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UNIQUENESS FOR COEFFICIENT IDENTIFICATION IN
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Abstract. This article concerns the question of uniqueness in the identifica-
tion of coefficients in a one-dimensional parabolic partial differential equation.

The solution of an initial-boundary value problem is observed at one internal

point over a finite time interval. It is shown that, under the condition that
the coefficient is known a priori on a subinterval, the coefficient on the entire

interval is uniquely determined by such observation.

1. Introduction

We are concerned with the parabolic equation

∂u

∂t
− ∂2u

∂x2
+ q(x)u = 0 (1.1)

for 0 < x < 1 and 0 < t ≤ t0 with the initial and boundary conditions

u(x, 0) = 0 (0 < x < 1), (1.2)

u(0, t) = 0, u(1, t) = g(t) (0 < t ≤ t0). (1.3)

Here the functions q ∈ L1[0, 1] and g ∈ AC[0, t0] are real. We want to consider
the problem of the unique identification of the coefficient q in (1.1) from the values
u(1, t) and u(x0, t) for all t ∈ [0, t0] and for some x0 ∈ (0, 1), in terms of the inverse
spectral theory of Sturm-Liouville differential operators.

It is obvious that uniqueness does not remain true without any assumption on
(q, g). In fact, if we put u(ζ, t) ≡ 0 in (1.1)-(1.3) for ζ = x0, 1, then u ≡ 0 fol-
lows for any coefficients q. However, it has been shown by Pierce [10] that this
uniqueness problem is related closely to the spectrum of the Sturm-Liouville differ-
ential operator L which is defined as the realization in L2(0, 1) of the differential
expression

Ly := −y′′ + q(x)y (1.4)

with the Dirichlet boundary conditions

y(0) = y(1) = 0. (1.5)
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As is well known [7], the operator L is self-adjoint in the space L2[0, 1] and has a
discrete spectrum consisting of simple real eigenvalues {λn} for n ∈ N0. Pierce has
shown that, under the assumption that x0 is not in the set

Ω := {x ∈ (0, 1) : ϕn(x) = 0 for some n ∈ N}, (1.6)

then the spectrum σ(L) is uniquely determined by u(ζ, t) in (1.1)-(1.3) for ζ = x0, 1,
where ϕn(x) are the nontrivial eigenfunctions corresponding to eigenvalues λn. This
shows that, for x0 ∈ Ω, there exists partial knowledge of the spectrum σ(L) which is
missing; that is, this partial knowledge can not be used to determine the coefficient
q.

In the literature, there are many results (see [1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14]
and the references therein) related to the problems of identification of the coefficient
of (1.1). In particular, Ramm [11, 12, 13, 14, 15] considered initial-boundary value
problem (1.1)-(1.3) and proved that either knowledge of g(t), ux(1, t) or of g(t),
ux(0, t) and q on [1/2, 1] (or q(1/2 − x) = q(x)) determines q uniquely. Moreover,
Kimura and Suzuki [6] considered the uniqueness problem for (1.1)-(1.3) in the case
when x ∈ [0,∞) and q = 0 on [a,∞) with a > 0.

In this note it is shown that, under condition that q in (1.1) is known a priori
on a right subinterval of [0, 1], the coefficient q of initial and boundary problem
(1.1)-(1.3) is uniquely determined by an observation of the solution at one interior
point in space. The technique which we use to obtain this result is based on
the uniqueness theorems of Gesztesy-Simon [3], Ramm [12, 13] and Wei-Xu [17]
for inverse spectral theory of the Sturm-Liouville differential operators defined by
(1.4) with partial information given on the potentials. Our results and their proofs
of the paper will be stated in the next section.

2. Statement of results

Theorem 2.1. Consider the parabolic equations defined as (1.1)-(1.3), where q ∈
L1[0, 1] and g ∈ AC(0, t0] for some t0 > 0 are real functions with g 6≡ 0. Let u(x, t)
be its a solution. Then q on [0, 1] is determined uniquely by q on [a, 1], u(x0, t) and
g(t) for t ∈ (0, t0], where x0 and a satisfy one of the following conditions:

(i) x0 ≥ a, or
(ii) x0 < a and a ≤ (1− x0)/2.

Remark 2.2. For condition (i) above, the above uniqueness result can also be
obtained by solving (1.1) on [x0, 1]× [0, t0] and using [11, Proposition 2.1], and this
result for the case x0 = a has been given by Ramm in [15, p. 177]. However, we
provide here another approach to prove the uniqueness result for the problem.

Remark 2.3. When x0 < a, it is easy to ensure that x0 < 1/3 and a < 1/2. As
a typical example, knowing x0 = 1/4 and knowing q on [3/8, 1], then q on [0, 1] is
determines uniquely in terms of u(x0, t) and g(t) for t ∈ (0, t0].

Before proving the theorem, we shall first mention some preliminaries which will
be needed subsequently. Consider the initial-value problems

− y′′ + q(x)y = zy (2.1)

on [0, 1] with initial conditions

y−(0) = 0, y′−(0) = 1; (2.2)

y+(1) = 0, y′+(1) = 1. (2.3)
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Let ϕ− := ϕ−(x, z) and ϕ+ := ϕ+(x, z) be the solutions of problems (2.1)-(2.2)
and problems (2.1) (2.3), respectively. If z = λn, then both ϕ−(x, λn) =: ϕn,− and
ϕ+(x, λn) =: ϕn,+ are eigenfunctions, corresponding to the eigenvalue λn, of the
operator L defined by (1.4) and there holds the relation

ϕn,+ = κnϕn,−, (2.4)

where κn = 1/ϕ′n,−(1) is called the norming constant corresponding to λn; κn is
neither zero nor infinity. Let

ω(λ) := ϕ−(1, z), (2.5)

αn =
∫ 1

0

|ϕ−(x, λn)|2dx. (2.6)

Then from [2], the eigenvalues of L are the zeros of the transcendental function
ω(λ) and

ω̇(λn) = −κnαn (2.7)
where ω̇(z) = dω/dz. It is well known [3] that the Weyl m-function is defined by

m−(a, z) = −
ϕ′−(a, z)
ϕ−(a, z)

(2.8)

for any a ∈ [0, 1) and the potential q on [0, a] is uniquely determined by m−(a, z)
from Marchenko’s fundamental uniqueness theorem [2] of inverse spectral theory.

Proof of Theorem 2.1. Let q be given on [a, 1] with some a ∈ (0, 1). Let q1 and
q2 be two candidates for q extended to all of [0, 1]. Let u1(x, t), u2(x, t) be the
solutions of the initial and boundary problem (1.1)-(1.3) corresponding to q1 and
q2, respectively. By Theorem 2.1, our purpose here is to prove q1 = q2 on [0, 1]
under the assumptions that u1(ζ, t) = u2(ζ, t) for ζ = 1, x0 and q1 = q2 on [a, 1].

Let ϕ1,±(x, z) and ϕ2,±(x, z) be the solutions of (2.1) corresponding to q1 and
q2, respectively, where ϕj,±(x, z) satisfies the initial conditions (2.2) and (2.3),
respectively. For j = 1, 2, we solve the equations (1.1) and we have from [16, pp.
215-216] that

uj(x0, t) = −
∫ t

0

gj(τ)Kj(t− τ)dτ, (2.9)

where t ∈ (0, t0] and

Kj(t) =
∞∑
n=1

ϕ′j,n(1)ϕj,n(x0)e−λj,nt, (2.10)

where ϕj,n(x) = ϕ1,−(x, λj,n)/‖ϕj,−(·, λj,n)‖. Since u1(x0, t) = u2(x0, t), u1(1, t) =
u2(1, t); that is, g1(t) = g2(t) for t ∈ (0, t0], from (2.9) it follows that∫ t

0

K1(t− τ)g1(τ)dτ =
∫ t

0

K2(t− τ)g1(τ)dτ. (2.11)

This yields K1(t) = K2(t) by using the property of Volterra-integral equation; that
is,

∞∑
n=1

ϕ′1,n(1)ϕ1,n(x0)e−λ1,nt =
∞∑
n=1

ϕ′2,n(1)ϕ2,n(x0)e−λ2,nt. (2.12)

Whenever the eigenfunctions are uniformly bounded, the derivatives of the eigen-
functions at 1 are asymptotic to n and the eigenvalues are asymptotic to a multiple
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of n2. Thus the series of K1 and K2 converges for all t > 0 and, in fact, K1,K2 can
be extended to an analytic function on the right half plane. We take the Laplace
transforms termwise in both side of the equation (2.12); that is,∫ ∞

0

e−λtK1(t)dt =
∫ ∞

0

e−λtK2(t)dt

for Reλ > 0, to obtain
∞∑
n=1

ϕ′1,n(1)ϕ1,n(x0)
λ+ λ1,n

=
∞∑
n=1

ϕ′2,n(1)ϕ2,n(x0)
λ+ λ2,n

(2.13)

for Reλ > 0. By the asymptotic expression of the eigenfunctions and the eigen-
values, we can analytically continue both sides of (2.13) in λ when series above
are convergent, so that (2.13) holds for λ ∈ C\{−λ1,n}∞n=1 ∪ {−λ2,n}∞n=1. Note
that ϕ′1,n(1) 6= 0 6= ϕ′2,n(1). Then we obtain that if ϕ1,n(x0) 6= 0 then there exists
m(n) ∈ N0 such that

λ1,n = λ2,m(n), (2.14)

ϕ′1,n(1)ϕ1,n(x0) = ϕ′2,m(n)(1)ϕ2,m(n)(x0). (2.15)

Otherwise, let us assume λ1,n 6= λ2,m for all m ∈ N0. Then we take a suitable disk
which includes −λ1,n and does not include {−λ1,k}k 6=n ∪{−λ2,m}∞m=1. Integrating
(2.13) in a disk, we have that 2πiϕ′1,n(1)ϕ1,n(x0) = 0. This is a contradiction
because of ϕ′1,n(1) 6= 0.

Let us define the set

S := {λ1,n : ϕ1,n(x0) = 0}. (2.16)

Then Sc := σ(L1)\S = {λ1,n|ϕ1,n(x0) 6= 0}. This implies that S ⊂ {µ−n }∞n=1 ∩
{µ+

n }∞n=1, where {µ+
n }∞n=1 and {µ−n }∞n=1 are the eigenvalues of operators L+y :=

−y′′ + q1y on [x0, 1] with the Dirichlet boundary conditions y(x0) = 0 = y(1) and
L−y := −y′′+ q1y on [0, x0] with y(0) = 0 = y(x0), respectively. It should be noted
that [2, p. 11]

µ−n =
n2π2

x2
0

+
∫ x0

0

q1(τ)dτ + ε−n ,

µ+
n =

n2π2

(1− x0)2
+
∫ 1

x0

q1(τ)dτ + ε+n ,

where ε±n → 0 as n→∞. Therefore, we have

NS(t) = Nσ(L−)∩σ(L+)(t)

≤ min{1− x0, x0}[
√
t/π]

= min{1− x0, x0}Nσ(L1)(t)

(2.17)

for t sufficiently large, where NS(t) := #{λ1,n ∈ S : λ1,n ≤ t}. This implies

NSc(t) ≥ (1−min{1− x0, x0})Nσ(L1)(t)

= max{x0, 1− x0}Nσ(L1)(t).

We shall prove the theorem through the following two cases.



EJDE-2017/07 COEFFICIENT IDENTIFICATION FOR PARABOLIC EQUATIONS 5

Case 1: x0 ≥ a. By the definitions of the norming constants κj,n and αj,n (see
(2.4) and (2.6)), for j = 1, 2 and n ∈ N0 we infer that

ϕj,n(x) =
ϕj,−(x, λj,n)
‖ϕj,−(x, λj,n)‖

=
ϕj,+(x, λj,n)
κj,n(αj,n)1/2

.

Taking into account (2.14) and (2.15), for λ1,n ∈ Sc, the above equation yields

ϕ1,+(x0, λ1,n)
κ2

1,nα1,n
=

ϕ2,+(x0, λ1,n)
κ2

2,m(n)α2,m(n)
. (2.18)

It follows that ϕ1,+(x0, λ1,n) = ϕ2,+(x0, λ1,n) since q1 = q2 on [a, 1] and a ≤ x0.
This combined with (2.7) yield

κ1,nϕ̇1,−(1, λ1,n) = κ2,m(n)ϕ̇2,−(1, λ1,n). (2.19)

Let

U(a, z) := [ϕ1,−(a, z), ϕ2,−(a, z)] =
∣∣∣∣ϕ1,−(a, z) ϕ2,−(a, z)
ϕ′1,−(a, z) ϕ′2,−(a, z)

∣∣∣∣ . (2.20)

By the assumption that q1 = q2 on [a, 1], it is easy to see that

U(a, z) = U(1, z)−
∫ 1

a

d

dt
[ϕ1,−(t, z), ϕ2,−(t, z)]dt

= U(1, z) +
∫ 1

a

(q1 − q2)(x)(ϕ1,−ϕ2,−)(t, z)dt

= U(1, z)

=
∣∣∣∣ϕ1,−(1, z)ϕ2,−(1, z)
ϕ′1,−(1, z)ϕ′2,−(1, z)

∣∣∣∣ .
(2.21)

From (2.14) and the definition of ϕj,−(1, z), it follows that if λ1,n ∈ Sc then
ϕj,−(1, λ1,n) = 0 for j = 1, 2 and therefore U(a, λ1,n) = 0. Furthermore, since

U̇(a, z) =
∣∣∣∣ϕ̇1,−(1, z) ϕ̇2,−(1, z)
ϕ′1,−(1, z) ϕ′2,−(1, z)

∣∣∣∣+
∣∣∣∣ϕ1,−(1, z) ϕ2,−(1, z)
ϕ̇′1,−(1, z) ϕ̇′2,−(1, z)

∣∣∣∣ ,
substituting z = λ1,n ∈ Sc into the above formula we have

U̇(a, λ1,n) = ϕ̇1,−(1, λ1,n)ϕ′2,−(1, λ1,n)− ϕ̇2,−(1, λ1,n)ϕ′1,−(1, λ1,n)

=
ϕ̇1,−(1, λ1,n)
κ2,m(n)

− ϕ̇2,−(1, λ1,n)
κ1,n

= 0

by (2.4) and (2.19). This shows that λ1,n is the zero of U(a, z) with multiplicity to
at least 2.

Let us consider the function

F (z) =
U(a, z)
g2(z)

(2.22)

where
g(z) =

∏
λ1,n∈Sc

(
1− z

λ1,n

)
.

From (2.8) and [2, pp.12] we infer that

F (z) =
ϕ′1,−(a, z)ϕ′2,−(a, z)

g2(z)
(−m1,−(a, z)−1 +m2,−(a, z)−1) (2.23)
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and

g(z) =
ϕ1,−(1, z)

C0

∏
λ1,n∈S(1− z

λ1,n
)
.

It is easy to see that F (z) is an entire function. In addition, from [3, pp. 2779,2782],
we conclude that F (z) satisfies |F (z)| ≤ C1e

c2|z|1/2
for all z ∈ C. By (2.17) and [3,

pp. 2770,2784] we have

|g(iy)| ≥ C|ϕ1,−(1, iy)|x0 ≥ C|ϕ1,−(1, iy)|a,

|ϕ′j,−(a, iy)| = 1
2
|ea Im(

√
i)|y|1/2

|(1 + o(1)),

| −m1,−(
1
2
, iy)−1 +m2,−(

1
2
, iy)−1| = o(

1
|y|

),

as y (real) →∞. Here C is a positive constant. Consequently, we have

|F (iy)| ≤
1
4 |e

2a Im(
√
i)|y|1/2 |(1 + o(1))

( 1
2 )1−x0 |e2a Im(

√
i)|y|1/2 |(1 + o(1))

× o( 1
|y|

)→ 0 (2.24)

as y (real) → ∞. By [3, Proposition B.6], we obtain F (z) ≡ 0. This yields that
m1,−(a, z) = m2,−(a, z) for all z ∈ C. That is, q1 = q2 on [0, 1] by Marchenko’s
uniqueness theorem [2].
Case 2: x0 < a and a ≤ (1−x0)/2. In this case, we have x0 < (1−x0)/2 < 1−x0

and from (2.17) we infer that

NS(t) ≤ Nσ(L−)(t) = x0Nσ(L1)(t), (2.25)

which implies
NSc(t) ≥ (1− x0)Nσ(L1)(t) (2.26)

for t sufficiently large. By [3, Theorem A.3], we obtain q1 = q2 on [0, 1]. The proof
is complete. �

Theorem 2.4. Consider the parabolic equations defined as (1.1)-(1.3), where q ∈
L1[0, 1] and g ∈ AC(0, t0] for some t0 > 0 are real functions (g 6≡ 0). Let u(x, t)
be its a solution. Let S be defined as (2.16) for the operator L which is defined by
(1.4). Assume that

NS(t) ≤ ANσ(L)(t) +B (2.27)
for t sufficiently large, where B ≤ 0. Then q on [0, 1] is uniquely determined by q
on [a, 1], u(x0, t) and g(t) for (0, t0] when x0 < a and a ≤ (1−A)/2.

Remark 2.5. It is easy to see that A ∈ [0,min{x0, 1 − x0}] in (2.17). Moreover,
if A = B = 0; that is, x0 /∈ Ω defined by (1.6). Then a = 1/2 and therefore q on
[0, 1] is uniquely determined by q on [1/2, 1], u(x0, t) and g(t) for (0, t0].

Proof of Theorem 2.4. When x0 < a and a ≤ (1−A)/2, we know that

NS(t) ≤ ANσ(L1)(t) +B < (1− 2a)Nσ(L1)(t). (2.28)

Then we obtain
NSc(t) ≥ 2aNσ(L1)(t) (2.29)

for t sufficiently large. By [3, Theorem A.3], we obtain q1 = q2 on [0, 1]. The proof
is complete. �
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