state 

uncertainty {{s1, s3}, {s2}}.  The input b refines the partition   to 

  (b) = {{s1, s2}, {s3}} 

Where the block {s1, s2} corresponds to the output 1 and {s3} to 0.  Hence, the right 

child node of the Root node is annotated with the current state uncertainty {{s2, s3}, 
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{s1}}.  The input symbol a leaves the partition   (a) unchanged while b further refines 

 (a) to  

  (ab) = {{s1}, {s3}, {s2}}. 

The left and right children of the  (a) node are annotated by the current state uncertainty 

{{s1, s3}, {s2}} and {{s2}, {s3}, {s1}} respectively.  Similarly, the input symbol a 

refines the partition  (b) to  

  (ba) = {{s1}, {s2}, {s3}}. 

and the input symbol b refines  (b) to  

  (bb) = {{s1}, {s2}, {s3}}. 

The left and right children of the  (b) node are annotated by the current state uncertainty 

{{s2}, {s3}, {s1}} and {{s3}, {s1}, {s2}} respectively.  Since the blocks in the current 

state uncertainty of these nodes are singletons, these nodes are referred to as leaf nodes. 

The sequences ab, ba and bb are distinguishing or UIO sequences since they trace a path 

from the root of the successor tree to a leaf node which is a current state uncertainty with 

elements that are singletons.   

{s1 s2 s3}

     1       0
{s2 s3}{ s1}

a b

a b

  1      0      0
{s2}{ s3}{ s1}

  1      0     1
{s3}{ s1}{ s2}

      0       1
{s1 s3}{ s2}

a b

      0       1
{s1 s2}{ s3}

  1      0     1
{s2}{ s1}{ s3}

 

Figure 6 The successor tree T of the machine in Figure 5 



20 

 
 

 

Figure 7 The UIO successor tree T of the machine in Figure 5 

A UIO tree is a successor tree for a particular state s of a FSM M.  Only blocks in the 

current state uncertainty that contain the state for which a UIO sequence is sought are 

considered for further processing.  States in other blocks imply that these states have 

different I/O behaviors; hence, these other blocks can be ignored.  

Figure 7 shows a UIO successor tree for the state s1 of the FSM M in Figure 5.  The 

blocks in the current state uncertainty which corresponds to the internal nodes of the UIO 

tree are limited to blocks that contain the state s1. 

2.3 The State Verification Complexity 

In this section, we would discuss the complexity class to which this decision problem 

belongs.  Complexity classes play a very important role in characterizing the practical 

solvability of the problems that they contain. 
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P is the class of languages that are decidable in polynomial time on a deterministic 

single-tape Turing machine.  P roughly corresponds to the class of problems that are 

realistically solvable on a computer (Sipser 1997).  NP is the class of languages that can 

be solved in polynomial time on a nondeterministic Turing machine (Sipser 1997). 

A decision problem B is NP-complete if it satisfies two conditions: 

I. B is in NP 

II. Every A in NP is polynomial time reducible to B (Sipser 1997). 

If B is NP-complete and B ∈ P, then P = NP.  However, it is widely assumed that P ⊆ 

NP. 

PSPACE is the class of decision problems that are solvable in polynomial space on a 

deterministic Turing machine (Sipser 1997).  A decision problem L belongs to the 

nondeterministic counterpart, NPSPACE if and only if there exists some nondeterministic 

Turing machine M that decides L in polynomial space (Rich 2008; Sipser 1997).  

However, Savitch‟s theorem shows that deterministic machines can simulate non- 

deterministic machines that use f (n) space by using a small amount of space f
2
(n) 

because the square of any polynomial is still a polynomial NPSPACE  = PSPACE.  For 

time complexity, such simulation seems to require an exponential increase in time (Sipser 

1997). 

A decision problem B is PSPACE-complete if it satisfies two conditions: 

I. B is in PSPACE 

II. Every A in PSPACE is polynomial time reducible to B (Sipser 1997). 
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If B merely satisfies condition 2, we say that it is PSPACE-hard (Sipser 1997).  Complete 

problems are the most difficult problems in a complexity class because any other problem 

in the class is polynomial reducible to them.  The completeness property of decision 

problems can be verified by showing the interrelation among various problems with 

respect to their difficulty.  The major technique used for demonstrating that two problems 

are related is that of “reducing” one to the other by giving a constructive transformation 

that maps any instance of the first problem into an equivalent instance of the second in 

polynomial time (Garey and Johnson 1979).  Such a transformation provides the means 

for converting any algorithm that solves the second problem into a corresponding 

algorithm for solving the first problem.  Having a polynomial time reduction from one 

problem to the other ensures that any polynomial time algorithm for the second problem 

can be converted into a corresponding polynomial time algorithm for the first problem.  If 

any PSPACE-complete language is in NP, then all of them are in NP and NP = PSPACE.  

Similarly, if any PSPACE-complete language is in P, then all of them are in P and P = 

NP = PSPACE.  However, it is assumed that both subset relationships are proper (i.e., 

that P ≠ NP ≠ PSPACE hence, P ⊆ NP ⊆ PSPACE) (Rich 2008). 

2.3.1 The State Verification time Complexity (Big O notation) 

The worst case time-complexity of the Algorithm (found in Appendix B) for the 

generation of UIO sequences is O (n
2
 (dmax) 

2n2 + 2
) where dmax is the largest out-degree of 

any state (or the largest number of outgoing edges from any state), and n is the number of 

states in the machine (Sabnani and Dahbura 1988, 285-297).  Sabnani and Dahbura 

demonstrated the proof of this theorem (Sabnani and Dahbura 1988, 285-297). 
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As noted in Chapter 3, a rooted tree is called a full m-ary tree if every internal vertex has 

exactly m children.  All FSMs considered in this study, are assumed to be completely 

specified; thus, the out-degree of every internal vertex of the successor tree is exactly 

equal to the input size of the FSM.  Hence, the successor tree is a full m-ary tree and dmax 

= (the input size of a FSM).  Kohavi theoretically proved that the upper bound for the 

length of a UIO sequence is (n-1)n
n
 where n is the number of states in the FSM (Kohavi 

1978).  Sabnani and Dahbura considers this upper bound to be meaningless since an FSM 

with n = 10 will have an upper bound of 9 x 10
10 

, which does not hold up for all 

protocols that they had examined (Sabnani and Dahbura 1988, 285-297).  In the context 

of using a UIO sequence generation algorithm as part of the conformance testing 

algorithm, Sabnani and Dahbura gave the upper bound of the length of the sequence to be 

at most 2n
2
 (Sabnani and Dahbura 1988, 285-297).  Sabnani and Dahbura, however, 

noted that the issue of a tight bound on the depth of the UIO successor tree (which 

corresponds to the length of the UIO sequence) is still open (Sabnani and Dahbura 1988, 

285-297).  Therefore, the algorithm for a UIO sequence (if it exists) for the state s of a 

FSM takes O(nI)
2n2 + 2 

, where n is the number of states in the FSM which corresponds to 

the maximum number of states in each node of the successor tree.  I is the size of the 

input set of the FSM and 2n
2 

is the depth of the successor tree. 

2.4 Cyclomatic Number  

McCabe‟s cyclomatic number is a metric used to establish the minimum number of 

independent paths through a program modeled as a control flow graph which is strongly 

connected.  This metric is derived from mathematical techniques which are based on 

concepts of graph theory.  A program control flow graph is a directed graph with unique 
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entry and exit nodes with the assumption that each node in the graph can be reached by 

the entry node and each node can reach the exit node.  By this assumption, a program 

control flow graph is a strongly connected directed graph.  The cyclomatic number V(G) 

of a graph G with n vertices, e edges, and p connected components is defined as v = e – n 

+ 2p (McCabe 1983; Berge 1976).  A connected component of a graph G is a maximal 

strongly connected subgraph of G.  Because all nodes in a program control flow graph are 

reachable from the entry node and every node can reach the exit node, a program control 

flow graph has only one connected component; hence, V(G) = e – n + 2 (McCabe 1983).  

The cyclomatic number of a directed graph can also be defined in terms of the Euler 

formula (McCabe 1983).  Formally defined, the Euler formula of a connected planar 

graph G with e edges v vertices and r regions in a planar representation of G is r = e – v + 

2 (Rosen 2007).  The number of regions is equal to the cyclomatic number. 
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CHAPTER III 

RESEARCH HYPOTHESIS  

In practice, Unique Input/Output (UIO) sequences are used successfully and very often as 

part of the conformance testing, even though finding a UIO sequence for a specific state s 

of a Finite State Machine (FSM) M is shown to be intractable.  Using the proof by 

reduction technique, Lee and Yannakakis showed that the state verification decision 

problem is PSPACE-complete.  Consequently, there must exist a threshold in the problem 

domain size that when exceeded would result in an exponential time solution.  It would 

be useful to have a simple metric that identifies that point.  One possible metric is the 

McCabe Cyclomatic Number. 

If the State Verification FSM problem is PSPACE-complete as theoretically established 

by Lee and Yannakakis then the number of states in the FSM, the size of the input set and 

the transition types such as reflexive transitions, are factors of the FSM that contribute 

directly to the intractable nature of the problem.  Lee and Yannakakis did not empirically 

substantiate their proof; hence we shall provide empirical evidence to corroborate the 

findings of Lee and Yannakakis.  Providing empirical data to a theoretical proof supports 

the findings of the proof.  Assuming that an empirical analysis verifies the correctness of
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this proof, at some point, the time to generate the UIO sequences becomes exponential. 

In the following sections we shall highlight Lee and Yannakakis proof and explain why 

we believe the above hypothesis to be true and how it is possible to substantiate their 

findings.  Also, we will provide an explanation of why McCabe‟s cyclomatic number is a 

good candidate to identify the point at which the solution to the state verification problem 

becomes exponential. 

3.1 Complexity of the State Verification Problem 

Lee and Yannakakis provide a proof that for a given machine M, it is PSPACE-complete 

to determine if a specific given state s of M have a UIO sequence, if all states of M have 

UIO sequences or if any state of M has a UIO sequence.  They showed that this holds 

even in the case of machines with binary input and output alphabets (Lee and Yannakakis 

1994, 306-320).  The structure of their proof is as follows: 

 They first showed membership in the PSPACE class by reducing an instance of the 

state verification problem to an equivalent instance of the decision problem, 

reachability in an exponentially large graph. 

 Next, they showed that the problem of determining whether a specific state s of a 

given machine M has a UIO sequence is PSPACE-hard.  They achieved this by 

reduction from an instance of the “Finite State Automata Intersection” problem 

known to be PSPACE–complete into an equivalent instance of the state verification 

decision problem (Broy and others 2005; Lee and Yannakakis 1994, 306-320). 
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PSPACE-Complete problems are usually different from problems known to be NP-

Complete.  One rich source of PSPACE-Complete problems has been the area of 

combinatorial games.  Outside the world of games, PSPACE-Complete problems also 

appear in areas associated with automata, programming, and languages, where they often 

are restricted versions of problems already known to be intractable or un-decidable 

(Garey and Johnson 1979).  PSPACE-complete problems are more intractable than NP-

complete problems; it is widely believed that such problems do not have polynomial time 

algorithms, even when non-determinism is allowed (Broy and others 2005).   

Intuitively, as the number of elements increases in PSPACE-complete problems the 

expectation is that the solution time will grow exponentially.  It is assumed that the 

elements of an FSM that are likely to affect the solution time for the derivation of UIO 

sequences for a particular state in an FSM are the number of states, size of the input set,  

and possibly the transition types.  In a fully specified FSM, the size of the input set 

establishes the number of transitions, based on the transition function.  Subsequently, 

with systematic analysis of the dataset between the time requirement of UIO sequence 

generation and the number of states / input set size, the coefficient of determination (R
2
)
 

is expected to be
 
≥ 0.80 with a predictive fit to an exponential trend line.  The coefficient 

of determination (R
2
) is defined as the ratio of the explained variation in the dependent 

variable to the total variation (Allen 1990).  A coefficient of determination (R
2
) of 0.8 for 

scientific or engineering problems is considered evidence that the dependent values (y) 

can be predicted from the independent values (x) using the regression line (Allen 1990) 

To further explain why we think the above hypothesis to be true, we would look at the 

time complexity function of the UIO sequence generation algorithm.  The time 



28 

 

 
 

complexity function of an algorithm expresses the amount of time needed by the 

algorithm to solve any possible problem instance as a function of the problem input size.  

A polynomial time algorithm is defined as an algorithm whose time complexity function 

is O (p (n)) for some polynomial function p and input length n (Garey and Johnson 1979).  

The time complexity function of the UIO sequence generation algorithm is O(nI)
2n2 + 2 

as 

specified in the background.  Thus, the UIO sequence generation algorithm is not a 

polynomial time algorithm but rather it is an exponential time algorithm. 

Given that Lee is correct and the solution to the state verification problem is PSPACE-

complete, we introduce another very interesting question.  Does the characteristic of the 

“pieces” affect the solution time of the problem?  In an FSM, there are two major pieces: 

states and transitions.  A transition can originate in one state, terminate in another state; 

or they can originate and terminate in the same state.  Transitions originating and 

terminating in the same state are known as reflexive transitions.  Reflexive transitions in 

an FSM cause it to have an arbitrarily high number of potential paths.  These reflexive 

transitions can cause difficulty when trying to establish a path through a state machine 

because the number of times to traverse a reflexive transition is not limited.  It is assumed 

that this would influence the time it takes to generate the UIO sequences.  In the data 

analysis of FSMs with reflexive transitions and FSMs with no reflexive transitions, we 

expect to observe a steeper exponential trend line for FSMs with reflexive transitions 

than for FSMs with no reflexive transitions. 

In addition to the investigation of the hypothesis, it would be expedient to explore the 

possibility of using McCabe‟s Cyclomatic Number to predict the performance of the 

algorithm generating the UIO sequences.  This can be achieved by deriving a metric for 
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determining the point in the trend of the solution time of the state verification problem in 

which it becomes exponential. 

3.2 Cyclomatic Number as a Predictive Metric 

In PSPACE-complete problems, the execution time of the algorithmic solution grows 

exponentially with the number of pieces.  No methods are known for predicting in 

advance where an algorithm‟s performance becomes exponential.  It is convenient for 

Software Engineers to have a metric predicting this threshold.  McCabe's Cyclomatic 

Number, as previously discussed, is a metric used to determine the number of paths 

through a control graph.  In other words, it attempts to identify the minimum number of 

independent paths in a control graph representing a program.  This research is 

investigating the performance of the UIO sequence generation algorithm and since 

McCabe's Cyclomatic Number deals with the various components of a state machine 

(states and transitions), we will explore the suitability of the McCabe's Cyclomatic 

Number for predicting the performance of the algorithm generating the UIO sequence. 

Directed graphs can be used to model a program control flow graph and FSM; hence, 

graph theory techniques used in analyzing a program control flow graph can also be 

applied to FSMs.  We will assume that McCabe's metric can be used to derive a 

technique for predicting the point in which the solution time to the state verification 

problem becomes exponential.  McCabe's cyclomatic number is used to determine the 

number of basic paths in a program, which in turn is used to limit the size of a program 

module.  McCabe‟s recommends an upper limit of V (G) = 10 when defining program 

modules.  Thus, by employing McCabe's cyclomatic number as a possible component in 
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the derivation of the anticipated metric, the attempt is to specify the complexity of an 

FSM in terms of its cyclomatic number and establish an upper limit.  If the PSPACE-

complete characteristic is caused by the number and interconnection of the parts, then it 

should be possible to demonstrate a relationship between the McCabe Cyclomatic 

Number and the time to generate the UIO sequence.  In the data analysis between these 

two variables, we expect to observe a strong correlation and a point in the trend line in 

which the solution time becomes exponential.  This threshold can be used as a predictor 

of the complexity of the FSM with respect to UIO sequence generation. 
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CHAPTER IV 

EXPERIMENTATION 

4.1 Overview 

The objectives of this experiment are to demonstrate the exponential growth rate of the 

solution time of the state verification problem as the number of “pieces” (such as the 

number of states and input set size) increases and to establish the effect of some FSM 

“pieces” characteristic (such as the reflexive nature of the FSM transitions) on the 

solution time of the problem.  The experiment also identifies the point where the 

exponential trend begins.  Using the observed relationship between the cyclomatic 

number and the state verification solution time a metric can be derived for determining 

this point.  To achieve the above objectives, the structure of the experiment conducted is 

discussed below. 

4.2 Experiment Description 

In this study, five experiments are designed and each experiment evaluates the 

performance of the UIO sequence generation algorithm against some characteristics of 

the FSM.  For each experiment, a sample set of 10 randomly generated FSMs are 

employed and the time it takes to generate the UIO sequence for each of the FSMs in the 

sample set is measured and recorded.  We would demonstrate how the individual and
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 collective components of an FSM (transitions, number of inputs and states) affect the 

performance of the UIO sequence generation algorithm respectivelyThe first experiment 

evaluates the effect of a combination of components of the FSM on the UIO sequence 

generation algorithm performance.  To achieve this, the association between the solution 

time of the UIO sequence generation and the controlled collective components of the 

FSM is demonstrated.  Each FSM in the sample set has features that are different from 

other FSMs in the set.  The number of states and input of each FSM in the sample set is 

varied between the intervals 10 – 100.  For example, an FSM may have 10 states and 10 

inputs while another FSM in the same sample set has 20 states and 20 inputs.  All FSMs 

used in this experiment are fully specified and contain reflexive transitions.  Fully 

specified FSMs implies that the number of edges increases proportionally to the number 

of states and inputs; hence, an FSM with 20 states and 20 inputs would have 400 

transitions. 

The second experiment assesses the effect of the number of states of an FSM on the 

performance of the UIO sequence generation algorithm.  All FSMs in the sample set are 

fully specified and contain reflexive transitions.  To demonstrate the effect of the number 

of states on the UIO sequence generation algorithm performance, all components of the 

FSM are kept constant while the number of states is varied for each FSM in the sample 

set.  In this experiment, the cardinality of the input set is fixed at 10, while the number of 

states is varied between the intervals 10 – 100.  Keeping the number of inputs constant 

for fully specified FSMs implies that the number of transitions would increase in 

proportion to the number of states. 
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The third experiment evaluates the effect of the number of inputs of an FSM on the 

performance of the UIO sequence generation algorithm.  All FSMs in the sample set are 

fully specified and contain reflexive transitions.  The number of states of each FSM in the 

sample set is kept constant while the number of inputs is varied between the intervals 10 -

100.  The number of transitions for each FSM varies in direct proportion to the number of 

inputs because the FSMs considered in this experiment are fully specified. 

The fourth experiment evaluates the effect of the number of transitions and transition 

types of an FSM on the performance of the UIO sequence generation algorithm.  In this 

experiment, two sample sets were employed.  One sample set contains partially specified 

FSMs with reflexive transitions while the other contains partially specified FSMs with no 

reflexive transitions.  Each FSM in both sample sets has ten (10) states and fifteen (15) 

inputs while the number of transitions is controlled between the intervals 10 – 100.  To 

control the number of transitions, the FSMs considered have to be partially specified with 

the number of transitions out of a state less than or equal to 15. 

The fifth experiment investigates the suitability of the cyclomatic number as a viable 

component to use in the derivation of the metric that identifies the point where the 

exponential trend begins.  The FSMs in the sample set are partially specified and contain 

reflexive transitions.  Partially specified FSMs enable the number of states to be kept 

constant while the cyclomatic number is controlled.  Each of the FSMs in the sample set 

has ten (10) states and their respective cyclomatic number is varied between the intervals 

10 – 100.  The number of transitions is dependent on the number of states and 

Cyclomatic Number.   
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To implement the experiments, two programs are constructed.  The first program 

randomly generates FSMs represented as strongly connected directed graphs with unique 

entry and exit nodes.  The generated directed graphs are represented in tabular forms 

which are input parameters for the second program.  The second program generates the 

successor tree for the UIO sequence generation and also measures the execution time. 

Table 1 and Figure 6 illustrate a randomly generated fully specified FSM with reflexive 

transitions in tabular form and state chart diagram respectively.  Table 2 represents the 

corresponding set of UIO sequences generated for each of the states in the FSM shown in 

Table 1.  The UIO sequence is an input sequence which is a unique signature for a state 

in the FSM.  The output sequence generated for this input sequence for a particular state 

is different from the output sequences generated when this input sequence is passed 

through other states in the FSM.  From Table 2, it can be observed that the input 

sequence <1, 1> generates the output sequence <1, 0>, <1, 1> and <0, 0> for the states 

s0, s1 and s3 respectively which are distinct from other output sequences.  States s2 and 

s4 generates the same output sequence <0, 1> when the input sequence <1, 1> is passed 

through them.  Hence <1, 1> is a UIO sequence for states s0, s1 and s3. 

Table 1 Randomly generated fully specified  

FSM with reflexive transitions 

Input Output Origin Destination 

0 1 s2 s1 

0 1 s1 s2 

1 1 s1 s0 

0 1 s0 s0 

1 0 s4 s1 

0 0 s4 s2 

1 0 s2 s1 

1 1 s0 s3 

1 0 s3 s3 

0 1 s3 s2 
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Figure 8 State Chart diagram for Table 1 

Table 2 Set of UIO sequences generated for FSM in Table 1 

State Sequence 

s0 <1/1, 1/0> 

s1 <1/1, 1/1> 

s2 <0/1, 1/1, 1/1> 

s3 <1/0, 1/0> 

s4 <0/0> 

Table 3 and Figure 7 illustrate a randomly generated fully specified FSM with no 

reflexive transitions in tabular form and state chart diagram respectively.  Table 4 

represents the corresponding set of UIO sequences generated for each of the states in the 

FSM shown in Table 3. 
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Table 3 A randomly generated fully specified FSM 

 with no reflexive transitions 

Input Output Origin Destination 

1 0  s1  s0 

0 0  s1  s3 

0 2  s4  s1 

0 2  s0  s1 

1 1  s3  s4 

1 0  s0  s1 

1 0  s2  s0 

0 2  s3  s1 

1 2  s4  s2 

0 2  s2  s0 

s2

s1

s0

s4s3

1/0

0/0
0/2

0/2, 1/0

1/1

1/0, 0/2

0/2

1/2

 

Figure 9 State Chart diagram for Table 3 

Table 4 Set of UIO sequences generated for FSM in Table 3 

State Sequence 

s0 <1/0, 0/0> 

s1 <0/0> 

s2 <0/2, 0/2> 

s3 <1/1> 

s4 <1/2> 
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To ensure that the underlying graph of each randomly generated directed graph is 

connected, Warshall‟s algorithm is applied.  Warshall‟s Algorithm establishes 

reachability between any two nodes x and y of a graph.  The program also checks that 

each directed graph generated is strongly connected by ensuring that each node can be 

reached by the unique entry node and each node can reach the unique exit node.  The 

second program constructs a successor tree recursively in a breadth first search fashion, 

as described in chapter 2, for each state of a randomly generated FSM.  Using the 

generated successor trees for an FSM, a set of UIO sequences are derived.  It also 

calculates the time used in the construction of the successor trees and the derivation of 

the UIO sequences. 

4.3 Experiment Execution 

In this research, all programs were executed on Windows platform.  To collate the raw 

data needed for relevant analysis, the first program accepted the following input 

parameters: the number of states, the input set size, the output set size and the cyclomatic 

number to produce randomly generated directed graphs as output.  The output obtained 

from the first program was used as an argument to the second program to generate sets of 

UIO sequences by first constructing a successor tree for each state of the FSM.  Standard 

system time was used to calculate the time it took to construct a successor tree but this 

proved to be inadequate because the standard clock resolution used in practice is too 

short.  A Windows API high resolution clock was employed to obtain time with the 

accuracy of microseconds; and this was used to compute the time it took to construct a 

successor tree and the corresponding set of UIO sequences.  To reduce the influence of 

noise in the computed execution time, each execution time in the data set generated, 
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represents the average of the execution time for the generation of five successor trees for 

a state.  As specified in chapter 2, the successor tree algorithm requires that for partially 

specified FSMs, pseudo transitions are generated for transitions not specified for a given 

input to a state.  Though this input is not specified in the transition function, it is part of 

the generated UIO sequence.  In the experiments conducted, the input events that 

generated these pseudo transitions and null outputs constitute part of the UIO sequence 

derived.  Most FSMs used in practice are partially specified; hence, using sequence 

driven test for FSM validation may be inadequate since these pseudo transitions do not 

exist. 

4.4 Experiment Result 

This section contains statistical data describing the results of the various experiments 

carried out in this study.  The graphs below describe the findings of the various 

experiments conducted which is focused on the relationship of the UIO sequence 

generation algorithm performance and other measures of the FSM such as the number of 

states, transitions and the input set size.  Linear regression is used to model the 

association between the execution time of the UIO sequence algorithm and the 

independent components of the FSM.   
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The set of data for Figure 10 is based on the time-complexity function O (n (I)
 n+ 2

) of the 

UIO sequence generation algorithm where n is the number of states in the FSM and I is 

the input size.  Figure 10 illustrates the correlation expected between the parts of the FSM 

and the solution time for the UIO sequence generation.  From the scatterplot, we observe 

a perfect fit to the exponential trend line. 

 

Figure 10 Log-Log Graph of Predicted Execution Time for UIO sequence 
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Figure 11 illustrates the relationship between the total FSM elements and the UIO 

sequence generation execution time in microseconds for 10 observations.  Each data 

point in the scatter plot graph represents the total independent variables (input size, 

number of states and transition).  The scatter plot demonstrates a positive correlation (r) 

of 0.98 between the total independent variables and the dependent variable (the UIO 

sequence generation execution time).  The R
2
 values of 0.99 and 0.92, for the polynomial 

and exponential regression lines respectively, show that both regression lines have 

predictive fits.  However, the polynomial regression line shows a stronger fit. 

 

Figure 11 Log-Log Graph for Observed Execution Time for UIO Sequence 
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Figure 12 illustrates the association between the number of states in the FSM and 

execution time (in Microseconds) for 10 observations.  The data points in the scatter plot 

represent controlled increase for both the number of states and edges because the FSMs 

used for this experiment are completely specified.  The scatterplot clearly indicates that 

there is a positive association between the number of states and execution time.  It has a 

coefficient correlation (r) value of 0.98.  Having coefficient of determination (R
2
) values 

> 0.8 for both the polynomial and exponential trend line indicates that the association is 

predictive.  The polynomial and exponential regression lines both have predictive fits, 

however, the R
2 

value of 0.9927 shows that the polynomial regression line has a stronger 

fit of the two.  This indicates that the correlation between these two variables is 

polynomial, though it shows strong exponential characteristics.  

 

Figure 12 Observed Execution Time for UIO sequence versus Number of States 
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Figure 13 illustrates the relationship between the input size of the FSM and the UIO 

sequence generation execution time in microseconds for 10 observations.  The scatterplot 

graph indicates that there is a positive correlation (r) of 0.98 between the variables.  This 

relationship is also predictive because its R
2
 values are greater than the desired value of 

0.8 for both the exponential and polynomial trend lines.  The solution time of the UIO 

sequence generation algorithm increases as the input size increases and the solution time 

increase shows strong polynomial and exponential trends.  However, the R
2
 value of 

0.9917 shows that the polynomial regression line has a stronger fit and this indicates that 

the correlation between these variables is polynomial, though it displays exponential 

characteristics. 

 

Figure 13 Observed Execution Time for UIO sequence versus Input Size 
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Figure 14 demonstrates the correlation between the transitions of FSM (number and 

types) and the solution time of the UIO sequence generation algorithm.  From the scatter 

plot we observe a negative correlation between the variables.  This implies that as the 

number of transitions increases, the solution time decreases.  By keeping the number of 

states and input for each FSM considered constant while increasing the number of 

transitions, the probability of finding UIO sequences for a state in the FSM increases.  

Thus, the number of transitions impacts the solution time for the UIO sequence 

generation inversely.  The R
2
 values of the regression lines indicate that the transition 

type of the FSMs is inconsequential to the time required in generating the UIO 

sequences.  The R
2
 values for both the reflexive and non-reflexive transitions are less 

than 0.8 which implies that the regression lines for either transition type is effective in 

predicting the UIO sequence generation solution time. 

 

Figure 14 Transition Types on the performance of the UIO sequence generation 
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Table 5 illustrates a randomly generated partially specified FSM.  Table 6 represents the 

transition function for the FSM.  Each cell in Table 6 depicts the next state and output 

when an input represented on the column heading enters a state specified in the row 

heading.  Table 7 shows the set of UIO sequences generated for each of the states in the 

FSM.  From the transition function, we can observe that no transitions are specified when 

there is an input of 0 to the states s1 and s3 respectively.  However, the UIO sequence 

generated for state 1 is 0, which is a transition that does not exist in the FSM represented 

in table 5.  The classic algorithm used in the UIO sequence generation assumes all FSMs 

to be fully specified.  Where the FSMs are partially specified, pseudo transitions are 

generated, which originate and terminate in the same state with a null output.  From 

Table 7 we can observe that the output sequence generated as a consequence of the UIO 

sequence is null. 

Table 5 A partially specified FSM 

Input Output Origin Destination 

0 1 s2 s2 

1 1 s1 s2 

1 1 s3 s1 

0 0 s4 s3 

0 0 s0 s4 

0 1 s3 s0 

1 0 s2 s2 

1 0 s0 s2 

Table 6 Transition Function for FSM in Table 5 

 

0 1 

s0 s2/1; s4/0 s2/0 

s1   s2/1 

s2   s2/0 

s3 s0/1 s1/1 

s4 s3/0   
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Table 7 Set of UIO sequences generated for  

FSM in Table 5 

 States Sequences 

s0 < 0/0, 0/0> 

s1  <0/null> 

s2 <0/1, 0/1> 

s3 <0/1, 0/0> 

s4 <1/null> 

Figure 15 illustrates the relationship between the Cyclomatic number of the FSM and the 

UIO sequence generation execution time in microseconds for 10 observations.  It has a 

negative correlation coefficient (r) of -0.75.  This relationship is not predictive because 

the R
2
 value for both the polynomial and exponential trend lines are below the desired R

2
 

value of 0.8 which is the value used for scientific or engineering problems. 

 

Figure 15 Observed Execution Time for UIO sequence generation
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CHAPTER V 

CONCLUSION AND FUTURE RESEARCH 

From the findings of the empirical experiment illustrated in Figures 11 and 12, the 

number of states and inputs are elements of a Finite State Machine (FSM) directly 

affecting the performance of the Unique Input / Output (UIO) sequence generation 

algorithm.  In a fully specified FSM, the cardinality of the input set (I) determines the 

number of transitions originating from each state.  The number of transitions affects the 

performance inversely in a non-fully specified FSM, and the transition types appear to 

have no significant effect on the performance; thus they are inconsequential as factors in 

the time required to generate a UIO sequence algorithm, as illustrated in Figure 13. 

Figure 10 illustrates that the performance of the UIO sequence generation algorithm is 

polynomial for finite inputs and states.  Lee proved that the state verification problem is 

PSPACE-complete by reducing an instance of the Finite State Automata Intersection 

problem known to be PSPACE-complete to an instance of the state verification problem.  

However, Hopcroft and Ullman proved that the Finite State Automata Intersection 

problem is PSPACE-complete but solvable in polynomial time for a finite number of 

inputs (Garey 1979).  This is consistent with the findings modeled in Figure 10, where 

the performance of the UIO sequence generation algorithm trends exponential but 

exhibits a stronger polynomial trend for a finite number of inputs of the FSM.
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The state verification testing problem is PSPACE and not PSPACE-complete.  It is 

PSPACE because as the number of states and inputs of a FSM increases, the solution 

time of the UIO sequence generation algorithm increases in a polynomial trend where the 

number of inputs of a FSM are finite.  This indicates that Lee‟s theoretical proof, though 

accurate, is not precise.  It is accurate because the algorithm exhibits an exponential 

trend, but it is not strictly an exponential time algorithm.  Lee‟s proof failed to establish 

the distinction in the solvability of the problem for finite and infinite number of inputs 

and states of the FSM. 

In the classic UIO sequence generation algorithm, it is assumed that the FSM to be tested 

is fully specified.  To generate UIO sequences for a partially specified FSM, it must first 

be expanded to a fully specified FSM.  This entails generating pseudo transitions (these 

are self loops or reflexive transitions that originate and terminate in the same state) with 

null outputs for inputs in a state that have no transition specification in the transition 

function of the FSM.  Table 7 illustrates that the pseudo transitions constitute part of the 

UIO sequence path in a partially specified FSM.  These pseudo transitions do not occur in 

physical systems and thus cannot be tested.  Thus sequences that contain pseudo 

transitions cannot be used to accurately test a system with state behavior. 

In practice, Mealy and Moore Finite State Machines (FSMs) are not powerful enough to 

model complex software systems succinctly anymore.  To model complex software 

systems, FSMs are extended to include variables, which are known as Extended Finite 

State Machine (EFSM).  To test an EFSM using sequences, it must first be expanded to 

an ordinary FSM.  This is possible only if each variable in the variable set has a finite 

number of values, then each combination of a state and variable value constitute the 
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states of the expanded FSM.  However, this equivalent FSM may be too cumbersome to 

construct in practice.  For an EFSM with infinite variable values such as real numbers, it 

becomes impossible to expand it to a fully specified FSM; thus the use of sequences to 

test an EFSM becomes infeasible.  Future research to develop new techniques for testing 

EFSMs is expedient. 

Figure 14 indicates that the cyclomatic number of an FSM cannot be used in deriving a 

metric to predict the time to derive a set of UIO sequences, as proposed in the hypothesis.  

This is not a complete surprise since the intent of the cycolmatic number is to establish 

the minimum number of paths through a control graph (McCabe 1983). 

In conformance testing, a test sequence must traverse each state and each state transition, 

of a FSM and must check that each state has a unique signature called the UIO sequence.  

This characteristic of the conformance testing procedure shows a strong correlation to the 

definition of the cyclomatic number; hence, the cyclomatic number could be a more 

viable component in predicting the complexity of an FSM where conformance testing is 

the focus. 

The following further studies are necessary to fully substantiate some of the conclusions: 

 An Empirical investigation into the suitability of employing McCabe‟s 

Cyclomatic Number in deriving a metric for predicting the performance of the 

checking sequence generation algorithm 

 An Empirical investigation into the inadequacy of using sequences to test EFSMs.  

Develop techniques other than sequences that can be used to adequately test 

EFSMs. 
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 An Empirical investigation into the derivation of conformance sequences using 

UIO sequences.  As with this study, it would be interesting to evaluate the effects 

of transition types in FSMs that are not fully specified. 
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APPENDIX A 

UIO SUCCESSOR TREE ALGORITHM 

For each state, all input/output sequences of length 1 are computed and checked for 

uniquess. If no unique sequence of length 1 is discovered, the procedure is repeated for 

all sequences of length 2.  This procedure is continued for longer sequences until a 

unique input/output sequence is found or the length exceeds 2n
2
 (Sabnani and Dahbura 

1988, 285-297).  Details of the algorithm are as follows: 

/* NS[] = A vector that stores the nodes of a successor tree*/ 

Step1.  Let the set of states be V = {s1, s2, s3... sn}.  For each state s store V in the vector 

NS. 

Step2.  For each element in NS compute the set of outgoing edges, Es = {es, 1, es, 2, es, 3,   , 

es, k}, where k is the size of the input set of the FSM.  The label of each edge is the input 

symbol and the corresponding output symbol determined by the output function.  For 

each edge in Es do the following: 

Step2.1. Check if the input\output label on the edge es is unique to state s.  If this 

label is unique then trace the path back to the root.  This is the UIO sequence for 

state s.  End the search. Otherwise, store all states with the same input/output 

label as the state s in the vector NS[i]. 

Step3.  Repeat Step 1 for the next state in V.
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