

EMPIRICAL RESEARCH INTO THE INTRACTABILITY OF FINITE STATE

MACHINES

THESIS

Presented to the Graduate Council of

Texas State University-San Marcos

in Partial Fulfillment

of the Requirements

for the Degree

Master of SCIENCE

by

Ngozi I. Ihemelandu, B.S

San Marcos, Texas

May 2011

EMPIRICAL RESEARCH INTO THE INTRACTABILITY OF FINITE STATE

MACHINE

 Committee Members Approved:

 Carl J. Mueller, Chair

 Carol Hazlewood

 Khosrow Kaikhah

Approved:

J. Michael Willoughby

Dean of the Graduate College

COPYRIGHT

by

Ngozi Ihemelandu

2011

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the copyright laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author‟s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Ngozi Ihemelandu, authorize duplication of this

work, in whole or in part, for educational or scholarly purposes only.

v

ACKNOWLEDGEMENTS

First and foremost, I want to thank the Almighty God without whom, I would not have

been able to successfully complete my Master‟s degree. I thank Him for His grace and

wisdom that sustained me through the duration of my thesis work.

I am deeply indebted to Dr. Carl Muller, my thesis advisor and thesis committee chair for

sacrificially giving his time and resources, for his patience, encouragements and

constructive criticism. Thanks for your willingness to trust us with a lot of your

textbooks and articles.

I also want to thank Dr. Hazlewood and Dr. Kaikhah, members of my thesis committee,

for their availability and participation in making this thesis possible.

To my siblings and friends who have stood so steadfastly by me, always so reliable,

throughout this graduate program, I want to say thank you.

And finally to my parents, whose love and encouragement has been my rock guiding me

through life, I want to say God bless you.

vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

ABSTRACT .. x

CHAPTER

I INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Thesis Statement .. 2

II BACKGROUND ... 4

2.1 State Machines ... 4

2.1.1 Finite State Machines .. 6

2.1.2 Extended Finite State Machines .. 12

2.2 State Verification.. 13

2.2.1 Partial Specification and Completeness Assumption 14

2.2.2 Initial and Current State Uncertainty .. 16

2.2.3 The UIO Successor Tree ... 17

vii

2.3 The State Verification Complexity .. 20

2.3.1 The State Verification time Complexity (Big O notation) 22

2.4 Cyclomatic Number ... 23

III RESEARCH HYPOTHESIS ... 25

3.1 Complexity of the State Verification Problem ... 26

3.2 Cyclomatic Number as a Predictive Metric ... 29

IV EXPERIMENTATION.. 31

4.1 Overview .. 31

4.2 Experiment Description.. 31

4.3 Experiment Execution .. 37

4.4 Experiment Result .. 38

V CONCLUSION AND FUTURE RESEARCH ... 46

APPENDIX A UIO SUCCESSOR TREE ALGORITHM ... 50

BIBLIOGRAPHY ... 51

VITA ... 54

viii

LIST OF TABLES

Table Page

1. Randomly generated fully specified FSM with reflexive transitions 34

2. Set of UIO sequences generated for FSM in Table 1 ... 35

3. A randomly generated fully specified FSM with no reflexive transitions 36

4. Set of UIO sequences generated for FSM in Table 3 ... 36

5. A partially specified FSM ... 44

6. Transition Function for FSM in Table 5 ... 44

7. Set of UIO sequences generated for FSM in Table 5 .. 45

ix

LIST OF FIGURES

Figure Page

1. The Chomsky Hierarchy ... 5

2. An FSM in which all states have UIO sequences, but there exist no preset

distinguishing sequence .. 10

3. An FSM in which states s1 and s2 have UIO sequences, but s4 does not 10

4. An FSM in which no state has a UIO sequence .. 11

5. Transition diagram of a finite state machine M .. 18

6. The successor tree T of the machine in Figure 5 .. 19

7. The UIO successor tree T of the machine in Figure 5 .. 20

8. State Chart diagram for Table 1 .. 35

9. State Chart diagram for Table 3 .. 36

10. Log-Log Graph of Predicted Execution Time for UIO sequence 39

11. Log-Log Graph for Observed Execution Time for UIO Sequence............................. 40

12. Observed Execution Time for UIO sequence versus Number of States 41

13. Observed Execution Time for UIO sequence versus Input Size 42

14. Transition Types on the performance of the UIO sequence generation 43

15. Observed Execution Time for UIO sequence generation ... 45

x

ABSTRACT

EMPIRICAL RESEARCH INTO THE INTRACTABILITY OF FINITE STATE

MACHINE

by

Ngozi Ihemelandu, B.S.

Texas State University-San Marcos

May 2011

SUPERVISING PROFESSOR: CARL MULLER

 Much of the high reliability and safety critical software applications use various

forms of Finite State Machines (FSM) to describe their behavior. Testing software with

state behavior presents a number of challenges to development organizations. One of the

challenges in testing state behavior is to verify that the application has entered a specific

state. A theoretical proof has established that State Verification is a PSPACE-complete

problem, but the proof did not provide an empirical verification. A primary objective of

this research is to provide the empirical evidence to support the theoretic proof that the

State Verification problem is PSPACE-complete. A secondary objective of this research

is to investigate how states and transition affect the time to derive a Unique Input Output

xi

(UIO) sequence. In addition to the investigation of the intractability of the state

verification problem, the suitability of using McCabe‟s Cyclomatic number to predict the

performance of the algorithm generating the UIO sequences was explored. Based on the

empirical results, the State Verification testing problem is a PSPACE problem and not

PSPACE-complete problem, but only for fully specified FSM are UIO sequences

appropriate. In addition, the Cyclomatic number did not predict the time necessary to

derive UIO sequences.

1

CHAPTER I

INTRODUCTION

1.1 Motivation

Computers and software systems affect almost every facet of modern society. The use of

software ranges from mundane tasks, such as information processing or air flight

booking, to use in the medical field, such as in life saving devices like implanted-cardiac

defibrillators. Because of the deep-seated role of software in almost every aspect of our

daily lives, a small defect in a software application may result in severe financial losses

and in some cases life loss.

The new Denver International Airport was to be a wonder of modern engineering. Its

opening was delayed for almost a year, at a cost to the airport authority of over $1 million

a day due to software-related failure of the automated baggage (Gibbs, Wayt, W. 1994).

There are other documented real-life instances that illustrate the disastrous effect of

software failures (Gallagher 2007; Gleick 1996; Leveson 1995).

Most of the disastrous software failures in recent years are as a result of inadequate

testing. Finite state machines are used to model external system behavior (black box

2

view) or detailed execution of specific implementation (white box view) (Tian 2005).

1.2 Thesis Statement

Evaluating software with state behavior is a major research issue in software testing.

State verification is one of the challenges in testing FSMs in which we know the state

diagram of the system under test, and this machine is assumed to be in a particular state.

The objective of the state verification experiment is to check that the assumption that a

machine is in a particular state s is correct. An input sequence that solves this problem is

known as the Unique Input Output Sequence (UIO) (Broy and others 2005; Lee and

Yannakakis 1996, 1090-1123; Lee and Yannakakis 1994, 306-320; Sabnani and Dahbura

1988, 285-297). One of the most frequently cited papers on testing software with state-

behavior is “Testing Finite-State Machines: State Identification and Verification”, in

which Lee proved that it is PSPACE-complete to determine if a specific state „s‟ of a

given FSM „M‟ has a UIO sequence (Lee and Yannakakis 1994, 306-320). PSPACE-

complete problems are a set of problems in which there are presumably no efficient,

polynomial time, algorithm for the general solution of the problem. Hence, a general

solution would require an exponential amount of time to process as the number of the

elements in the problem increases (Sipser 1997). It is interesting to note that this theorem

advocated by Lee holds even when the FSM is restricted to binary input and output

alphabets (Lee and Yannakakis 1994, 306-320).

The focus of this research is an investigation on the complexity of FSM with

demonstrations that:

3

1. The State Verification testing challenge is PSPACE-complete as proved

theoretically by Lee (Lee and Yannakakis 1994, 306-320).

2. The following factors contribute to the PSPACE intractability characteristic of the

UIO generation algorithm

I. Transitions types: loop and reflexive transition

II. Number of states

III. Input size

3. There exists a correlation between the cyclomatic number of a FSM and the time

it takes to generate the UIO sequence.

Much work has been done on the generation of UIO sequence, but not much research has

been done with respect to the causes of PSPACE-complete intractability in a classic

solution to the state verification problem. Chapter II of this work introduces some

concepts in graph theory and automata that lays the foundation for the intended research.

Chapter III details the theoretical background and hypothesis of the research. Chapter IV

describes the experimental analysis of the hypothesis developed in Chapter III. Chapter

V lays out the findings of the research and the analysis of these findings.

4

CHAPTER II

BACKGROUND

In this Chapter, we shall focus on understanding some fundamental concepts of finite

state machines, extended finite state machines, graph theory, successor tree, and

McCabe‟s Cyclomatic number. We shall attempt to establish the relationship that exists

among them. By establishing these relationships, concepts from graph theory will be

applied in the analysis of FSM, Successor tree and McCabe‟s Cyclomatic number. To

study the complexity of an FSM, we shall focus on the State Verification FSM testing

problem.

2.1 State Machines

The Chomsky hierarchy is a nested hierarchy of classes of formal grammars. Each level

of the Chomsky hierarchy specifies both the grammar formalism and the computational

structure of the formal language class. The basis for the Chomsky hierarchy is the

amount and organization of the memory required to process the languages at each level

(Rich 2008).

The Chomsky hierarchy consists of the following levels:

 Type 0 (semi-decidable): no memory constraint

 Type 1 (context-sensitive): memory limited by the length of the input string

5

 Type 2 (context-free): unlimited memory but accessible only in a stack (so only a

finite amount is accessible at any point)

 Type 3 (regular): finite memory (Rich 2008)

The Chomsky hierarchy makes an obvious suggestion: Different grammar formalisms

offer different descriptive power and may be appropriate for different tasks (Rich 2008).

In other words, Chomsky hierarchy gives a platform that specifies the differences in state

machines. The EFSM falls within the outermost level (type 0) of the Chomsky hierarchy

because the set of variables V provides unlimited working memory for storing the results

of intermediate steps of the computation. EFSM is a representation of the Turing

machine.

context-sensitive

(Type 1)

semi-decidable

(Type 0)

Linear Bounded

Automaton

(LBAs)

Turing

Machines

Regular

(Type 3)

FSMs

Push Down

Automata

(PDAs)

Context-Free

(Type 2)

Figure 1 The Chomsky Hierarchy

6

2.1.1 Finite State Machines

A finite state machine (FSM) is a model of behavior using states and state transitions. It

is a widely used model in just about every area of the software industry and is particularly

popular with designers of telecommunication systems, communication protocols,

embedded systems and control systems. There are two types of finite state machines:

Mealy machines and Moore machines (Lee and Yannakakis 1996, 1090-1123). FSMs are

typically modeled as Mealy machines, which are deterministic machines that produce

outputs on their state transitions after receiving inputs. An FSM M is a quintuple M = (I,

O, S, δ, λ), where I, O, and S are finite and nonempty sets of input symbols, output

symbols, and states, respectively.

δ: S x I → S is the state transition function;

λ: S x I → O is the output function (Lee and Yannakakis 1994, 306-320).

FSMs originate from Finite Automata which are defined as a quintuple (Q, Σ, δ, q0, F)

1. Q is a finite set called the states

2. Σ is a finite set called the alphabet

3. δ: Q x Σ → Q is the transition function

4. q0 Є Q is the start state, and

5. F ⊆ Q

Finite Automata are primarily used in parsing for recognized languages. Input strings

that are members of a given language should turn an Automaton to its final states but all

other input strings turn the Automaton to states other than the final states (Sipser 1997).

FSMs have output, while automata do not.

7

FSMs can be represented by state transition diagrams which are directed multigraphs

where the vertices correspond to the states of the FSM and the edges correspond to the

state transitions. A directed graph that has multiple directed edges connecting the same

vertices are called multigraphs. Formally, a directed graph (V, E) is defined as a

nonempty set of vertices V and a set of directed edges E. Each directed edge is

associated with an ordered pair of vertices. The directed edge associated with an ordered

pair (u, v) is said to start at u and end at v (Rosen 2007). A path in a directed graph is a

sequence of edges where the terminal vertex of an edge is the same as the initial vertex in

the next edge in the path (Rosen 2007). A path can pass through a vertex more than once

and an edge can occur more than once in a path. In most graph theory literature, loops

are defined as edges that connect a vertex to itself and a circle or circuit is defined as a

path that begins and ends at the same vertex (Rosen 2007). However, in this paper,

circles or circuits will be referred to as loops and loops will be referred to as reflexive

transitions. A directed graph G is strongly connected if there is a path from x to y and

from y to x whenever x and y are vertices in the graph. Although this graphical

representation of an FSM is intuitive and easy to interpret by human subjects, it becomes

impractical when the number of states becomes large. State diagrams with more than 20

or 30 states are messy and hard to trace. Consequently, tabular representations are often

used (Tian 2005).

FSM is used to study the intended system to be implemented and is also used in the

testing phase of product development to generate complete test suites to check

conformance of the model and the actual implementation. To deduce lacking information

from an FSM, a sequence of input symbols are provided to it and the resulting output

8

symbols produced are observed. The State Identification testing problem attempts to

identify the current state of a given FSM with known states and transitions but an

unknown current state. This is not always possible as there are FSMs for which no test

exists that will allow us to identify their current states. The input sequence that solves

this problem, if it exists, is called the distinguishing sequence (Lee and Yannakakis 1996,

1090-1123; Lee and Yannakakis 1994, 306-320).

Formally defined, a preset distinguishing sequence for a machine is an input sequence x

such that the output sequence produced by the machine in response to x is different for

each initial state, i.e., λ(si , x) ≠ λ(sj , x) for every pair of states si, sj, i ≠ j (Lee and

Yannakakis 1996, 1090-1123; Lee and Yannakakis 1994, 306-320). Lee and Yannakakis

showed that solving the preset distinguishing sequence challenge is PSPACE-complete

(Lee and Yannakakis 1994, 306-320). They also proved that there are machines for

which the shortest preset distinguishing sequence has exponential length. However, they

presented a deterministic polynomial time algorithm and polynomial length for the

adaptive distinguishing sequence problem. The state verification is a more restricted

problem than the state identification problem because it narrows the problem to that of

verifying that an FSM is in a given state. Hence, given an FSM M, it is assumed to be in

a particular state s ∈ S. The objective is to check that this assumption is correct. This is

possible if, and only if, that state has a Unique Input Output (UIO) sequence. Formally

defined, a UIO sequence of a state s0 is an input sequence x0 such that the output

sequence produced by the machine in response to x0 from any state other than s0 is

different than that from s0, i.e., λ(si , x0) ≠ λ(s0, x0) for any si ≠ s0 (Lee and Yannakakis

1996, 1090-1123; Lee and Yannakakis 1994, 306-320).

9

If an FSM has a preset or an adaptive distinguishing sequence, then all states have UIO

sequences. For a given machine, it is possible that no state has a UIO sequence, that

some states have a UIO sequence and some do not, or all states have a UIO sequence; but

there is no preset or adaptive distinguishing sequence (Lee and Yannakakis 1996, 1090-

1123; Lee and Yannakakis 1994, 306-320). For instance, in the FSM shown in Figure 1,

there exists no preset distinguishing sequence since states s2 and s3 give the same output

for any input starting with an a; and s1 and s4 give the same output when the input starts

with a b. However, all states have UIO sequences. Figure 2 shows an FSM in which

some states have UIO sequences and others do not, and Figure 3 shows an FSM in which

no state has a UIO sequence (Broy and others 2005).

UIO sequences can verify a larger class of machines than distinguishing sequence, this is

one of the reasons for studying state verification. These sequences were introduced by

Hsieh, and algorithms for finding them have been studied by Lee and Sabnani (Broy and

others 2005; Lee and Yannakakis 1994, 306-320; Sabnani and Dahbura 1988, 285-297).

Lee and Yannakakis proved that this problem is PSPACE-complete (Lee and Yannakakis

1994, 306-320). This thesis focuses on the results of these studies.

10

s1

a/0a/0

s2

s3

s4

b/1

a/1

b/1

a/0

b/0

b/1

Figure 2 An FSM in which all states have UIO sequences, but there exist no preset

distinguishing sequence

s1

a/0a/1

s2 s4

b/1

b/0

a/0

b/0

Figure 3 An FSM in which states s1 and s2 have UIO sequences, but s4 does not

11

s1

b/1a/1

s2

s3

s4

a/0

b/0

b/0

a/0

a/1

b/1

Figure 4 An FSM in which no state has a UIO sequence

Though the distinguishing sequences and UIO sequences provide solutions to the state

identification and verification problems respectively, these sequences have been useful in

the development of techniques to solve the conformance testing problem, otherwise

known as the fault detection problem. The main use for the state verification is as a part

of the algorithms for conformance testing. Hence, UIO sequences are mainly used as part

of conformance testing algorithms for the construction of checking sequences (Lee and

Yannakakis 1994, 306-320; Sabnani and Dahbura 1988, 285-297). In a conformance

testing challenge, given an FSM M that models a specification and a black box

implementation machine B, we want to check that B is a correct implementation of M.

The sequence that solves this problem is known as the checking sequence. Formally

defined, a checking sequence for an FSM M is an input sequence that distinguishes the

class of machines equivalent to M from other machines (Broy and others 2005; Lee and

Yannakakis 1996, 1090-1123). The checking sequence attempts to detect faulty

transitions in the implementation machine by checking whether each state and edge in the

FSM exists in the implementation and whether each edge has a correct label.

Conformance is formally defined as equivalence or isomorphism. The checking

12

sequence consists of three parts: initial sequence, state recognition sequence and the

transition checking sequence. The checking sequence brings M to a state and applies a

sequence of inputs to recognize the state reached. Recognizing states can be based on

distinguishing sequences or unique input-output (UIO) sequences. There are many

proposed checking sequence generation procedures that are based on UIO sequences.

2.1.2 Extended Finite State Machines

A number of software applications require variables to provide a complete specification.

Extended Finite State Machine Model (EFSM) is an enhanced state machine model based

on the traditional finite state machine (FSM), which uses variables. This additional

feature of an EFSM models the robust memory found in a software environment more

closely. EFSMs are at the top of the Chomsky hierarchy because of the inclusion of

variables in the model

An extended finite state machine (EFSM) is formally defined as a tuple

M = (Σ, V, Q, SI, SF, T)

where:

Σ is a finite, nonempty set of events or operations,

V is a finite set of variables,

Q is a finite, nonempty set of states,

SI is the initial state in the model where sI ∈ Q,

SF is the finial state in the model where sF ∈ Q,

T is a finite nonempty set of transitions, where each transition t is represented by

the tuple:

13

t = {SO(t), ST(t), e(t), C(t), A(t)}

where:

SO(t) is the transition‟s originating state,

ST(t) is the transition‟s terminating state,

e(t) is an event or operation causing the transition,

C(t) is the enabling conditional expression that enables the transition,

A(t) is a sequence of actions associated with a specific transition (Mueller 2003,

59-61).

In an EFSM, the set of transitions T describes how the set of states Q, events Σ and

variables V are used. In each transition element t, there is an event e(t) ∈ Σ that provides

the basic predictor for selecting one transition over another. The set of variables V

provides storage for information necessary for the enabling condition C(t). The

originating state SO(t) ∈ Q describes where the transition originates, and the terminating

state ST(t) ∈ Q describes where the transition ends. The action sequence A(t) establishes

values for variables found in V and other action statements necessary to describe the

operation of the model (Mueller 2003, 59-61).

2.2 State Verification

In the previous section, we introduced three finite state machine testing problems. To

study the complexity of a FSM we shall focus on the state verification testing problem.

In the state verification FSM testing problem, the state diagram of the system under test is

known, and it is assumed that the FSM is in a particular state. The objective of the test is

to verify that the assumption made about the current state of the FSM is correct. To

14

achieve this, an input sequence is passed through the system under test, and the state

verification experiment is used to verify that the sequence took the system to the expected

state. The search process for finding the UIO sequence for a state of an FSM uses a tree

known as the successor tree. By the definition of UIO sequences, different states of an

FSM may have different UIO sequences; hence, many trees may be constructed for an

FSM where each tree searches for the UIO sequence for a particular state. Before

examining the structure of the UIO successor tree, it is imperative to define some

concepts that will be used in the analysis of the UIO successor tree.

2.2.1 Partial Specification and Completeness Assumption

Finite State Machines are of two types: (i) deterministic and (ii) non- deterministic (Broy

and others 2005). A deterministic FSM is one in which for every state, there can be one

and only one transition for a particular input. A non-deterministic FSM is a FSM in

which for any state, there can be more than one transition with the same input (Sun, Shen,

and Feng 1997; Sipser 1997). In this paper, only the deterministic FSMs are considered.

Deterministic FSMs are divided into two categories:

i. Completely (fully) specified

ii. Incompletely (partially) specified.

An FSM is completely specified if for every state and every valid input, the behavior of

the FSM is specified. If on the other hand, the behavior for a particular input for a state

in the FSM is not specified, the FSM is said to be incompletely or partially specified

(Sun, Shen, and Feng 1997). Most FSMs are incompletely specified, and the specified

state-input behavior of an FSM is referred to as core behavior (Sabnani and Dahbura

1988, 285-297). For an input applied in a state of an FSM for which the output and the

15

next state behavior are not specified in the core behavior, it is assumed that a null output

is produced and it remains in its current state. This assumption is called the

Completeness Assumption (Broy and others 2005; Sabnani and Dahbura 1988, 285-297).

An alternate completeness assumption of a specification FSM generates an error output

and enters the error state whenever it receives an input in a state for which the behavior is

not specified by the core behavior (Sabnani and Dahbura 1988, 285-297). In this paper,

the completeness assumption concept adopted is strictly of the former type. An edge

from each state corresponding to a non-core input is a self-loop with a null output in its

label. These non-core edges are not shown in the directed graph representation of the

randomly generated FSM. It is impossible to develop a technique for FSM state

verification testing without any assumptions. Hence, for all machines considered in this

paper, it is assumed that they are minimized, strongly connected and completely

specified. A Mealy machine is minimized if it has no equivalent states (Broy and others

2005). If an FSM is not minimized, then there will always be states that do not have UIO

sequences since there are at least two states that produce the same outputs for every input

sequence. The classical algorithm for UIO sequence generation analyzed in this paper

assumes that the FSMs are fully specified. For every state in the FSM, there must be a

path to it from every other state. This ensures the absence of deadlock states in the FSM.

By restricting the FSM for consideration to deterministic machines where the next

operation and next state depend solely on the current state and input, it is assumed that

there are no control variables or counters manipulated by the control operations which

might influence transitions from a state as a response to input.

16

2.2.2 Initial and Current State Uncertainty

Given a machine M = (I, O, S, δ, λ) and an input sequence x, x induces a partition (x) on

the set of states S of M, where two states si, sj are placed in the same block B of the

partition if and only if they are not distinguished by x, i.e., λ(si, x) = λ (si, x). This

partition (x) is called the initial state uncertainty of x (Lee and Yannakakis 1996, 1090-

1123). The elements of the initial state uncertainty are called blocks. Formally

defined, blocks are nonempty subset of states (Broy and others 2005). | | = number

of blocks; is called a partition because any two blocks in are disjointed and the

union of all blocks is the entire set of states S. Consider M with a set of states S =

{a,b,c,d}, if M can initially be in any of this states then the initial state uncertainty =

(abcd) (Kohavi 1978). The aim of is to identify or verify the initial or current state of

M, by reducing the initial state uncertainty until each block B in is a singleton or the

states in B of cannot be further distinguished. A singleton is a component or block of

a partition that contains a single state.

The current state uncertainty of x: σ(x) = { δ(B,x) | B ∈ π(x) } (Lee and Yannakakis

1996, 1090-1123). σ(x) is not necessarily a partition; i.e., the sets in σ(x) are not

necessarily disjointed. The output produced by M in response to the input sequence x

tells us to which member of σ(x) the current state belongs (Lee and Yannakakis 1996,

1090-1123).

For example, consider the machine M shown in Figure 3. Initially the initial state is

unknown and could be any of the states.

initial state uncertainty = {{s1, s2, s3}} (where is the empty string)

input symbol b induces the partition = {{s1, s2}1, {s3}0}

17

current state uncertainty σ(b) = {{s2, s3}1, {s1}0}

input symbol a induces the partition = {{s1}11, {s2}10, {s3}00}

current state uncertainty σ(ba) = {{s2}11, { s3}10, {s1}00}

The subscript denotes the output for each block.

In terms of UIO sequences, this means that distinct states si, in the same block and

partition with s0 (where s0 is the state for which a UIO sequence is considered) cannot be

distinguished by the input sequence x. Hence, we say that our uncertainty about state s0

of M has been reduced to a block of states. However, if the block is a singleton then our

uncertainty is totally reduced.

2.2.3 The UIO Successor Tree

The concepts of trees in graph theory are applied in the techniques used for the derivation

of UIO sequence. A tree is a connected undirected graph with no circuits, multiple edges

or loops. Therefore, there exists a unique simple path between two of its vertices (Rosen

2007). A tree with a particular vertex designated as the root, every edge directed away

from the root and a unique path from the root to each vertex of the graph is called a

rooted tree. Thus, a rooted tree is a directed graph. A rooted tree is called a full m-ary

tree if every internal vertex has exactly m children (Rosen 2007). In this paper, only

rooted full m-ary trees will be considered which are referred to as successor trees in

literatures on FSM model based testing. The successor tree of a specified machine M is a

tree showing the behavior of the machine starting from all possible initial states (which is

the set of states of the considered machine) under all possible input sequence (Lee and

Yannakakis 1996, 1090-1123). Each node of the successor tree has exactly as many

outgoing edges as the number of inputs of the machine. Every internal node is annotated

18

with a current state uncertainty which corresponds to the input sequence defined by the

path starting from the root of the successor tree to the node under consideration. For

example, consider the successor tree (shown in Figure 6), associated with the FSM M in

Figure 5.

s1

s2 s3

a/0

a/0a/1

b/1

b/1

b/0

Figure 5 Transition diagram of a finite state machine M

The root of the successor tree is annotated with the set of states S of M which is a one

block partition.

 = {{s1, s2, s3}}

The input a refines the partition to

 (a) = {{s1, s3}, {s2}}

Where the block or partition {s1, s3} corresponds to the output 0 and {s2} to 1. The left

child node of the Root node in the successor tree T is annotated with the current state

uncertainty {{s1, s3}, {s2}}. The input b refines the partition to

 (b) = {{s1, s2}, {s3}}

Where the block {s1, s2} corresponds to the output 1 and {s3} to 0. Hence, the right

child node of the Root node is annotated with the current state uncertainty {{s2, s3},

19

{s1}}. The input symbol a leaves the partition (a) unchanged while b further refines

 (a) to

 (ab) = {{s1}, {s3}, {s2}}.

The left and right children of the (a) node are annotated by the current state uncertainty

{{s1, s3}, {s2}} and {{s2}, {s3}, {s1}} respectively. Similarly, the input symbol a

refines the partition (b) to

 (ba) = {{s1}, {s2}, {s3}}.

and the input symbol b refines (b) to

 (bb) = {{s1}, {s2}, {s3}}.

The left and right children of the (b) node are annotated by the current state uncertainty

{{s2}, {s3}, {s1}} and {{s3}, {s1}, {s2}} respectively. Since the blocks in the current

state uncertainty of these nodes are singletons, these nodes are referred to as leaf nodes.

The sequences ab, ba and bb are distinguishing or UIO sequences since they trace a path

from the root of the successor tree to a leaf node which is a current state uncertainty with

elements that are singletons.

{s1 s2 s3}

 1 0
{s2 s3}{ s1}

a b

a b

 1 0 0
{s2}{ s3}{ s1}

 1 0 1
{s3}{ s1}{ s2}

 0 1
{s1 s3}{ s2}

a b

 0 1
{s1 s2}{ s3}

 1 0 1
{s2}{ s1}{ s3}

Figure 6 The successor tree T of the machine in Figure 5

20

Figure 7 The UIO successor tree T of the machine in Figure 5

A UIO tree is a successor tree for a particular state s of a FSM M. Only blocks in the

current state uncertainty that contain the state for which a UIO sequence is sought are

considered for further processing. States in other blocks imply that these states have

different I/O behaviors; hence, these other blocks can be ignored.

Figure 7 shows a UIO successor tree for the state s1 of the FSM M in Figure 5. The

blocks in the current state uncertainty which corresponds to the internal nodes of the UIO

tree are limited to blocks that contain the state s1.

2.3 The State Verification Complexity

In this section, we would discuss the complexity class to which this decision problem

belongs. Complexity classes play a very important role in characterizing the practical

solvability of the problems that they contain.

21

P is the class of languages that are decidable in polynomial time on a deterministic

single-tape Turing machine. P roughly corresponds to the class of problems that are

realistically solvable on a computer (Sipser 1997). NP is the class of languages that can

be solved in polynomial time on a nondeterministic Turing machine (Sipser 1997).

A decision problem B is NP-complete if it satisfies two conditions:

I. B is in NP

II. Every A in NP is polynomial time reducible to B (Sipser 1997).

If B is NP-complete and B ∈ P, then P = NP. However, it is widely assumed that P ⊆

NP.

PSPACE is the class of decision problems that are solvable in polynomial space on a

deterministic Turing machine (Sipser 1997). A decision problem L belongs to the

nondeterministic counterpart, NPSPACE if and only if there exists some nondeterministic

Turing machine M that decides L in polynomial space (Rich 2008; Sipser 1997).

However, Savitch‟s theorem shows that deterministic machines can simulate non-

deterministic machines that use f (n) space by using a small amount of space f
2
(n)

because the square of any polynomial is still a polynomial NPSPACE = PSPACE. For

time complexity, such simulation seems to require an exponential increase in time (Sipser

1997).

A decision problem B is PSPACE-complete if it satisfies two conditions:

I. B is in PSPACE

II. Every A in PSPACE is polynomial time reducible to B (Sipser 1997).

22

If B merely satisfies condition 2, we say that it is PSPACE-hard (Sipser 1997). Complete

problems are the most difficult problems in a complexity class because any other problem

in the class is polynomial reducible to them. The completeness property of decision

problems can be verified by showing the interrelation among various problems with

respect to their difficulty. The major technique used for demonstrating that two problems

are related is that of “reducing” one to the other by giving a constructive transformation

that maps any instance of the first problem into an equivalent instance of the second in

polynomial time (Garey and Johnson 1979). Such a transformation provides the means

for converting any algorithm that solves the second problem into a corresponding

algorithm for solving the first problem. Having a polynomial time reduction from one

problem to the other ensures that any polynomial time algorithm for the second problem

can be converted into a corresponding polynomial time algorithm for the first problem. If

any PSPACE-complete language is in NP, then all of them are in NP and NP = PSPACE.

Similarly, if any PSPACE-complete language is in P, then all of them are in P and P =

NP = PSPACE. However, it is assumed that both subset relationships are proper (i.e.,

that P ≠ NP ≠ PSPACE hence, P ⊆ NP ⊆ PSPACE) (Rich 2008).

2.3.1 The State Verification time Complexity (Big O notation)

The worst case time-complexity of the Algorithm (found in Appendix B) for the

generation of UIO sequences is O (n
2
 (dmax)

2n2 + 2
) where dmax is the largest out-degree of

any state (or the largest number of outgoing edges from any state), and n is the number of

states in the machine (Sabnani and Dahbura 1988, 285-297). Sabnani and Dahbura

demonstrated the proof of this theorem (Sabnani and Dahbura 1988, 285-297).

23

As noted in Chapter 3, a rooted tree is called a full m-ary tree if every internal vertex has

exactly m children. All FSMs considered in this study, are assumed to be completely

specified; thus, the out-degree of every internal vertex of the successor tree is exactly

equal to the input size of the FSM. Hence, the successor tree is a full m-ary tree and dmax

= (the input size of a FSM). Kohavi theoretically proved that the upper bound for the

length of a UIO sequence is (n-1)n
n
 where n is the number of states in the FSM (Kohavi

1978). Sabnani and Dahbura considers this upper bound to be meaningless since an FSM

with n = 10 will have an upper bound of 9 x 10
10

, which does not hold up for all

protocols that they had examined (Sabnani and Dahbura 1988, 285-297). In the context

of using a UIO sequence generation algorithm as part of the conformance testing

algorithm, Sabnani and Dahbura gave the upper bound of the length of the sequence to be

at most 2n
2
 (Sabnani and Dahbura 1988, 285-297). Sabnani and Dahbura, however,

noted that the issue of a tight bound on the depth of the UIO successor tree (which

corresponds to the length of the UIO sequence) is still open (Sabnani and Dahbura 1988,

285-297). Therefore, the algorithm for a UIO sequence (if it exists) for the state s of a

FSM takes O(nI)
2n2 + 2

, where n is the number of states in the FSM which corresponds to

the maximum number of states in each node of the successor tree. I is the size of the

input set of the FSM and 2n
2

is the depth of the successor tree.

2.4 Cyclomatic Number

McCabe‟s cyclomatic number is a metric used to establish the minimum number of

independent paths through a program modeled as a control flow graph which is strongly

connected. This metric is derived from mathematical techniques which are based on

concepts of graph theory. A program control flow graph is a directed graph with unique

24

entry and exit nodes with the assumption that each node in the graph can be reached by

the entry node and each node can reach the exit node. By this assumption, a program

control flow graph is a strongly connected directed graph. The cyclomatic number V(G)

of a graph G with n vertices, e edges, and p connected components is defined as v = e – n

+ 2p (McCabe 1983; Berge 1976). A connected component of a graph G is a maximal

strongly connected subgraph of G. Because all nodes in a program control flow graph are

reachable from the entry node and every node can reach the exit node, a program control

flow graph has only one connected component; hence, V(G) = e – n + 2 (McCabe 1983).

The cyclomatic number of a directed graph can also be defined in terms of the Euler

formula (McCabe 1983). Formally defined, the Euler formula of a connected planar

graph G with e edges v vertices and r regions in a planar representation of G is r = e – v +

2 (Rosen 2007). The number of regions is equal to the cyclomatic number.

25

CHAPTER III

RESEARCH HYPOTHESIS

In practice, Unique Input/Output (UIO) sequences are used successfully and very often as

part of the conformance testing, even though finding a UIO sequence for a specific state s

of a Finite State Machine (FSM) M is shown to be intractable. Using the proof by

reduction technique, Lee and Yannakakis showed that the state verification decision

problem is PSPACE-complete. Consequently, there must exist a threshold in the problem

domain size that when exceeded would result in an exponential time solution. It would

be useful to have a simple metric that identifies that point. One possible metric is the

McCabe Cyclomatic Number.

If the State Verification FSM problem is PSPACE-complete as theoretically established

by Lee and Yannakakis then the number of states in the FSM, the size of the input set and

the transition types such as reflexive transitions, are factors of the FSM that contribute

directly to the intractable nature of the problem. Lee and Yannakakis did not empirically

substantiate their proof; hence we shall provide empirical evidence to corroborate the

findings of Lee and Yannakakis. Providing empirical data to a theoretical proof supports

the findings of the proof. Assuming that an empirical analysis verifies the correctness of

26

this proof, at some point, the time to generate the UIO sequences becomes exponential.

In the following sections we shall highlight Lee and Yannakakis proof and explain why

we believe the above hypothesis to be true and how it is possible to substantiate their

findings. Also, we will provide an explanation of why McCabe‟s cyclomatic number is a

good candidate to identify the point at which the solution to the state verification problem

becomes exponential.

3.1 Complexity of the State Verification Problem

Lee and Yannakakis provide a proof that for a given machine M, it is PSPACE-complete

to determine if a specific given state s of M have a UIO sequence, if all states of M have

UIO sequences or if any state of M has a UIO sequence. They showed that this holds

even in the case of machines with binary input and output alphabets (Lee and Yannakakis

1994, 306-320). The structure of their proof is as follows:

 They first showed membership in the PSPACE class by reducing an instance of the

state verification problem to an equivalent instance of the decision problem,

reachability in an exponentially large graph.

 Next, they showed that the problem of determining whether a specific state s of a

given machine M has a UIO sequence is PSPACE-hard. They achieved this by

reduction from an instance of the “Finite State Automata Intersection” problem

known to be PSPACE–complete into an equivalent instance of the state verification

decision problem (Broy and others 2005; Lee and Yannakakis 1994, 306-320).

27

PSPACE-Complete problems are usually different from problems known to be NP-

Complete. One rich source of PSPACE-Complete problems has been the area of

combinatorial games. Outside the world of games, PSPACE-Complete problems also

appear in areas associated with automata, programming, and languages, where they often

are restricted versions of problems already known to be intractable or un-decidable

(Garey and Johnson 1979). PSPACE-complete problems are more intractable than NP-

complete problems; it is widely believed that such problems do not have polynomial time

algorithms, even when non-determinism is allowed (Broy and others 2005).

Intuitively, as the number of elements increases in PSPACE-complete problems the

expectation is that the solution time will grow exponentially. It is assumed that the

elements of an FSM that are likely to affect the solution time for the derivation of UIO

sequences for a particular state in an FSM are the number of states, size of the input set,

and possibly the transition types. In a fully specified FSM, the size of the input set

establishes the number of transitions, based on the transition function. Subsequently,

with systematic analysis of the dataset between the time requirement of UIO sequence

generation and the number of states / input set size, the coefficient of determination (R
2
)

is expected to be

≥ 0.80 with a predictive fit to an exponential trend line. The coefficient

of determination (R
2
) is defined as the ratio of the explained variation in the dependent

variable to the total variation (Allen 1990). A coefficient of determination (R
2
) of 0.8 for

scientific or engineering problems is considered evidence that the dependent values (y)

can be predicted from the independent values (x) using the regression line (Allen 1990)

To further explain why we think the above hypothesis to be true, we would look at the

time complexity function of the UIO sequence generation algorithm. The time

28

complexity function of an algorithm expresses the amount of time needed by the

algorithm to solve any possible problem instance as a function of the problem input size.

A polynomial time algorithm is defined as an algorithm whose time complexity function

is O (p (n)) for some polynomial function p and input length n (Garey and Johnson 1979).

The time complexity function of the UIO sequence generation algorithm is O(nI)
2n2 + 2

as

specified in the background. Thus, the UIO sequence generation algorithm is not a

polynomial time algorithm but rather it is an exponential time algorithm.

Given that Lee is correct and the solution to the state verification problem is PSPACE-

complete, we introduce another very interesting question. Does the characteristic of the

“pieces” affect the solution time of the problem? In an FSM, there are two major pieces:

states and transitions. A transition can originate in one state, terminate in another state;

or they can originate and terminate in the same state. Transitions originating and

terminating in the same state are known as reflexive transitions. Reflexive transitions in

an FSM cause it to have an arbitrarily high number of potential paths. These reflexive

transitions can cause difficulty when trying to establish a path through a state machine

because the number of times to traverse a reflexive transition is not limited. It is assumed

that this would influence the time it takes to generate the UIO sequences. In the data

analysis of FSMs with reflexive transitions and FSMs with no reflexive transitions, we

expect to observe a steeper exponential trend line for FSMs with reflexive transitions

than for FSMs with no reflexive transitions.

In addition to the investigation of the hypothesis, it would be expedient to explore the

possibility of using McCabe‟s Cyclomatic Number to predict the performance of the

algorithm generating the UIO sequences. This can be achieved by deriving a metric for

29

determining the point in the trend of the solution time of the state verification problem in

which it becomes exponential.

3.2 Cyclomatic Number as a Predictive Metric

In PSPACE-complete problems, the execution time of the algorithmic solution grows

exponentially with the number of pieces. No methods are known for predicting in

advance where an algorithm‟s performance becomes exponential. It is convenient for

Software Engineers to have a metric predicting this threshold. McCabe's Cyclomatic

Number, as previously discussed, is a metric used to determine the number of paths

through a control graph. In other words, it attempts to identify the minimum number of

independent paths in a control graph representing a program. This research is

investigating the performance of the UIO sequence generation algorithm and since

McCabe's Cyclomatic Number deals with the various components of a state machine

(states and transitions), we will explore the suitability of the McCabe's Cyclomatic

Number for predicting the performance of the algorithm generating the UIO sequence.

Directed graphs can be used to model a program control flow graph and FSM; hence,

graph theory techniques used in analyzing a program control flow graph can also be

applied to FSMs. We will assume that McCabe's metric can be used to derive a

technique for predicting the point in which the solution time to the state verification

problem becomes exponential. McCabe's cyclomatic number is used to determine the

number of basic paths in a program, which in turn is used to limit the size of a program

module. McCabe‟s recommends an upper limit of V (G) = 10 when defining program

modules. Thus, by employing McCabe's cyclomatic number as a possible component in

30

the derivation of the anticipated metric, the attempt is to specify the complexity of an

FSM in terms of its cyclomatic number and establish an upper limit. If the PSPACE-

complete characteristic is caused by the number and interconnection of the parts, then it

should be possible to demonstrate a relationship between the McCabe Cyclomatic

Number and the time to generate the UIO sequence. In the data analysis between these

two variables, we expect to observe a strong correlation and a point in the trend line in

which the solution time becomes exponential. This threshold can be used as a predictor

of the complexity of the FSM with respect to UIO sequence generation.

31

CHAPTER IV

EXPERIMENTATION

4.1 Overview

The objectives of this experiment are to demonstrate the exponential growth rate of the

solution time of the state verification problem as the number of “pieces” (such as the

number of states and input set size) increases and to establish the effect of some FSM

“pieces” characteristic (such as the reflexive nature of the FSM transitions) on the

solution time of the problem. The experiment also identifies the point where the

exponential trend begins. Using the observed relationship between the cyclomatic

number and the state verification solution time a metric can be derived for determining

this point. To achieve the above objectives, the structure of the experiment conducted is

discussed below.

4.2 Experiment Description

In this study, five experiments are designed and each experiment evaluates the

performance of the UIO sequence generation algorithm against some characteristics of

the FSM. For each experiment, a sample set of 10 randomly generated FSMs are

employed and the time it takes to generate the UIO sequence for each of the FSMs in the

sample set is measured and recorded. We would demonstrate how the individual and

32

 collective components of an FSM (transitions, number of inputs and states) affect the

performance of the UIO sequence generation algorithm respectivelyThe first experiment

evaluates the effect of a combination of components of the FSM on the UIO sequence

generation algorithm performance. To achieve this, the association between the solution

time of the UIO sequence generation and the controlled collective components of the

FSM is demonstrated. Each FSM in the sample set has features that are different from

other FSMs in the set. The number of states and input of each FSM in the sample set is

varied between the intervals 10 – 100. For example, an FSM may have 10 states and 10

inputs while another FSM in the same sample set has 20 states and 20 inputs. All FSMs

used in this experiment are fully specified and contain reflexive transitions. Fully

specified FSMs implies that the number of edges increases proportionally to the number

of states and inputs; hence, an FSM with 20 states and 20 inputs would have 400

transitions.

The second experiment assesses the effect of the number of states of an FSM on the

performance of the UIO sequence generation algorithm. All FSMs in the sample set are

fully specified and contain reflexive transitions. To demonstrate the effect of the number

of states on the UIO sequence generation algorithm performance, all components of the

FSM are kept constant while the number of states is varied for each FSM in the sample

set. In this experiment, the cardinality of the input set is fixed at 10, while the number of

states is varied between the intervals 10 – 100. Keeping the number of inputs constant

for fully specified FSMs implies that the number of transitions would increase in

proportion to the number of states.

33

The third experiment evaluates the effect of the number of inputs of an FSM on the

performance of the UIO sequence generation algorithm. All FSMs in the sample set are

fully specified and contain reflexive transitions. The number of states of each FSM in the

sample set is kept constant while the number of inputs is varied between the intervals 10 -

100. The number of transitions for each FSM varies in direct proportion to the number of

inputs because the FSMs considered in this experiment are fully specified.

The fourth experiment evaluates the effect of the number of transitions and transition

types of an FSM on the performance of the UIO sequence generation algorithm. In this

experiment, two sample sets were employed. One sample set contains partially specified

FSMs with reflexive transitions while the other contains partially specified FSMs with no

reflexive transitions. Each FSM in both sample sets has ten (10) states and fifteen (15)

inputs while the number of transitions is controlled between the intervals 10 – 100. To

control the number of transitions, the FSMs considered have to be partially specified with

the number of transitions out of a state less than or equal to 15.

The fifth experiment investigates the suitability of the cyclomatic number as a viable

component to use in the derivation of the metric that identifies the point where the

exponential trend begins. The FSMs in the sample set are partially specified and contain

reflexive transitions. Partially specified FSMs enable the number of states to be kept

constant while the cyclomatic number is controlled. Each of the FSMs in the sample set

has ten (10) states and their respective cyclomatic number is varied between the intervals

10 – 100. The number of transitions is dependent on the number of states and

Cyclomatic Number.

34

To implement the experiments, two programs are constructed. The first program

randomly generates FSMs represented as strongly connected directed graphs with unique

entry and exit nodes. The generated directed graphs are represented in tabular forms

which are input parameters for the second program. The second program generates the

successor tree for the UIO sequence generation and also measures the execution time.

Table 1 and Figure 6 illustrate a randomly generated fully specified FSM with reflexive

transitions in tabular form and state chart diagram respectively. Table 2 represents the

corresponding set of UIO sequences generated for each of the states in the FSM shown in

Table 1. The UIO sequence is an input sequence which is a unique signature for a state

in the FSM. The output sequence generated for this input sequence for a particular state

is different from the output sequences generated when this input sequence is passed

through other states in the FSM. From Table 2, it can be observed that the input

sequence <1, 1> generates the output sequence <1, 0>, <1, 1> and <0, 0> for the states

s0, s1 and s3 respectively which are distinct from other output sequences. States s2 and

s4 generates the same output sequence <0, 1> when the input sequence <1, 1> is passed

through them. Hence <1, 1> is a UIO sequence for states s0, s1 and s3.

Table 1 Randomly generated fully specified

FSM with reflexive transitions

Input Output Origin Destination

0 1 s2 s1

0 1 s1 s2

1 1 s1 s0

0 1 s0 s0

1 0 s4 s1

0 0 s4 s2

1 0 s2 s1

1 1 s0 s3

1 0 s3 s3

0 1 s3 s2

35

Figure 8 State Chart diagram for Table 1

Table 2 Set of UIO sequences generated for FSM in Table 1

State Sequence

s0 <1/1, 1/0>

s1 <1/1, 1/1>

s2 <0/1, 1/1, 1/1>

s3 <1/0, 1/0>

s4 <0/0>

Table 3 and Figure 7 illustrate a randomly generated fully specified FSM with no

reflexive transitions in tabular form and state chart diagram respectively. Table 4

represents the corresponding set of UIO sequences generated for each of the states in the

FSM shown in Table 3.

36

Table 3 A randomly generated fully specified FSM

 with no reflexive transitions

Input Output Origin Destination

1 0 s1 s0

0 0 s1 s3

0 2 s4 s1

0 2 s0 s1

1 1 s3 s4

1 0 s0 s1

1 0 s2 s0

0 2 s3 s1

1 2 s4 s2

0 2 s2 s0

s2

s1

s0

s4s3

1/0

0/0
0/2

0/2, 1/0

1/1

1/0, 0/2

0/2

1/2

Figure 9 State Chart diagram for Table 3

Table 4 Set of UIO sequences generated for FSM in Table 3

State Sequence

s0 <1/0, 0/0>

s1 <0/0>

s2 <0/2, 0/2>

s3 <1/1>

s4 <1/2>

37

To ensure that the underlying graph of each randomly generated directed graph is

connected, Warshall‟s algorithm is applied. Warshall‟s Algorithm establishes

reachability between any two nodes x and y of a graph. The program also checks that

each directed graph generated is strongly connected by ensuring that each node can be

reached by the unique entry node and each node can reach the unique exit node. The

second program constructs a successor tree recursively in a breadth first search fashion,

as described in chapter 2, for each state of a randomly generated FSM. Using the

generated successor trees for an FSM, a set of UIO sequences are derived. It also

calculates the time used in the construction of the successor trees and the derivation of

the UIO sequences.

4.3 Experiment Execution

In this research, all programs were executed on Windows platform. To collate the raw

data needed for relevant analysis, the first program accepted the following input

parameters: the number of states, the input set size, the output set size and the cyclomatic

number to produce randomly generated directed graphs as output. The output obtained

from the first program was used as an argument to the second program to generate sets of

UIO sequences by first constructing a successor tree for each state of the FSM. Standard

system time was used to calculate the time it took to construct a successor tree but this

proved to be inadequate because the standard clock resolution used in practice is too

short. A Windows API high resolution clock was employed to obtain time with the

accuracy of microseconds; and this was used to compute the time it took to construct a

successor tree and the corresponding set of UIO sequences. To reduce the influence of

noise in the computed execution time, each execution time in the data set generated,

38

represents the average of the execution time for the generation of five successor trees for

a state. As specified in chapter 2, the successor tree algorithm requires that for partially

specified FSMs, pseudo transitions are generated for transitions not specified for a given

input to a state. Though this input is not specified in the transition function, it is part of

the generated UIO sequence. In the experiments conducted, the input events that

generated these pseudo transitions and null outputs constitute part of the UIO sequence

derived. Most FSMs used in practice are partially specified; hence, using sequence

driven test for FSM validation may be inadequate since these pseudo transitions do not

exist.

4.4 Experiment Result

This section contains statistical data describing the results of the various experiments

carried out in this study. The graphs below describe the findings of the various

experiments conducted which is focused on the relationship of the UIO sequence

generation algorithm performance and other measures of the FSM such as the number of

states, transitions and the input set size. Linear regression is used to model the

association between the execution time of the UIO sequence algorithm and the

independent components of the FSM.

39

The set of data for Figure 10 is based on the time-complexity function O (n (I)
 n+ 2

) of the

UIO sequence generation algorithm where n is the number of states in the FSM and I is

the input size. Figure 10 illustrates the correlation expected between the parts of the FSM

and the solution time for the UIO sequence generation. From the scatterplot, we observe

a perfect fit to the exponential trend line.

Figure 10 Log-Log Graph of Predicted Execution Time for UIO sequence

y = 0.3575e2.7636x

R² = 1

-

25

50

75

100

125

150

175

200

225

1.0 1.5 2.0 2.5

T
im

e
C

o
m

p
le

x
it

y

Input Size and Number of states

observations Exponential Curve

40

Figure 11 illustrates the relationship between the total FSM elements and the UIO

sequence generation execution time in microseconds for 10 observations. Each data

point in the scatter plot graph represents the total independent variables (input size,

number of states and transition). The scatter plot demonstrates a positive correlation (r)

of 0.98 between the total independent variables and the dependent variable (the UIO

sequence generation execution time). The R
2
 values of 0.99 and 0.92, for the polynomial

and exponential regression lines respectively, show that both regression lines have

predictive fits. However, the polynomial regression line shows a stronger fit.

Figure 11 Log-Log Graph for Observed Execution Time for UIO Sequence

y = 0.707x2 - 5.9341x + 12.196

R² = 0.9993

y = 0.0002e1.4612x

R² = 0.9383

-

1.00

2.00

3.00

4.00

5.00

6.00

7.00

4.5 5.0 5.5 6.0 6.5 7.0 7.5

E
x
ec

u
ti

o
n

 T
im

e
(M

ic
ro

se
c
o

n
d

s)

Total number of FSM Parts (In hundreds)

observations Polynomial Curve Exponential Curve

41

Figure 12 illustrates the association between the number of states in the FSM and

execution time (in Microseconds) for 10 observations. The data points in the scatter plot

represent controlled increase for both the number of states and edges because the FSMs

used for this experiment are completely specified. The scatterplot clearly indicates that

there is a positive association between the number of states and execution time. It has a

coefficient correlation (r) value of 0.98. Having coefficient of determination (R
2
) values

> 0.8 for both the polynomial and exponential trend line indicates that the association is

predictive. The polynomial and exponential regression lines both have predictive fits,

however, the R
2

value of 0.9927 shows that the polynomial regression line has a stronger

fit of the two. This indicates that the correlation between these two variables is

polynomial, though it shows strong exponential characteristics.

Figure 12 Observed Execution Time for UIO sequence versus Number of States

y = 0.003e0.0537x

R² = 0.8894

y = 2E-05x2 + 0.001x - 0.0217

R² = 0.9927

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120

E
x
ec

u
ti

o
n

 T
im

e
in

 M
ic

ro
se

c
o

n
d

s

Number of States in the FSM

observations Exponential Curve Polynomial Curve

42

Figure 13 illustrates the relationship between the input size of the FSM and the UIO

sequence generation execution time in microseconds for 10 observations. The scatterplot

graph indicates that there is a positive correlation (r) of 0.98 between the variables. This

relationship is also predictive because its R
2
 values are greater than the desired value of

0.8 for both the exponential and polynomial trend lines. The solution time of the UIO

sequence generation algorithm increases as the input size increases and the solution time

increase shows strong polynomial and exponential trends. However, the R
2
 value of

0.9917 shows that the polynomial regression line has a stronger fit and this indicates that

the correlation between these variables is polynomial, though it displays exponential

characteristics.

Figure 13 Observed Execution Time for UIO sequence versus Input Size

y = 3E-05x2 + 0.001x - 0.0104

R² = 0.9917

y = 0.0089e0.0411x

R² = 0.9088

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 20 40 60 80 100 120

E
x
ec

u
ti

o
n

 T
im

e
(

M
ic

ro
se

c
o

n
d

s)

Input Size in the FSM

observations Polynomial Curve Exponential Curve

43

Figure 14 demonstrates the correlation between the transitions of FSM (number and

types) and the solution time of the UIO sequence generation algorithm. From the scatter

plot we observe a negative correlation between the variables. This implies that as the

number of transitions increases, the solution time decreases. By keeping the number of

states and input for each FSM considered constant while increasing the number of

transitions, the probability of finding UIO sequences for a state in the FSM increases.

Thus, the number of transitions impacts the solution time for the UIO sequence

generation inversely. The R
2
 values of the regression lines indicate that the transition

type of the FSMs is inconsequential to the time required in generating the UIO

sequences. The R
2
 values for both the reflexive and non-reflexive transitions are less

than 0.8 which implies that the regression lines for either transition type is effective in

predicting the UIO sequence generation solution time.

Figure 14 Transition Types on the performance of the UIO sequence generation

y = 1E-07x2 - 4E-05x + 0.005

R² = 0.7141

y = 2E-06x2 - 0.0003x + 0.0116

R² = 0.6714

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 20 40 60 80 100 120

E
x
ec

u
ti

o
n

 T
im

e

Number of transitions in the FSM

no Reflex. Trans. reflex. Trans.

Poly. (no Reflex. Trans.) Poly. (reflex. Trans.)

44

Table 5 illustrates a randomly generated partially specified FSM. Table 6 represents the

transition function for the FSM. Each cell in Table 6 depicts the next state and output

when an input represented on the column heading enters a state specified in the row

heading. Table 7 shows the set of UIO sequences generated for each of the states in the

FSM. From the transition function, we can observe that no transitions are specified when

there is an input of 0 to the states s1 and s3 respectively. However, the UIO sequence

generated for state 1 is 0, which is a transition that does not exist in the FSM represented

in table 5. The classic algorithm used in the UIO sequence generation assumes all FSMs

to be fully specified. Where the FSMs are partially specified, pseudo transitions are

generated, which originate and terminate in the same state with a null output. From

Table 7 we can observe that the output sequence generated as a consequence of the UIO

sequence is null.

Table 5 A partially specified FSM

Input Output Origin Destination

0 1 s2 s2

1 1 s1 s2

1 1 s3 s1

0 0 s4 s3

0 0 s0 s4

0 1 s3 s0

1 0 s2 s2

1 0 s0 s2

Table 6 Transition Function for FSM in Table 5

0 1

s0 s2/1; s4/0 s2/0

s1 s2/1

s2 s2/0

s3 s0/1 s1/1

s4 s3/0

45

Table 7 Set of UIO sequences generated for

FSM in Table 5

 States Sequences

s0 < 0/0, 0/0>

s1 <0/null>

s2 <0/1, 0/1>

s3 <0/1, 0/0>

s4 <1/null>

Figure 15 illustrates the relationship between the Cyclomatic number of the FSM and the

UIO sequence generation execution time in microseconds for 10 observations. It has a

negative correlation coefficient (r) of -0.75. This relationship is not predictive because

the R
2
 value for both the polynomial and exponential trend lines are below the desired R

2

value of 0.8 which is the value used for scientific or engineering problems.

Figure 15 Observed Execution Time for UIO sequence generation

y = -6E-07x2 + 3E-05x + 0.0061

R² = 0.6494

y = 0.0081e-0.009x

R² = 0.6412

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 20 40 60 80 100 120

E
x
ec

u
ti

o
n

 T
im

e
(M

ic
ro

se
c
o

n
d

s)

Cyclomatic Number of the FSM

observations Polynomial Curve Exponential Curve

46

CHAPTER V

CONCLUSION AND FUTURE RESEARCH

From the findings of the empirical experiment illustrated in Figures 11 and 12, the

number of states and inputs are elements of a Finite State Machine (FSM) directly

affecting the performance of the Unique Input / Output (UIO) sequence generation

algorithm. In a fully specified FSM, the cardinality of the input set (I) determines the

number of transitions originating from each state. The number of transitions affects the

performance inversely in a non-fully specified FSM, and the transition types appear to

have no significant effect on the performance; thus they are inconsequential as factors in

the time required to generate a UIO sequence algorithm, as illustrated in Figure 13.

Figure 10 illustrates that the performance of the UIO sequence generation algorithm is

polynomial for finite inputs and states. Lee proved that the state verification problem is

PSPACE-complete by reducing an instance of the Finite State Automata Intersection

problem known to be PSPACE-complete to an instance of the state verification problem.

However, Hopcroft and Ullman proved that the Finite State Automata Intersection

problem is PSPACE-complete but solvable in polynomial time for a finite number of

inputs (Garey 1979). This is consistent with the findings modeled in Figure 10, where

the performance of the UIO sequence generation algorithm trends exponential but

exhibits a stronger polynomial trend for a finite number of inputs of the FSM.

47

The state verification testing problem is PSPACE and not PSPACE-complete. It is

PSPACE because as the number of states and inputs of a FSM increases, the solution

time of the UIO sequence generation algorithm increases in a polynomial trend where the

number of inputs of a FSM are finite. This indicates that Lee‟s theoretical proof, though

accurate, is not precise. It is accurate because the algorithm exhibits an exponential

trend, but it is not strictly an exponential time algorithm. Lee‟s proof failed to establish

the distinction in the solvability of the problem for finite and infinite number of inputs

and states of the FSM.

In the classic UIO sequence generation algorithm, it is assumed that the FSM to be tested

is fully specified. To generate UIO sequences for a partially specified FSM, it must first

be expanded to a fully specified FSM. This entails generating pseudo transitions (these

are self loops or reflexive transitions that originate and terminate in the same state) with

null outputs for inputs in a state that have no transition specification in the transition

function of the FSM. Table 7 illustrates that the pseudo transitions constitute part of the

UIO sequence path in a partially specified FSM. These pseudo transitions do not occur in

physical systems and thus cannot be tested. Thus sequences that contain pseudo

transitions cannot be used to accurately test a system with state behavior.

In practice, Mealy and Moore Finite State Machines (FSMs) are not powerful enough to

model complex software systems succinctly anymore. To model complex software

systems, FSMs are extended to include variables, which are known as Extended Finite

State Machine (EFSM). To test an EFSM using sequences, it must first be expanded to

an ordinary FSM. This is possible only if each variable in the variable set has a finite

number of values, then each combination of a state and variable value constitute the

48

states of the expanded FSM. However, this equivalent FSM may be too cumbersome to

construct in practice. For an EFSM with infinite variable values such as real numbers, it

becomes impossible to expand it to a fully specified FSM; thus the use of sequences to

test an EFSM becomes infeasible. Future research to develop new techniques for testing

EFSMs is expedient.

Figure 14 indicates that the cyclomatic number of an FSM cannot be used in deriving a

metric to predict the time to derive a set of UIO sequences, as proposed in the hypothesis.

This is not a complete surprise since the intent of the cycolmatic number is to establish

the minimum number of paths through a control graph (McCabe 1983).

In conformance testing, a test sequence must traverse each state and each state transition,

of a FSM and must check that each state has a unique signature called the UIO sequence.

This characteristic of the conformance testing procedure shows a strong correlation to the

definition of the cyclomatic number; hence, the cyclomatic number could be a more

viable component in predicting the complexity of an FSM where conformance testing is

the focus.

The following further studies are necessary to fully substantiate some of the conclusions:

 An Empirical investigation into the suitability of employing McCabe‟s

Cyclomatic Number in deriving a metric for predicting the performance of the

checking sequence generation algorithm

 An Empirical investigation into the inadequacy of using sequences to test EFSMs.

Develop techniques other than sequences that can be used to adequately test

EFSMs.

49

 An Empirical investigation into the derivation of conformance sequences using

UIO sequences. As with this study, it would be interesting to evaluate the effects

of transition types in FSMs that are not fully specified.

50

APPENDIX A

UIO SUCCESSOR TREE ALGORITHM

For each state, all input/output sequences of length 1 are computed and checked for

uniquess. If no unique sequence of length 1 is discovered, the procedure is repeated for

all sequences of length 2. This procedure is continued for longer sequences until a

unique input/output sequence is found or the length exceeds 2n
2
 (Sabnani and Dahbura

1988, 285-297). Details of the algorithm are as follows:

/* NS[] = A vector that stores the nodes of a successor tree*/

Step1. Let the set of states be V = {s1, s2, s3... sn}. For each state s store V in the vector

NS.

Step2. For each element in NS compute the set of outgoing edges, Es = {es, 1, es, 2, es, 3, ,

es, k}, where k is the size of the input set of the FSM. The label of each edge is the input

symbol and the corresponding output symbol determined by the output function. For

each edge in Es do the following:

Step2.1. Check if the input\output label on the edge es is unique to state s. If this

label is unique then trace the path back to the root. This is the UIO sequence for

state s. End the search. Otherwise, store all states with the same input/output

label as the state s in the vector NS[i].

Step3. Repeat Step 1 for the next state in V.

51

BIBLIOGRAPHY

Allen, Arnold O. Probability, statistics, and queueing theory with computer science

applications. San Diego, CA: Academic Press, Inc., 1990.

Beizer, Boris. Software testing techniques. New York NY: International Thomson

Computer press, 1990.

Berge, Claude. Graphs and hypergraphs. New York: North-Holland Publishing

Company Amsterdam New York Oxford, 1976.

Bolton, David. How do I do high resolution timing in C++ on windows?

http://cplus.about.com/od/howtodothingsi2/a/timing.htm (accessed July 23, 2010).

Broy, Manfred, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander

Pretschner. Model-based testing of reactive systems. Germany: Springer-Verlag

Berlin Heidelberg, 2005.

Gallagher, T. THERAC-25 computerized radiation therapy. 20 famous software disasters.

http://www.devtopics.com/20-famous-software-disasters (accessed August 04,

2009).

http://cplus.about.com/od/howtodothingsi2/a/timing.htm
http://www.devtopics.com/20-famous-software-disasters

52

Garey, Micheal R. and David S. Johnson. Computers and intractability. A guide to the

theory of NP – completeness. New York: W. H. Freeman and Company, 1979.

Gibbs, Wayt, W. Software's chronic crisis.

http://www.cis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSept1994.html (accessed

August 04, 2009).

Gleick, James. ARIANE-5 A bug and a crash. http://www.around.com/ariane.html

(accessed August 04, 2009).

Kohavi, Zvi. Switching and finite automata theory. second ed. New York: McGraw-Hill,

Inc, 1978.

Lee, D. and M. Yannakakis. Principles and methods of testing finite state machines A

survey. Proceedings of the IEEE 84, no. 81996). : 1090-1123.

Lee, D. and M. Yannakakis. Testing finite-state machines: State identification and

verification. Proceedings of the IEEE 43, no. 31994). : 306-320.

Leveson, Nancy. Medical devices: The therac-25.

http://sunnyday.mit.edu/papers/therac.pdf (accessed August 04, 2009).

McCabe, Thomas J., ed. Structured testing. New York: IEEE Computer Society Press,

1983.

http://www.cis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSept1994.html
http://www.around.com/ariane.html
http://sunnyday.mit.edu/papers/therac.pdf

53

Mueller, Carl J. 2003. Automated Interface Probing Applied To Cots Component

Evaluation. Doctor of Philosophy in Computer Science, Illinois Institute of

Technology.

Rich, Elaine. Automata, computability, and complexity theory and application. Upper

Saddle River NJ: Pearson Prentice Hall, 2008.

Rosen, Kenneth H. Discrete mathematics and its applications. sixth ed. New York:

McGraw-Hill, 2007.

Sabnani, Krishan and Anton Dahbura. A protocol test generation procedure. Computer

Networks and ISDN Systems 15, no. 41988). : 285-297.

Sakharov, Alexander. Finite state machines: Quick tutorial.

http://www.sakharov.net/fsmtutorial.html (accessed July 08, 2009).

Sipser, Micheal. Introduction to the theory of computationPWS Publishing, 1997.

Sun, Xiao, Yinan Shen, and Chao Feng. Protocol conformance testing using Input/Output

sequences. first ed.World Scientific Publishing Co. Pte. Ltd, 1997.

Tian, Jeff. Software quality engineering: Testing, quality assurance, and quantifiable

improvementJo

http://www.sakharov.net/fsmtutorial.html

54

VITA

Ngozi I Ihemelandu was born in Enugu, Nigeria, on October 23, 1974, the daughter of

Emeruwa Chigozie Ihemelandu and Christie Uchenna Ihemelandu. She grew up in

Enugu, Nigeria where she attended the University of Nigeria primary school from 1979

to 1986. After completing her work at Federal Government Girls‟ College, Gboko,

Benue State, Nigeria, in 1992, she entered University of Nigeria Nsukka. She received

the degree of Bachelor of Science from University of Nigeria in November 1998. During

the following years she was employed as a Software Support Engineer with ValuCard

Nigeria Plc in Lagos, Nigeria. In January 2008, she entered the Graduate College of

Texas State University San-Marcos.

Permanent email address: ngozi_ihemelandu@yahoo.com

This thesis was typed by Ngozi I. Ihemelandu.

