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ABSTRACT 
 
 
 

Wireless Sensor Networks (WSNs) consist of wireless devices that are either 

installed above the ground or buried under dense soil or placed in any underground spaces. 

WSNs have an immense future to impact on diverse applications including leak detection 

in water, oil and gas pipelines. Any leak in the pipe can trigger significant financial losses 

and possible environmental damages. This thesis presents a novel method for detecting and 

locating a leak in a pipe and estimating its size using pressure sensors that can detect the 

slightest change of pressure. A laboratory-based test bench system has been designed and 

developed to collect real-world datasets from sensors using a wireless sensor network. 

Afterward, all datasets were preprocessed, and datasets containing leak information were 

separated. Next, exponential curve fitting with the least square method was used to pinpoint 

leak location. However, leak size cannot be predicted using this method. Support Vector 

Machine (SVM) and Multi-layer Perceptron (MLP) neural network algorithms were then 

used to predict leak sizes. In our experiments, the MLP neural network showed higher 

accuracy over SVM in predicting leak sizes.
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1. INTRODUCTION 
 
 

1.1 Background  
 
            Pipeline transport systems are one of the most commonly used means for 

transporting water, oil, and gas. Performance of the pipeline systems is often subjected to 

corrosion, cracking, theft, accidental damage, and manufacturing flaws. Most of the pipes, 

especially underground pipelines are operated at high pressure, and in challenging 

environmental conditions. This can create many different malfunctions in pipelines. Hence, 

the assessment of the pipes is critical to prevent damage and losses.  

            Texas State University and NEC Corporation of America proclaimed the signing 

of a Memorandum of Understanding (MOU) on November 4, 2014 that establishes a 

partnership between NEC and Texas State University to run collaborative research and 

development to improve existing social infrastructure operation and management, such as 

water conservation and resource management [1]. Water leak detection project is one of 

the ongoing funded projects of the NEC at Texas State University. NEC has developed 

innovative technology that offers municipal water utility companies an economical way to 

supervise water resources. It is going to help them to meet the water necessities of the 

communities in which they distribute. This technology uses high accuracy sensors that 

accumulate data on leaks in a community’s water distribution system. NEC collects and 

analyzes the sensor data and then offers a solution to the water utility companies. They are 

going to conduct Proofs of Concept (POC) of the water leak system in a few U.S. cities. 

As a part of this goal, in this thesis, an experimental setup has been developed, water 
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pressure sensors have been deployed, and data from these sensors have been collected and 

then analyzed to obtain high accuracy in predicting the leak location and size. 

 

1.2 The State of the World’s Water Distribution System 
 
            Freshwater is crucial for good health. However, over the past several decades, about 

a billion people in developing countries have not had safe water. A person consumes 

approximately 7.5 liters of water per day for daily activities (not including shower or bath) 

[2]. Furthermore, at least 50 liters of water per person per day is required to guarantee all 

personal cleanliness, food hygiene, domestic sanitation, and laundry requirements [3]. So, 

keeping the water distribution systems in good shape is essential for our survival.  

            The demands of agriculture often overshadow the domestic water uses.  As 

announced by the United States Geological Survey (USGS), water used for irrigation 

represents nearly 65 percent of the world’s freshwater withdrawals excluding 

thermoelectric power [4]. The use of agricultural water makes it feasible to produce fruits 

& vegetables and increase livestock. When water is used efficiently and safely in 

agriculture, production increases by a margin. A leak in the irrigation pipeline system can 

trigger a loss of water; therefore, the production can decrease. Identifying leakage in 

advance can save money, minimize damage and protect property values.   

            Water distribution system framework is considered as a vital asset of a water utility. 

The system is defined by the American Water Works Association (AWWA) as "covering 

all water utility elements for the distribution of finished or potable water through pumps or 

gravity storage feed through distribution networks to customers or other users, including 

supply equalizing storage [5]”.  These systems should also be able to supply water for other 
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uses as well, such as irrigation systems and fire suppression [6]. As the population grows 

and communities expand worldwide, new pipes are installed each year.  

Water pipe distribution systems can be located above the ground or in the dense 

soil. Aboveground pipeline systems can be either suspended in support structures or rested 

directly on the ground surface. The system installation must be justified by any one of 

several factors, such as economic considerations of a temporary piping system, simplicity 

of inspection and maintenance, local conditions, or nature of the applications [7]. An 

illustration of an above the ground pipeline distribution networks is shown in Figure 1. 

Aboveground pipelines are made of steel, Polyvinyl Chloride (PVC), fiberglass, or copper 

carrier pipe, depending on the applications. A classic example of an aboveground pipeline 

system is the pipelines suspended on a bridge or highway, used to transport water and oil.  

 

 

 

 

 

 

 

  

 

 

Figure 1. Above the ground pipeline system [8] 
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The underground pipeline system is another form of pipeline distribution network. 

An illustration of this system is shown in Figure 2. PVC pipes are often preferred for 

underground pipeline systems because of the ease of installation. Moreover, it has a higher 

resistance to internal friction compared to other types of pipe of a given diameter. Also, 

installing an underground pipeline system can be used with the same efficiency but more 

economically, as compared to above the ground PVC pipelines [9]. Although an 

underground pipeline system has several advantages, it often becomes difficult to monitor 

and repair. 

 

 

 

 

  

 

    

 

 

 

Figure 2. Underground pipeline system [10] 

 
            Pipeline systems, especially buried infrastructure makes it very hard to take control 

of immediate problems due to the enormous costs and efforts involved in digging the 

surface [11]. Leaks over long periods of time generate many challenges, including the loss 

of water, the chemicals used to treat leaks, or possible contamination of the drinking water 
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inside the pipe [12]-[13]. Any leak in the pipeline can lead to significant financial losses 

and probable environmental hazards. In September 2009, the burst of 62-inch water main 

washed away cars and flooded several homes in Studio City, Los Angeles [14]. In 2014, 

more than 4.76 billion gallons of drinkable water seeped from Austin pipelines, which is 

enough to fill Lady Bird Lake twice [15]. Ten percent of homes in the USA have leaks that 

waste 90 gallons or more per day. Leaks in the household pipeline can waste more than 1 

trillion gallons annually nationwide. That's identical to the annual household water use of 

more than 11 million homes [16]. According to an assessment of the public water system 

by the US Environmental Protection Agency (EPA) in 2018, $472.6 billion is needed to 

refine the infrastructure for thousands of miles of pipe as well as thousands of plants, 

storage tanks, and other vital assets in the next 20 years [17]. 

            Continuous remote monitoring and assessment of the pipelines are necessary to 

prevent losses. A better system for pipeline monitoring can easily lead to a reduction in 

leakage, which could be very vital especially in a few situations where people undergo 

water shortages. Leak detection is a very significant and demanding job, therefore, the 

prime focus of this thesis. 

 

1.3 Leak Detection Methods 
 

With the new generation of electronics, sensors have become smaller, less 

expensive, and more sophisticated. As a result, it is possible to produce more data which 

allows more accurate assessment of a system, warning of environmental threats, and 

sensing of problems. These improvements lead to installing the advanced pressure sensor 

in the pipeline to detect leaks. Researchers have used various methods to identify and locate 
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holes in the pipeline system. Acoustic measurements, vision-based systems, fiber optic 

monitoring, Ground Penetration Radar (GPR) based systems and multimodal systems are 

the most common methods [18]. 

A notable amount of research has already been done on acoustic or vibration 

measurements for pipeline monitoring [19], [20], [21], [22], [23]. Most of these methods 

are regarding the detection of acoustic emissions from the pipe. Leakage in pipes creates 

vibrations which are transmitted along the pipe walls. These waves can be detected by 

using acoustic sensors or accelerometers installed on the pipe wall for analysis [19].  The 

leak location can be identified using different cross-correlation methods. Although there 

are several advantages of using this technique, some disadvantages make it unsuitable to 

use, especially when it comes to the underground wireless network system. It requires a 

high sampling rate to measure the acoustic signal. So, due to the high consumption of 

power in the nodes, the lifetime reduces significantly. Moreover, the system requires a 

sophisticated algorithm to process a large data set that also increases power consumption 

in the nodes.  

Vision-based systems utilize a Pipeline Inspection Gauge (PIG) with a form of 

image processing or laser scanning to find rifts and faults in pipelines [20]. These systems 

demand access to the inside of the pipe to control. Besides, they take measurements at long 

time intervals because it is costly to install the PIGS inside the tube. Moreover, they need 

high handling power or a highly skilled operator to examine the outcome [24].  

Fiber optic technology has a different level of success regarding leak detection [25], 

[26]. A leak can be detected using this method by installing optical cables over vast 

distances. However, the system is complicated to install. Also, in many cases, fiber cable 
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needs to be introduced during pipe installation. Moreover, if a pipe section needs to be 

repaired or replaced, the fiber optic system could be out of service in that area [27]. 

GPR is a method that uses high-frequency electromagnetic waves to obtain 

information. GPR answers to changes in electrical properties, which are a function of soil 

or rock material and moisture content. Then a few laboratory experiments are conducted 

to determine the leak [28]. However, the accuracy of these systems highly relies on the soil 

type and condition and they are more suitable in dry soil conditions. Furthermore, these 

systems are not useful for the continuous monitoring of large pipe networks [18].  

Sensors play a pivotal role in detecting a leak in the pipeline system. Liu and 

Kleiner [29] study the sensor technologies used in monitoring pipe structural failure. The 

multimodal wireless sensor network is becoming more popular as it uses low power sensors 

[18], [30], [31]. Even sparse deployment allows these systems to have an acceptable level 

of redundancy within the system. Moreover, the flexibility of deployment makes spot 

monitoring possible where pipe monitoring is only needed for a limited segment of the pipe 

[18]. 

 

1.4 Scope and Emphasis 
 

The problems associated with leak detection are to find the location of the leak & 

and to accurately predict its size with different water pressure levels and different leak 

sizes. Sometimes it becomes hard to identify leak location with less water pressure and 

mainly when the leak size is tiny. This paper solves the problem of identifying leaks with 

less pressure and small leak size by designing a simple sensor network and analysis 

method.  
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The system analyzes a large number of data sets where each set contains pressure 

values of 6 sensors to identify specific data sets that leak. Each data set is 2-5 minutes of a 

text file, and the wireless sensor network is used to transfer the data sets to a computer. 

Next, this thesis reflects a novel methodology for uncovering informative patterns from 

data which includes the preprocessing, feature extracting and designing a classifier model 

to identify the leak location and its size with relatively high accuracy. 

 

1.5 Outline of Thesis 
 

The coordination of this thesis is as follows: Chapter 2 presents a review of some 

previous works related to signal propagation techniques for wireless sensor network and 

data acquisition systems. Next, chapter 3 presents a description of the proposed system 

which contains a detailed description of sensors, wireless system, and data analysis. 

Experimental analysis and results are shown in chapters 4 and 5 respectively. Finally, 

chapter 6 presents our conclusions and suggestions for future work.  
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2. LITERATURE SURVEY 
 

 

            This chapter will introduce some of the previous works related to our research. This 

thesis is mainly about leak location identification and leak size prediction in pipeline 

distribution systems. Before leak detection, it is essential to understand the radio 

propagation technique. Moreover, it is also important to know what sensor can be used in 

leak detection and how to transmit, receive, and process sensor data. This chapter has been 

divided into four parts. In the first part, the signal propagation technique is introduced, 

followed by the sensor selection in the second part. Data acquisition techniques and data 

classification techniques are studied in the third and fourth parts respectively.   

 

2.1 Signal Propagation Technique for Wireless Sensor Network 
 
 Both Wireless Underground Communication Networks (WUCNs) and Wireless 

Communication Networks (WCNs) consist of wireless devices that operate above and 

below the ground surface respectively. The main difference between WUCNs and WCNs 

is the communication medium. Buried devices have the difficulty of transmitting the sensed 

information back to the surface because typical data transmission systems do not work well 

due to the challenge of propagating a RF signal through the soil. The general formula for 

the received signal, 𝑃𝑃𝑟𝑟, at the receiver end can be expressed as (1): 

𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑡𝑡 + 𝐺𝐺𝑟𝑟 + 𝐺𝐺𝑡𝑡 − 𝐿𝐿𝑜𝑜 (1) 

Here,  𝑃𝑃𝑡𝑡 is the transmitted power, 𝐺𝐺𝑟𝑟 and 𝐺𝐺𝑡𝑡 are the gains of the receiver and transmitter 

antennae, and 𝐿𝐿𝑜𝑜 is the path loss in free space. However, in the case of underground signal 
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propagation, the signal experiences additional path loss when it travels through an 

underground medium such as soil. The received signal, 𝑃𝑃𝑟𝑟, at the receiver end for the 

underground communication can be expressed as (2): 

𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑡𝑡 + 𝐺𝐺𝑟𝑟 + 𝐺𝐺𝑡𝑡 − 𝐿𝐿𝑜𝑜 − 𝐿𝐿𝑢𝑢 (2) 

Here, 𝐿𝐿𝑢𝑢 is the additional path loss caused by the propagation in the underground medium. 

            So far, there has been a great deal of research on signal propagation in soil medium. 

As demonstrated in [32], the authors emphasized the signal propagation for WUSNs. They 

provided a channel model for both electromagnetic (EM) waves and magnetic induction 

(MI). Then they compared both techniques regarding path loss while using different 

frequencies for signal propagation. The comparison between the EM wave, MI, and MI 

waveguide is shown in Figure 3 for the 900MHz signal.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 900MHz signal in the soil [32] 
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            In Figure 3, the horizontal axis on the graph shows the distance a signal can travel 

in the underground and the vertical axis represents path loss. It shows, when the signal 

moves more distance in the underground, it experiences more path loss. Also, the path loss 

of EM waves and MI is almost the same for the operating frequency of 900MHz. These 

curves are fundamental analysis considered for the thesis. In this thesis, the EM signal was 

transmitted and received wirelessly using 900MHz operating frequency. 

            Jiang, Georgakopoulos, and Jonah [33] focused on computing the transmission loss 

and propagation loss of RF waves penetrating soil at various frequencies and depths. Figure 

4 depicts the total loss during the penetration of the signal from air through ground or vice 

versa. This is a very useful analysis considered in this thesis during system design. It helped 

us to choose the right standard module for wireless communication. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Total loss with different depth d and frequency [33] 
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            As seen in [34], the authors presented an estimation of extending underground 

communication radius using the underground radio propagation model. Using this 

estimation, they proposed a concept of low-frequency wireless signal networks for the 

subsurface monitoring applications. They buried sensor nodes at different depths and 

calculated received signal strength. Figure 5 shows received signal strength at various 

sensor locations.  

 

 

 

 

 

 

 

 

 

 

 

            Figure 5. Received signal strength with different depth [34] 

 

            As shown in Figure 5, received signal strength is reduced significantly when the 

distance between earth and buried sensors increased. At 95cm, the receiver lost the signal 

due to high attenuation in the underground. This analysis gave us a general idea about 

sensor positioning in the underground.    

 



 

13 

2.2 Sensor Selection for Leak Detection 
 
            Over a decade, the concept of a wireless sensor network has been investigated for 

leak detection. In most of the studies, researches considered the multimodal system to 

detect a leak. To our best knowledge, one of the most relevant works has been done by 

Sadeghioon et al. [18]. They used the combination of Force Sensitive Resistors (FSR) and 

temperature sensors to detect a leak. They collected pressure data generated from the FSR 

sensor and temperature data from the temperature sensor for three days. As the name 

implies, the FSR sensor is very responsive to the force applied to it. When water goes 

through the pipe, it creates pressure that is detected by the sensor. However, the main 

drawback of the FSR sensor is that it exhibits low accuracy. Also, the authors concluded 

about a leak by observing the pressure profile (Figure 6) of every FSR sensors. 

 

 

 

 

 

 

 

 

 

    

 

Figure 6. Pressure profile of five FSR sensors due to the occurrence of a leak [18] 
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            Authors [18] claimed leak location could be identified easily by just looking at the 

downstream pressure profile of sensors due to the leak. However, in many practical 

conditions it becomes hard to determine the leak location by this method. In this thesis, a 

similar laboratory-based test bench has been constructed as in [18, (see Fig. 8)]. 

Furthermore, data were analyzed and taken a few steps further to make the system more 

efficient.  

            Lakshmi and Gomathi [30] used five flow sensors in their experiments to determine 

the leak. The performance of the flow sensor is impacted by dirt and fluid which is a 

significant disadvantage. As seen in [31], the authors followed the same procedure as [30] 

but used humidity, temperature, pressure, and gas sensors to determine leak location. The 

leak detection system becomes more efficient using more types of sensors. However, more 

types of sensors prompt more power consumption at the sensor node. In this thesis, we 

used only pressure sensors that reduced power consumption at a sensor node while 

maintaining acceptable accuracy to detect the leak, its location, and size.    

 

2.3 Data Acquisition System Design 
 
            Wireless tools are usually used in locations that are hard to access due to severe 

conditions such as high temperature, pressure, humidity, pH, etc. Operators can 

continuously monitor processes using remote sensors. Moreover, several different 

locations can be observed from one station using a wireless sensor network. One of the 

biggest challenges, when using WSN, is to accumulate data from different sensor nodes 

[35].  
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           So far, plenty of research has been done on the data acquisition systems using a 

wireless sensor network. As seen in [36], the authors have developed their own Zigbee 

(XBee) module to transfer data wirelessly. They claimed that the wireless system in the 

ZigBee network has very high reliability and battery lifetime of 10 years. They used two 

Zigbee routers to send data and one Zigbee coordinator to receive it. They calculated the 

delay time for each of the routers with 1 & 3 hop count as shown in Figure 7. The delay 

time is caused by the processing time needed in the ZigBee stack. This analysis was very 

crucial because it gave a vital piece of information about data transfer, hence, considered 

in this thesis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Delay time test for ZigBee router [36] 

 
            The connectivity between wireless sensor network standards is also studied by 

Lakshmi and Gomathi [30]. They explained Zigbee topologies such as star, cluster, and 
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mesh. In this thesis, all the topologies have been studied and star topology has been selected 

as the right fit for this thesis. 

            In the home environment or a small irrigation system, installation of various sensors 

that are wirelessly connected has been studied over the past decade. For this type of 

wireless sensor networks, [37] showed, the ZigBee standard can be a good choice. As seen 

in [38], the authors explained the importance of using Zigbee for data communication. 

They also compared the data rate between the two operating frequency bands of Zigbee. 

Dang and Cheng [39] designed a wireless sensor network in the monitoring system based 

on Zigbee. They explained how Zigbee network topologies work in a communication 

system. These are all critical analysis considered for this thesis.  

 

2.4 Data Classification Technique Selection 
 
            The water pressure profile of sensors can vary at different times of the day or night 

depending on pressure level and leak sizes that make the whole leak detection method 

complicated. Computational pattern recognition techniques such as Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) are especially useful for this type 

of problem.  

            To our best knowledge, one of the most relevant works has been done by [40]. They 

used Support Vector Machine (SVM) to pinpoint leak location and determine leak size. 

The maximum accuracy obtained by them was 74.4% and 57.25% while using 10 and 40 

sensor nodes respectively.  

            As seen in [41], they extended the work of [40] but used differential pressure 

sensors instead of gauge pressure sensors to get higher accuracy. They used ANN alongside 
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SVM and then compared these two methodologies. They showed ANN is better in the 

presence of minimal noise where SVM is less sensitive and more stable to noise increment. 

This analysis helped us to understand which technique performs better in what condition.  

            The work in [42] used the SVM classification technique to analyze pressure and 

flow data at different locations on the distributed network. They claimed the maximum 

efficiency in detecting a leak is about 90% using ten nodes only. 

            In all the references mentioned in this section, sensor data were obtained by 

simulating the water distribution network using the EPANET tool. EPANET is used to 

model water distribution systems. The tool is used to simulate the water quality behavior 

within pressurized pipe networks, which consist of pipe types, junctions, pumps, etc. [43].  

However, in our experiment, we have developed our test bench system to predict leak and 

its size under real-world conditions for a given network. Although a vast number of datasets 

were not possible to obtain from our test bench system, collected data were enough to show 

acceptable accuracy to determine leak location and size. 
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3. PROPOSED SYSTEM 
 
 
 
            In this thesis, three mathematical tools were utilized to accomplish water leak 

location identification and leak size prediction. The first one is exponential curve fitting 

using least square regression, a novel approach to pinpoint the leak location. Typically, 

data from two sensors separated by a correct distance is enough to pinpoint leak location 

using this method. The second tool is the Support Vector Machine (SVM) that has been 

widely used by researchers to classify data in different categories. In this thesis, SVM is 

used to predict leak sizes. The third tool is another classifier called Multi-layer Perceptron 

(MLP) and is used to predict leak sizes as well. MLP is a remarkable tool to extract output 

from noisy and complicated data. 

            This chapter has been divided into four parts. In the first part, the test-bench system 

is introduced, followed by the pressure sensor characteristics used in this thesis. In the 

second part, the data acquisition system is explained, followed by the features of Arduino 

and ZigBee. Next, data processing methodology is described in the third part supported by 

the theory of exponential curve fitting and feature scaling.  The fourth part describes the 

functions of SVM and MLP classifier. 

 

3.1 Pipeline Model 
 
            A test bench system is a system used to justify the soundness of a model or design. 

A laboratory-based test bench system has been designed and developed to solve the leak 

detection problem and make the model effective and efficient. The system was comprised 

of PVC pipes, three leaks, six pressure sensors, one water tank, and one water pump. PVC 
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pipes with three different diameters: 0.75-inch, 1-inch, and 1.5-inch were used for the 

experiment. The test bench system is illustrated in Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Laboratory-based test bench system. 

 
The pump stand was placed at the inlet end of the pipeline system. The pump stand 

was tall enough to provide the pressure required at the outlet. Also, pump stands size was 

more significant than the diameters of the pipeline, to dissipate a high-velocity stream and 

release entrapped air before water enters the pipeline [10]. PVC pipes were used because 

they are lightweight, flexible, longer in length, versatile, flame resistant, and inexpensive. 

A conventional water tank was used to release and collect water. 
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            3.1.1 Pressure Sensor  
 
            A pressure sensor is an instrument that senses the pressure of the gas, water, or oil 

and transforms it into an electric signal where the amount depends on the applied force. 

Pressure sensors control and monitor thousands of everyday applications. The pressure 

sensor can be different types such as an absolute pressure sensor, gauge pressure sensor, or 

differential pressure sensor depending on whether the pressure is relative to vacuum, 

atmosphere, or other measuring elements. The absolute pressure sensor detects the pressure 

corresponding to a perfect vacuum. On the other hand, the gauge pressure sensor 

determines values relative to atmospheric pressure. One side of this sensor is usually 

exposed to ambient conditions. A differential pressure sensor measures the difference 

between two pressures, one connected to each side of the sensor. It calculates pressure 

drops across air filters, fluid levels or flow rates. The differential pressure sensor can be 

challenging to use due to the existence of two different pressures or more on a single 

mechanical structure [44]. 

            In this thesis, gauge pressure sensors, specializing in the water and oil leak detection 

technology, were used as shown in Figure 9. This analog Pressure Sensor is a 5V sensor 

that can measure pressures up to 200 pounds per square inch (PSI). These sensors are small, 

lightweight, waterproof and thus easy to handle. These sensors have built-in carbon steel 

alloy and can easily be installed and require no special handling. Most importantly, these 

sensors are inexpensive and that makes the whole leak detection system inexpensive yet 

efficient. These are analog pressure sensors are identified as model SKU237545 in the 

market.  
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Figure 9. Gauge pressure sensor 

 
            There are some disadvantages of an analog pressure sensor. The efficiency of the 

pressure sensor decreases with time; thus, accuracy reduces. Although the accuracy of an 

analog pressure sensor is not as precise as a digital sensor, it provides excellent value for 

the cost. Table 1 presents the specification of the pressure sensor. It indicates the pressure 

sensor will work at a very high temperature and pressure, therefore, the sensor is suitable 

for installing both in the underground and aboveground.  Also, measuring and temperature 

range error of these sensors are very less which is very important for leak detection and 

localization.  
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Table 1. Specification of the pressure sensor 

Working Voltage DC 5.0V 

Output Voltage DC 0.5-4.5 V 

Sensor material Carbon steel alloy 

Working Current ≤10 mA 

Working Pressure Range 0-1.2 MPa 

The Biggest Pressure 2.4 MPa 

Destroy Pressure 3.0 MPa 

Working TEMP. Range 0-85℃ 

Storage Temperature Range 0-100℃ 

Measuring Error ±1.5 %FSO 

Temperature Range Error: ±3.5 %FSO 

Response Time ≤2.0 ms 

Life Cycle 500,000 pcs 

 

 

            3.1.2 Leak Simulation 
 
            Hose bibs are threaded faucets that can be found on the outside of a home where 

the hose is fitted. The shutoff valve attached to them allows easy access to water. Hose bibs 

are commonly connected to PVC, copper, or galvanized piping. In this paper, leak 

simulation was created by using a hose bibb as illustrated in Figure 10. The advantages of 

using a hose bibb are: (i) The size of the leak can be controlled manually using shutoff 

valve, and (ii) The pressure drop generated by the leak is sharp enough to be detected by 

the pressure sensors. The hose bibb is easy to use and helps simulate various predefined 

leak sizes. The diameter of the shutoff valve represents different leak sizes. The maximum 



 

23 

diameter of the shutoff valve used in the system is 0.5-inch. As diameter can be varied, the 

system has been tested with five different leak sizes: 0.5-inch, 0.4-inch, 0.3-inch, 0.2-inch, 

and 0.1-inch. 

 

 

 

 

 

 

 

 

 

Figure 10. Hose Bibs 

 

            The hose bibb has a total number of 13 patches. In another word, if we rotate the 

handle 13 revolutions in the clockwise direction, the valve will open with the maximum 

diameter of 0.5-inch. The total number of revolutions are divided into five categories to 

determine leak diameter. 13, 10, 8, 5, and 2 revolutions to represent 0.5-inch, 0.4-inch, 0.3-

inch, 0.2-inch, and 0.1-inch leak diameter respectively.  

 

3.2 Data Acquisition 
 
            Data acquisition is the method of transforming data from one state to another state 

that is acceptable to the computing device for advance processing.  The system consists of 
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sensors, hardware, and a computing device with programmable software as shown in 

Figure 11. Hardware collects data such as pressure, temperature, or sound from sensors 

and converts the data into suitable formats that can be processed by a computer. 

 

 

 

 

 

 

Figure 11. Data acquisition system 

 

            In this paper, Arduino and ZigBee (XBee) were used to convert raw pressure data 

from the sensor and to transmit it wirelessly for further processing. This whole scenario is 

illustrated in Figure 12. Pressure sensors were connected to Arduino by wires. The wireless 

communication was established between two ZigBee modules. The Zigbee receiver was 

connected to PC by cable. The details about Arduino and ZigBee are discussed in the next 

two sections.  

 

 

 

 

Figure 12. Data acquisition using Arduino and Zigbee 
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            3.2.1 Arduino 
 
            Arduino is an open-source platform utilized for constructing electronics research 

projects. Arduino comprises both a physical programmable circuit board which is often 

referred to as a microcontroller and a piece of software that is called the Integrated 

Development Environment (IDE) which runs on a computer and is used to write and upload 

computer code to the board. Arduino is inexpensive, easy to use, and straightforward to 

program. Over the years Arduino has been the intelligence of thousands of projects starting 

from everyday objects to complex scientific instruments. Arduino builds several different 

boards such as Uno, Due, Mega, and Leonardo with distinct capabilities [45]. In this thesis, 

Arduino Mega-2560, shown in Figure 13, is used to collect and convert data into a usable 

format. Arduino Mega-2560 has 16 analog input pins. Therefore, 16 analog sensors can be 

connected all together. It reduces the number of sensor nodes in the system, thus, reduces 

the complexity of the system. 

 

  

 

 

 

 

 

 

 

Figure 13. Arduino Mega-2560 [46] 
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  The full specification of the Arduino Mega-2560 board is given in Table 2. 

Table 2. Specification of Arduino Mega-2560 

Microcontroller ATmega2560 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 54 (of which 15 provide PWM output) 

Analog Input Pins 16 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 256 KB of which 8 KB used by bootloader 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 

LED_BUILTIN 13 

Length 101.52 mm 

Width 53.3 mm 

Weight 37 g 

 

 

            3.2.2 ZigBee (XBee) 
 
            ZigBee is based on the 802.11 standards as outlined by the IEEE (the Institute of 

Electrical and Electronics Engineers). It is used to create small personal area networks. It 

is low cost and requires less power. Zigbee is simpler and less expensive than Bluetooth 

and Wi-Fi. Zigbee can transmit up to a distance of 10-100 meters with RF data rate of 250 

kbps. ZigBee can be configured in either AT command mode or API mode. Zigbee devices 

are configured using XCTU software. To establish a wireless connection between two 

http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
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Zigbee devices, they need to be operated in AT command mode. One ZigBee is set as 

coordinator, and other is set as a router. The router is connected to the receiver side. On the 

other hand, the coordinator is attached at the transmitter side [47]. ZigBee has three 

network topologies: Cluster, Star, and Mesh [48] are shown in Figure 14. 

 

            In this thesis, star network topology has been developed for this system where two 

routers were wirelessly connected with a single coordinator to cover more pipeline area. 

Three sensors were attached to one ZigBee router, and another three sensors were attached 

to another ZigBee router. One ZigBee coordinator was used to collect data from two 

ZigBee routers. The arrangement was made for the demonstration on how researchers can 

monitor a large pipeline using a wireless sensor network.   

Figure 14. ZigBee Cluster, Star and Mesh Network 
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             ZigBee devices communicate with each other over the air, sending and receiving 

wireless messages. The devices only transfer those wireless messages; they cannot manage 

the received or sent data. However, they can communicate with intelligent devices via the 

serial interface. ZigBee devices transmit data coming from the serial input over the air, and 

they send anything received wirelessly to the serial output. Whether for communication 

purposes or for merely configuring the device, a combination of both processes makes 

ZigBee communication possible. In this way, intelligent devices such as microcontrollers 

or PCs can control what the ZigBee device sends and manage incoming wireless messages 

[49]. For wireless communication, the antenna plays a vital role. Several options can be 

selected for ZigBee communication such as a chip, wire, U. FL, trace, and RPSMA 

antenna. The chip antenna is the universal option for the ZigBee module, but it has the 

worst performance of all the possibilities regarding coverage and sensitivity. Wire antenna 

& U. FL antenna is very tiny but have more extended transmission range advantage over 

chip antenna. RPSMA is big and suitable for communication where the object is in a box 

and the antenna is outside the box [50].  

            Most of the ZigBee modules operate at 2.4GHz, but there are a few that run at 

900MHz. 900MHz can cover more area with a high gain antenna because the lower the 

frequency, the higher penetration the signal has. In this thesis, XBEE-PRO 900HP module, 

as shown in Figure 15, was used. XBEE-PRO 900HP supports point-to-multipoint 

configuration. Also, it has the capability of supporting line-of-sight range up to 28 miles 

with the high gain antenna.  In this thesis, the wire antenna integrated with Zigbee is used 

for wireless communication because it’s very tiny and can penetrate earth surface. 
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Figure 15. ZigBee module with a wire antenna [50] 

             

            The specification of XBEE-PRO 900HP is given in Table 3. As XBEE-PRO 900HP 

provides the best transmission range for communication and better receiver sensitivity, 

thus, it is considered for this thesis. 

Table 3. Specification of ZigBee-Pro 900HP 

Standard ZigBee-Pro 900HP 

RF data rate 10 Kbps to 200kbps 

Indoor range 
10Kbps reaches up to 600m 

200Kbps reaches up to 305m 

Outdoor range 
10Kbps reaches up to 15.5km 

200Kbps reaches up to 6.5km 

Antenna options Wire, U. FL, or RPSMSA 

Receiver sensitivity 
-101dBm at 200Kbps 

-110dBm at 10Kbps 
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3.3 Data Processing  
 
            Data processing can be defined as a process of converting data into usable and 

desired form. This process is achieved using a predefined order of operations either 

manually or automatically. In most of the cases, data processing is done by using computers 

and thus done automatically. The difficulty of this process depends on the scale at which 

data collection is completed and the complication of the results which need to be acquired. 

The processing time depends on the operations which need to be done on the collected data 

and on the characteristic of the output file required to be obtained [51]. In this paper, the 

exponential curve fit model was used to process the data collected from pressure sensors. 

 

            3.3.1 Exponential Curve Fitting 
 
            The trend in the dataset can be captured using curve fitting by allocating a single 

function across the entire range. A process of approximating the pattern of the result is 

known as curve fitting. Exponential curve fitting is used when the rate of change of a 

quantity is proportional to the initial amount of the quantity. In this thesis, raw data has 

been collected from sensors as shown in Figure 16. It is clear from the picture, that the 

pressure value generated by the sensors, drop immediately after the development of the 

leak. Due to a decreasing trend of pressure with respect of time, an exponential curve fitting 

has been used to fit the pressure vs. time data. This curve can be expressed as (3):  

𝑓𝑓(𝑡𝑡) = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏 (3) 

Here, 𝑏𝑏 is the decay constant where 𝑏𝑏 < 0, and 𝑡𝑡 denotes time.  
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            Figure 16. Raw data from pressure sensors 

             

            There are two advantages of using this method: (i) Discrete data points are 

represented as a continuous function and (ii) The magnitude of the decay constant ‘b’ in 

f(t) gives the measurement on the rate of pressure decrease in the sensor. The constants ‘a’ 

and ‘b’ in f(t) can be estimated and applied to the data set of each pressure sensor using a 

least squares approach. 

            The hypothesis is that the pressure drop should be most significant in the sensor 

that is closest to the leak. This pressure drop should reflect in a larger magnitude of the 

decay constant ‘b’ in the curve fit analysis.  By comparing the decay constant ‘b’ for all six 

sensors, the leak location can be predicted.  

 

 

 

Leak 

Leak 
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              3.3.1.1 Least Square Regression  
 
                  In the case of simple fitting of data to a straight line, data points need to be 

plotted on a graph, then a straight edge is placed on the figure and moved it until an 

optimum straight line is formed. The best line does not necessarily need to pass through 

any of the data points, but it is close to all of them. The general form of a straight line can 

express by Equation 4. 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 (4) 

                 When a line drawn on a graph contains lots of data points (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), it creates an 

estimated value for every data point. So, for every point of the dataset, an actual and 

estimated value can be found. The difference between actual and estimated value is known 

as error and is shown in Figure 17.  

 

 

 

 

 

 

 

 

 

 
Figure 17. Least square regression 

 

 

 



 

33 

                 The error can be calculated by measuring the distance between actual datapoint 

and estimated datapoint. The value of error can be positive or negative depending on the 

position of the actual data point to estimated datapoint. If the actual data point is below the 

predicted data point, the value of the error is negative. On the other hand, if the real data 

point is above the predicted data point, the value error is positive. Least square method 

sums the square of the individual error at every data point and finds the best fit to minimize 

error. The total error from the four data points in Figure 17 can be calculated by (5). 

𝑒𝑒𝑒𝑒𝑒𝑒 = ((𝑦𝑦1 − 𝑓𝑓(𝑥𝑥1))2 + ((𝑦𝑦2 − 𝑓𝑓(𝑥𝑥2))2 + ((𝑦𝑦3 − 𝑓𝑓(𝑥𝑥3))2 + ((𝑦𝑦4 − 𝑓𝑓(𝑥𝑥4))2 (5) 

The overall error can be calculated by (6): 

𝑒𝑒𝑒𝑒𝑒𝑒 = �((𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2
𝑛𝑛

𝑖𝑖=1

 (6) 

Here, 𝑛𝑛 is the total number of datasets. For the linear fit, (6) can be written as (7): 

𝑒𝑒𝑒𝑒𝑒𝑒 = �((𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏))2
𝑛𝑛

𝑖𝑖=1

 (7) 

In this thesis, an exponential fit has used to analyze datasets. For exponential curve fit, (6) 

can be expressed as (8): 

𝑒𝑒𝑒𝑒𝑒𝑒 = �((𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏))2
𝑛𝑛

𝑖𝑖=1

 (8) 

Using the least squares regression method, the coefficients 𝑎𝑎 and 𝑏𝑏 can be calculated. These 

coefficients define the exponential curve which most closely passes through the given data 
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points (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) for 𝑖𝑖 = 1,2,3,4, … … …𝑛𝑛. 

             3.3.2 Feature Scaling 
 
            Although leak location can be determined by using exponential curve fitting, leak 

size cannot be predicted by this method. Machine learning algorithms need to be applied 

to overcome the problem. However, before that, data is required to be scaled or normalized. 

Feature scaling commonly known as normalization is the process of reducing and even 

eliminating data redundancy and increasing the coherence of individual types. In this 

thesis, the raw data acquired from our test bench system varies widely. As the data varies 

widely, objective functions will not perform properly without normalization or scaling 

when it comes to machine learning. There are several types of feature sizing methods: min-

max normalization, z-score normalization, and decimal scaling, etc. In this thesis, all these 

normalization techniques were applied and then compared to see which technique yields a 

better result. 

 

              3.3.2.1 Min-max normalization 
 
                  In the min-max normalization approach, the data is scaled to a range typically 

between 0 to 1. The reason behind having this limited range is to obtain smaller standard 

deviations, which can subdue the effect of outliers [52]. The min-max scaling can be 

written as follows: 

𝑍𝑍 =
𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
 (9) 
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Where 𝑍𝑍 is the min-max normalized data, 𝑋𝑋 represents the original data, 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is the 

minimum value of 𝑋𝑋, and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 indicates the maximum value of 𝑋𝑋.  

              3.3.2.2 Z-score normalization 
 
                  Z-score normalization is the most commonly used normalization techniques 

used for feature scaling. It converts all the data to a standard scale with an average of zero 

and standard deviation of one [53]. The z score normalizing formula can be written as (10):  

𝑍𝑍 =  
𝑥𝑥 − µ
𝑠𝑠

 (10) 

Here, 𝑍𝑍 is the Z-score normalized data, 𝑥𝑥 is the original data, µ denotes mean and s 

represents the standard deviation. 

 

              3.3.2.3 Decimal scaling 
 
                  In this method, the decimal point in the data is moved using multiplication or 

division by a power of 10.  The decimal scaling can be quantified as follows: 

𝑍𝑍 =  𝑋𝑋𝑖𝑖 ∗ 10𝑗𝑗  (11) 

𝑍𝑍 =  
𝑋𝑋𝑖𝑖

10𝑗𝑗
 (12) 

Here, 𝑍𝑍 is the normalized data, 𝑥𝑥𝑖𝑖 represents the original data, and 𝑗𝑗 indicates the power of 

10 where 𝑗𝑗 > 0. 
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3.4 Data Classification Algorithm  
 
            Data classification can be defined as a process of organizing unstructured data into 

groups for its most methodological use. The purpose of data classification is to decide about 

the new category of data based on the knowledge received from the data analysis method. 

Classification is generally a supervised learning approach when it comes to machine 

learning or statistics. In this method, the machine learns from the input dataset and then 

utilizes this knowledge to categorize new observation. Examples of some classification 

problems are voice recognition, handwriting recognition, biometric identification, any 

document classification, etc. There are several types of classification algorithms in 

Machine Learning such as Linear Classifiers, Support Vector Machines (SVM), Decision 

Trees, Boosted Trees, Random Forest, Artificial Neural Networks (ANN), and Nearest 

Neighbor [54].  

            In this paper, leak and its location can be detected precisely using the exponential 

curve fitting method. However, leak size cannot be predicted using this method. Data 

classification can be a perfect solution to this problem. For this process, Support Vector 

Machine (SVM) & Multi-layer Perceptron (MLP) classifiers commonly known as 

Artificial Neural Network (ANN) have been applied that use a supervised learning 

algorithm to determine leak size. The primary goal is to develop a classifying model that 

can provide high efficiency in detecting leak sizes. 

 

            3.4.1 Multi-layer Perceptron (MLP) classifiers 
 
            Multi-layer Perceptron (MLP) classifier is commonly referred to as Artificial 

Neural Network (ANN). As the 'neural' part of their name suggests, they are brain-inspired 
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methodologies which are intended to reproduce the way humans learn. They are 

outstanding tools for finding patterns which are way too complicated for a human to extract 

and instruct the machine to recognize [55]. Because of the faster computation speed and 

more efficient algorithms, ANN has been widely used in many fields, not only in 

engineering, science, and mathematics, but in banking, entertainment, and even literature 

[56]. 

 

              3.4.1.1 Neuron Structure 
 
                  The simplest neural network consists of one neuron which is called perceptron. 

The structure of a neuron is illustrated in Figure 18. A single neuron usually consists of 

five parts such as input (𝑝𝑝), weight (𝑤𝑤), bias (𝑏𝑏), the transfer function (𝑓𝑓), and output (𝑎𝑎1). 

The total number of features in the input data set represents the number of nodes in the 

input layer. Each element of input dataset is multiplied by a weight. Next, the results are 

summed together with a bias and passed through a transfer function. From Figure 18, input 

vector 𝑝𝑝 is multiplied by the weight matrix 𝑤𝑤 and then forwarded to the adder. Bias 𝑏𝑏 is 

another element that is passed to the adder. The output of the adder is called net output is 

and then fed to the transfer function 𝑓𝑓 that results in an output.  

 

 

 

 

 

Figure 18. Simple neural network 
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                   The dimension of the input vector 𝑝𝑝 is R × 1, where R is the number of features 

of input data. It is determined by the external statement of the problem. The dimension of 

the weight matrix w is S × R where S is the number of interested outputs. The dimension 

of the bias vector b and transfer function f is S × 1. Finally, the dimension of the output 𝑎𝑎 

is S × 1. The output can be written as follows (13): 

𝑎𝑎 = 𝑓𝑓(𝑤𝑤𝑤𝑤 + 𝑏𝑏) (13) 

 

              3.4.1.2 Layers and Network 
 
                  The typical structure of a three-layer neural network is shown in Figure 19. It 

can be noted that the superscripts do not mean the power but indicate the different layers. 

 

 

 

 

Figure 19. 3-layer neural network 

 
 
The output of the first layer is 𝑎𝑎1, which can be obtained in the following equation: 

𝑎𝑎1 = 𝑓𝑓1(𝑤𝑤1𝑝𝑝 + 𝑏𝑏1) (14) 

Likewise, 𝑎𝑎2 and 𝑎𝑎3 can be calculated by (15) and (16) respectively: 

𝑎𝑎2 = 𝑓𝑓2(𝑤𝑤2𝑝𝑝 + 𝑏𝑏2)  (15) 
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𝑎𝑎3 = 𝑓𝑓3(𝑤𝑤3𝑝𝑝 + 𝑏𝑏3) (16) 

By substituting (14) and (15) into equation 16, the general output equation of the three-

layer network can be written as follows: 

𝑎𝑎3 = 𝑓𝑓3(𝑤𝑤3𝑓𝑓2(𝑤𝑤2𝑓𝑓1(𝑤𝑤1𝑝𝑝 + 𝑏𝑏1) + 𝑏𝑏2) + 𝑏𝑏3)  (17) 

Multilayer networks are more robust than single-layer systems because the users get more 

control over varying the functions with multilayer networks. However, it is not possible in 

the single-layer neuron networks [57]. 

 

            3.4.2 Support Vector Machine (SVM)  
 
            Support Vector Machine (SVM) is a set of supervised learning algorithms and is 

widely used for both regression and classification problems. However, in most cases, it is 

used in the classification problem. SVM classifier is also known as a discriminative 

classifier because it separates data points using a hyperplane commonly known as decision 

boundary. SVM can have several decision boundaries that accurately divide the data points. 

Unlike other classification algorithms, SVM selects the decision boundary which has 

maximal margin from the nearest points of all the classes. SVM doesn't merely find a 

decision boundary; it sees the most optimal decision boundary. The most optimal decision 

boundary is the one which has maximum margin from the nearest points of all the classes. 

These points are called support vectors as shown in Figure 20. In the case of support vector 

machine, the optimal decision boundary is often referred to as the maximum margin 

classifier or hyperplane. 
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Figure 20. Simple SVM classifier 

                  

              Support vectors identification is one of the biggest challenges which involves a 

complex mathematical algorithm. The algorithm computes the best margin between the 

optimal decision boundary and support vectors, thus maximizing the margin. Finding the 

decision boundary for linearly separable data is very easy and can be done using simple 

SVM algorithm. Nevertheless, when it comes to non-linearly separable data, a simple 

algorithm cannot be used because a single straight line cannot separate a non-linear dataset 

precisely. In this case, a remodeled version of SVM is used, commonly referred to as kernel 

SVM or kernel trick of SVM [58]. There are several kernel methods available: linear 

kernel, polynomial kernel, gaussian kernel, exponential kernel, laplacian kernel, sigmoid 

kernel, circular kernel, etc. In this thesis, the linear kernel, polynomial kernel, gaussian 

kernel, and sigmoid kernel were used. 
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              3.4.2.1 Linear Kernel 
 
                  The Linear kernel is the most straightforward kernel function. It works well 

when there are many features because mapping the data to a higher dimensional space does 

not always improve the performance. Also, the linear kernel is faster than with another 

kernel because it has less parameter to optimize. The linear kernel function is given below: 

(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑇𝑇 ∗ 𝑦𝑦 + 𝑐𝑐   (18) 

                   Here, 𝑘𝑘(𝑥𝑥,𝑦𝑦) is a linear kernel where < 𝑥𝑥,𝑦𝑦 > is the dataset, 𝑐𝑐 is the 

regularization parameter and the only parameter that need to be optimized for SVM linear 

trick. The kernel measures the distance between new data and the support vectors [59]. 

 

              3.4.2.2 Polynomial Kernel 
 
                  The polynomial kernel is an example of the non-stationary kernel. When the 

training data is normalized, polynomial kernel works very well. The polynomial kernel 

function is given below: 

𝑘𝑘(𝑥𝑥,𝑦𝑦) = (𝛼𝛼𝑥𝑥𝑇𝑇 ∗ 𝑦𝑦 + 𝑐𝑐)𝑑𝑑   (19) 

                  Here, the adjustable parameters are the slope alpha (𝛼𝛼), the constant term 𝑐𝑐, and 

the polynomial degree. The classification algorithm always specifies the polynomial 

degree. Polynomial kernel behaves like a linear kernel when its value equal to one. 
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              3.4.2.3 Gaussian Kernel 
 
                  The gaussian function is also known as a radial basis function, is a popular 

kernel tricks used in machine learning especially. The function can be expressed as follows: 

𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑒𝑒(−
�|𝑥𝑥−𝑦𝑦|�
2𝜎𝜎2

2

) (20) 

Also, the function can be written as follows: 

𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑒𝑒(−𝛾𝛾�|𝑥𝑥−𝑦𝑦|�2) (21) 

                 The adjustable parameter sigma (σ) or gamma (γ) should be carefully optimized 

as it plays a crucial role in the execution of the kernel. When the data is overestimated, the 

higher-dimensional projection loses its non-linear power, and the exponential function 

behaves like a linear function. On the contrary, if the data is underestimated, the feature 

lacks systematization, and the decision boundary becomes more and more sensitive to 

noise. 

 

              3.4.2.4 Hyperbolic Tangent (Sigmoid) Kernel 
 
                  The hyperbolic tangent kernel is often referred to as the sigmoid kernel. It is 

also known as the multilayer perception kernel as it is derived from the neural network. 

The function can be expressed as follows: 

𝑘𝑘(𝑥𝑥,𝑦𝑦) = tanh (𝛼𝛼𝑥𝑥𝑇𝑇 ∗ 𝑦𝑦 + 𝑐𝑐)   (22) 



 

43 

                 Two adjustable parameters of the sigmoid kernel are: (1) the slope alpha (𝛼𝛼) and 

(2) the intercept constant 𝑐𝑐. A common value for 𝛼𝛼 can be expressed as 1/𝑁𝑁, where 𝑁𝑁 is 

the dimension of the data. As this kernel originally comes from neural network theory, it 

is very popular for support vector machine as well [60]. 

 

              3.4.2.5 Confusion Matrix 
 
                  A confusion matrix is a method to evaluate the performance of a classification 

algorithm on a set of test data for which the actual values are known. It is a summary of 

the prediction results of a classifier. The number of correct and incorrect predictions of a 

classifier are recapitulated with count values and broken down by each class [61]. Table 4 

shows a simple structure of a confusion matrix. 

Table 4. Confusion matrix 

Class Class 1 Predicted Class 2 Predicted 

Class 1 Actual True Positive 
(TP) 

False Negative 
(FN) 

Class 2 Actual False Positive 
(FP) 

True Negative 
(TN) 

 

                 This example has two classes, i.e., class 1 and class 2. Let us consider, class 1 

denotes some activity positive and class 2 indicates the opposite, i.e., negative. The 

definition of the terms is given below: 

True Positive (TP) - Observation is class 1 and is predicted to be class 1. 

False Negative (FN) - Observation is class 1 but is predicted class 2. 

True Negative (TN) - Observation is class 2 and is predicted is class 2. 

False Positive (FP) - Observation is class 2 but is predicted class 1. 
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Classification Accuracy is given by the following relation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

   (23) 

                   However, the drawback with accuracy is that it assumes equal costs for both 

kinds of errors. As a result, very high efficiency can be better, moderate, or poor depending 

on the particular problem. This problem can be solved by using recall. Recall can be 

explained as the ratio of the total number of correctly classified positive examples divided 

by the total number of positive samples. The high value of recall indicates the class is 

accurately predicted. The following relation expresses the recall: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (24) 

In this thesis, the recall has been calculated for the SVM kernel to evaluate the classification 

performance. 
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4. EXPERIMENTAL ANALYSIS 
 
 

A laboratory-based test bench system has been designed and developed to detect 

the leak, predict leak size and make the model effective and efficient. This system consists 

of U-shaped pipelines made of PVC pipes and is shown in Figure 21. Water was moved 

around in the system by a common water pump capable of providing up to 15 PSI of 

pressure. Three leaks were created in the pipe sections using hose bibb in three different 

locations. The first leak was created between sensor 1 & 2, the second leak was between 

sensor 3 & 4, and the third leak was between sensor 5 & 6. Sensor 1 & 2 are 180cm apart, 

sensor 3 & 4 are 100cm apart, sensor 5 & 6 are 180cm apart, sensor 2 & 5 are 500cm apart 

and Sensor 1 & 6 are 860cm apart. Leak-1 is located halfway between sensor 1 & 2, leak-

2 is located halfway between sensor 3 & 4, and leak-3 is located halfway between sensor 

5 & 6. The overall system is shown in Figure 21. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Overall system 
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            A large number of datasets have been collected to verify the system. We used PVC 

pipes with three different diameters: 0.75-inch, 1-inch, and 1.5-inch; three leak locations 

and five different leak sizes: 0.5-inch, 0.4-inch, 0.3-inch, 0.2-inch, and 0.1-inch to collect 

data with different conditions, as illustrated in Figure 22. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 22. Data collection conditions 

 

            Figure 22 indicates that, for every pipeline, data was collected from three different 

locations by creating three leaks with five types of leak diameter variation.   A total of 1180 

datasets were obtained, and 900 leak datasets were separated from non-leak datasets. Next, 

the 900 leak data sets were analyzed further to detect leak location. The whole leak location 

identification procedure is given in Figure 23.  
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Figure 23. Overall leak location identification methodology 

 

            The whole experimental analysis can be divided into two sections: pressure drop 

analysis and exponential curve fit study. 

 

4.1 Pressure Drop Analysis 

            4.1.1 Leak between sensor 1 & 2 with leak size of 0.5-inch 
 
            The following Figure 24 is drawn to explain pressure drop theory. Here, we had 

only two sensors 860cm apart. The other four sensors were not considered this time to 

explain the idea of calculating pressure drop. A leak in size of 0.5-inch was created using 

hose bibb near sensor-1. Sensor-1 was located before the leak, and Sensor-2 was situated 

after the leak. The hole was 90cm away from sensor-1 and 750cm from sensor-2. 
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Figure 24. A system with one leak with size 0.5-inch and 2 sensors 

 

            Data from the pressure sensors were recorded using Arduino at 500ms intervals and 

transmitted through Zigbee.  Raw data from the sensors is illustrated in Figure 25. 

 

 

 

 

 

 

 

 

 

 

 

      Figure 25. Raw data of two sensors with a 0.5-inch leak between sensor 1 & 2 
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            This process can be divided into four main phases: the pumps start, stabilization, 

leak, and pump-off are visible from the output of the pressure sensors. Figure 25 includes 

the pressure before the pump was switched on, the increase in force when the water pump 

was switched on, the reduction in pressure value due to the development of the leak and 

finally the drop-in pressure due to the switching off the pump shortly after the occurrence 

of the hole.   

            As the leak was created close to sensor-1, it should show more downstream pressure 

profile than sensor-2. However, based on Figure 25, it is difficult to determine the exact 

position of the leak because both pressure sensors appear to respond similarly to the leak. 

A close-range pressure profile of these two sensors is shown in Figure 26. 

 

 

 

 

 

 

 

 

 

     Figure 26. Close-range pressure profile of 2 sensors with 0.5-inch leak 

 

             It can be noticed from Figure 26 that the pressure profile of sensors 1 and 2 are 

somewhat different. The pressure profile of sensor 1 drops more sharply than sensor 2. 

This indication can be used to determine the approximate location of the leak, i.e., it is 
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somewhere near sensor 1 in this case. However, it is also challenging to pinpoint leak 

location by looking at downstream pressure drop especially when the leak size is small. To 

overcome this problem pressure drop has been calculated to pinpoint leak location is shown 

in Figure 27. The average pressure value of the ‘stabilization’ part (Figure 25, p. 48) of 

every sensor was calculated and subtracted from every pressure datapoint of an individual 

pressure sensor to determine pressure drop. According to the hypothesis, sensor 1 should 

exhibit more pressure drop than sensor 2 as it is close to the leak.   

 

 

 

 

 

 

 

 

 

 

Figure 27. Pressure drop of 2 sensors with a 0.5-inch leak between sensor 1 & 2 

 

            It is easily understandable from Figure 27 that sensor 1 exhibits more pressure drop 

than sensor 2. So, we can assume that the leak is located somewhere near sensor 1. This 

idea can be explained more precisely when more sensors are implemented. Figure 21 

(Chapter 4, p. 45) shows six pressure sensors attached to the PVC pipe sections. Leak 2 

and leak 3 were disregarded in this case which means the value of these two leaks system 
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was closed. Sensors 1 was located before the hole with a diameter of 0.5-inch, and sensors 

2, 3, 4, 5, & 6 were placed after the leak. Data from the pressure sensors were recorded at 

500ms interval. Raw data from the sensors  are illustrated in Figure 28.  

 

 

 

 

 

 

 

 

 

Figure 28. Raw data of six sensors with a 0.5-inch leak between sensor 1 & 2 

 
             

            Based on Figure 28, it is difficult to determine which sensors show more 

downstream profile. A close-range pattern of all pressure sensors could solve the problem 

and is shown in Figure 29. According to the hypothesis, sensor 1 and sensor 2 should 

exhibit more downstream pressure profile than other sensors because the leak is located 

between them. However, close-range profile analysis cannot provide useful insight about 

the downstream pattern of sensors. This is because the pressure value of all six sensors 

drops immediately after the leak. So, it is hard to understand the difference by looking at 

the pressure profile of all six sensors.  
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Figure 29. Close-range pressure profile of 6 sensors with 0.5-inch leak 

 

            As the close-range pressure profile analysis does not help much to identify leak 

location, pressure drop analysis can be a vital method to find leak location. Figure 30 

presents a pressure drop analysis of 6 sensors with the 0.5-inch leak between sensor 1 & 2.  

 

 

 

 

 

 

 

 

 

Figure 30. Pressure drop of 6 sensors with a 0.5-inch leak between sensor 1 & 2 
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            It is clear from Figure 30 that sensor 1 & 2 exhibits more pressure drop than sensor 

3, 4, 5, 6. So, it can be said that the leak is located between sensor 1 and 2. 

 

             4.1.2 Leak between sensor 3 & 4 with leak size of 0.5-inch 
 
            This time, the leak was created between sensors 3 & 4 as shown in Figure 21 

(Chapter 4, p. 45). Leak 1 and leak 3 were disregarded in this case meaning the valves of 

these two leaks were closed. Sensors 1, 2, & 3 were located before the hole with a diameter 

of 0.5-inch, and sensors 4, 5, 6 were located after the leak. Data from the pressure sensors 

were recorded at 500ms intervals. Raw data sensor and close-range profile analysis have 

been omitted from this section because these analyses do not help to identify leak location. 

Figure 31 shows a pressure drop of six sensors when a leak is created between sensor 3 & 

4. According to the hypothesis, sensor 3 and sensor 4 should exhibit more pressure drop 

than other sensors because the hole is located between them. 

 

 

 

 

 

 

 

 

 

Figure 31. Pressure drop of 6 sensors with a 0.5-inch leak between sensor 3 & 4 
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            It is clear from Figure 31 that sensor 3 & 4 exhibits more pressure drop than sensor 

1, 2, 5, & 6. So, it can be said that the leak is located between sensor 3 and 4. 

 

            4.1.3 Leak between sensor 5 & 6 with leak size of 0.5-inch 
 
            This section follows the same method as the previous two sections. A leak was 

created between sensors 5 & 6 to justify proposed system accuracy with different leak 

location is shown in Figure 21 (Chapter 4, p. 45). Leak-1 and leak-2 were disregarded in 

this case meaning the valves of these two leaks system were closed. Sensors 1, 2, 3, 4, & 5 

were located before the leak with a diameter of 0.5-inch, and sensor 6 was located after the 

leak. Data from the pressure sensors were recorded at 500ms intervals. According to our 

hypothesis, sensors 5 and 6 should exhibit more pressure drop than other sensors because 

the leak is located between them. Figure 32 depicts pressure drop analysis when a hole is 

created between sensors 5 & 6. 

 

 

 

 

 

 

 

 

 

Figure 32. Pressure drop of 6 sensors with a 0.5-inch leak between sensor 5 & 6. 
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            It is clear from Figure 32 that sensors 5 & 6 exhibit more pressure drop than sensors 

1, 2, 3, 4. So, it can be said that the leak is located between sensor 5 and 6. 

            So, leak location can be identified by using simple pressure drop analysis. However, 

when the leak size is small, the pressure drops are significantly less for every sensor. 

Therefore, it becomes difficult to determine leak location by calculating pressure drop for 

each sensor. This phenomenon is explained in the next section. 

 

            4.1.4 Other sizes of a leak between sensors 1 and 2 
 
            Here, the leak was created between sensors 1 & 2 and the leak diameter was 

changed to 0.4-inch using hose bibb. Data from the pressure sensors were recorded at 

500ms intervals, and the pressure drop was calculated. Figure 33 exhibits a pressure drop 

analysis with 0.4-inch leak sizes while the leak was created between sensor 1 & 2. 

 

 

 

 

 

 

 

 

 

   

     Figure 33. Pressure drop of 6 sensors with a 0.4-inch leak between sensor 1 & 2. 
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            It is clear from Figure 33 that sensor 1 & 2 exhibit more pressure drop than sensors 

3, 4, 5, 6. So, it can be said that the leak is located between sensor 1 and 2. Thus, the 0.4-

inch leak can be detected by pressure drop analysis.  

           The leak size was further changed to 0.3-inch while keeping the same leak location, 

i.e., between sensor 1 & 2.  Data from the pressure sensors were recorded at 500ms 

intervals, and the pressure drop was calculated. Figure 34 exhibits a pressure drop analysis 

with 0.3-inch leak sizes while the leak was created between sensor 1 & 2. 

 

 

 

 

 

 

 

 

 

 

       Figure 34. Pressure drop of 6 sensors with 0.3-inch leak between sensor 1 & 2 

 

            It is clear from Figure 34 that sensor 1 & 2 exhibits more pressure drop than sensor 

3, 4, 5, 6. So, it can be said that the leak is located between sensor 1 and 2. Thus, the 0.3-

inch leak can be detected by pressure drop analysis.  
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           The analysis becomes more interesting with the decrease of leak size. Small leak 

produces less significant pressure drop, therefore, it is more difficult to distinguish pressure 

drops from sensors. Figure 35 exhibits a pressure drop analysis with 0.2-inch leak sizes 

while the leak was created between sensor 1 & 2. Data from the pressure sensors were 

recorded at 500ms intervals, and the pressure drop was calculated. 

 

 

 

 

 

 

 

 

 

  

Figure 35. Pressure drop of 6 sensors with a 0.2-inch leak between sensor 1 & 2 

             

            It is not entirely clear from Figure 35 that which sensors exhibit more pressure drop. 

So, the leak location is getting difficult to identify when leak size is small. Figure 36 shows 

a pressure drop with 0.1-inch leak sizes while the leak was created between sensor 1 & 2. 

It is hard to interpret from the picture which sensors exhibit more pressure. So, the leak 

location cannot be detected by the pressure drop method especially when leak size is small. 

 

 

 



 

58 

 

 

 

 

 

 

 

 

 

 

Figure 36. Pressure drop of 6 sensors with a 0.1-inch leak between sensor 1 & 2 

 

4.2 Exponential Curve Fit Analysis 
 
            Many exercises in nature depend on exponential expression. For instance, the 

decrease of the temperature over time and the growth of the bacterial colony over time can 

be represented by the exponential relationship. In this thesis, the reduction in pressure value 

over time can also be shaped by this mathematical tool. 

            A leak of 0.5-inch was created between sensor 1 and 2. Sensor 1 was located before 

the hole, and sensors 2, 3, 4, 5, 6 were located after the leak. Data from the pressure sensors 

were recorded at 500ms intervals. Exponential curve fitting model was then applied using 

MATLAB as illustrated in Figure 37. The curve fit model was applied separately on each 

of the sensors.  
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Figure 37. Curve fit analysis with a leak size 0.5-inch. 
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            In Figure 37, an exponential curve fit was applied to six sensor’s data that gives six 

separate decay rates. In other word, the six sensors produce six decay rates. The decay rate 

of six sensors is provided in Table 5. 

Table 5. Decay rate for a leak size 0.5-inch 

 

            It is clear from Table 5 that sensor 1 and 2 have a larger decay rate than other 

sensors. So, we can assume that the leak is located between sensor 1 and 2.  

            Now, the idea of comparing decay rates can be justified if it can detect a leak with 

a small diameter. In the next experiment, a hole of 0.1-inch was created between sensor 1 

and 2. Sensor 1 was located before the leak, and sensors 2, 3, 4, 5, & 6 were located after 

the leak. Data from the pressure sensors were recorded at 500ms intervals. An exponential 

curve fitting model was then applied using MATLAB as illustrated in Figure 38. The curve 

fit model was applied separately on each of the sensors. The decay rate of 6 sensors for the 

0.1-inch leak is given in Table 6. 

Table 6. Decay rate for leak size 0.5-inch 

 

           It is clear from Table 6 that the sensor 1 and 2 have more decay rate than other 

sensors. More significant digits have been calculated to distinguish every sensor’s decay 

rate precisely. 

Sensor 1 2 3 4 5 6 

Decay constant ‘b’ 0.0104 0.0078 0.0068 0.0056 0.0052 0.0050 

Sensor 1 2 3 4 5 6 

Decay 
constant ‘b’ 

0.001000 0.0009013 0.0009000 0.0008040 0.0007011 0.0006001 
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Figure 38. Curve fit analysis with a leak size 0.1-inch 
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            Although decay constant of sensors 2 & 3 is very close, a comparison between them 

can be used to differentiate them more precisely. For example, sensor 2 value is 14.44% 

bigger than sensor 3. So, we can now claim that the leak is located between sensor 1 and 

2.  

            So, the trend in a dataset can be captured using curve fitting by allocating a single 

function across the entire range. In this thesis, decay constant ‘b’ was calculated using the 

curve fitting method. Here, b is a negative constant which can be called the decay rate that 

denotes how rapidly the pressure value decreases with time. The magnitude of b had been 

taken during curve fit analysis to make data analysis more manageable. In this experiment, 

one of the essential parts of data analysis is to separate datasets that contain a leak from 

datasets that do not include the leak. The exponential curve fitting model was able to 

distinguish between these two types of data sets. To illustrate the exponential curve fit in a 

non-leak data set, data was taken continuously from all six sensors. Data from the pressure 

sensors were recorded at 500ms intervals. The exponential curve fitting model was then 

applied using MATLAB. Curve fitting on only one sensor for the non-data set is shown in 

following Figure 39. The decay rate of 6 sensors for the non-leak dataset is given in Table 

7. 

Table 7. ‘b’ value for non-leak dataset 

 

            It is noticed from Table 7 that, the value of ‘b’ is close to zero for the non-leak 

dataset. However, it is not possible to distinguish leak and non-leak data set by only looking 

Sensor 1 2 3 4 5 6 

Constant ‘b’ 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 
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at the magnitude of ‘b’ value. Instead of taking the magnitude, the actual value of ‘b’ needs 

to be considered to separate the two types of datasets.  

 

 

 

 

 

 

 

 

 

 

Figure 39. Curve fit analysis for non-leak data 

             

            The actual value of b is always negative for the leak dataset because data goes down 

immediately after the leak. However, in the case of the non-leak dataset, the actual b value 

is positive. It was previously mentioned that, for this experiment, the magnitude of ‘b’ was 

considered for the ease of analysis. However, to separate leak datasets from the non-leak 

datasets, the actual value of b must be considered. Datasets that contain leaks, provide 

negative b value and non-leak datasets usually give positive value. A few examples of b 

values for leak and non-leak datasets are shown in Table 8.  
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Table 8. ‘b’ value for non-leak dataset 

No Sensor-
1 

Sensor-
2 

Sensor-
3 

Sensor-
4 

Sensor-
5 

Sensor-
6 Type 

 

 

 

Actual 
‘b’ 

value 

-0.0104 -0.0078 -0.0068 -0.0056 -0.0052 -0.0050 Leak 

-0.0083 -0.0060 -0.0052 -0.0050 -0.0048 -0.0046 Leak 

-0.0032 -0.0025 -0.0023 -0.0020 -0.0018 -0.0015 Leak 

0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 Non-Leak 

0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 Non-Leak 

0.0003 0.0003 0.0002 0.0002 -0.0001 0.0001 Non-Leak 

 

            So, the actual value of b is always negative for the leak dataset because pressure 

goes down immediately after the leak. However, in the case of the non-leak dataset, the 

actual b value is positive for most of the trials and close to zero for all trials because data 

remains almost the same during the stabilization state.  By this way, a leak dataset can be 

separated from a non-leak dataset using the curve fitting method for further analysis.  

           Although leak location can be determined using an exponential curve fit, leak size 

cannot be predicted by this method. However, this can be done using classification 

techniques such as Support Vector Machine (SVM) and Artificial Neural Network (ANN).  

           The features need to be extracted from the dataset to do classification. Exponential 

curve fitting method gives six decay rates for six sensors. These six types of decay constant 

were considered as six features. Furthermore, as pipes with three different diameters have 

been considered for the system, one extra element, i.e., pipe diameter needs to be added for 

the classification of data to determine leak size. So, a total of seven items were used as 

feature vectors for the classification. An example of feature vectors is given the Table 9.  
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Table 9. Example of feature values 

Sensor-
1 

Sensor-
2 

Sensor-
3 

Sensor-
4 

Sensor-
5 

Sensor-
6 

Pipe 
Diameter 

Leak 
Diameter 

0.09 0.08 0.08 0.08 0.07 0.06 0.75 1 

0.16 0.15 0.15 0.15 0.14 0.14 0.75 2 

0.24 0.18 0.18 0.17 0.15 0.14 0.75 3 

0.38 0.29 0.27 0.25 0.22 0.2 0.75 4 

0.77 0.6 0.51 0.43 0.4 0.38 0.75 5 

… … … … … … … … 

… … … … … … … … 

0.04 0.04 0.03 0.02 0.01 0.01 1 1 

0.1 0.11 0.11 0.1 0.09 0.08 1 2 

0.15 0.15 0.15 0.14 0.13 0.12 1 3 

0.23 0.22 0.21 0.22 0.2 0.19 1 4 

0.35 0.3 0.31 0.29 0.29 0.28 1 5 

… … … … … … … … 

… … … … … … … … 

0.11 0.1 0.1 0.08 0.08 0.07 1.5 5 

… … … … … … … … 

… … … … … … … … 

 

            First seven features were considered as prediction variables by which data was 

trained for SVM and ANN. The last column was considered as a response variable which 

is the outcome of the classifications. The outcome of predicting leak sizes using SVM and 

ANN will be analyzed in Chapter 5.     
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5. RESULTS 
 
 
            In this thesis, data have been collected from the test-bench system with several 

conditions such as: (1) Three kinds of pipe diameters: 0.75-inch, 1-inch, and 1.5-inch; (2) 

3 leak locations; and (3) Five leak sizes: 0.5-inch, 0.4-inch, 0.3-inch, 0.2-inch, and 0.1-

inch. The data collection system is illustrated in Figure 40.  

 

 

 

 

 

 

 

 

Figure 40. Data collection system. 

 

            A total of 1180 sets of data has been collected including datasets that have a leak 

and datasets that do not have a leak as well. Data were stored and then analyzed to separate 

leak data sets from non-leak data sets. Next, a total of 900 sets of leak data were analyzed 

to localize leak and predict leak size. In this chapter, the result of the data analysis is 

discussed.  
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5.1 Separating leak and non-leak dataset 
 
            The exponential curve fitting model was used to separate leak data sets from non-

leak data sets. The accuracy of the separation of leak data sets from non-leak data sets is 

shown in Table 10.   

Table 10. Accuracy to separate leak and non-leak data 

Data sets Test datasets Correctly predicted Accuracy 

Leak data sets 100 98 98% 

Non-leak data sets 100 100 100% 

 

            We examined 200 datasets containing all types of leak size using an exponential 

curve fitting method to determine accuracy. The analysis was performed to evaluate the 

effectiveness of the technique. The result shows an exponential curve fit model does a 

wonderful task in detecting a leak.  

 

5.2 Measuring the right distance between sensors 
 
            The accuracy was calculated using 900 leak data sets with three different leak 

locations, i.e., leak 1 which is between sensor 1 & 2, leak 2 which is between sensor 3 & 

4, and leak 3 which is between sensors 5 & 6. Results are shown in Table 11.  

Table 11. Overall Accuracy Rate 

Leak Location 1 2 3 

Overall Accuracy 82.5% 52.5% 79.1% 

 

            The data in Table 11 indicates that when leaks were created between sensors 1 & 2 

and sensors 5 & 6, our model gave better accuracy for leak location identification compared 
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to when leaks were formed between sensor 3 & 4. The distance between sensor 1 & 2 and 

5 & 6 is identical, hence providing almost similar accuracy. However, the distance between 

sensors 3 & 4 is less compared to the distance between other sensors mentioned above and 

the model is less accurate.   

           The distance between sensors 3 & 4 is 100cm. For any leaks between these sensors, 

the model shows significantly less efficiency in detecting leak location. So, it can be 

concluded that 100cm is not the right distance between sensors. To verify this hypothesis, 

the effect of sensor 3 and 4 has been nullified and data were collected only from sensors 1, 

2, 5, & 6. Now the leak is between sensor 2 & 5 and both sensors are 500cm away is shown 

in Figure 41.  

 

 

 

 

 

 

 

 

Figure 41. Leak between sensor 2 & 5 

 

            A total of 125 datasets have been collected and then  the efficiency of leak location 

identification has been calculated. In this case, the accuracy of 85.6% is achieved. So, the 

distance between sensors plays a pivotal role in detecting leak location accurately. Thus, it 
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can be concluded that distance between sensors should be 180cm or more to get an 

acceptable efficiency in identifying leak location.  

5.3 Accuracy with different leak sizes   
 
            As data sets related to leak-2 showed less efficiency because of the incorrect 

distance between sensors, so datasets associated with the leak-1 and leak-3 were considered 

only. A total of 750 datasets had been collected with different conditions. Leak location 

identification accuracy has been calculated separately for pipelines with three different 

diameters. Table 12 represents leak location identification accuracy for the pipeline with a 

1.5-inch diameter. 

Table 12. Accuracy Rate for 1.5-inch pipe 

Leak Size Total 
Dataset 

Correctly 
detected 

Incorrectly 
detected Accuracy 

0.1-inch leak 50 38 12 76% 

0.2-inch Leak 50 36 14 72% 

0.3-inch Leak 50 40 10 80% 

0.4-inch Leak 50 41 9 82% 

0.5-inch Leak 50 43 7 86% 

Overall 250 198 52 79.20% 
 

            Table 12 indicates that the leak location identification accuracy increases with the 

increased leak sizes. A large leak in the pipeline creates more pressure drop inside the pipe, 

thus giving high decay constants ‘b’ which are easily differentiable compared to smaller 

leak size.  In this case, the only exception is the dataset related to 0.2-inch leak where it 

produces less accuracy than dataset contains the 0.1-inch hole. The overall efficiency 
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achieved to detect leak location for pipelines with 1.5-inch diameter is 79.20%. Next, leak 

location identification accuracy for 1-inch pipe diameter is shown in Table 13. 

Table 13. Accuracy Rate for 1-inch pipe 

 

 

 

 

 

 

            It is clear from the Table 13 that leak location identification accuracy increases with 

the increased leak sizes. The highest efficiency is observed as 86% when leak size is 0.5-

inch. The overall efficiency achieved to detect leak location for pipelines with 1-inch 

diameter is 80.4%. Leak location identification accuracy for 0.75-inch pipe diameter is 

shown in Table 14. 

Table 14. Efficiency Rate for 0.75-inch pipe 

Leak Size Total 
Dataset 

Correctly 
detected 

Incorrectly 
detected Accuracy 

0.1-inch leak 50 39 11 78% 

0.2-inch Leak 50 40 10 80% 

0.3-inch Leak 50 41 9 82% 

0.4-inch Leak 50 43 7 86% 

0.5-inch Leak 50 44 6 88% 

Overall 250 207 43 82.8% 

  

 Leak Size Total 
Dataset 

Correctly 
detected 

Incorrectly 
detected Accuracy 

0.1-inch leak 50 38 12 76% 

0.2-inch Leak 50 38 12 76% 

0.3-inch Leak 50 40 10 80% 

0.4-inch Leak 50 42 8 84% 

0.5-inch Leak 50 43 7 86% 

Overall 250 201 49 80.4% 
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             Table 14 indicates that leak location identification accuracy increases with the 

increased leak sizes. The highest accuracy is observed as 88% when leak size is 0.5-inch. 

The overall accuracy achieved to detect leak location for pipelines with 0.75-inch diameter 

is 82.8%.  

 

5.4 Overall leak location identification accuracy 
 
            All the accuracy comparison between 5 leak sizes is listed in the following Table 

15. 

Table 15. Accuracy comparison 

Leak Size 1.5-inch 
pipe 

1-inch 
pipe 

0.75-inch 
pipe 

Overall 79.2% 80.4% 82.8% 

0.1-inch leak 76% 76% 78% 

0.2-inch Leak 72% 76% 80% 

0.3-inch Leak 80% 80% 82% 

0.4-inch Leak 82% 84% 86% 

0.5-inch Leak 86% 86% 88% 

            

             This comparison can be easily understood using the bar chart is shown in Figure 

42. It is clear from the figure that leak detection accuracy increases with the decreased pipe 

diameter. Generally, the smaller diameter pipe creates more water pressure inside it when 

the water flow rate remains the same. In another words, the accuracy increases with the 

increased pressure inside the tube. For instances, in this thesis, the 0.75-inch pipe has the 

highest overall accuracy because it has more water pressure inside it.  
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Figure 42. Accuracy comparison chart 

 

5.5 Leak size prediction accuracy using SVM 
 
            SVM and MLP neural network algorithm were used to predict leak size. Figure 43 

shows the procedure involving SVM and MLP classification. SVM and MLP are two 

popular strategies for data classification. Both methods are efficient depending on the 

project type. Data need to be trained and tested for both classification techniques. In this 

thesis, 600 and 129 datasets were used to train and test the classification systems 

respectively. 
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Figure 43. Data classification methodology 

 
            In the case of SVM, different types of SVM kernel tricks such as linear, polynomial, 

Gaussian and sigmoid are used to predict the leak size using Python's Scikit-Learn library. 

The accuracy of predicting leak size using a linear, polynomial, Gaussian and sigmoid 

kernel with different normalization technique is calculated separately and shown in Table 

16. 
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Table 16. Classification accuracy using SVM 

 

 

                

 

 

 

 

 

 

            Table 16 indicates that, in the case of the min-max normalization method, all the 

SVM kernels show almost the same accuracy. But when it comes to z-score normalization 

technique, linear SVM kernel shows better accuracy than other kernel methods. And, in 

the case of decimal scaling, linear kernel trick shows outstanding accuracy. Figure 44 

shows a comparison between different normalization techniques with different SVM kernel 

tricks. It is seen from this figure; linear kernel algorithm shows a higher accuracy over 

other algorithms for different normalizations. Also, decimal scaling normalization 

technique outperforms other normalization methods. The highest efficiency of 90.69% was 

obtained using decimal normalization technique and linear SVM kernel. 

Normalization SVM Kernel Accuracy 

Min-max 
normalization 

Linear 40.31% 

Sigmoid 37.99% 

Polynomial 39.53% 

Gaussian 39.5% 

z-score 
normalization 

Linear 51.16% 

Sigmoid 31.01% 

Polynomial 30.11% 

Gaussian 31% 

Decimal scaling 

Linear 90.69 % 

Sigmoid 65.89 % 

Polynomial 62.01% 

Gaussian 77.52% 
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Figure 44. Accuracy comparison for SVM kernel 

 

            There is a reason behind the high accuracy of predicting leak size using decimal 

scaling. Table 9 (Chapter 4, p. 65) shows the data of the first seven columns is between 0 

to 1.5. However, data of the first six columns are very distinct compared to data of the 7th 

column. In this condition, data was plotted closely to each other on a graph, and it was hard 

for SVM classifier to separate data by drawing a boundary. The data of the first six columns 

were then multiplied by 102 to make it easily distinguishable. Then SVM was then 

successful in drawing an optimum boundary to separate data which gave an output of 

90.69%.    

            Further analysis was done by analyzing a confusion matrix. As the decimal scaling 

provides higher SVM accuracy, 129 test datasets scaled using decimal were considered for 

confusion matrix analysis. Figure 45 represents a confusion matrix. 
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Figure 45. Confusion matrix 

    

Figure 45 indicates that SVM classifies 0.5-inch, 0.4-inch, and 0.1-inch dataset precisely. 

However, there are some errors while predicting other classes of data. This idea can be 

better explained using Figure 46 where recall is calculated. It is clear from the figure that 

SVM does an excellent job in separating classes. The highest ‘recall’ obtained from the 

classification is 100%, and the lowest is 87%.  The lowest recall is observed during the 

sorting of 0.3-inch class.  
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Figure 46. Recall in the confusion matrix 

             

5.6 Leak size prediction accuracy using MLP neural network 
 
             Next, we developed an MLP neural network trained with 600 datasets and tested 

with 129 datasets. The layer number and hidden nodes have been varied to obtain 

maximum efficiency as shown in Table 17. The highest accuracy of 96.89% was obtained 

by a 3-layers neural network having 30, 10, and 10 nodes respectively. Decimal scaling 

was used to normalize the feature vectors to get this accuracy. As only three layers of MLP 

neural network gives the highest efficiency, the data training and processing become more 

straightforward and less time-consuming.  

 



 

78 

Table 17. Classification accuracy using SVM 

Sl. No Layer-1 
Nodes 

Layer 2 
Nodes 

Layer 3 
Nodes 

Layer 4 
Nodes 

Layer 5 
Nodes Accuracy 

1. 10 - - - - 92.24% 

2. 20 10 - - - 93.79% 

3. 10 20 - - - 91.47% 

4. 20 30 10 - - 95.34% 

5. 30 10 10 - - 96.89% 

6. 20 40 30 10 - 96.12% 

7. 20 30 10 40 - 94.57% 

8. 20 10 40 30 50 92.84% 

9. 20 30 10 40 20 92.37% 

                       

 

5.7 Comparison between SVM and MLP classifier 
 
            The overall accuracy in predicting leaks is calculated by MLP neural network and 

ANN using min-max normalization, and z-score normalization methods as shown in Table 

18. The result indicates that MLP neural network is robust compared to SVM with the same 

number of training datasets and test datasets. 

Table 18. Classification accuracy using SVM & MLP 

Normalization Classifier Accuracy Error 

Min-max 
normalization 

SVM 40.31% 59.69% 

MLP 63.12% 36.88% 

z-score normalization 
SVM 51.16% 48.84% 

MLP 39.52% 60.48% 

 
Decimal scaling 

SVM 90.69% 9.31% 

MLP 96.89% 3.88% 

 
No Normalization 

SVM 59.99% 40.01% 

MLP 95.22% 4.78% 
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             Figure 47 shows a comparison between the MLP neural network and SVM using 

different normalization methods. It is seen that MLP and SVM were not successful in 

predicting leak size when trained and validated with min-max and z-score normalization 

techniques. However, when it comes to decimal scaling normalization technique, both 

technique SVM and MLP neural network performed very well with an accuracy of 90.69% 

an 96.89% respectively. 

 

 

 

 

 

 

 

 

 

Figure 47. SVM vs. MLP 

 

            MLP neural network performed better in predicting leak size compared to SVM. 

Moreover, even with the absence of any normalization technique, MLP performed better 

than SVM by a significant margin. Thus, in this thesis, MLP neural network outperformed 

SVM in predicting leak size with the same number of training and testing datasets. 
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6. CONCLUSIONS 
 
 

6.1 Discussion 
 
             Table 15 (Chapter 6, p. 71) shows 0.1-inch and 0.2-inch leak have produced less 

accuracy. In one case, 0.2-inch leakage exhibited less efficiency than the 0.1-inch leak. So, 

there are some inconsistencies in accuracy when the leak size is small. The probable reason 

for this mismatch is the internal pressure loss in the system.  

            Piping systems are aimed to fulfill fluid pressure at different junctions within an 

industrial application. So, the pressure loss must be considered while designing a pipeline 

system.  The pressure loss is often viewed as friction loss because it is generated from 

frictional forces applied on a fluid in a pipeline system which resists the flow. Several 

factors that can cause friction loss such as gravity, fittings, valves, bends, joints [62]. The 

loss was calculated for our system using open source friction loss calculator [63].  Table 

19 presents friction loss with different sensor position for 0.75-inch pipe diameter.  

Table 19. Friction loss vs sensor positions 

Sensor Distance from 
source (feet) 

No. of 90-degree 
elbows (left) 

 Pressure Loss 
(PSI) 

Sensor 1 7 1 0.19 
Sensor 2 12 1 0.3 
Sensor 3 18 2 0.47 
Sensor 4 22 2 0.56 
Sensor 5 28 3 0.73 
Sensor 6 34 3 0.87 

 

Figure 48 shows average pressure and pressure loss of every sensors when the pump is on. 
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Figure 48. Friction loss with different sensors 

 

            It is clear from Figure 48 friction loss is responsible for some pressure losses. 

Figure 49 shows effect of friction loss in our system.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 49. Friction loss effect 
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            It is clear from Figure 49 that, friction loss increases with distance and number of 

valves in the pipeline system.  Table 15 (Chapter 6, p. 71) shows the maximum leak 

location identification accuracy obtained was 88% when the leak size was 0.5-inch and 

minimum efficiency was 72% when leak size was 0.1-inch. Friction loss is one of the 

reasons why we have got low accuracy particularly when the leak size is small. Water 

pressure reduces with the friction loss. So, when the leak size is small, the friction loss 

makes it difficult for the pressure sensors to measure the subtle change in pressure, thus, 

leak localization accuracy reduced. Furthermore, Table 11 (Chapter 6, p. 67) shows, leak 

location 3 has less accuracy than leak location 1. It is because friction loss is more near at 

the end of the pipe which made the leak localization job difficult between sensor 5 & 6.  

 

6.2 Summary 
 
             Having a reliable leak detection method in a pipeline distribution system is very 

important to prevent disaster. A laboratory-based test bench system has been developed to 

achieve the goal. Data were collected in different conditions using wireless sensor networks 

and then analyzed using programming languages, i.e., Python and MATLAB. A novel leak 

location identification method was then proposed and implemented. Next, data 

classification algorithms were used to predict leak sizes.  

             The leak location identification method was based on the exponential curve fitting 

method. Exponential curve fit method finds the decay constant of every pressure sensor. 

Comparison between decay rates of each sensor helped us to identify leak location. The 

system efficiency under some practical circumstances was then calculated.  
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             The exponential curve fitting method cannot predict leak sizes. But data 

classification algorithms, i.e., SVM and MLP neural network performed very well in 

predicting leak sizes with an accuracy of 90.69% and 96.89% respectively. Researchers 

can use this method in leak detection analysis and, in other systems, wherever it best suits 

them. 

 

6.3 Future works 
 
            Firstly, multiple leak locations cannot be detected using the proposed system. In 

future work, the network models can be extended considering numerous leaks in a network. 

Also, only PVC pipe was considered for this thesis.  Therefore, the system can be examined 

using other types of pipe, i.e. galvanized steel and copper pipes in the future.  

            Additionally, only pressure sensors were used to detect leak location and its size in 

this system. However, system efficiency can be improved further by using multi-sensors. 

Such could be another future work. Furthermore, other applications that could get the 

advantage of our approach include detecting leaks and their location in oil and gas pipeline 

systems. 

            Moreover, in this paper, leak location can only be identified between the two 

sensors. However, the system cannot tell the exact spot between the two sensors. 

Pinpointing exact location can be another future work. Moreover, Raspberry Pi can be used 

instead of a computer to process and display data. Also, the mesh network can be developed 

using Zigbee to cover more area and get a better data transmission system and accuracy.  

            Finally, in the future, power consumption can be studied to improve the lifetime of 

sensor nodes.  
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APPENDIX SECTION 
 
 
APPENDIX A. Arduino code for data collection from sensors 

void setup () { 

    Serial.begin (9600); 

} 

void loop () {    

int sensorVal1 = analogRead(A1); 

float voltage1 = (sensorVal1*5.0)/1024.0; 

float pressure_pascal1 = (3.0*((float)voltage1-0.47)) *1000000.0; 

float pressure_bar1 = pressure_pascal1/10e5; 

         Serial.print("Pressure_Bar SNI: "); 

         Serial.println(pressure_bar2); 

int sensorVal2=analogRead(A2); 

float voltage2 = (sensorVal4*5.0)/1024.0;     

float pressure_pascal2 = (3.0*((float)voltage2-0.47)) *1000000.0; 

float pressure_bar2 = pressure_pascal2/10e5; 

         Serial.print("Pressure_Bar SNII: "); 

         Serial.println(pressure_bar4); 

int sensorVal3=analogRead(A3);     

float voltage3 = (sensorVal3*5.0)/1024.0; 

float pressure_pascal3 = (3.0*((float)voltage3-0.47)) *1000000.0; 

float pressure_bar3 = pressure_pascal3/10e5; 
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         Serial.print("Pressure_Bar SNIII: "); 

         Serial.println(pressure_bar3);    

int sensorVal4=analogRead(A4);    

float voltage4 = (sensorVal4*5.0)/1024.0; 

float pressure_pascal4 = (3.0*((float)voltage4-0.47)) *1000000.0; 

float pressure_bar4 = pressure_pascal4/10e5; 

         Serial.print("Pressure_Bar SNIV: "); 

         Serial.println(pressure_bar6); 

int sensorVal5=analogRead(A5);    

float voltage5 = (sensorVal5*5.0)/1024.0; 

float pressure_pascal5 = (3.0*((float)voltage7-0.47)) *1000000.0; 

float pressure_bar5 = pressure_pascal5/10e5; 

         Serial.print("Pressure_Bar SNV: "); 

         Serial.println(pressure_bar5); 

int sensorVal6=analogRead(A6);    

float voltage6 = (sensorVal6*5.0)/1024.0; 

float pressure_pascal6 = (3.0*((float)voltage6-0.47)) *1000000.0; 

float pressure_bar6 = pressure_pascal6/10e5; 

         Serial.print("Pressure_Bar SNVI: "); 

         Serial.println(pressure_bar6);       

delay(500); 

} 
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APPENDIX B. Python code for preprocessing raw data 

'''**********************************************''' 

import os 

print ("Initially Working Directory -->", os.getcwd() + "\n")  

os.chdir("") 

'''**********************************************''' 

import pandas as pd   

x1 = pd.ExcelFile('') 

x1.sheet_names  

data_frame_raw = x1.parse('')     

'''**********************************************''' 

import re      

def find_word(text, search 

   result = re.findall('\\b'+search+'\\b', text, flags=re.IGNORECASE) 

   if len(result)>0: 

      return True 

   else: 

      return False 

'''**********************************************''' 

p_sni = []; p_snii = []; p_sniii = []; p_sniv = []; p_snv = []; p_snvi =  

data_frame = data_frame_raw[0:len(data_frame_raw)]     

for i in range(len(data_frame)): 

    str = data_frame["Data"][i]              
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    if find_word(str, "Pressure_Bar"): 

        if find_word(str, "sni"): 

            count = str.find(":")+2 

            p_sni.append(float(str[count:len(str)]))  

        elif find_word(str, "snii"): 

            count = str.find(":")+2 

            p_snii.append(float(str[count:len(str)]) 

        elif find_word(str, "sniii"): 

            count = str.find(":")+2 

            p_sniii.append(float(str[count:len(str)]))        

        elif find_word(str, "sniv"): 

            count = str.find(":")+2 

            p_sniv.append(float(str[count:len(str)]))       

        elif find_word(str, "snv"): 

            count = str.find(":")+2 

            p_snv.append(float(str[count:len(str)])) 

        elif find_word(str, "snvi"): 

            count = str.find(":")+2                 

'''**********************************************''' 

l_p_snvi = len(p_snvi) 

print("Total Elements in p_sni: ", l_p_snvi, "\n\n") 

'''###############################################''' 
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import numpy as np 

m=90; n=190; # m and n are the positions of an array 

p_sni_extracted = np.array(p_sni[m:n]) 

p_snii_extracted = np.array(p_snii[m:n]) 

p_sniii_extracted = np.array(p_sniii[m:n]) 

p_sniv_extracted = np.array(p_sniv[m:n]) 

p_snv_extracted = np.array(p_snv[m:n]) 

p_snvi_extracted = np.array(p_snvi[m:n]) 

print("Extracted Data of Pressure Bar", p_sni_extracted, "\n\n") 

'''**********************************************''' 

p_sni_extracted_diff = abs((np.average(p_sni_extracted[]))-

(np.array(p_sni_extracted[1:]))) 

p_snii_extracted_diff = abs((np.average(p_snii_extracted[]))-

(np.array(p_snii_extracted[1:]))) 

p_sniii_extracted_diff = abs((np.average(p_sniii_extracted[]))-

(np.array(p_sniii_extracted[1:]))) 

p_sniv_extracted_diff = abs((np.average(p_sniv_extracted[]))-

(np.array(p_sniv_extracted[1:]))) 

p_snv_extracted_diff = abs((np.average(p_snv_extracted[]))-

(np.array(p_snv_extracted[1:]))) 

p_snvi_extracted_diff = abs((np.average(p_snvi_extracted[]))-

(np.array(p_snvi_extracted[1:]))) 

print("Extracted Drop of Pressure Bar", p_sni_extracted_diff, "\n\n")  
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'''**********************************************''' 

p_sni_psi = [i * 14.5038 for i in p_sni] 

p_snii_psi = [i * 14.5038 for i in p_snii] 

p_sniii_psi = [i * 14.5038 for i in p_sniii] 

p_sniv_psi = [i * 14.5038 for i in p_sniv] 

p_snv_psi = [i * 14.5038 for i in p_snv] 

p_snvi_psi = [i * 14.5038 for i in p_snvi] 

p_sni_extracted_psi = np.array(p_sni_psi[m:n]) 

p_snii_extracted_psi = np.array(p_snii_psi[m:n]) 

p_sniii_extracted_psi = np.array(p_sniii_psi[m:n]) 

p_sniv_extracted_psi = np.array(p_sniv_psi[m:n]) 

p_snv_extracted_psi = np.array(p_snv_psi[m:n]) 

p_snvi_extracted_psi = np.array(p_snvi_psi[m:n]) 

p_sni_extracted_diff_psi = abs((np.array(p_sni_extracted_psi[0]))-

(np.array(p_sni_extracted_psi[1:]))) 

p_snii_extracted_diff_psi = abs((np.array(p_snii_extracted_psi[0]))-

(np.array(p_snii_extracted_psi[1:]))) 

p_sniii_extracted_diff_psi = abs((np.array(p_sniii_extracted_psi[0]))-

(np.array(p_sniii_extracted_psi[1:]))) 

p_sniv_extracted_diff_psi = abs((np.array(p_sniv_extracted_psi[0]))-

(np.array(p_sniv_extracted_psi[1:]))) 

p_snv_extracted_diff_psi = abs((np.array(p_snv_extracted_psi[0]))-

(np.array(p_snv_extracted_psi[1:]))) 
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p_snvi_extracted_diff_psi = abs((np.array(p_snvi_extracted_psi[0]))-

(np.array(p_snvi_extracted_psi[1:]))) 

'''###############################################''' 

import matplotlib.pyplot as plt 

from matplotlib import pylab 

from matplotlib.font_manager import FontProperties 

plt.subplot(3, 1, 1) 

'''###############################################''' 

fig = plt.figure() 

ax = plt.subplot(111) 

#ax.plot([i for i in range(len(p_sni))], p_sni, color = 'Green', label='Sensor 1') 

ax.plot([i for i in range(len(p_snii))], p_snii, color = 'Blue', label='Sensor 1') 

ax.plot([i for i in range(len(p_sniii))], p_sniii, color = 'Red', label='Sensor 2') 

ax.plot([i for i in range(len(p_sniv))], p_sniv, color = 'Yellow', label='Sensor 3') 

ax.plot([i for i in range(len(p_snv))], p_snv, color = 'Magenta', label='Sensor 4') 

ax.plot([i for i in range(len(p_snvi))], p_snvi, color = 'Olive', label='Sensor 5') 

plt.xlabel('Time(s)') 

plt.ylabel('Pressure') 

plt.title('Pressure value in Bar') 

ax.legend(bbox_to_anchor=(1, 1)) 

plt.show() 

fig.savefig('image_full.svg', format='svg', dpi=1200) 
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'''**********************************************''' 

fig = plt.figure() 

ax = plt.subplot(111) 

#ax.plot([i for i in range(len(p_sni_extracted))], p_sni_extracted, color = 'Green', 

label='Sensor 1') 

ax.plot([i for i in range(len(p_snii_extracted))], p_snii_extracted, color = 'Blue', 

label='Sensor 1') 

ax.plot([i for i in range(len(p_sniii_extracted))], p_sniii_extracted, color = 'Red', 

label='Sensor 2') 

ax.plot([i for i in range(len(p_sniv_extracted))], p_sniv_extracted, color = 'Yellow', 

label='Sensor 3') 

ax.plot([i for i in range(len(p_snv_extracted))], p_snv_extracted, color = 'Magenta', 

label='Sensor 4') 

ax.plot([i for i in range(len(p_snvi_extracted))], p_snvi_extracted, color = 'Olive', 

label='Sensor 5') 

ax.plot([i for i in range(len(p_snvii_extracted))], p_snvii_extracted, color = 'Lime', 

label='Sensor 6') 

plt.ylabel('Pressure') 

plt.title('Pressure value in Bar') 

ax.legend(bbox_to_anchor=(1, 1)) 

plt.show() 

fig.savefig('image_half.svg', format='svg', dpi=1200) 
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'''**********************************************''' 

fig = plt.figure() 

ax = plt.subplot(111) 

#ax.plot([i for i in range(len(p_sni_extracted_diff))], p_sni_extracted_diff, color = 

'Green', label='Sensor 1') 

ax.plot([i for i in range(len(p_snii_extracted_diff))], p_snii_extracted_diff, color = 'Blue', 

label='Sensor 1') 

ax.plot([i for i in range(len(p_sniii_extracted_diff))], p_sniii_extracted_diff, color = 

'Red', label='Sensor 2') 

ax.plot([i for i in range(len(p_sniv_extracted_diff))], p_sniv_extracted_diff, color = 

'Yellow', label='Sensor 3') 

ax.plot([i for i in range(len(p_snv_extracted_diff))], p_snv_extracted_diff, color = 

'Magenta', label='Sensor 4') 

ax.plot([i for i in range(len(p_snvi_extracted_diff))], p_snvi_extracted_diff, color = 

'Olive', label='Sensor 5') 

ax.plot([i for i in range(len(p_snvii_extracted_diff))], p_snvii_extracted_diff, color = 

'Lime', label='Sensor 6') 

plt.xlabel('Time(s)') 

plt.ylabel('Pressure Drop') 

plt.title('Pressure Drop in Bar') 

ax.legend(bbox_to_anchor=(1, 1)) 

plt.show() 

fig.savefig('image_drop.svg', format='svg', dpi=1200) 
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'''**********************************************''' 

p_sni_psi = [i * 14.5038 for i in p_sni] 

p_snii_psi = [i * 14.5038 for i in p_snii] 

p_sniii_psi = [i * 14.5038 for i in p_sniii] 

p_sniv_psi = [i * 14.5038 for i in p_sniv] 

p_snv_psi = [i * 14.5038 for i in p_snv] 

p_snvi_psi = [i * 14.5038 for i in p_snvi] 

'''**********************************************''' 

p_sni_extracted_psi = np.array(p_sni_psi[m:n]) 

p_snii_extracted_psi = np.array(p_snii_psi[m:n]) 

p_sniii_extracted_psi = np.array(p_sniii_psi[m:n]) 

p_sniv_extracted_psi = np.array(p_sniv_psi[m:n]) 

p_snv_extracted_psi = np.array(p_snv_psi[m:n]) 

p_snvi_extracted_psi = np.array(p_snvi_psi[m:n]) 

'''**********************************************''' 

p_sni_extracted_diff_psi = abs((np.array(p_sni_extracted_psi[0]))-

(np.array(p_sni_extracted_psi[1:]))) 

p_snii_extracted_diff_psi = abs((np.array(p_snii_extracted_psi[0]))-

(np.array(p_snii_extracted_psi[1:]))) 

p_sniii_extracted_diff_psi = abs((np.array(p_sniii_extracted_psi[0]))-

(np.array(p_sniii_extracted_psi[1:]))) 

p_sniv_extracted_diff_psi = abs((np.array(p_sniv_extracted_psi[0]))-

(np.array(p_sniv_extracted_psi[1:]))) 
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p_snv_extracted_diff_psi = abs((np.array(p_snv_extracted_psi[0]))-

(np.array(p_snv_extracted_psi[1:]))) 

p_snvi_extracted_diff_psi = abs((np.array(p_snvi_extracted_psi[0]))-

(np.array(p_snvi_extracted_psi[1:]))) 

'''**********************************************''' 

plt.plot([i for i in range(len(p_sni))], p_sni_psi, color = 'Green', label='Sensor 1') 

plt.plot([i for i in range(len(p_snii))], p_snii_psi, color = 'Blue', label='Sensor 2') 

plt.plot([i for i in range(len(p_sniii))], p_sniii_psi, color = 'Red', label='Sensor 3') 

plt.plot([i for i in range(len(p_sniv))], p_sniv_psi, color = 'Yellow', label='Sensor 4') 

plt.plot([i for i in range(len(p_snv))], p_snv_psi, color = 'Magenta', label='Sensor 5') 

plt.plot([i for i in range(len(p_snvi))], p_snvi_psi, color = 'Olive', label='Sensor 6') 

plt.xlabel('Time(s)') 

plt.ylabel('Pressure') 

plt.title('pressure value in PSI') 

plt.legend() 

plt.show() 

'''**********************************************''' 

plt.plot([i for i in range(len(p_sni_extracted_psi))], p_sni_extracted_psi, color = 'Green', 

label='Sensor 1') 

plt.plot([i for i in range(len(p_snii_extracted_psi))], p_snii_extracted_psi, color = 'Blue', 

label='Sensor 2') 

plt.plot([i for i in range(len(p_sniii_extracted_psi))], p_sniii_extracted_psi, color = 'Red', 

label='Sensor 3') 
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plt.plot([i for i in range(len(p_sniv_extracted_psi))], p_sniv_extracted_psi, color = 

'Yellow', label='Sensor 4') 

plt.plot([i for i in range(len(p_snv_extracted_psi))], p_snv_extracted_psi, color = 

'Magenta', label='Sensor 5') 

plt.plot([i for i in range(len(p_snvi_extracted_psi))], p_snvi_extracted_psi, color = 

'Olive', label='Sensor 6') 

plt.ylabel('Pressure') 

plt.title('Pressure value in PSI') 

plt.legend() 

plt.show() 

'''**********************************************''' 

plt.plot([i for i in range(len(p_sni_extracted_diff_psi))], p_sni_extracted_diff_psi, color = 

'Green', label='Sensor 1') 

plt.plot([i for i in range(len(p_snii_extracted_diff_psi))], p_snii_extracted_diff_psi, color 

= 'Blue', label='Sensor 2') 

plt.plot([i for i in range(len(p_sniii_extracted_diff_psi))], p_sniii_extracted_diff_psi, 

color = 'Red', label='Sensor 3') 

plt.plot([i for i in range(len(p_sniv_extracted_diff_psi))], p_sniv_extracted_diff_psi, 

color = 'Yellow', label='Sensor 4') 

plt.plot([i for i in range(len(p_snv_extracted_diff_psi))], p_snv_extracted_diff_psi, color 

= 'Magenta', label='Sensor 5') 

plt.plot([i for i in range(len(p_snvi_extracted_diff_psi))], p_snvi_extracted_diff_psi, 

color = 'Olive', label='Sensor 6') 
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plt.xlabel('Time(s)') 

plt.ylabel('Pressure Drop') 

plt.title('Pressure Drop in PSI') 

plt.legend() 

plt.show() 
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APPENDIX C. Matlab code for exponential curve fitting 

userpath ('') 

for j = 1:n  

    filename = ['' int2str(j)]; 

    data = xlsread(filename); 

    start_index = 1; 

    end_index = size(data,1); 

    time = (1:size(data,1))'; 

    c = [;]; 

for I =1:6 

    figure(i) 

    f = fit(time(start_index:end_index), data(start_index:end_index,i), 'exp1'); 

    c = [c; coeffvalues(f)]; 

plot(time(start_index:end_index),data(start_index:end_index,i),'b-') 

hold on 

plot(f,time(start_index:end_index),data(start_index:end_index,i)) 

end 

%addexp = c(:,4)+c(:,2); 

[~,I] = min(c(:,2)); 

%addexp(I) = 10000; 

%[~,J] = min(addexp); 

display(['The leak is near sensor  ' int2str(I)]) 

end 
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APPENDIX D. Python code for SVM and ANN 

'''**********************************************''' 

from sklearn import svm 

from sklearn import metrics 

'''**********************************************''' 

clf = svm.SVC(kernel='linear')  # Create a svm Classifier object and Linear Kernel 

clf.fit(tr_features,tr_label)   # train model 

y_pred = clf.predict(ts_features)   # predict model 

print('SVM Accuracy for Linear: ', metrics.accuracy_score(ts_label, y_pred))  

clf = svm.SVC(kernel='poly', degree=2)   

clf.fit(tr_features,tr_label)   # train model 

y_pred = clf.predict(ts_features)   # predict model 

print('SVM Accuracy for Polynomial: ', metrics.accuracy_score(ts_label, y_pred))  

clf = svm.SVC(kernel='rbf')  # Create a svm Classifier object and Linear Kernel 

clf.fit(tr_features,tr_label)   # train model 

y_pred = clf.predict(ts_features)   # predict model 

print('SVM Accuracy for Gaussian: ', metrics.accuracy_score(ts_label, y_pred))  

clf = svm.SVC(kernel='sigmoid')  # Create a svm Classifier object and Linear Kernel 

clf.fit(tr_features,tr_label)   # train model 

y_pred = clf.predict(ts_features)   # predict model 

print('SVM Accuracy for Sigmoid: ', metrics.accuracy_score(ts_label, y_pred))  

'''**********************************************''' 
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from sklearn import metrics 

n_n = [1,2,3,4,5]       # hidden layers 

import itertools 

from sklearn.neural_network import MLPClassifier 

'''**********************************************''' 

for idx,layer in enumerate(tuple(itertools.permutations(n_n))): 

    clf = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=tuple([x*10 for x 

in layer]), random_state=1) 

    clf.fit(tr_features,tr_label) 

    y_pred = clf.predict(ts_features) 

    print(idx, ' : NN Accuracy: ', tuple([x*1 for x in layer]) 

,metrics.accuracy_score(ts_label, y_pred)) 

'''**********************************************''' 

print(__doc__) 

 

import itertools 

import numpy as np 

import matplotlib.pyplot as plt 

plt.rc('xtick', labelsize=10)  

plt.rc('ytick', labelsize=10)  

from sklearn.metrics import confusion_matrix 

class_names = np.array(['0.5-inch', '0.4-inch', '0.3-inch','0.2-inch', '0.1-inch'] 

print('finalized model efficiency - ',metrics.accuracy_score(ts_label, y_pred) 
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APPENDIX E. Example of training date sets for SVM and ANN  

Table 20. Training set 

Data 
set 

Sensor-
1 

Sensor-
2 

Sensor-
3 

Sensor-
4 

Sensor-
5 

Sensor-
6 

pipe 
diameter 

leak 
diameter 

1 0.09 0.08 0.08 0.08 0.07 0.06 0.75 1 

2 0.06 0.06 0.06 0.05 0.04 0.02 0.75 1 

3 0.07 0.06 0.06 0.06 0.04 0.03 0.75 1 

4 0.09 0.09 0.08 0.08 0.07 0.05 0.75 1 

5 0.09 0.08 0.08 0.07 0.07 0.06 0.75 1 

6 0.06 0.06 0.06 0.05 0.05 0.03 0.75 1 

7 0.08 0.06 0.06 0.06 0.04 0.03 0.75 1 

8 0.09 0.08 0.08 0.08 0.07 0.05 0.75 1 

9 0.15 0.13 0.13 0.12 0.12 0.1 0.75 2 

10 0.17 0.15 0.15 0.15 0.13 0.13 0.75 2 

11 0.16 0.15 0.14 0.14 0.14 0.13 0.75 2 

12 0.15 0.14 0.13 0.12 0.12 0.11 0.75 2 

13 0.17 0.15 0.15 0.15 0.14 0.13 0.75 2 

14 0.16 0.16 0.14 0.14 0.14 0.13 0.75 2 

15 0.14 0.14 0.13 0.13 0.13 0.11 0.75 2 

16 0.15 0.14 0.14 0.13 0.12 0.12 0.75 2 

17 0.16 0.15 0.15 0.15 0.14 0.14 0.75 2 

18 0.16 0.16 0.16 0.15 0.14 0.13 0.75 2 

19 0.28 0.24 0.21 0.21 0.2 0.2 0.75 3 

20 0.29 0.25 0.22 0.22 0.2 0.18 0.75 3 

21 0.26 0.21 0.19 0.19 0.15 0.15 0.75 3 

22 0.22 0.17 0.17 0.16 0.16 0.15 0.75 3 

23 0.31 0.25 0.23 0.22 0.2 0.18 0.75 3 

24 0.27 0.25 2.2 0.19 0.17 0.15 0.75 3 

25 0.24 0.19 0.16 0.16 0.15 0.14 0.75 3 

26 0.24 0.19 0.16 0.16 0.15 0.14 0.75 3 

27 0.24 0.19 0.16 0.16 0.15 0.14 0.75 3 

28 0.22 0.16 0.18 0.14 0.14 0.13 0.75 3 
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Table 20. Continued 

29 0.26 0.21 0.19 0.18 0.18 0.16 0.75 3 

30 0.27 0.23 0.21 0.18 0.17 0.17 0.75 3 

31 0.28 0.24 0.21 0.21 0.2 0.2 0.75 3 

32 0.24 0.2 0.18 0.18 0.16 0.14 0.75 3 

33 0.44 0.32 0.32 0.3 0.24 0.23 0.75 4 

34 0.4 0.28 0.26 0.26 0.23 0.21 0.75 4 

35 0.45 0.34 0.33 0.3 0.23 0.21 0.75 4 

36 0.4 0.3 0.29 0.28 0.26 0.25 0.75 4 
37 0.41 0.29 0.27 0.25 0.22 0.21 0.75 4 

38 0.42 0.31 0.28 0.26 0.23 0.22 0.75 4 

39 0.39 0.27 0.25 0.23 0.22 0.21 0.75 4 

40 0.4 0.28 0.25 0.24 0.22 0.2 0.75 4 

41 0.43 0.32 0.27 0.27 0.23 0.22 0.75 4 

42 0.71 0.58 0.47 0.42 0.38 0.37 0.75 5 

43 0.75 0.6 0.52 0.47 0.43 0.41 0.75 5 

44 0.69 0.5 0.46 0.42 0.4 0.37 0.75 5 

45 0.66 0.48 0.44 0.38 0.35 0.33 0.75 5 

46 0.67 0.5 0.5 0.4 0.38 0.36 0.75 5 

47 0.75 0.58 0.47 0.42 0.39 0.37 0.75 5 

48 0.78 0.6 0.57 0.51 0.46 0.45 0.75 5 

49 0.65 0.49 0.42 0.37 0.34 0.33 0.75 5 

50 0.67 0.5 0.46 0.4 0.36 0.35 0.75 5 

51 0.06 0.05 0.05 0.02 0.02 0.02 1 1 

52 0.05 0.06 0.06 0.04 0.03 0.03 1 1 
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APPENDIX F. Example of testing data sets for SVM and ANN 

Table 21. Testing set 

Data 
set 

Sensor-
1 

Sensor-
2 

Sensor-
3 

Sensor-
4 

Sensor-
5 

Sensor-
6 

pipe 
diameter 

leak 
diameter 

1 0.1 0.09 0.09 0.08 0.07 0.05 0.75 1 

2 0.09 0.08 0.09 0.07 0.06 0.06 0.75 1 

3 0.06 0.06 0.05 0.05 0.05 0.03 0.75 1 

4 0.28 0.24 0.22 0.21 0.2 0.2 0.75 3 

5 0.28 0.26 0.24 0.23 0.22 0.2 0.75 3 

6 0.3 0.28 0.25 0.23 0.2 0.2 0.75 3 

7 0.25 0.2 0.19 0.18 0.18 0.16 0.75 3 

8 0.19 0.18 0.18 0.17 0.16 0.15 0.75 3 

9 0.39 0.27 0.25 0.25 0.23 0.22 0.75 4 

10 0.4 0.28 0.25 0.24 0.22 0.22 0.75 4 

11 0.92 0.71 0.66 0.55 0.51 0.5 0.75 5 

12 0.83 0.65 0.55 0.47 0.44 0.43 0.75 5 

13 0.77 0.58 0.51 0.43 0.4 0.38 0.75 5 

14 0.7 0.53 0.44 0.38 0.36 0.34 0.75 5 

15 0.37 0.31 0.3 0.3 0.27 0.28 1 5 

 

 

 

 

 

 

 

 
 



 

103 

REFERENCES 
 
 
[1] NEC110414, “NEC, Texas State partner to collaborate on social infrastructure 
projects: Office of Media Relations: Texas State University,” 08-Jun-2016. [Online]. 
Available: http://www.txstate.edu/news/news_releases/news_archive/2014/November-
2014/NEC110414.html. [Accessed: 10-Sep-2018]. 
 

[2] “WHO | Domestic water quantity, service level and health,” WHO. [Online]. 
Available: http://www.who.int/water_sanitation_health/publications/wsh0302/en/. 
[Accessed: 20-Sep-2018]. 
 

[3] P. R. Hunter, A. M. MacDonald, and R. C. Carter, “Water Supply and Health,” 
PLOS Medicine, vol. 7, no. 11, p. e1000361, Nov. 2010. 
 

[4] “Agricultural Water| Other Uses of Water | Healthy Water | CDC.” [Online]. 
Available: https://www.cdc.gov/healthywater/other/agricultural/index.html. [Accessed: 
09-Oct-2018].  
 

[5] “Handbook of Water and Wastewater Systems Protection - Google Books.” 
[Online].  
 

[6] “1 Introduction | Drinking Water Distribution Systems: Assessing and Reducing 
Risks | The National Academies Press.” [Online]. Available: 
https://www.nap.edu/read/11728/chapter/3#17. [Accessed: 07-Oct-2018]. 
 

[7] “Second Edition Handbook of PE Pipe | HDPE Handbook.” [Online]. Available: 
https://plasticpipe.org/publications/pe-handbook.html. [Accessed: 07-Oct-2018]. 
 

[8]  “Black Snake in the Grass | A\J – Canada’s Environmental Voice.” [Online]. 
Available: https://www.alternativesjournal.ca/energy-and-resources/black-snake-grass. 
[Accessed: 07-Oct-2018].  
 

[9] “Irrigation Engineering: LESSON 15 Underground Pipeline Systems.” [Online]. 
Available: http://ecoursesonline.iasri.res.in/mod/page/view.php?id=124826. [Accessed: 
07-Oct-2018]. 
 
 



 

104 

[10] “Photo Gallery – PVC Conduit.” [Online]. Available: 
http://www.primeconduit.com/photo-gallery-pvc-conduit/. [Accessed: 07-Oct-2018]. 
 

[11] S. Oven, “Leak Detection in Pipelines by the use of State and Parameter 
Estimation”, 2014. 
 

[12] Colombo Andrew F. and Karney Bryan W., “Energy and Costs of Leaky Pipes: 
Toward Comprehensive Picture,” Journal of Water Resources Planning and 
Management, vol. 128, no. 6, pp. 441–450, Nov. 2002. 
 

[13] O. Egeland and J. T. Gravdahl, Modeling and simulation for automatic control, 
Corr., 2. print. Trondheim: Marine Cybernetics AS, 2003. 
 

[14] “Water main breaks close Ventura Boulevard in Studio City [Updated] | L.A. 
NOW | Los Angeles Times.” [Online]. Available: 
http://latimesblogs.latimes.com/lanow/2011/11/two-water-main-breaks-in-studio-city-
area.html. [Accessed: 21-Sep-2018]. 
 

[15] D. Barer, “Billions of gallons of water lost due to leaky pipes,” KXAN, 22-Jul-
2015. [Online]. Available: https://www.kxan.com/news/billions-of-gallons-of-water-lost-
due-to-leaky-pipes/1156467330. [Accessed: 21-Sep-2018]. 
 

[16] U. EPA, “Page Name.” [Online]. Available: 
https://19january2017snapshot.epa.gov/www3/watersense/pubs/fixleak.html. [Accessed: 
21-Sep-2018]. 
 

[17] O. US EPA, “EPA’s 6th Drinking Water Infrastructure Needs Survey and 
Assessment,” US EPA, 30-Mar-2018. [Online]. Available: 
https://www.epa.gov/drinkingwatersrf/epas-6th-drinking-water-infrastructure-needs-
survey-and-assessment. [Accessed: 21-Sep-2018]. 
 

[18] A. Sadeghioon, N. Metje, D. Chapman, and C. Anthony, “SmartPipes: Smart 
Wireless Sensor Networks for Leak Detection in Water Pipelines,” Journal of Sensor and 
Actuator Networks, vol. 3, pp. 64–78, Feb. 2014. 
 
 



 

105 

[19] B. V. Hieu, S. Choi, Y. U. Kim, Y. Park, and T. Jeong, “Wireless transmission of 
acoustic emission signals for real-time monitoring of leakage in underground pipes,” 
KSCE J Civ Eng, vol. 15, no. 5, p. 805, May 2011. 
 

[20] Khulief Y. A., Khalifa A., Mansour R. Ben, and Habib M. A., “Acoustic 
Detection of Leaks in Water Pipelines Using Measurements inside Pipe,” Journal of 
Pipeline Systems Engineering and Practice, vol. 3, no. 2, pp. 47–54, May 2012. 
 

[21] P. Karkulali, H. Mishra, A. Ukil, and J. Dauwels, “Leak detection in gas 
distribution pipelines using acoustic impact monitoring,” in IECON 2016 - 42nd Annual 
Conference of the IEEE Industrial Electronics Society, 2016, pp. 412–416. 
 

[22] X. Cui, Y. Yan, M. Guo, Y. Hu, and X. Han, “Localization of continuous gas 
leaks from a flat-surface structure using an Acoustic Emission sensor array,” in 2016 
IEEE International Instrumentation and Measurement Technology Conference 
Proceedings, 2016, pp. 1–5. 
 

[23] M. Klingajay and T. Jitson, “Real-time Laser Monitoring based on Pipe Detective 
Operation,” vol. 2, no. 6, p. 6, 2008. 
 

[24] “Intelligent System for Condition Monitoring of Underground Pipelines - Sinha - 
2004 - Computer-Aided Civil and Infrastructure Engineering - Wiley Online Library.” 
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8667.2004.00336.x?deniedAccessCustomisedMessage=&userIsAuthenticated=false. 
[Accessed: 20-Sep-2018]. 
 

[25] A. Gautam, R. R. Singh, A. Kumar, and V. Priye, “Architecture of optical sensing 
and monitoring for pipelines using FBG,” in 2016 3rd International Conference on 
Recent Advances in Information Technology (RAIT), 2016, pp. 337–338. 
 

[26] H. Murayama, “Structural health monitoring based on strain distributions 
measured by fiber-optic distributed sensors,” in 2015 Opto-Electronics and 
Communications Conference (OECC), 2015, pp. 1–2. 
 
 
 
 
 



 

106 

[27] “Permanent Leak Detection on Pipes Using a Fibre Optic Based Continuous 
Sensor Technology,” ResearchGate. [Online]. Available: 
https://www.researchgate.net/publication/269133920_Permanent_Leak_Detection_on_Pi
pes_Using_a_Fibre_Optic_Based_Continuous_Sensor_Technology. [Accessed: 20-Sep-
2018]. 
 

[28] S. Eyuboglu, H. Mahdi, and H. Al-Shukri, “DETECTION OF WATER LEAKS 
USING GROUND PENETRATING RADAR,” p. 17. 
 

[29] Z. Liu and Y. Kleiner, “State-of-the-Art Review of Technologies for Pipe 
Structural Health Monitoring,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1987–1992, Jun. 
2012. 
 

[30] M. JayaLakshmi and V. Gomathi, “An enhanced underground pipeline water 
leakage monitoring and detection system using Wireless sensor network,” in 2015 
International Conference on Soft-Computing and Networks Security (ICSNS), 2015, pp. 
1–6. 
 

[31] S. Adsul, A. K. Sharma, and R. G. Mevekari, “Development of leakage detection 
system,” in 2016 International Conference on Automatic Control and Dynamic 
Optimization Techniques (ICACDOT), 2016, pp. 673–677. 
 

[32] I. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation techniques for 
wireless underground communication networks,” Physical Communication, vol. 2, no. 3, 
pp. 167–183, Sep. 2009. 
 

[33] S. Jiang, S. V. Georgakopoulos, and O. Jonah, “RF power harvesting for 
underground sensors,” in Proceedings of the 2012 IEEE International Symposium on 
Antennas and Propagation, 2012, pp. 1–2. 
 

[34] S. Yoon et al., “Subsurface monitoring using low frequency wireless signal 
networks,” in 2012 IEEE International Conference on Pervasive Computing and 
Communications Workshops, 2012, pp. 443–446. 
 

[35]     K. Panjabi et al., “Development and Field Evaluation of a Low-Cost Wireless 
Sensor Network System for Hydrological Monitoring of a Small Agricultural 
Watershed,” Open Journal of Civil Engineering, vol. 08, p. 166, Jun. 2018. 



 

107 

[36] A. Pettersson, J. Nordlander, and S. Gong, “ZigBee-Ready Wireless Water Leak 
Detector,” in 2009 Third International Conference on Sensor Technologies and 
Applications, 2009, pp. 105–108. 
 

[37] Aditya Engineering College Beed, Maharashtra, P. C. H. Chavan, and M. P. V. 
Karande, “Wireless Monitoring of Soil Moisture, Temperature & Humidity Using Zigbee 
in Agriculture,” International Journal of Engineering Trends and Technology, vol. 11, 
no. 10, pp. 493–497, May 2014. 
 

[38] I. Jawhar, N. Mohamed, and K. Shuaib, “A framework for pipeline infrastructure 
monitoring using wireless sensor networks,” in 2007 Wireless Telecommunications 
Symposium, 2007, pp. 1–7. 
 

[39] G. Dang and X. Cheng, “Application of wireless sensor network in monitoring 
system based on Zigbee,” in 2014 IEEE Workshop on Advanced Research and 
Technology in Industry Applications (WARTIA), 2014, pp. 181–183. 
 

[40] J. Mashford, D. D. Silva, D. Marney, and S. Burn, “An Approach to Leak 
Detection in Pipe Networks Using Analysis of Monitored Pressure Values by Support 
Vector Machine,” in 2009 Third International Conference on Network and System 
Security, 2009, pp. 534–539. 
 

[41] M. T. Nasir, M. Mysorewala, L. Cheded, B. Siddiqui, and M. Sabih, 
“Measurement error sensitivity analysis for detecting and locating leak in pipeline using 
ANN and SVM,” in 2014 IEEE 11th International Multi-Conference on Systems, Signals 
Devices (SSD14), 2014, pp. 1–4. 
 

[42] S. Porwal, S. A. Akbar, and S. C. Jain, “Leakage detection and prediction of 
location in a smart water grid using SVM classification,” in 2017 International 
Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 
2017, pp. 3288–3292. 
 

[43] O. US EPA, “EPANET,” US EPA, 24-Jun-2014. [Online]. Available: 
https://www.epa.gov/water-research/epanet. [Accessed: 08-Oct-2018]. 
 

[44] “Common Types of Pressure Sensors.” [Online]. Available: 
https://www.thomasnet.com/articles/instruments-controls/pressure-sensors. [Accessed: 
23-Sep-2018]. 



 

108 

[45] “Arduino - Home.” [Online]. Available: https://www.arduino.cc/. [Accessed: 23-
Sep-2018]. 
 

[46] “Arduino Mega 2560 R3 - DEV-11061 - SparkFun Electronics.” [Online]. 
Available: https://www.sparkfun.com/products/11061. [Accessed: 08-Oct-2018]. 
 

[47] B. Uddin, A. Imran, and M. A. Rahman, “Detection and locating the point of fault 
in distribution side of power system using WSN technology,” in 2017 4th International 
Conference on Advances in Electrical Engineering (ICAEE), 2017, pp. 570–574. 
 

[48] T. Kumar and P. B. Mane, “ZigBee topology: A survey,” in 2016 International 
Conference on Control, Instrumentation, Communication and Computational 
Technologies (ICCICCT), 2016, pp. 164–166. 
 

[49] “How XBee devices communicate.” [Online]. Available: 
https://www.digi.com/resources/documentation/Digidocs/90001456 
13/concepts/c_how_xbees_communicate.htm. [Accessed: 23-Sep-2018]. 
 

[50] “XBee Buying Guide - SparkFun Electronics.” [Online]. Available: 
https://www.sparkfun.com/pages/xbee_guide. [Accessed: 08-Oct-2018]. 
 

[51] “Data Processing | Meaning, Definition, Steps, Types and Methods,” Planning 
TankTM, 15-Jun-2017.  
 

[52] “About Feature Scaling and Normalization,” Dr. Sebastian Raschka, 11-Jul-2014. 
[Online]. Available: 
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html. [Accessed: 04-
Oct-2018]. 
 

[53] “Z-Score: Definition, Formula and Calculation,” Statistics How To. [Online]. 
Available: https://www.statisticshowto.datasciencecentral.com/probability-and-
statistics/z-score/. [Accessed: 04-Oct-2018]. 
 

[54] Sifium, “Types of classification algorithms in Machine Learning,” Medium, 28-
Feb-2017.  
 



 

109 

[55] L. Dormehl, “What is an artificial neural network? Here’s everything you need to 
know,” Digital Trends, 13-Sep-2018. [Online]. Available: 
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/. [Accessed: 
04-Oct-2018]. 
 

[56] F. Yang, Water Leak Detection and Localization Using Multi-sensor Data Fusion. 
2012. 
 

[57] M. T. Hagan, Neural Network DesignPaperback. Martin Hagan, 2002. 
 

[58] “Implementing SVM and Kernel SVM with Python’s Scikit-Learn,” Stack Abuse, 
17-Apr-2018. [Online]. Available: https://stackabuse.com/implementing-svm-and-kernel-
svm-with-pythons-scikit-learn/. [Accessed: 13-Sep-2018]. 
 

[59] J. Brownlee, “Support Vector Machines for Machine Learning,” Machine 
Learning Mastery, 19-Apr-2016. 
 

[60] “Kernel Functions for Machine Learning Applications – César Souza.”. 
 

[61] J. Brownlee, “What is a Confusion Matrix in Machine Learning,” Machine 
Learning Mastery, 17-Nov-2016. 
 

[62]    “Pipe Pressure Drop Calculations Formula, Theory and Equations.” [Online]. 
Available: https://www.pipeflow.com/pipe-pressure-drop-calculations. [Accessed: 07-
Nov-2018]. 
 

[63]    “On-Line Friction Piping Loss.” [Online]. Available: 
http://www.freecalc.com/fricfram.htm. [Accessed: 07-Nov-2018]. 


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ABSTRACT
	1. INTRODUCTION
	1.1 Background
	1.2 The State of the World’s Water Distribution System
	1.3 Leak Detection Methods
	1.4 Scope and Emphasis
	1.5 Outline of Thesis

	2. LITERATURE SURVEY
	2.1 Signal Propagation Technique for Wireless Sensor Network
	2.2 Sensor Selection for Leak Detection
	2.3 Data Acquisition System Design
	2.4 Data Classification Technique Selection

	3. PROPOSED SYSTEM
	3.1 Pipeline Model
	3.1.1 Pressure Sensor
	3.1.2 Leak Simulation

	3.2 Data Acquisition
	3.2.1 Arduino
	3.2.2 ZigBee (XBee)

	3.3 Data Processing
	3.3.1 Exponential Curve Fitting
	3.3.1.1 Least Square Regression

	3.3.2 Feature Scaling
	3.3.2.1 Min-max normalization
	3.3.2.2 Z-score normalization
	3.3.2.3 Decimal scaling


	3.4 Data Classification Algorithm
	3.4.1 Multi-layer Perceptron (MLP) classifiers
	3.4.1.1 Neuron Structure
	3.4.1.2 Layers and Network

	3.4.2 Support Vector Machine (SVM)
	3.4.2.1 Linear Kernel
	3.4.2.2 Polynomial Kernel
	3.4.2.3 Gaussian Kernel
	3.4.2.4 Hyperbolic Tangent (Sigmoid) Kernel
	3.4.2.5 Confusion Matrix



	4. EXPERIMENTAL ANALYSIS
	4.1 Pressure Drop Analysis
	4.1.1 Leak between sensor 1 & 2 with leak size of 0.5-inch
	4.1.2 Leak between sensor 3 & 4 with leak size of 0.5-inch
	4.1.3 Leak between sensor 5 & 6 with leak size of 0.5-inch
	4.1.4 Other sizes of a leak between sensors 1 and 2

	4.2 Exponential Curve Fit Analysis

	5. RESULTS
	5.1 Separating leak and non-leak dataset
	5.2 Measuring the right distance between sensors
	5.3 Accuracy with different leak sizes
	5.4 Overall leak location identification accuracy
	5.5 Leak size prediction accuracy using SVM
	5.6 Leak size prediction accuracy using MLP neural network
	5.7 Comparison between SVM and MLP classifier

	6. CONCLUSIONS
	6.1 Discussion
	6.2 Summary
	6.3 Future works

	APPENDIX SECTION
	REFERENCES

