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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS

TO SYSTEMS OF NONLINEAR HAMMERSTEIN INTEGRAL

EQUATIONS

XIYOU CHENG, ZHAOSHENG FENG

Abstract. This article studies the existence and multiplicity of component-

wise positive solutions for systems of nonlinear Hammerstein integral equa-
tions. In this system one nonlinear term is uniformly superlinear or uniformly

sublinear, and the other is locally uniformly superlinear or locally uniformly

sublinear. Discussions are undertaken by means of the fixed point index
theory in cones. As applications, we show the existence and multiplicity of

component-wise positive solutions for systems of second-order ordinary dif-
ferential equations with the Dirichlet boundary value conditions and mixed

boundary value conditions, respectively.

1. Introduction

We consider the nonlinear Hammerstein integral equations:

u(x) =

∫
Ω

k1(x, y)f1(y, u(y), v(y)) dy, x ∈ Ω,

v(x) =

∫
Ω

k2(x, y)f2(y, u(y), v(y)) dy, x ∈ Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain, ki ∈ C(Ω×Ω,R+), fi ∈ C(Ω×R+×R+,R+)
(i = 1, 2) and R+ = [0,+∞). In the past decades, considerable attention has been
drawn to the study of the existence of nontrivial solutions of nonlinear Hammerstein
integral equations [2, 3, 4, 12, 13, 14, 16], especially in component-wise positive
solutions for system (1.1) [11, 15, 18, 19, 20, 22, 23, 24]. A survey of the existing
results in the literature was presented in [18]. The existence of nontrivial solutions
for systems of perturbed Hammerstein integral equations and Hammerstein integral
equations with singularities was established in [1, 12, 11, 15, 17, 18, 19, 23]. For
the systems of second-order ordinary differential equations, some results on the
existence and multiplicity of component-wise positive solutions were derived by
applying the fixed point index theory in cones [5, 7, 6, 8, 9].

In this article, we are concerned with the existence and multiplicity of component-
wise positive solutions for system (1.1), in which one nonlinear term is uniformly
superlinear or uniformly sublinear and the other is locally uniformly superlinear or
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locally uniformly sublinear. In order to make the paper sufficiently self-contained
and present our discussions in a straightforward manner, let us recall some basic
definitions related to system (1.1).

Definition 1.1. Let C+(Ω) = {u ∈ C(Ω)|u(x) > 0, ∀x ∈ Ω}. We say that (u, v) is
one positive solution to system (1.1), if (u, v) ∈ [C+(Ω)×C+(Ω)]\{(0, 0)} satisfies
system (1.1). We say that (u, v) is one component-wise positive solution to system
(1.1), if (u, v) ∈ [C+(Ω)\{0}]× [C+(Ω)\{0}] satisfies system (1.1).

In this study, we suppose that the kernel functions ki(x, y) (i = 1, 2) satisfy the
following three conditions:

(i) ki(x, y) = ki(y, x), for all x, y ∈ Ω;
(ii) there exist pi ∈ C(Ω) and 0 6 pi(x) 6 1 such that ki(x, y) > pi(x)ki(z, y),

for all x, y, z ∈ Ω; and
(iii) maxx∈Ω

∫
Ω
ki(x, y)pi(y) dy is positive.

Proposition 1.2. Let Bi : C(Ω)→ C(Ω) be defined by

Biu(x) =

∫
Ω

ki(x, y)u(y) dy (i = 1, 2).

Then the spectral radius of Bi, denoted by r(Bi), is positive.

Proof. In view of definition of Bi and the given conditions (i)–(iii) about ki, we
have

Bipi(x) =

∫
Ω

ki(x, y)pi(y) dy > pi(x)

∫
Ω

ki(z, y)pi(y) dy, x ∈ Ω,

Bipi(x) > pi(x)‖Bipi‖, x ∈ Ω,

where ‖Bipi‖ = maxx∈Ω

∫
Ω
ki(x, y)pi(y) dy > 0.

By mathematical induction, we see that Bni pi(x) > pi(x)‖Bipi‖n for x ∈ Ω and
n ∈ N, thus ‖Bni ‖ > ‖Bipi‖n. Using the formula of spectral radius, one deduces
that

r(Bi) = lim
n→∞

‖Bni ‖1/n > ‖Bipi‖ > 0.

�

Definition 1.3. Suppose that f1 and f2 in system (1.1) satisfy the following two
hypotheses, respectively:

(H1)

lim sup
u→0+

max
x∈Ω

f1(x, u, v)

u
<

1

r(B1)
< lim inf

u→+∞
min
x∈Ω

f1(x, u, v)

u

uniformly w.r.t. v ∈ R+;
(H2)

lim inf
v→0+

min
x∈Ω

f2(x, u, v)

v
>

1

r(B2)
> lim sup

v→+∞
max
x∈Ω

f2(x, u, v)

v

uniformly w.r.t. u ∈ [0,M ], where M ∈ R+ is arbitrary.

Then we say that f1 is uniformly superlinear at both ends (i.e., u = 0,+∞) with
respect to v, and that f2 is locally uniformly sublinear at both ends (i.e., v = 0,+∞)
with respect to u.

Definition 1.4. Suppose that f1 and f2 in system (1.1) satisfy the following two
hypotheses, respectively:
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(H3)

lim inf
u→0+

min
x∈Ω

f1(x, u, v)

u
>

1

r(B1)
> lim sup

u→+∞
max
x∈Ω

f1(x, u, v)

u

uniformly w.r.t. v ∈ R+;
(H4)

lim sup
v→0+

max
x∈Ω

f2(x, u, v)

v
<

1

r(B2)
< lim inf

v→+∞
min
x∈Ω

f2(x, u, v)

v

uniformly w.r.t. u ∈ [0,M ], where M ∈ R+ is arbitrary.

Then we say that f1 is uniformly sublinear at both ends (i.e., u = 0,+∞) with
respect to v, and that f2 is locally uniformly superlinear at both ends (i.e., v =
0,+∞) with respect to u.

We now summarize our main results regarding the case that the nonlinear term
is so-called “super-sublinear”.

Theorem 1.5. Assume that f1 is uniformly superlinear at u = 0 and u = +∞ with
respect to v, and that f2 is locally uniformly sublinear at v = 0 and v = +∞ with
respect to u. Then system (1.1) has at least one component-wise positive solution.

In particular, when f1 and f2 are independent of v and u, respectively, Theorem
1.5 incorporates into the well-known results on the nonlinear Hammerstein integral
equations.

Corollary 1.6 ([21]). If h1, h2 ∈ C(Ω × R+,R+), and satisfy the following two
conditions:

(H1*)

lim sup
u→0+

max
x∈Ω

h1(x, u)

u
<

1

r(B1)
< lim inf

u→+∞
min
x∈Ω

h1(x, u)

u

(i.e., superlinear case);
(H2*)

lim inf
u→0+

min
x∈Ω

h2(x, u)

u
>

1

r(B2)
> lim sup

u→+∞
max
x∈Ω

h2(x, u)

u

(i.e., sublinear case),

then the integral equation

u(x) =

∫
Ω

ki(x, y)hi(y, u(y)) dy, x ∈ Ω for i = 1, 2,

has at least one positive solution.

The “sub-superlinear” case is different from the “super-sublinear” case, since the
uniformly sublinear term f1 needs to be controlled at infinity for a priori estimates
of the solution component u. For this purpose, we impose the condition (H5) in
the following theorem.

Theorem 1.7. Assume that f2 is locally uniformly superlinear at v = 0 and v =
+∞ with respect to u, and f1 is uniformly sublinear at u = 0 and u = +∞ with
respect to v and satisfies

(H5) lim supv→+∞maxx∈Ω f1(x, u, v) = g(u) uniformly with respect to u ∈ [0,M ]
(for all M > 0), where g is a locally bounded function.

Then system (1.1) has at least one component-wise positive solution.
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From the proofs of Theorems 1.5 and 1.7 presented in Section 3, it is not difficult
to derive the following results immediately on the mixed case of “super-superlinear”
and “sub-sublinear”.

Theorem 1.8. Assume that f1 is uniformly superlinear at u = 0 and u = +∞
with respect to v, and f2 is locally uniformly superlinear at v = 0 and v = +∞ with
respect to u. Then system (1.1) has at least one component-wise positive solution.

Theorem 1.9. Assume that f1 is uniformly sublinear at u = 0 and u = +∞
with respect to v and satisfies condition (H5), and f2 is locally uniformly sublinear
at v = 0 and v = +∞ with respect to u. Then system (1.1) has at least one
component-wise positive solution.

Definition 1.10. For u∗, v∗ ∈ C(Ω), (u∗, v∗) is said to be a strict upper solution
of system (1.1), provided it satisfies

u∗(x) >

∫
Ω

k1(x, y)f1(y, u∗(y), v∗(y)) dy, x ∈ Ω,

v∗(x) >

∫
Ω

k2(x, y)f2(y, u∗(y), v∗(y)) dy, x ∈ Ω.

(1.2)

Otherwise, (u∗, v∗) ∈ C(Ω)× C(Ω) is called a strict lower solution of system (1.1),
provided it satisfies the reverse of the above inequalities.

Theorem 1.11. Suppose that f1 and f2 satisfy the following three conditions:

(H6) fi(x, u, v) 6 fi(x, u, v) as x ∈ Ω, and u 6 u and v 6 v, i = 1, 2;

(H7) lim infu→0+ minx∈Ω
f1(x,u,0)

u > 1
r(B1) , and lim infv→0+ minx∈Ω

f2(x,0,v)
v >

1
r(B2) ;

(H8) lim infu→+∞minx∈Ω
f1(x,u,0)

u > 1
r(B1) and lim infv→+∞minx∈Ω

f2(x,0,v)
v >

1
r(B2) .

If system (1.1) has a strict upper solution (u∗, v∗), then system (1.1) has at least
two component-wise positive solutions.

As mentioned in [12, 13, 16], it is usually difficult to find a strict upper solution
for such kind of systems. For the sake of applications to the associated systems of
ordinary differential equations, we give the following useful lemma.

Lemma 1.12. If there exist constants M1,M2 > 0 such that f1(x, u, v) < M1 and
f2(x, u, v) < M2 for all (x, u, v) ∈ Ω× [0, ‖

∫
Ω
k1(·, y) dy‖M1]× [0, ‖

∫
Ω
k2(·, y) dy‖ ·

M2], then system (1.1) has a strict upper solution.

Proof. Let

u(x) =

∫
Ω

M1k1(x, y) dy, x ∈ Ω,

v(x) =

∫
Ω

M2k2(x, y) dy, x ∈ Ω.

(1.3)

It follows that ‖u‖ 6 ‖
∫

Ω
k1(·, y) dy‖M1 and ‖v‖ 6 ‖

∫
Ω
k2(·, y) dy‖M2. Hence,

f1(x, u(x), v(x)) < M1 and f2(x, u(x), v(x)) < M2 for x ∈ Ω.
We choose (u∗, v∗) = (u + ε, v + ε), where ε > 0 is sufficiently small such that

f1(x, u(x) + ε, v(x) + ε) < M1 and f2(x, u(x) + ε, v(x) + ε) < M2 for x ∈ Ω. Thus,
it is easy to see that (u∗, v∗) is a strict upper solution of system (1.1). �



EJDE-2019/52 NONLINEAR HAMMERSTEIN INTEGRAL EQUATIONS 5

This article is organized as follows. In Section 2, we present some preliminary
results on the fixed point index. In Section 3, we show the proofs of our main
results. Section 4 is dedicated to the existence and multiplicity of component-wise
positive solutions to systems of second-order ordinary differential equations with
the Dirichlet boundary conditions or mixed boundary conditions.

2. Preliminaries

Let C(Ω) be a Banach space with the maximum norm ‖u‖ = maxx∈Ω |u(x)|, and

C+(Ω) be a total cone of C(Ω). Choose bounded domains Ωi ⊂ Ω (i = 1, 2) such
that

δi := min
x∈Ωi

pi(x) > 0,

which is feasible by the hypotheses of pi. We now construct sub-cones and subsets
as follows:

Ki =
{
u ∈ C+(Ω)|u(x) > δi‖u‖, ∀ x ∈ Ωi

}
(i = 1, 2),

Kri = {u ∈ Ki| ‖u‖ < ri} , ∂Kri = {u ∈ Ki| ‖u‖ = ri}, ∀ri > 0 .

From Proposition 1.2 and the Krein-Rutman theorem (see [17]), we know that
r(Bi) is one of eigenvalues for Bi and there exist positive eigenfunctions correspond-
ing to r(Bi).

Lemma 2.1. Let ψi(x) be the positive eigenfunctions of Bi corresponding to r(Bi)
with

∫
Ω
ψi(x) dx = 1. Then the following three statements are true.

(a)
∫

Ω
ψi(x)u(x) dx 6 ‖u‖, for all u ∈ Ki.

(b) ψi(x) > pi(x)‖ψi‖, for all x ∈ Ω.
(c) There exist constants ci > 0 such that

∫
Ω
ψi(x)u(x) dx > ci‖u‖, for all

u ∈ Ki.

Proof. (a) Obviously,∫
Ω

ψi(x)u(x) dx 6
∫

Ω

ψi(x) dx · ‖u‖ = ‖u‖.

(b) Notice that ki(x, y) > pi(x)ki(z, y), for all x, y, z ∈ Ω. So it is straightforward
to obtain ∫

Ω

ki(x, y)ψi(y) dy >
∫

Ω

pi(x)ki(z, y)ψi(y) dy, ∀x, z ∈ Ω ,

r(Bi)ψi(x) > r(Bi)pi(x)ψi(z), ∀x, z ∈ Ω.

This implies that ψi(x) > pi(x)‖ψi‖, ∀x ∈ Ω.
(c) It follows from (b) and the definition of Ki immediately. �

For τ ∈ I := [0, 1] and u, v ∈ C+(Ω), we define the mappings T τ1 (·, ·), T τ2 (·, ·) :
C+(Ω)× C+(Ω)→ C+(Ω) and T τ (·, ·) : C+(Ω)× C+(Ω)→ C+(Ω)× C+(Ω) by

T τ1 (u, v)(x) =

∫
Ω

k1(x, y)[τf1(y, u(y), v(y)) + (1− τ)f1(y, u(y), 0)] dy,

T τ2 (u, v)(x) =

∫
Ω

k2(x, y)[τf2(y, u(y), v(y)) + (1− τ)f2(y, 0, v(y))] dy,

T τ (u, v)(x) = (T τ1 (u, v)(x), T τ2 (u, v)(x)).

Lemma 2.2. T τ : K1 ×K2 → K1 ×K2 is completely continuous.
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Proof. For (u, v) ∈ K1 ×K2, we show that T τ (u, v) ∈ K1 ×K2, i.e., T τ1 (u, v) ∈ K1

and T τ2 (u, v) ∈ K2. It follows from the definitions of ki(x, y) that

T τ1 (u, v)(x) =

∫
Ω

k1(x, y)[τf1(y, u(y), v(y)) + (1− τ)f1(y, u(y), 0)] dy

> p1(x)

∫
Ω

k1(z, y)[τf1(y, u(y), v(y)) + (1− τ)f1(y, u(y), 0)] dy

= p1(x)T τ1 (u, v)(z), ∀x, z ∈ Ω,

which implies that T τ1 (u, v)(x) > δ1‖T τ1 (u, v)‖ for x ∈ Ω1. Similarly, one can obtain

T τ2 (u, v)(x) > δ2‖T τ2 (u, v)‖, x ∈ Ω2.

Hence, T τ (K1 × K2) ⊂ K1 × K2. By Arzelà-Ascoli theorem, we know that T τ :
K1 ×K2 → K1 ×K2 is completely continuous. �

Lemma 2.3 ([1, 12, 25]). Let E be a Banach space and P ⊂ E be a closed convex
cone in E. For r > 0, let Pr = {u ∈ P | ‖u‖ < r} and ∂Pr = {u ∈ P | ‖u‖ =
r}. Suppose that A : P → P is completely continuous. Then the following two
statements are true.

(I) If µAu 6= u for every u ∈ ∂Pr and µ ∈ (0, 1], then i(A,Pr, P ) = 1.
(II) Suppose that the mapping A satisfies the following two conditions:

(a) infu∈∂Pr
‖Au‖ > 0; and

(b) µAu 6= u for every u ∈ ∂Pr and µ > 1.

Then i(A,Pr, P ) = 0.

Lemma 2.4 ([6, 8]). Let X be a real Banach space, Pi ⊂ X be a closed convex
cone, Wi be a bounded open subset of X with the boundary ∂Wi (i = 1, 2), and
P = P1 × P2 and W = W1 × W2. Assume that T : P ∩ W → P is completely
continuous, and that there exist compactly continuous mappings Ai : Pi ∩Wi → Pi
and H : (P ∩W )× [0, 1]→ P such that

(a) H(·, 1) = T and H(·, 0) = A, where A(u, v) := (A1u,A2v) and (u, v) ∈
P ∩W ;

(b) Aiui 6= ui, for all ui ∈ Pi ∩ ∂Wi; and
(c) H(w, τ) 6= w, for all (w, τ) ∈ (P ∩ ∂W )× (0, 1].

Then we have

i(T, P ∩W,P ) = i(A1, P1 ∩W1, P1) · i(A2, P2 ∩W2, P2).

3. Proofs of main results

Proof of Theorem 1.5. Choose a bounded open set D = (KR1\Kr1) × (KR2\Kr2)
in the product cone K1 ×K2, where Rj > rj > 0 (j = 1, 2) are to be determined
such that the family of operators {T τ}τ∈I satisfies the sufficient condition of the
homotopy invariance of the fixed point index on ∂D. We will in turn determine
r1, R1, r2 and R2 in the following process.

(A) From the uniformly superlinear assumption on f1 at u = 0, there are ε ∈
(0, 1/r(B1)) and r1 > 0 such that

τf1(x, u, v) + (1− τ)f1(x, u, 0) 6 (1/r(B1)− ε)u, (3.1)

for all x ∈ Ω, (u, v) ∈ [0, r1]× R+. We can obtain

µT τ1 (u, v) 6= u, ∀µ ∈ (0, 1] and (u, v) ∈ ∂Kr1 ×K2. (3.2)
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Otherwise, there exist µ0 ∈ (0, 1] and (u0, v0) ∈ ∂Kr1×K2 such that µ0T
τ
1 (u0, v0) =

u0. In combination with (3.1), it follows that

u0(x) 6 T τ1 (u0, v0)(x) 6
∫

Ω

k1(x, y)(1/r(B1)− ε)u0(y) dy.

Multiplying both sides of this inequality by ψ1(x) and integrating it on Ω yields∫
Ω

u0(x)ψ1(x) dx 6 [1− r(B1)ε]

∫
Ω

u0(y)ψ1(y) dy. (3.3)

Since
∫

Ω
u0(x)ψ1(x)dx > 0 and r(B1) > 0, by (3.3) it gives 1 6 1 − r(B1)ε. This

apparently leads to a contradiction.

(B) Because of the uniformly superlinear hypothesis on f1 at u = +∞, there exist
ε > 0 and m > 0 such that

τf1(x, u, v) + (1− τ)f1(x, u, 0) > (1/r(B1) + ε)u, (3.4)

for all x ∈ Ω, (u, v) ∈ [m,+∞)× R+. So we have

τf1(x, u, v) + (1− τ)f1(x, u, 0) > (1/r(B1) + ε)u− C1, (3.5)

for all x ∈ Ω, (u, v) ∈ R+ × R+, where C1 = (1/r(B1) + ε)m.
Then there exists an R1 > r1 such that

µT τ1 (u, v) 6= u and inf
u∈∂KR1

‖T τ1 (u, v)‖ > 0, (3.6)

for all µ > 1, (u, v) ∈ ∂KR1
×K2.

If there exist (u0, v0) ∈ K1 ×K2 and µ0 > 1 such that u0 = µ0T
τ
1 (u0, v0), from

(3.5) we deduce that

u0(x) > T τ1 (u0, v0)(x) >
∫

Ω

k1(x, y)(1/r(B1) + ε)u0(y) dy − C.

It follows that∫
Ω

u0(x)ψ1(x) dx > (1 + r(B1)ε)

∫
Ω

u0(y)ψ1(y) dy − C,

which yields ∫
Ω

u0(x)ψ1(x) dx 6
C

r(B1)ε
.

In view of Lemma 2.1 (c), we obtain

‖u0‖ 6
C

c1r(B1)ε
=: R∗. (3.7)

Thus, when R > R∗, u 6= µT τ1 (u, v) holds for all (u, v) ∈ ∂KR ×K2 and µ > 1. In
addition, if R > m/δ1, by (3.4) we know that for all (u, v) ∈ ∂KR ×K2, it holds

‖T τ1 (u, v)‖ >
∫

Ω

T τ1 (u, v)(x)ψ1(x) dx

>
∫

Ω

∫
Ω1

k1(y, x)(1/r(B1) + ε)u(y) dy ψ1(x)dx

> (1 + r(B1)ε)

∫
Ω1

u(y)ψ1(y) dy

> (1 + r(B1)ε)mes(Ω1)δ2
1‖ψ1‖R.
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That is,

inf
u∈∂KR

‖T τ1 (u, v)‖ > 0.

Hence, we choose R1 > max {r1, R
∗,m/δ1}.

(C) Based on the locally uniformly sublinear assumption on f2 at v = 0, there exist
ε > 0 and r2 > 0 such that

τf2(x, u, v) + (1− τ)f2(x, 0, v) > (1/r(B2) + ε)v, (3.8)

for all x ∈ Ω, (u, v) ∈ [0, R1]× [0, r2]. Then we have

µT τ2 (u, v) 6= v and inf
v∈∂Kr2

‖T τ2 (u, v)‖ > 0, (3.9)

for all µ > 1, (u, v) ∈ KR1
× ∂Kr2 .

(D) Given the locally uniformly sublinear hypothesis on f2 at v = +∞, there exist
ε ∈ (0, 1/r(B2)), n > 0 and C > 0 such that

τf2(x, u, v)+(1−τ)f2(x, 0, v) 6 (1/r(B2)−ε)v, ∀ x ∈ Ω, (u, v) ∈ [0, R1]× [n,+∞)
(3.10)

and

τf2(x, u, v) + (1− τ)f2(x, 0, v) 6 (1/r(B2)− ε)v + C, (3.11)

for all x ∈ Ω, (u, v) ∈ [0, R1]× R+.
As we did in the discussion of (3.7), one can prove that if v0 = µ0T

τ
2 (u0, v0) for

(u0, v0) ∈ KR1
×K2 and µ0 ∈ (0, 1], then

‖v0‖ 6 R′
def
=

C

c2r(B2)ε
. (3.12)

Hence, we take R2 > max{r2, R
′}, and have

µT τ2 (u, v) 6= v, ∀µ ∈ (0, 1] and (u, v) ∈ KR1
× ∂KR2

. (3.13)

Now, we choose an open set D = (KR1\Kr1)×(KR2\Kr2). By using (3.2), (3.6),
(3.9) as well as (3.13), we see that {T τ}τ∈I satisfies the sufficient conditions for the
homotopy invariance of the fixed point index on ∂D. By virtue of Lemmas 2.3 and
2.4, we have

i(T 1, D,K1 ×K2) =

2∏
j=1

i(T 0
j ,KRj

\Krj ,Kj)

=

2∏
j=1

[i(T 0
j ,KRj

,Kj)− i(T 0
j ,Krj ,Kj)]

= (0− 1)× (1− 0) = −1.

Consequently, system (1.1) has at least one component-wise positive solution. �

Proof of Theorem 1.7. Similar to the arguments described in the proof of Theorem
1.5, we separate our discussions into four steps and determine r1, R1, r2, R2 one by
one.

Step 1. Given the uniformly sublinear assumption on f1 at u = 0, there are ε > 0
and r1 > 0 such that

τf1(x, u, v) + (1− τ)f1(x, u, 0) > (1/r(B1) + ε)u, (3.14)
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for all x ∈ Ω, (u, v) ∈ [0, r1]× R+. We can obtain

µT τ1 (u, v) 6= u, inf
u∈∂Kr1

‖T τ1 (u, v)‖ > 0, ∀µ > 1, (u, v) ∈ ∂Kr1 ×K2. (3.15)

Otherwise, suppose that there exist µ0 > 1 and (u0, v0) ∈ ∂Kr1 ×K2 such that

µ0T
τ
1 (u0, v0) = u0.

It follows from (3.14) that

u0(x) > T τ1 (u0, v0)(x) >
∫

Ω

k1(x, y)(1/r(B1) + ε)u0(y) dy.

Multiplying both sides of this inequality by ψ1(x) and integrating it on Ω, we obtain∫
Ω

u0(x)ψ1(x) dx > [1 + r(B1)ε]

∫
Ω

u0(y)ψ1(y) dy. (3.16)

Since
∫

Ω
u0(x)ψ1(x)dx > 0 and r(B1) > 0, by (3.16) it gives 1 > 1 + r(B1)ε, which

is obviously a contradiction.
By (3.14) we know that for all (u, v) ∈ ∂Kr1 ×K2, it holds

‖T τ1 (u, v)‖ >
∫

Ω

T τ1 (u, v)(x)ψ1(x) dx

>
∫

Ω

∫
Ω

k1(y, x)(1/r(B1) + ε)u(y) dy ψ1(x)dx

> (1 + r(B1)ε)

∫
Ω

u(y)ψ1(y) dy

> c1[1 + r(B1)ε]r1.

Clearly, this implies
inf

u∈∂Kr1

‖T τ1 (u, v)‖ > 0.

Step 2. Under the uniformly sublinear hypothesis on f1 at u = +∞ and condition
(H5), there exist ε ∈ (0, 1/r(B1)), m > 0 and C > 0 such that

τf1(x, u, v) + (1− τ)f1(x, u, 0) 6 (1/r(B1)− ε)u, (3.17)

for all x ∈ Ω, (u, v) ∈ [m,+∞)× R+, and

τf1(x, u, v) + (1− τ)f1(x, u, 0) 6 (1/r(B1)− ε)u+ C, (3.18)

for all x ∈ Ω, (u, v) ∈ R+ × R+.
Using (3.18) and processing in like manner as we did in the discussion of (3.7),

one can see that if u0 = µ0T
τ
1 (u0, v0) for (u0, v0) ∈ K1 ×K2 and µ0 ∈ (0, 1], then

‖u0‖ 6 R∗ =
C

c1r(B1)ε
. (3.19)

Choosing R1 > max{r1, R
∗}, we then obtain

µT τ1 (u, v) 6= u, ∀µ ∈ (0, 1] and (u, v) ∈ ∂KR1
×K2. (3.20)

Step 3. By the locally uniformly superlinear assumption on f2 at v = 0, there are
ε ∈ (0, 1/r(B2)) and r2 > 0 such that

τf2(x, u, v) + (1− τ)f2(x, 0, v) 6 (1/r(B2)− ε)v, (3.21)

for all x ∈ Ω, (u, v) ∈ [0, R1]× [0, r2].
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We claim that

µT τ2 (u, v) 6= v, ∀µ ∈ (0, 1] and (u, v) ∈ KR1
× ∂Kr2 . (3.22)

Otherwise, there exist µ0 ∈ (0, 1] and (u0, v0) ∈ KR1
×∂Kr2 so that µ0T

τ
2 (u0, v0) =

v0. In combination with (3.21), it follows that

v0(x) 6 T τ2 (u0, v0)(x) 6
∫

Ω

k2(x, y)(1/r(B2)− ε)v0(y) dy.

It follows that ∫
Ω

v0(x)ψ2(x) dx 6 (1− r(B2)ε)

∫
Ω

v0(y)ψ2(y) dy. (3.23)

Since
∫

Ω
v0(x)ψ2(x)dx > 0 and r(B2) > 0, it follows from (3.23) that 1 6 1−r(B2)ε,

which yields a contradiction.

Step 4. By utilizing the locally uniformly superlinear hypothesis on f2 at v = +∞,
there exist ε > 0 and n > 0 such that

τf2(x, u, v) + (1− τ)f2(x, 0, v) > (1/r(B2) + ε)v, (3.24)

for all x ∈ Ω, (u, v) ∈ [0, R1]× [n,+∞). It gives

τf2(x, u, v) + (1− τ)f2(x, 0, v) > (1/r(B2) + ε)v − C2, (3.25)

for all x ∈ Ω, (u, v) ∈ [0, R1]× R+, where C2 = (1/r(B2) + ε)n.
We now prove that there exists an R2 > r2 such that

µT τ2 (u, v) 6= v and inf
v∈∂KR2

‖T τ2 (u, v)‖ > 0, (3.26)

for all µ > 1, (u, v) ∈ KR1
× ∂KR2

. If there are (u0, v0) ∈ KR1
×K2 and µ0 > 1

such that v0 = µ0T
τ
2 (u0, v0), then it follows from (3.25) that

v0(x) > T τ2 (u0, v0)(x) >
∫

Ω

k2(x, y)(1/r(B2) + ε)v0(y) dy − C. (3.27)

Moreover, ∫
Ω

v0(x)ψ2(x) dx > (1 + r(B2)ε)

∫
Ω

v0(y)ψ2(y) dy − C.

It further leads to ∫
Ω

v0(x)ψ2(x) dx 6
C

r(B2)ε
.

In view of Lemma 2.1 (c), we know that

‖v0‖ 6 R′ =
C

c2r(B2)ε
. (3.28)

When R > R′, v 6= µT τ2 (u, v) holds for all (u, v) ∈ KR1
× ∂KR and µ > 1. In

addition, if R > n/δ2, then by (3.24) we know that for all (u, v) ∈ KR1 × ∂KR, it
holds

‖T τ2 (u, v)‖ >
∫

Ω

T τ2 (u, v)(x)ψ2(x) dx

>
∫

Ω

∫
Ω2

k2(y, x)(1/r(B2) + ε)v(y) dy ψ2(x)dx

> (1 + r(B2)ε)

∫
Ω2

v(y)ψ2(y) dy
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> (1 + r(B2)ε)mes(Ω2)δ2
2‖ψ2‖R.

This indicates that
inf

v∈∂KR

‖T τ2 (u, v)‖ > 0.

Hence, we choose R2 > max{r2, R
′, n/δ2}.

Based on (3.15), (3.20), (3.22) and (3.26), one can easily verify that {T τ}τ∈I
satisfies the sufficient conditions for the homotopy invariance of the fixed point
index on ∂D, where D = (KR1

\Kr1)× (KR2
\Kr2). It then follows Lemmas 2.3 and

2.4 that

i(T 1, D,K1 ×K2) =

2∏
j=1

i(T 0
j ,KRj

\Krj ,Kj)

=

2∏
j=1

[i(T 0
j ,KRj

,Kj)− i(T 0
j ,Krj ,Kj)]

= (1− 0)× (0− 1) = −1.

Hence, system (1.1) has at least one component-wise positive solution. �

Proof of Theorem 1.11. Let ε > 0, and

W1 = {u ∈ K1 : −ε < u(x) < u∗(x), x ∈ Ω},
W2 = {v ∈ K2 : −ε < v(x) < v∗(x), x ∈ Ω},

W = W1 ×W2.

Then, W is an open subset of K1 ×K2 and (0, 0) ∈W .
We first show that

T τ (u, v) 6= (u, v), ∀(τ, u, v) ∈ [0, 1]× ∂W. (3.29)

In fact, if there exists some (τ0, u0, v0) ∈ [0, 1]×∂W such that T τ0(u0, v0) = (u0, v0),
then (u0, v0) ∈ ∂W1 ×W2 or (u0, v0) ∈ W1 × ∂W2. Without loss of generality, we
assume that (u0, v0) ∈ ∂W1 ×W2, then v0 6 v∗, u0 6 u∗ and u0(x0) = u∗(x0) for
some x0 ∈ Ω. Hence, by (F1), in view of the definitions of T τ1 and the strict upper
solution, it yields

u∗(x0) = u0(x0) = T τ01 (u0, v0)(x0) 6 T τ01 (u∗, v∗)(x0) 6 T 1
1 (u∗, v∗)(x0) < u∗(x0).

This is obviously a contradiction.
To prove that T 0

1 (u, v) 6= µu, for all µ > 1 and all u ∈ ∂W1, we let µ > 1 and
u ∈ ∂W1. Then u 6 u∗, and there is an x0 ∈ Ω such that u(x0) = u∗(x0). Thus it
follows that

T 0
1 (u, v)(x0) = T 0

1 (u, 0)(x0) 6 T 0
1 (u∗, 0)(x0) < u∗(x0) = u(x0) 6 µu(x0).

Similarly, we find that T 0
2 (u, v) 6= µv for all µ > 1 and all v ∈ ∂W2. It then

follows from Lemma 2.3 that

i(T 0
1 ,W1,K1) = i(T 0

2 ,W2,K2) = 1. (3.30)

In view of (3.6), (3.9), (3.15) and (3.26), we choose r1, r2 small enough and
R1, R2 large enough such that

0 < r1 < min
x∈Ω

u∗(x) 6 ‖u∗‖ < R1,

0 < r2 < min
x∈Ω

v∗(x) 6 ‖v∗‖ < R2.
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Combining (3.29) and (3.30), by Lemmas 2.3 and 2.4, we obtain

i(T 1, (W1\Kr1)× (W2\Kr2),K1 ×K2)

=

2∏
j=1

i(T 0
j ,Wj\Krj ,Kj)

=

2∏
j=1

[i(T 0
j ,Wj ,Kj)− i(T 0

j ,Krj ,Kj)]

= (1− 0)× (1− 0) = 1,

(3.31)

and further deduce that

i(T 1, D\(W1\Kr1)× (W2\Kr2),K1 ×K2)

= i(T 1, D,K1 ×K2)− i(T 1, (W1\Kr1)× (W2\Kr2),K1 ×K2)

=

2∏
j=1

[i(T 0
j ,KRj

,Kj)− i(T 0
j ,Krj ,Kj)]− 1

= 0− 1 = −1.

(3.32)

Thus, system (1.1) has at least two component-wise positive solutions. �

4. Applications

Consider the existence and multiplicity of component-wise positive solutions for
the following system of second-order ordinary differential equations

−u′′(x) = f1(x, u(x), v(x)), x ∈ (0, 1),

−v′′(x) = f2(x, u(x), v(x)), x ∈ (0, 1),
(4.1)

subject to the Dirichlet boundary conditions

u(0) = u(1) = v(0) = v(1) = 0, (4.2)

or the mixed boundary conditions

u(0) = u(1) = v(0) = v′(1) = 0, (4.3)

where f1, f2 ∈ C([0, 1]× R+ × R+,R+).

4.1. Dirichlet boundary value problem.

Theorem 4.1. Assume that f1 and f2 satisfy the following two conditions:

(H9)

lim sup
u→0+

max
x∈[0,1]

f1(x, u, v)

u
< π2 < lim inf

u→+∞
min
x∈[0,1]

f1(x, u, v)

u

uniformly w.r.t. v ∈ R+;
(H10)

lim inf
v→0+

min
x∈[0,1]

f2(x, u, v)

v
> π2 > lim sup

v→+∞
max
x∈[0,1]

f2(x, u, v)

v

uniformly w.r.t. u ∈ [0,M ], where M ∈ R+ is arbitrary.

Then problem (4.1)-(4.2) has at least one component-wise positive solution.
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Proof. It is clear that system (4.1) subject to (4.2) is equivalent to the system of
nonlinear Hammerstein integral equations

u(x) =

∫ 1

0

k1(x, y)f1(y, u(y), v(y)) dy, x ∈ [0, 1],

v(x) =

∫ 1

0

k2(x, y)f2(y, u(y), v(y)) dy, x ∈ [0, 1],

where

k1(x, y) = k2(x, y) =

{
x(1− y), if x 6 y,

y(1− x), if y 6 x.

It is easy to verify that the kernel functions k1 and k2 satisfy all conditions (i)–(iii).
According to Theorem 1.5, we only need to prove that r(B1) = r(B2) = π−2.

To this end, it suffices to observe that the following linear eigenvalue problem

−u′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = 0,

has the minimal eigenvalue λ1 = π2. �

4.2. Mixed boundary value problem.

Theorem 4.2. Assume that f1 satisfies condition (H9), and that f2 satisfies

(H11)

lim inf
v→0+

min
x∈[0,1]

f2(x, u, v)

v
>
π2

4
> lim sup

v→+∞
max
x∈[0,1]

f2(x, u, v)

v

uniformly w.r.t. u ∈ [0,M ], where M ∈ R+ is arbitrary.

Then system (4.1) with the mixed boundary condition (4.3) has at least one com-
ponent-wise positive solution.

Proof. We know that system (4.1) subject to (4.3) is equivalent to the system of
nonlinear Hammerstein integral equations

u(x) =

∫ 1

0

k1(x, y)f1(y, u(y), v(y)) dy, x ∈ [0, 1],

v(x) =

∫ 1

0

k2(x, y)f2(y, u(y), v(y)) dy, x ∈ [0, 1],

where

k1(x, y) =

{
x(1− y), x 6 y,

y(1− x), y 6 x,
and k2(x, y) =

{
x, x 6 y,

y, y 6 x.

It is easy to verify that two kernel functions k1 and k2 satisfy conditions (i)–(iii).
From the proof of Theorem 4.1, we find that r(B1) = π−2. Since µ1 = π2/4 is

the minimal eigenvalue of the linear eigenvalue problem

−v′′(x) = µv(x), x ∈ (0, 1),

v(0) = v′(1) = 0,

one can derive that r(B2) = 4π−2. Hence, we obtain the desired result according
to Theorem 1.5. �
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Remark 4.3. There are many types of functions f1 and f2 satisfying conditions
given in Theorems 4.1 and 4.2. For instance, let f1(x, u, v) = max{u, u2}(1 +
tan−1 v) and f2(x, u, v) =

√
v eu. It is easy to see that f1 satisfies condition (H9),

and f2 satisfies conditions (H10) and (H11). Thus system (4.1) subject to (4.2) or
(4.3) has at least one component-wise positive solution.

Theorem 4.4. Suppose that f1 and f2 satisfy the following three conditions:

(H12) fi(x, u, v) 6 fi(x, u, v) as x ∈ [0, 1], u 6 u and v 6 v, for i = 1, 2;
(H13)

lim inf
u→0+

min
x∈[0,1]

f1(x, u, 0)

u
> π2 and lim inf

v→0+
min
x∈[0,1]

f2(x, 0, v)

v
>
π2

4
;

(H14)

lim inf
u→+∞

min
x∈[0,1]

f1(x, u, 0)

u
> π2 and lim inf

v→+∞
min
x∈[0,1]

f2(x, 0, v)

v
>
π2

4
.

In addition, if there exist constants M1, M2 > 0 such that f1(x, u, v) < M1 and
f2(x, u, v) < M2 for all (x, u, v) ∈ [0, 1] × [0,M1/8] × [0,M2/2], then system (4.1)
subject to (4.3) has at least two component-wise positive solutions.

Proof. Similar to the arguments in the proof of Theorem 4.2, one can derive that
r(B1) = π−2 and r(B2) = 4π−2. In addition, it is straightforward to calculate that

max
x∈[0,1]

∫
Ω

k1(x, y) dy = 1/8 and max
x∈[0,1]

∫
Ω

k2(x, y) dy = 1/2.

The desired result follows Theorem 1.11 and Lemma 1.12. �

Remark 4.5. As an illustration of Theorem 4.4, we consider

f1(x, u, v) =


√
u

2 tan−1(v + 1), u ∈ [0, 1],(
7u
2 − 3

)
tan−1(v + 1), u ∈ (1, 2),

u2 tan−1(v + 1), u > 2,

f2(x, u, v) =


√
v

4 e
u, v ∈ [0, 1],(

15v
4 −

7
2

)
eu, v ∈ (1, 2),

v2eu, v > 2.

It is easy to see that f1 and f2 satisfy all the conditions given in Theorem 4.4
by choosing M1 = M2 = 1. Thus system (4.1) subject to (4.3) has at least two
component-wise positive solutions.

Remark 4.6. Note that Theorems 1.7-1.9 can also be applied to system (4.1)
subject to conditions (4.2) or (4.3) in a similar manner. Here, we omit the details
for the corresponding results on the existence and multiplicity of component-wise
positive solutions for such kind of systems. It is worth mentioning that the ideas
described herein are also applicable to nonlinear systems of Hammerstein integral
equations with weighted functions. We will consider this problem in a subsequent
work.

Remark 4.7. It is notable that assumptions (H12), (H13) and (H14) are also
satisfied for coupling functions fi(x, u, v) which are negative for small values of u
or/and v. Such type of couplings often arises in Chemical Engineering, see [10] and
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references therein, and leads to solutions such that may be zero in a subset of the
interval (0, 1), or at least may have zero derivative in some of the boundary points
(the so called “flat solutions”).
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