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Simple Summary: Breast cancer misdiagnoses increase individual and system stressors as well as
costs and result in increased morbidity and mortality. Digital mammography studies are typically
about 80% sensitive and 90% specific. Improvement in classification of breast cancer imagery is
possible using deep vision methods, and these methods may be further used to identify autonomously
regions of interest most closely associated with anomalies to support clinician analysis. This research
explores deep vision techniques for improving mammography classification and for identifying
associated regions of interest. The findings from this research contribute to the future of automated
assistive diagnoses of breast cancer and the isolation of regions of interest.

Abstract: (1) Background: Female breast cancer diagnoses odds have increased from 11:1 in 1975
to 8:1 today. Mammography false positive rates (FPR) are associated with overdiagnoses and
overtreatment, while false negative rates (FNR) increase morbidity and mortality. (2) Methods:
Deep vision supervised learning classifies 299 × 299 pixel de-noised mammography images as
negative or non-negative using models built on 55,890 pre-processed training images and applied to
15,364 unseen test images. A small image representation from the fitted training model is returned
to evaluate the portion of the loss function gradient with respect to the image that maximizes the
classification probability. This gradient is then re-mapped back to the original images, highlighting
the areas of the original image that are most influential for classification (perhaps masses or boundary
areas). (3) Results: initial classification results were 97% accurate, 99% specific, and 83% sensitive.
Gradient techniques for unsupervised region of interest mapping identified areas most associated
with the classification results clearly on positive mammograms and might be used to support clinician
analysis. (4) Conclusions: deep vision techniques hold promise for addressing the overdiagnoses and
treatment, underdiagnoses, and automated region of interest identification on mammography.

Keywords: deep vision; breast cancer; machine learning; region of interest detection

1. Introduction

An estimated 2.3 million women were diagnosed with breast cancer globally in 2020,
and female breast cancer has surpassed lung cancer as the most diagnosed cancer in the
world [1]. The odds of a female being diagnosed with breast cancer have increased from
11:1 in 1975 to 8:1 today [2]. Globally, breast cancer is the most prevalent type of cancer
with the most disability-adjusted life years [3]. Age-adjusted rates show growth in breast
cancer diagnoses of 0.3% per year [4,5].

In the United States, about 13% of women will be diagnosed with breast cancer over
their lifetimes [6]. Although breast cancer fatality rates have declined 1% since 2013, likely
due to advancements in treatment, it is still the second most fatal cancer diagnosis [6].
Fatality rates from breast cancer decreased 7% from 2002 to 2003 (possibly due to an
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evidence-based reduction in the use of hormone replacement therapy [6,7]). However, the
increased use of breast implants (48% increase from 2000 to 2018, the pre-COVID-19 era [8])
is linked to an increased risk of breast implant associated anaplastic large cell lymphomas
(BIA-ALCL). These lymphomas are rare and difficult to detect [9], facts associated with a
reduced probability of 5-year survival. The Scientific Committee on Health, Environment,
and Emerging risks considers there to be moderate evidence of a causal link between
textured breast implants and BIA-ALCL [10].

Mammography reduces breast cancer mortality and is thus an important diagnostic
tool [11–13]. The implementation of breast cancer screening has resulted in the increase in
ductal carcinoma in situ, a pre-invasive form of cancer that may or may not progress [14].
Misdiagnoses of mammography results in increased morbidity, mortality, stress, and costs.
False positive rates (FPR), estimated in one study to be 121.2 per 1000 or 12.12% [15], are
associated with overdiagnoses and overtreatment and must be addressed while simultane-
ously improving false negative rates (FNR) to reduce morbidity and mortality. One study
estimates that sensitivity and specificity of digital mammography studies is 80% and 90%,
respectively [16].

The use of human–computer interaction in mammography studies is becoming in-
creasingly important [17]. Advances in machine learning (ML) have improved both positive
predictive validity (PPV) and negative predictive validity (NPV) in breast cancer identifica-
tion. Application of fast opposite learning weights, an ML technique that may improve
classification performance, resulted in FNR of 9.9% and FPR of 11.94% in one study [18].
A study by Ertosun and Rubin used Convolutional Neural Network (ConvNet) achieved
0.78 precision in mammography classification [19]. Muramatsu et al. achieved 84% ac-
curacy using ConvNet. ML techniques hold promise for improving PPV and NPV [20].
Salama and Aly were able to achieve impressive classification metrics (98% accuracy, 98%
specificity, and 98% sensitivity) on small samples with augmented imagery [21].

Image segmentation attempts to divide an image into non-overlapping areas. Tech-
niques that have been applied to this task include thresholding, watershed-based methods,
graph-based methods, clustering, and region-based approaches [22]. Thresholding meth-
ods are often exceedingly basic, seeking to enhance grayscale images based on intensity
values [23]. Smooth boundaries and unimodal histograms (pixel value) pose problems for
this method [22]. Watershed-based methods consider the image is a contour map and seek
to find the lowest/highest points [24] but are sensitive to noise and over-segmentation
and are computationally expensive as gradient calculation is required [22]. Graph-based
methods subset images using nodes and edges where the edges never overlap and have
been used for region of interest (ROI) identification in breast cancer [25]. They are, again,
computationally problematic for larger image sizes [26]. Clustering methods (K-means,
hierarchical, etc.) seek to group like pixels together in order. These algorithms are sensitive
to outliers, noises, and initial values [25]. Region-based methods seek to divide an image
into homogenous regions but are sensitive to the initial region selected as the ‘seed’ [22].

Recent efforts have sought to use the output of a ConvNet classification model
to identify ROIs on photographs without knowing where the actual lesion may exist.
Techniques such as ‘guided backpropagation’ [27] and ‘deconv’ [28] have been used to
identify image areas that activate the neurons of ML models. The gradient of the loss
function with respect to an image representation (convolutional layer) can be used to
pinpoint tissue segments that might be of concern even if the initial read of that study was
negative without previously classified imagery (unsupervised learning). Recent efforts
have shown that such methods are highly capable of producing bounding boxes for im-
agery [29]. It is therefore possible to identify regions of interest (ROIs) in medical imagery
by simply ‘mining’ the layers of a ConvNet classification algorithm without additional
segmentation analysis.

This study addresses the problems of overdiagnoses and overtreatment, as well as
underdiagnoses with its associated increases in morbidity and mortality by (1) improving
classification of mammography using supervised learning (learning from images where
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the classification label is in the data) and (2) implementing guided backpropagation to
paint gradient contours of the ROIs using unsupervised learning. This research supports
efforts to reduce morbidity and mortality while simultaneously addressing overdiagnosis
and overtreatment.

2. Materials and Methods
2.1. Data, Software, and Hardware

Data are publicly available from the Digital Database for Screening Mammography
(DDSM) [30] and the Curated Breast Cancer Imaging Subset of DDSM [31] and provided
by Google’s Kaggle.com, accessed on 5 January 2021 [32]. This analysis is a precursor to
follow-on work supported by a National Cancer Institute Data Transfer Use Agreement
(PLCOI-742). The data consisted of 71,249 images and labels, 55,885 pre-designated for
training and 15,364 reserved for testing. The image data were sized 299 × 299 (single
channel grayscale) but were augmented to three-color (‘RGB’) for use in models by repli-
cating the channel. The label data included dichotomous classification (0 for true negative,
1 otherwise). All analyses were performed in Anaconda Python 3.7 and are available on
Github [33]. An in-kind high performance computing grant from Advanced Micro Devices
(250 teraflops computing power) provided the computational power for model training.
The observations (pixels) used for the image data only were 299 pixels × 299 pixels ×
3 channels × 71,249 images = 19.1 billion pixels.

2.2. Training, Validation, and Test Sets

The training set was further randomly subdivided into training and validation sets
(80% and 20%, respectively) resulting in the final data sets of size 44,708 (training),
11,177 (validation), and 15,364 (test). By further splitting the training data, machine
learning algorithms use the retained training data to estimate model performance on the
validation set prior to estimation of the test set as a mechanism for preventing overfitting
and to compare model hyperparameters. The final tuned model used both the training and
validation sets to predict the pristine test set.

2.3. Image and Label Preprocessing

Each of the image intensity values were scaled between 0 and 1 (min-max scaling).
Test data remained untransformed other than pixel scaling. Label data were complete.

2.4. Architecture

ConvNet models were built on the training images and performance calculated using
the validation set. Then the models were used to classify the unseen but labeled test set.
ConvNet is an ML network architecture capable of taking radiological images and making
outcome predictions. ConvNets are often used for image denoising [34], as they preserve
the important spatial relationships and features. Figure 1 is a basic ConvNet architecture.

2.5. Deep Vision Basics

An image is represented as an x-y mapping of pixel color intensity, z. For color
images, there are three matrices that form an array, one each for red, blue, and green
intensities. One could consider ConvNet to be a dimension reduction protocol that reduces
the image size while retaining important features and spatial information. The reduced
image representations are eventually flattened, where each pixel is then part of a variable
vector that might be used to forecast class membership by minimizing a log-loss or ‘softmax’
function, somewhat analogous to logistic regression for the two-class cases and multinomial
regression for the multi-class cases.
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Figure 1. ConvNet architecture and graphical research overview.

2.6. Supervised Classification

Assume that we are evaluating pre-processed images of 96 × 96 pixels with 1 color
channel (‘A’ in Figure 1). Many image filters of smaller size (e.g., 48 × 48 pixels, ‘B’ in
Figure 1) are passed over the original image, section by section, one or more pixels at a time.
The tensor product, A¨ B, is taken for each of these regions (convolutional output). Moving
each of our 48 × 48 filters over the original 96 × 96 images 1 pixel at a time generates a
new 48 × 48 matrix. The convolutional layer output, a set of smaller image representations,
are additionally processed through a function for classification improvement (a rectifier
function that adds additional nonlinearity to images, f (x) = max (0, x). Smaller filters
(24 × 24 pixels in Figure 1, ‘C’) are applied to convolutional layers. These filters execute
‘maximum pooling’ (keeping the maximum value in each region) or ‘average pooling’
(averaging all values). Multiple layers (‘D’ and ‘E’ in Figure 1) are then combined in a
network structure. The final image representation is flattened into a single vector (dense
layer, ‘F’ in Figure 1). The inner product of this vector and weights (tuned through nonlinear
optimization) are added to a constant (bias) and processed through a ‘softmax’ function (‘G’
in Figure 1). The softmax function provides the probability of negative (−) or non-negative
(+) imagery Equation (1).

P(+) =
e−XTW

e−XTW + e−XTY
, P(−) =

e−XTY

e−XTW + e−XTY
. (1)

Equation (1) estimates the probability that an image will belong in either the negative
(−) or non-negative (+) class. In this equation, XT is the flattened vector produced by the
ConvNet (‘F’ in Figure 1), and the weights for negative (−) and non-negative (+) conditions
are W and Y, respectively. The probability for each class is estimated by dividing the
exponent of the weighted vector for each class by the sum of the weighted vectors for
both classes.

For two-category classification, only one equation rather than two is needed. A
sigmoid or log-loss equation classifies either negative (−) or non-negative (+) studies
Equation (2).

P(+) = σ(x) =
1

1 + e−x (2)

In Equation (2), we define σ(x) as the sigmoid function which takes the vector data
from the flattened layer and estimates the probability of non-negative (+) results.
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ConvNets require tuning of the weights and filter values through nonlinear minimiza-
tion of a loss function, typically the log-loss (binary cross-entropy, Equation (3)).

L = − 1
N

N

∑
i=1

yilog(pi) + (1 − yi)log(1 − pi) (3)

In Equation (3), L is the loss function, N is the number of items classified, y is the true
class membership (either negative or non-negative), and p is the probability estimate for
the group membership. A correctly classified observation (e.g., a true ‘1’ predicted to be
such with probability 0.999) results in a value near 0. An incorrectly classified observation
(e.g., a true ‘1’ predicted to be ‘0’ with 0.999 probability) results in a value of 4.605. Thus,
minimizing binary cross-entropy through nonlinear optimization attempts to improve
the classification.

2.7. Specific Architecture, Classification Problem

For this analysis, we evaluated several pre-existing architectures that have shown
to perform well on the image classification task. The best-performing architecture of
those considered is presented here and is based on the Visual Geometry Group (VGG) of
Oxford [35]. The architecture, known as VGG-16, includes 13 convolutional layers and
5 maximum pooling layers. Global average pooling was added to this baseline architecture
to further reduce dimensionality, and a single neuron with sigmoid activation function
provided the final estimate of the probability of a non-negative result. While we started
with pre-trained weights for the VGG-16 architecture, we allowed these to be updated
during nonlinear optimization.

Images were batched in groups of fed into the architecture. Validation metrics were
estimated, and hyperparameter tuning was performed. The final selected image batch size
was 32, and the chosen nonlinear optimizer was an adaptive gradient algorithm known
as ‘AdaGrad’ [36]. A total of 50 epochs were set with early stopping conditions (which
activated after epoch 25).

2.8. Unsupervised Region of Interest (ROI) Identification

Traditional radiological imagery is often devoid of ROI segmentation, which depicts
the location of anomalies. Without previously identified ROIs (as is the case with the
imagery in this study), it is not possible to train supervised models to isolate ROIs. It is,
however, possible to return a small image representation from the closest convolutional
layer of a model, evaluate the gradient of the loss function with respect to the image at
that layer using computational graphs, find the portion of the gradient that maximizes the
classification probability, and re-map that gradient location back to the original image. In
doing so, the areas of the original image that are most highly influential for the classification
model can be found. Further, an image contour overlay can be built to identify the areas
most associated with the classification determination based on important values of the
gradient of the loss function with respect to the image. In this study, we avoid guided
backpropagation as well as other non-gradient based methods based on recent experimental
findings [37].

Figure 2 represents the last functions of the ConvNet provided the probability predic-
tion for the image. For each filter F in the last convolutional layer, we seek the gradient of
the loss function with respect to the image, δL

F . The forward pass (green arrows) results
in a composite function from the filters through the rectifier, global average pooling, the
sigmoid function to the forecast. To calculate δL

F requires that we ‘backpropagate’ the
gradients (red arrows) using the chain rule until we are able to estimate our loss gradient
with respect to the filter. These calculations are supported by TensorFlow and need not be
done manually [38].
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3. Results
3.1. Descriptive Statistics

The data were imbalanced, as 86.96% of the images were negative. ConvNets are
robust to imbalanced data, so addressing this imbalance by over or under sampling (for
example) was unnecessary. We investigated image augmentation using 10 degrees of
random rotation, 20% zoom in and out, 10% height and width shifts, 10% shearing, and
horizontal flipping, as augmentation sometimes produces more robust classifiers [39]. We
saw no improvement with image augmentation possibly due to issues with local optima
and thus proceeded with the original images.

Images were saved as three channel (‘RGB’) color images to support the baseline
VGG-16 architecture. Several of the images were plotted using various color enhancements
to verify data quality (see Figure 3 for an example). An autoencoder to reduce image noise
was implemented but added no observable benefit to the classification.
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3.2. Classification Results

The VGG-16 architecture resulted in 98% classification accuracy, 83% sensitivity (re-
call of positives), and 99% specificity (recall of negatives) on the pristine test set after
25 epochs. These metrics are all improved over previous studies including [19,20]. The
positive predictive value (precision for positive cases) is 0.93, indicating that 93% of the
patients informed of positive study results were true positives, much better than [19].
Table 1 provides the complete results of predicting the test result with the trained model,
while Table 2 is the confusion matrix (the classification matrix with incorrect and correct
predictions labeled).

Table 1 shows that the classification process worked well. The high recall (99%) on the
negative patients suggests that overdiagnosis and overtreatment would be reduced. The
sensitivity of 83% might even be improved with additional a priori manipulation as well
as larger datasets.

In Table 2, the FPR is (131/1801) = 7.3% while the FNR is (334/13,563) = 2.5%. These
metrics are much better than those seen in [18].
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Table 1. Metrics for predicted test set data, 97% accuracy.

Metric Size Precision Recall F1-Score

Negative 13,360 0.98 0 0.99 * 0.98 ***
Positive 2004 0.93 1 0.83 ** 0.88 ***

Weighted Average 15,364 0.97 0.97 0.97
0 Negative Predictive Value, 1 Positive Predictive Value, * Sensitivity, ** Specificity, *** Harmonic Mean of Precision
& Recall.

Table 2. Confusion matrix for the classification problem.

Actual/Prediction Negative Prediction Positive Prediction Total

Negative 13,229 131 13,360
Positive 334 1670 2004

Total 13,563 1801 15,364

3.3. Unsupervised Gradient Mapping

We used TensorFlow’s ‘GradientTape’ function to calculate the gradient of the loss
function at the last convolutional layer’s reconstructed image, which includes 512 filters
of size 18 × 18 pixels. After producing the gradient map, we zoomed the image back to
299 × 299 to produce contour overlays for the images. To further identify areas of concern,
we filtered for the top 10% of the image values. In Figure 4, we show the first 10 positive
images in the data set in gray scale with the contour mask of the gradient superimposed
(showing as pink).
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Figure 4 shows that the unsupervised classification is able to pick up features in the
images associated with anomalies. In Row 1, plots 2 through 5 and in Row 2 plots 3 through
5, it is clear that the gradient of the loss with respect to the image considers the darkish
areas to be associated with anomalies. In Row 2, plots 1 and 2 appear to identify a high
density ‘line’ and ‘point’, respectively. The contour plots appear to capture the boundaries
of interesting tissue in the plots, which is to be expected, as the maximum values of the
gradient of the loss with respect to the image representation are those areas most closely
associated with the algorithm’s classification decision.

4. Discussion

Supervised classification of mammography detection is effective in achieving high
sensitivity, specificity, precision, and overall accuracy. The model presented here was
highly specific (99%) with reasonable sensitivity (83%). This particular model would
effectively address the problems of overdiagnosis and overtreatment, and slightly address
the problems of morbidity and mortality associated with breast cancer. Refinements to the
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architecture, weights, and other elements of the model would be expected to improve its
performance; however, a relatively common ConvNet architecture was capable of achieving
these results on a sufficiently large dataset with reasonably sized images without significant
hyperparameter tuning or image manipulation.

Backpropagation techniques worked well to produce contour maps for the loss gradi-
ent with respect to the image representation. Zooming these contour maps from the last
convolutional layer back to the original image size provided reasonable visual represen-
tation of the areas that are (by definition) most closely associated with the classification
process. Thus, it is relatively straightforward to determine regions of interest during
the ML classification process without running separate models. Providing pre-marked
images to physicians, particularly when ML models and physicians have different ‘opin-
ions’ regarding the mammography, is an important consideration for improving FPR and
FNR rates.

A limitation of this study is that it uses previously curated images of fixed and rela-
tively small size. Larger files (e.g., Aperio ScanScope.svs image sets) require significantly
more preprocessing and computational power. Further, the positive mammography lacks
confirmed ROIs, so the contour masks may not be interpreted alone. In addition, this study
focused on the classification of non-negative imagery. Classification using the BI-RADS
classification scheme is also possible but beyond the scope of this initial study.

Future work involving imagery obtained by the National Cancer Institute under a
Data Transfer Agreement (PLCOI 742) is ongoing. This work requires significant processing
power from a cloud-based high performance computing cluster supported by Advanced
Micro Devices under an in-kind grant.

5. Conclusions

Deep vision holds much promise for breast cancer classification, as it is able to find
relationships among spatially related pixels that the human eye cannot detect. Thus, it
is possible for deep vision to detect cancers missed by clinical professionals under even
optimal conditions assuming that properly classified training data are available from which
the algorithms can learn.

ML techniques in general hold great promise for both the supervised classification
and unsupervised segmentation problems. These techniques are likely to assist radiologists
and clinicians in reducing FNR and FPR rates, addressing the issues of overdiagnosis and
overtreatment while simultaneously reducing morbidity and mortality. It is clear that the
role of the ML in assisting clinicians with diagnoses and ROI identification will increase
given its demonstrated potential.
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