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FRACTIONAL POWER FUNCTION SPACES ASSOCIATED TO
REGULAR STURM-LIOUVILLE PROBLEMS

SOFIANE EL-HADI MIRI

Abstract. Using spectral properties of the regular Sturm-Liouville problems,
we construct a collection of abstract function spaces. Then we find the smallest

index for which these spaces are mapped continuously in to the space of contin-

uous functions. We also give some applications of these spaces for variational
methods.

1. Introduction

Taking Sobolev spaces as models, we construct functional spaces, using Sturm-
Liouville differential operators as a starting point in place of weak derivatives.
The choice of these particular differential operators is due to their “good” spectral
qualities. After giving some properties of this spaces, we will compare them with
the space of continuous functions with the goal for obtaining an optimal index.

The principal arguments used here are the asymptotic behaviour of the eigenval-
ues and eigenfunctions associated to Sturm-Liouville problems, and the fact that the
eigenvalues λn of regular Sturm-Liouville problems have the asymptotic behaviour
O(n2), which is not necessarily the case for non-regular problems.

We conclude by presenting some applications of these spaces for using variational
methods to solve boundary value problems.

2. Preliminaries

Definition 2.1. We call “regular Sturm-Liouville problem”, a differential equation
of the form

d

dx

[
p(x)

d

dx
y(x)

]
± q(x)y(x) + λρ(x)y(x) = 0 (2.1)

associated with the boundary conditions
a0y(a) + a1y

′(a) = 0

b0y(b) + b1y
′(b) = 0

(2.2)

where a, b, a0, b0, a1, b1 are finite real numbers, p is a C1 strictly positive function
over [a, b], q is a continuous function over [a, b], and ρ is a continuous strictly positive
function on [a, b].
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Theorem 2.2. Consider the regular Sturm-Liouville problem
d

dx
[p(x)

d

dx
y(x)]± q(x)y(x) + λρ(x)y(x) = 0

a0y(a) + a1y
′(a) = 0

b0y(b) + b1y
′(b) = 0

(2.3)

Then:
(i) Problem (2.3) admits a denumerable sequence {λn}n∈N∗ of real and simple

eigenvalues, which can be ordered |λ1| < |λ2| < · · · < |λn| < . . .
(ii) The eigenfunctions {φn}n corresponding to the eigenvalues {λn}n, are such

that: for all i 6= j,
∫ b

a
φi(x)φj(x)ρ(x)dx = 0, we say that they are orthogonal

in L2
ρ((a, b)) (by L2

ρ((a, b)) we mean L2((a, b)) weighted by ρ(x)).
(iii) The eigenfunctions {φn}n form an orthogonal (orthonormal) basis of the

Hilbert space L2
ρ((a, b)).

We will assume that {φn}n to be orthonormal.

Liouville transformation. Consider the regular Sturm-Liouville operator

l =
d

dx

[
p(x)

dy

dx
(x)

]
+ q(x)

under the transformation T defined by

y 7→ (Ty)(x) = |s′|1/2y(s(x))

where s is a bijective differentiable function, the operator l becomes

l̃ =
d

ds

[
P (s)

d

ds

]
+ Q(s)

where

P (s) = p(x)s′(x)2|x=x(s)

Q(s) = s′(x)−1/2 d

dx

[
p(x)

d

dx
s′(x)1/2

]
+ q(x)|x=x(s)

and x = x(s) is the inverse function of s(x).
We are particularly interested in the case P (s) ≡ 1, which gives

p(x)s′(x)2 = 1 ⇒ s(x) =
∫ √

1/p(x) dx .

More general, the transformation

u = (pρ)1/4y, t =
∫ x

0

√
ρ(τ)
p(τ)

dτ, c =
∫ b

0

√
ρ(τ)
p(τ)

dτ

applied to
(py′)′ − qy + λρy = 0 on [0, b]

gives the simpler equation

u′′ − ru + λu = 0 on [0, c],

where y is function of the variable x, u is function of the variable t,

r = (
ϕ′′

ϕ
) +

q

ρ
, and ϕ = (pρ)1/4
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The above transformation is often called Liouville transformation, it allows us to
call “regular Sturm-Liouuville problem” every problem of the form

−y′′ + ry = λy

with boundary conditions. This problem is simpler than (2.3).

Asymptotic behaviour of eigenvalues and eigenfunctions. There are many
methods to compute the asymptotic behaviour of the eigenvalues of a regular Sturm-
Liouville, probably the most useful one is the Courant-Fisher method. We present
here another method using Prüfer transformation [12].

Consider the regular Sturm-Liouville problem

−y′′ + qy = λy

y(0) = y(a) = 0 .

The transformation

tan θ = λ1/2 y

y′

is called Prüfer transformation. When we differentiate both sides of the above
equality, we obtain

θ′

cos2 θ
= λ1/2 (y′)2 − yy′′

(y′)2
= λ1/2(1 + (λ− q)

y

(y′)2
) = λ1/2(1 + (λ− q)λ−1 tan2 θ)

which gives

θ′ = cos2 θ
(
λ1/2 + (λ− q)λ−

1
2 tan2 θ

)
= λ1/2 cos2 θ + (λ− q)λ−

1
2 sin2 θ

= λ1/2 − qλ−
1
2
1− cos 2θ

2

= λ1/2 − 1
2
qλ−

1
2 +

1
2
qλ−

1
2 cos 2θ .

Integrating the last equation between 0 and a, we obtain

θ(a)− θ(0) = aλ1/2 − 1
2
λ−

1
2

∫ a

0

q(t)dt +
1
2
λ−

1
2

∫ a

0

q(t) cos(2θ(t))dt .

Using the boundary conditions, we have

y(0) = 0 ⇒ tan θ(0) = 0 ⇒ θ(0) = 0

y(a) = 0 ⇒ tan θ(a) = 0 ⇒ θ(a) = (n + 1)π, n ∈ N .

Therefore,

(n + 1)π = aλ1/2
n − 1

2
λ
− 1

2
n

∫ a

0

q(t)dt +
1
2
λ
− 1

2
n

∫ a

0

q(t) cos(2θ(t))dt .

After inversion and using the fact that
∫ a

0
q(t)dt < ∞, and

∫ a

0
q(t) cos(2θ(t))dt < ∞,

we obtain the asymptotic behaviour of the eigenvalues

λn = O(n2).
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This result will lead us to find the asymptotic behaviour of the associated eigen-
functions as follows: The solution of the equation u′′− qu + λu = 0 which vanishes
at 0 will satisfies the integral equation

u(t) = c sin
√

λt +
1
λ

∫ t

0

q(τ)u(τ) sin
√

λ(t− τ)dτ

where c is an arbitrary constant. The conditions u(a) = 0, and
∫ a

0
u2dt = 1, give

c =

√
2
a

+ O
( 1√

λ

)
and then

u(t)−
√

2
a

sin
√

λt = O
( 1√

λ

)
.

If λn is the nth eigenvalue of the considered problem, the associated (normalized)
eigenfunction is such that

φn(t) =

√
2
a

sin
√

λnt + O
( 1√

λn

)
.

Since λn = O(n2), we get

φn(t) =

√
2
a

sin
√

λnt + O
( 1
n

)
.

For more details, we refer the reader to [6], or [12].

3. Fractional power spaces associated to regular Sturm-Liouville
problems

Let
ly := −y′′ + ry = λy

with boundary conditions be a regular Sturm-Liouville problem and let {λn} and
{φn} be as above. Consider a function f ∈ L2(a, b), so one can write f =

∑
anφn.

Then for s > 0, we define
lsf =

∑
λs

nanφn .

Without loss of generality, we assume that λn > 1.

Definition 3.1. Let
lu = λu, on Ω = (a, b) (3.1)

with boundary conditions be a regular Sturm-Liouville problem, that has {λn} and
{φn} as eigenvalues and eigenfunctions. For s > 0, we introduce the functional
spaces associated to (3.1):

As = {u ∈ L2(Ω) : lsu ∈ L2(Ω)}

= {u =
∑

anφn :
∑

|an|2λ2s
n < ∞} .

These two sets are equal due to Parseval identity. We call the spaces As fractional
power Sobolev spaces associated to (3.1).

The aim of this paper is to find for what exponents s > 0 the injection As ↪→
C([a, b]) holds.
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Properties of the spaces As. Most of the properties of the spaces As are deduced
from those of L2

(1) Let u =
∑

anφn, and v =
∑

bnφn be two elements of As. We define the
scalar product in As by

(u, v)As = (lsu, lsv)L2 =
∑

anbnλ2s
n .

and corresponding norm by

‖u‖2As = (u, u)As = (lsu, lsu)L2 =
∑

|an|2λ2s
n .

Note that As becomes a Hilbert space, and ls defines an isometry from As

to L2(Ω).
(2) We identify A0 with L2.
(3) We have continuous injections between the spaces As as follows: If 0 ≤

s1 ≤ s2 then As2 ↪→ As1

(4) The space of test functions

D(Ω) = {f ∈ C∞(Ω) : supp f is a compact subset of Ω}

is dense in As for every s > 0, where supp f = {x ∈ Ω; f(x) 6= 0}.
(5) We define the space A∞ as A∞ =

⋂
s∈N As equipped with the family of

semi-norms {‖u‖As}s∈N it is a metrisable space with the metric

d(u, v) =
∞∑

j=1
2−j ‖u− v‖Aj

1 + ‖u− v‖Aj

.

(6) For negative exponents s < 0, we define

As = {u ∈ E ′(Ω) : lsu ∈ L2(Ω)}

= {u =
∑

anφ̃n :
∑

|an|2λ2s
n < ∞} ,

where E ′(Ω) is the space of the distribution with compact support; it is the
topological dual of the space C∞(Ω)). Its elements are defined as follows:
T is in E ′(Ω) if there exist c > 0, m ∈ N and K compact subset of Ω such
that

|〈T, f〉| ≤ c
∑
α≤m

sup
x∈k

|d
αf

dxα
| ∀f ∈ C∞(Ω) .

For the justification of this statement, see for example [13].

Remark 3.2. To make sure that the spaces As are well defined, we assume that
λn > 1. If (3.1) admits a finite number of negative eigenvalues, we consider the
operator (l + (1− λ∗)) instead of l, where λ∗ is the smallest eigenvalue of l.

If (3.1) admits an infinite number of negative and a finite number of positive
eigenvalues, we consider the operator ((1 + λ∗)Id− l) in stead of l, where λ∗ is the
largest positive eigenvalue of l.

In this paper, we will not consider the case when (3.1) admits other distribution
of eigenvalues, which is the case of some singular periodic problems.

Theorem 3.3. Let As be as above, then As ↪→ C(Ω̄) whenever s > 1/4.

Proof. Let u ∈ D(Ω), then u(x) =
∑

n∈N∗ anφn(x), where

an = an(u) =
∫ b

a

u(x)φn(x)dx = (u(x), φn(x))L2 .
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Using integration by parts, we obtain

an(lu) = (lu, φn)L2 = (u, lφn)L2 = (u, λnφn)L2 = λn(u, φn)L2 ,

so that an(lu) = λnan(u). Then we iterate this procedure to obtain

an(lpu) = λp
nan(u) .

Using Hölder inequality, in the other side we have

|an(lpu)| =
∣∣ ∫ b

a

lpuφndx
∣∣

≤
( ∫ b

a

|lpu|2dx
)1/2( ∫ b

a

|φn|2dx
)1/2

≤
( ∫ b

a

|lpu|2dx
)1/2

< ∞ .

Therefore, an(lpu) = O(1) and an(lpu) = O(n2p)an(u) imply an(u) = O(n−2p) for
every p ∈ N. In other words, if u ∈ D(Ω) then {an(u)}n is a rapidly decreasing
sequence. As consequence of this statement, the series

∑
n∈N∗ anφn(x) converges

uniformly to u ∈ D(Ω) and in L2(Ω). Since u(x) =
∑

anφn(x),

|u(x)| ≤
∑

|anφn(x)| =
∑ ∣∣anλs

n

φn(x)
λs

n

∣∣ .

Then by Hölder inequality,

|u(x)| ≤
( ∑

|a2
nλ2s

n |
)1/2( ∑

|φ
2
n(x)
λ2s

n

|
)1/2

.

Since the φn’s are uniformly bounded [12], we have

|u(x)| ≤ ‖u‖As

( ∑
| d

λ2s
n

|
)1/2

,

where d is a real constant. Since λn = O(n2), we obtain

d

λ2s
n

∼ d

n4s

In conclusion if s > 1
4 , then |u(x)| ≤ c‖u‖As , where c is a constant independent of

u, and

‖u‖C(Ω̄) ≤ c ‖u‖As . (3.2)

Now consider f ∈ As, by the denseness of D(Ω) in As, there exists a sequence
{ϕn} ⊂ D(Ω) such that

ϕn−→Asf . (3.3)

Then {ϕn}n is a Cauchy sequence in As, the inequality (3.2) implies that the
sequence {ϕn}n is also a Cauchy one in C(Ω̄) and then

ϕn−−−→
C(Ω̄)

ϕ ∈ C(Ω̄) . (3.4)

Then (3.3) and (3.4) give the conclusion f = ϕ a.e in Ω. �
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Now we proof the optimality of the index 1/4, in the sense that if s0 < 1/4 then
continuity of As0 ↪→ C(Ω̄) may not hold. For this end let us consider the equation

−u′′ = λu

u(0) = u(π) = 0

which has λn = n2 as eigenvalues and φn(x) =
√

2
π sin(nx) as corresponding eigen-

functions. Let the associated spaces be

As =
{
u ∈ L2((0, π)) : u =

∑
n≥1

an

√
2
π

sin(nx),
∑
n≥1

a2
nn4s < ∞

}
and consider the function

f(x) =


0 if 0 ≤ x < π

4

1 if π
4 ≤ x ≤ π

2

0 if π
2 < x ≤ π .

Since f(x) ∈ L2((0, π)), we have f(x) =
∑

n≥1an

√
2
π sin(nx), with

an =

√
2
π

∫ π

0

f(x) sin(nx)dx =

√
2
π

∫ π/2

π/4

sin(nx)dx =

√
2
π

cos(nπ/4)− cos(nπ/2)
n

thus |an| ≤
√

2
π

2
n and a2

n ≤ 8/(πn2). Then∑
n≥1

a2
nn4s ≤ 8

π

∑
n≥1

1
n2−4s

.

Since the series in the right hand side converges for 2 − 4s > 1 i.e, s < 1/4, we
obtain

‖f‖As =
∑
n≥1

a2
nn4s < ∞ ∀s <

1
4

in conclusion f ∈ As for s < 1/4 and f(x) is not continuous nor equal a.e. to a
continuous function.

Remark 3.4. For the limiting case s = 1
4 we do not have a definitive answer yet.

4. Applications

In this section we give some applications of the functional spaces As introduced
above.

Example 1. For a finite interval (α, β) in R, consider the problem

Tu := u(4) = f on (α, β)

u′′(α) = u′′(β) = 0

u′′′(α) = u′′′(β) = 0

(4.1)

with an appropriate f . We want to solve this equation using the next well known
theorem in a space As.
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Theorem 4.1 (Lax Milgram). Let H be a Hilbert space and H ′ its dual. Let a(u, v)
be a continuous coercive bilinear form aver H×H, then for each f ∈ H ′ there exists
a unique u ∈ H such that

a(u, v) = 〈f, v〉 ∀v ∈ H ,

where 〈·, ·〉 denotes the duality bracket between H and H ′. In addition, if the bilinear
form a is symmetric then the solution u is characterized by

1
2
a(u, u)− 〈f, u〉 = min

v∈H
{1
2
a(v, v)− 〈f, v〉}

To solve problem (4.1) we consider the corresponding bilinear form

a(u, v) =
∫ β

α

u′′v′′dx .

We remark that this bilinear form is not coercive in the Sobolev space H2((α, β)).
To see that consider the affine function u = cx + d so we have

a(u, u) =
∫ β

α

(u′′)2dx = 0 ,

but

‖u‖2H2 =
∫ β

α

u2dx +
∫ β

α

(u′)2dx +
∫ β

α

(u′′)2dx 6= 0 .

So that one can not apply the Lax Milgram theorem to prove the existence of
solutions in H2((α, β)). On the other hand, if we consider the same bilinear form
in the space A1 associated to the problem

lu := −u′′ = λu

u(α) = u(β) = 0 ,

we have

a(u, u) =
∫ β

α

(u′′)2dx = ‖u‖2A1

where u′′ is regarded in the sense

u =
∑

anφn, u′′ =
∑

λnanφn .

Then the coercivity of a holds and leads to the existence of solutions in A1.

Example 2. For an interval (a, b), consider the semi-linear problem

lu = g(u) + h on (a, b) (4.2)

associated to boundary value conditions, where l is a Sturm-Liouville operator. In
this example we present a method based on the Ky Fan-Von-Neumann theorem
for finding solutions in a convenient fractional space associated with the Sturm-
Liouville problem lu = λu. Before this we recall some basic definitions.

Definition 4.2. Let X be a Banach space, and J : X → R be an application. We
say that J is lower semi-continuous (l.s.c), if for every α ∈ R, the set [J ≤ α] :=
{x ∈ X : J(x) ≤ α} is closed. We say that J is upper semi-continuous (u.s.c) if
(−J) is lower semi-continuous.

Let A, B be two sets, and let L : A × B → R be an application, a point
(x∗, y∗) ∈ A × B is said to be a saddle point if for all x ∈ A and all y ∈ B,
L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗).
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Theorem 4.3 (Ky Fan-Von-Neumann [18]). Let X and Y be two reflexive Banach
spaces; and let H1 ⊂ X and H2 ⊂ Y be convex closed subsets. Suppose that
L : H1 ×H2 → R is convex-concave i.e., for all x ∈ H1, L(x, .) is concave (u.s.c)
on H2, and for all y ∈ H2, L(., y) is convex ( l.s.c) on H1. Moreover if H1 (or H2)
is unbounded we suppose that there exists y0 (or x0) such that lim‖x‖→+∞ L(x, y0) =
+∞ (or lim‖y‖→+∞ L(x0, y) = −∞), then L will posses a saddle point.

If the function L is concave and L(x, .), L(., y) are G-differentiable, then we have
an equivalence between the following two assertions

(i) (x∗, y∗) ∈ H1 ×H2 is a saddle point of L in H1 ×H2.
(ii) For all (x, y) ∈ H1 ×H2,

〈∂1L(x∗, y), x− x∗〉 ≥ 0

〈∂2L(x, y∗), x− x∗〉 ≤ 0 .

This equivalence gives a characterization of the saddle points.
Let {λk}k (λk ≥ 1) and {ϕk}k be the eigenvalues and the eigenfunctions of the

problem lu = λu associated with the same boundary conditions as those associated
with (4.2).

In (4.2) g(u) is a non linear function , and h is in L2((a, b)). We will assume that
g : R → R and there exist k ∈ N, α, β ∈ R+ such that for all s, t ∈ R, with s 6= t

λk < α ≤ g(s)− g(t)
s− t

≤ β < λk+1 . (4.3)

Under these conditions (4.2) admits a solution u in the space

A1/2 = {u ∈ L2(a, b) : u =
∑

anϕn,
∑

a2
nλn < ∞} .

To prove the existence of such a solution we put

J(u) =
1
2
(l1/2u, l1/2u)−

∫ b

a

G(u(x))dx−
∫ b

a

h(x)u(x)dx

where G(s) =
∫ s

a
g(t)dt. The symbol (·, ·) will denote the inner product in L2(a, b)

and (·, ·)A1/2 the inner product in A1/2 and 〈·, ·〉 will denote a duality bracket For
every v ∈ A1/2, we have

〈J ′(u), v〉 = (l1/2u, l1/2v)−
∫ b

a

g(u(x))v(x)dx−
∫ b

a

h(x)v(x)dx

= (u, v)A1/2 + (g(u), v)− (h, v) .

we define the spaces

H1 = ⊕n≤kRϕn and H2 = ⊕n≥k+1Rϕn

where Rϕn = {cϕn; c ∈ R}. One can remark that A1/2 = H1 ⊕⊥ H2 (direct and
orthogonal sum). Let L be the mapping defined on H1 ×H2 by

L(v1, v2) = J(v1 + v2) .

We will show that L posses a saddle point, which is the wanted solution. Hypothesis
(4.3) gives

0 < α ≤ g(v1 + v2)− g(w1 + v2)
v1 − w1

;

thus
α(v1 − w1)2 ≤ [g(v1 + v2)− g(w1 + v2)](v1 − w1) .
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After integration, we obtain

α ‖v1 − w1‖2L2 ≤ ([g(v1 + v2)− g(w1 + v2)], (v1 − w1)) . (4.4)

On other hand, for every z ∈ H1 we have

(lz, z) = (l1/2z, l1/2z) ≤ λk ‖z‖2L2 (4.5)

because z implies z =
∑k

n=0 anϕn which implies lz =
∑k

n=0 anλnϕn Then

(lz, z) =
( k∑

n=0

anλnϕn,
k∑

n=0

anϕn

)
=

k∑
n=0

a2
nλn

by the orthogonality of the ϕn’s. Then

(lz, z) ≤ λk

k∑
n=0

a2
n

because λn ≤ λk for all n ≤ k. Then (lz, z) ≤ λk‖z‖2L2 . Using (4.4) and (4.5)

〈∂1L(v1, v2)− ∂1L(w1, v2), v1 − w1〉
= (lv1 − g(v1 + v2)− h− lw1 + g(w1 + v2) + h, v1 − w1)

= (lv1 − g(v1 + v2)− h− lw1 + g(w1 + v2) + h, v1 − w1)

= (l(v1 − w1)− (g(v1 + v2)− g(w1 + v2)), v1 − w1)

≤ λk‖v1 − w1‖2L2 − α‖v1 − w1‖2L2 .;

so that

〈∂1L(v1, v2)− ∂1L(w1, v2), v1 − w1〉 ≤ −(α− λk)‖v1 − w1‖2L2

this shows that −L(., v2) is a strictly convex and coercive function (on L2), in other
words −L(., v2) is strictly concave. Since ‖v1‖L2 ≤ ‖v1t‖A1/2 , we obtain

lim
‖v1‖L2→+∞

L(v1, v2) = −∞⇒ lim
‖v1‖L2→+∞

L(v1, v2) = −∞

By a similar reasoning, and using the second inequality in (4.3) we show that L(v1, .)
is strictly convex and coercive.

Since L being continuous, using the Ky Fan-Von-Neumann theorem, we conclude
that L admits a saddle point (u∗1, u

∗
2) ∈ H1×H2. Using the characterization of the

saddle point

〈∂1L(u∗1, u2), u1 − u∗1〉 ≥ 0 ∀(u1, u2) ∈ H1 ×H2 (4.6)

and the fact that H1 is a vector space, we have for every u1 ∈ H1, (u1 + u∗1) and
(−u1 + u∗1) are in H1, so by substituting u1 by (u1 + u∗1) then by (−u1 + u∗1), in
the expression (4.6) we obtain

〈∂1L(u∗1, u2), u1〉 ≥ 0 ∀(u1, u2) ∈ H1 ×H2 .

In particular,
〈∂1L(u∗1, u

∗
2), u1〉 = 0 ∀u1 ∈ H1

and, in the same way,

〈∂1L(u∗1, u
∗
2), u2〉 = 0 ∀u2 ∈ H2 .

Therefore,
〈J ′(u∗1 + u∗2), u2〉 = 〈∂1L(u∗1, u

∗
2), u2〉 = 0 .
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Finally
〈J ′(u∗1 + u∗2), u〉 = 0

for u ∈ A1/2 with u = u1 + u2 and

u∗ = u∗1 + u∗2 ∈ A1/2,

which is solution of (4.2) in the weak sense 〈J ′(u∗), v〉 = 0.

Conclusion. In this work, we constructed functional spaces related to regular
Sturm-Liouville problems, but we can do it for singular spaces and particularly
those giving orthogonal polynomials and other special functions (with some modi-
fications). Following the same procedure, we can replace Sturm-Liouville operators
by differential operator including partial differential operators having similar spec-
tral properties.
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