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ABSTRACT 

Artificial neural networks are learning systems composed of layers of neurons, 

modeled after the human brain. The relationship between the size of the hidden layer in a 

neural network and performance in a particular domain is currently an open research 

issue. Often, the number of neurons in the hidden layer is chosen empirically, and 

subsequently fixed for the training of the network. Fixing the size of the hidden layer 

limits an inherent strength of neural networks - the ability to generalize experiences from 

one situation to another, to adapt to new situations, and to overcome the "brittleness" 

often associated with traditional artificial intelligence techniques. This thesis proposes an 

evolutionary algorithm to search for network sizes that exhibit good performance, along 

with weights and connections between neurons. The size of the networks simply 

becomes another search parameter for the evolutionary algorithm. This allows for faster 

development time, and is a step toward a more autonomous learning system. 

This thesis builds upon the neuro-evolution tool SANE, developed by Risto 

Miikkulainen and David Moriarty. SANE stands for symbiotic adaptive neuro-evolution 

and is a novel learning system proven extremely effective in a range of problems. SANE 

is modified in this work in several ways, including varying the hidden layer size and 

evolving Elman recurrent neural networks for enhanced performance. These 

modifications allow the evolution of better performing and more consistent networks, and 

evolve more efficiently and faster - in every domain tested. 

This performance enhancement is demorrntrated in two real-world applications. First, 

SANE, modified with variable network sizing, learns to play modified casino blackjack 
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and develops a successful card counting strategy. Second, these modifications are 

applied to an agent in a simulated search and obstacle avoidance environment. 

The contributions of this research are performance increases in a decision strategy 

generation system and a more autonomous approach to the scaling of neuro-evolutionary 

techniques for solving larger and more difficult problems. 
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1. Introduction 

A lost taxi driver must make many decisions before ultimately correcting the 

errant path and delivering the passenger to the intended destination. Which decisions 

were responsible for the goal of passenger delivery and which were not? It is often 

impossible to trace back and determine the decision that led from familiar roads to 

unfamiliar territory. In many real world problems, it is not until sequences of actions 

have been performed that a particular agent's performance can be measured. After 

looking at an opening chess move of Pawn to King 4, it would be impossible to 

distinguish the author's chess play from Gary Kasparov's, much less assign a score to the 

decision. Yet it is these scores by which artificially intelligent agents must be evaluated, 

ranked, and employed in an environment. 

1.1 Sequential Decision Tasks 

Tasks, in which an agent must make several moves before performance 

evaluations can be made, are termed sequential decision tasks. (Littman 1996) These 

tasks require a sequence of decisions before the net performance of the system can be 

evaluated. Providing reinforcement to a training algorithm at the end of a sequence of 

events makes determining individual effective and non-effective decisions a challenging 

problem. Minsky (1963) termed this the credit assignment problem, and it is the core of 

many automation problems in artificial intelligence. 

There are several important properties of sequential decision task environments, 

which affect the nature and difficulty of the problem. Russell and Norvig (1993), 

describe one prop~rty of environments as accessible vs. inaccessible. Accessible 
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environments provide an agent in the environment with a complete state of the 

environment. Chess is an accessible environment, as a player knows every piece on the 

board and its position. Poker is an inaccessible environment, as the other player's cards 

are not known. 

Another task discriminator is Markovian vs. non-Markovian tasks. The Markov 

property holds if the transitions from any given state depend only on the state and not on 

previous history. The Markov property holds in chess, as the next board position is 

completely determined by the current board and the actions of the agents. Non

Markovian tasks are more difficult, and require memory of previous states to be effective. 

Poker is such an environment, in which cards already dealt influence cards remaining in 

the deck, and the next cards to be drawn. When inaccessibility is added to such an 

environment, the agent acting in "the environment does not have enough information to 

determine the state or associated transition properties. Such problems are called partially 

observable Markov decision problems, or POMDP. 

1.2 Reinforcement Learning 

Sequential decision tasks provide feedback of an agent's performance in the 

environment after the game is complete, the maze has been traversed, or the taxi driver 

arrives at the intended destination. Often little or no information is available regarding 

the quality or performance measure of each individual decision. Environments that 

provide these sparse reinforcements require learning techniques that are designed to 

accept infrequent performance measures. Sutton (1988) has described learning under 

very general and often infrequent reinforcements as reinforcement learning. 
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Reinforcement learning provides a general measure of the performance of the agent on a 

particular task. It does not direct behavior or provide an explicit error measure. 

Reinforcement learning methods must be able to effectively use these infrequent 

environmental performance feedbacks. One such training method is an evolutionary 

algorithm (EA). Evolutionary algorithms that train neural networks under reinforcement 

learning can be highly effective in solving sequential decision tasks. (Moriarty, 1997.) 

1.3 Neuro-evolution in Sequential Decision Tasks 

Artificial Neural Networks are a simulation of the processing done in the human 

brain, performed on a much smaller and simpler scale. These networks have proven 

effective in a range of pattern recognition and association problems, and generalize well 

to new situations, often overcoming the brittleness of some other traditional artificial 

intelligence methods. 

Evolutionary algorithms (EAs) are stochastic search techniques based on 

evolution in nature, and aid in the development and training of artificial neural networks. 

Evolutionary algorithms, also referred to as genetic algorithms in the literature, have 

recently been applied to training neural networks. The neuro-evolution approach is 

significant in its ability to discover difficult, counter-intuitive strategies. Evolutionary 

algorithms represent a candidate solution as a chromosome. These potential solutions are 

evaluated and the operations of crossover and mutation are performed on them in a hill

climbing search for better solutions. A critical aspect of evolutionary algorithms is 

maintaining diversity in the population, preventing the algorithm from falling into a local 

optimum and converging to a sub-optimal solut 1on 



The hybrid neural and genetic approach takes advantage of the strengths of both. 

By training neural networks with evolutionary algorithms, performance evaluations can 

be less frequent, and a decision strategy can be based upon the evaluation of a series of 

decisions. 

In traditional neuro-evolution, an evolutionary algorithm adjusts the connection 

weights for a fixed neural network architecture in order to optimize network 

performance. Choosing the correct size or number of neurons in the hidden layer for a 

neural network is problem dependent, and is currently an open research issue. 

Commonly, networks are tested using different size models, and size is chosen 

empirically. This thesis presents a new approach to neuro-evolution, treating the size of 

the network as another parameter in the evolutionary algorithm. This approach allows 

the network to grow in response to shifts in the problem, or more efficiently form a 

smaller network if this solution is more appropriate. 

The contributions of this thesis are several - 1) a new method of efficiently 

automating the search for appropriate network size with performance and efficiency 

increases due to increases in network population diversity, 2) creation of Elman recurrent 

neural networks with SANE, and 3) direction toward the goal of a more autonomous 

learning system which searches for appropriate size on its own. This research is an 

extension of SANE, developed by David Moriarty and Risto Miikkulainen. SANE is a 

novel neuro-evolution tool that evolves neurons and networks simultaneously. This co

evolution of neurons and networks is an effort to maintain population diversity and 

encourage neurons to specialize or optimize one aspect of the problem and connect with 

other neurons that optimize another part of the problem. 
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Maintaining a population of networks with different .sizes increases diversity and 

helps prevent pre-mature convergence. As several tests will show, by implementing 

variable network sizing the average performance per generation is increased. 

1.4 Concluding Remarks 

The body of this thesis is organized as follows. Chapters 2 and 3 provide background 

details on neural networks and evolutionary algorithms respectively. Chapter 4 is an 

introduction to the SANE system, upon which this research is built, with Chapter 5 

providing additional related literature and articles concerning SANE and neuro-evolution 

in general Chapter 6 describes modifications to SANE that have improved performance, 

and the motivations and domains of application of these modifications. Chapter 7 is 

devoted to preventing premature convergence in neuro-evolution. Chapter 8 descibes 

simulation tests using the video game Pac-Man and its results. The partially observable 

Markov decision task of blackjack play is described as an experiment with results and 

analysis in Chapter 8 also, with comparisons between recurrent and feedforward models 

of SANE, both with and without variable network sizing for performance comparisons. 

Chapter 9 summarizes the analysis of the experimental results and the contributions of 

this work to neuro-evolution and the automation of reinforcement learning in neural 

systems. Chapter 10 summarizes the conclusions and research presented in this paper, 

with emphasis on future directions. 
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2. Neural Network Background 

Neural networks are networks formed of small computational units called 

neurons. Neurons receive inputs from the environment (neurons in the input layer), or 

from other neurons. Each neuron performs a simple computation on its inputs, and 

passes the information along, either to another neuron, or back to the environment (an 

output neuron). Connections between neurons have associated weights, sometimes in the 

range of (-1.00,+1.00). These weights are multiplied by the signal propagating through 

the connections, and control the amount to which the signal is strengthened or 

diminished. 

-6 -4 -2 0 2 4 6 

Flgre 2-1. The logistic sigmoid threshold function 

Typically, each neuron sums the weighted input it receives, and may perform an 

additional thresholding (scaling) computation on this sum. Thresholding is done for 

scaling down the activation and mapping it into a meaningful output for the problem, and 



is important for multi-layer networks to preserve a meaningful range across each layer's 

operations. The most commonly used threshold function is a sigmoid or elongated S

shaped function, as shown in Figure 2-1. 

A common sigmoid function is the logistic sigmoid function F(y) = 1/(1 +e-Y) where y 

is the sum of the neuron's inputs. Mehrotra, et al. (1997) note that experimental 

Figure 2-2. A nueron receiving inputs and performing thresholding 

observations of biological neurons demonstrate that the neuronal firing rate is roughly 

sigmoidal, when plotted against the net input to a neuron. However, the authors point out 

that biological neurons do not perform any precise mathematical function. A neuron 

receiving weighted inputs from three input neurons and performing a scaling function is 

shown in Figure 2-2. 

The collection of weights and connections are the system parameters. A system 

learns if and only if the system parameter vector or matrix (P) has a non-zero time 

derivative, or aP/dt * 0. By adjusting the weights and connections between neurons, a 

system is '\rained" based on some training data, and can then be applied to the actual 

inpu ~ ( lat: L. 
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Typically, a network is trained by adjusting its weights during the training phase. 

During training, for a given input signal, the network modifies its weights to bring the 

actual output signal closer to the desired output. The goal of training is for the network to 

form a mapping ability between each pair of input/output signals. After training, the 

network is applied to the test or "actual" inputs. For each of these previously unseen 

inputs, the mapping ability of a network determines the appropriate output. The opposite 

of generalization is memorization. Memorization is undesirable and is the result of 

subjecting the network to too much training data. (Rao, 1995.) 

Neural networks, even with a finite number of nodes, are Turing-equivalent. 

Therefore a neural network could be trained to distinguish context-free or context

sensitive languages (Siegelman et al 1991). Turning equivalency makes neural networks 

universal function approximators, and thus theoretically capable of matching the 

performance of all other modeling techniques. 

2.1 Feedforward Neural Networks 

The most commonly used neural network model is the feedforward neural network. 

Input Layer Hidden Layer Output Layer 

Figure 2-3. A feed.forward neural network 
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A feedforward neural network is an acyclic network in which a connection is allowed 

from a node_,in layer n only to nodes in layer (n+ 1), as shown in Figure 2-3. 

Feedforward neural networks may contain multiple hidden layers. Conceptually, 

nodes in successively higher layers abstract higher level features from the information 

passed on from the previous layer (Mehrotra et al 1997.) 

2.2 Elman Recurrent Neural Networks 

A more complex model for neural processing was partially developed and refined 

by Jeffrey Elman (1990). An Elman recurrent neural network, as shown in Figure 2-4, 

contains feedback connections from the hidden layer to context units, which serve as 

input to the network for the subsequent activation. Context units act as input units, but 

Input Layer Hidden Layer Output Layer 

True Input Unit& 

Conteltt . 

Figure 2-4. An Elman recurrent neural network 
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only receive input from the previous activation of the hidden layer neurons, and not from 

the environment, as do the true input units. 

As signals first propagate through the network, the input layer receives inputs from 

the environment that are passed to the hidden layer. Hidden layer neurons pass their 

activation to the output layer, and also back to the context neurons. Context neuron data 

is used on the next complete iteration through the network, and refreshes the information 

provided to the context neurons for the next iteration. 

These feedback connections provide the network with short term memory of the 

activation of the hidden layer from the previous iteration of the network. Recurrent 

connections are found extensively in the brain, and the short term memory provides the 

network with the additional information of previous states and decisions. 

2.3 Advantages of Feedforward and Recurrent Networks 

In general, feedforward networks are simpler and easier to train and understand. The 

Elman recurrent networks used in this study have the additional overhead of context 

neurons and their additional connections in the network. Feedforward networks are 

subsets of recurrent networks, as a recurrent network with zero weights on all feedback 

connections will function identically to a feedforward network. If the feedback 

connections are used in a recurrent network, they provide the network with previous state 

information that can be used in non-Markovian decision problems. Thus, recurrent 

networks have more overhead ,md are more difficult to train (in most traditional methods 

such as backpropagation), but ( an improve performance in domains where state history is 

needed. 
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3. Neuro-Evolution 

3.1 Evolutionary Algorithm Introduction 

Evolutionary Algorithms (or Genetic Algorithms) are strategies that can be 

applied to training neural networks. An EA is a stochastic state-space search technique 

based loosely on biological evolution and borrowing heavily from its terminology. An 

EA can assume many incarnations, with a common version encoding a potential solution 

to the problem as a bit string. This bit string is referred to as a chromosome, with each 

bit (an allele) representing some specific feature or trait of the solution (Mitchell, 1998.) 

Unlike humans, EA populations are usually haploid, or contain a single unpaired 

chromosome. A chromosome may contain an encoding of paths in the travelling 

salesman problem, processor opcodes, or weight and connection information for a neural 

network. 

Populations of chromosomes are maintained, evaluated, and bred. This cycle is 

referred to as a generation. Populations can be initialized randomly, or seeded with some 

domain information in the hope of improving performance. Each candidate solution or 

chromosome is converted into a phenotype, which is the actual implementation of a 

potential solution that the chromosome encodes. These solutions are evaluated based on 

Crossover Point Crossover Point 

Chromosome 1 Child 1 

Chromosome 2 Child2 

Figure 3-1. Th"' ,·ros.-;over operator 
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some performance score. 

Typically, the top networks are then subjected to crossover and mutation. 

Crossover splits a chromosome at one or more points and combines each piece with the 

pieces of another chromosome as shown in Figure 3-1. Mutation is a simple flipping of a 

bit in a bit string chromosome, or substitution of a (usually random) allele with another 

member of the allele population in hopes of finding an overlooked trait which improves 

the performance of the chromosome in the task. Mutation in a chromosome using a bit 

string genotype is represented in Figure 3-2. 

Mutation 

Figure 3-2. The mutation operator performed on a chromosome 

Crossover has been described in terms of exploitation of information encoded in 

high scoring individuals, and mutation is often described as exploration of the search 

space. (Kingdon, 1997.) Having a good mixture of exploitation and exploration is 

important in preventing pre-mature convergence of the population to a sub-optimal 

solution. 
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3.2 Alternative to Backpropagation 

In contrast to evolutionary algorithms, gradient descent algorithms such as 

backpropagation of error signals are the most common training methods for neural 

networks. These methods adjust the weights in the connections between neurons based 

on the backpropagation of error signals obtained from an environmental feedback 

measure. These weight adjustments bring the network closer to a desired output for a 

given input vector or pattern. Backpropagation is a gradient descent algorithm that 

calculates errors in each layer of the network to serve as gradients for a hill climbing 

search. (Kosko, 1992.) The goal of this search is a decision policy that meets the 

performance criteria of the domain. This decision policy is represented in a distributed 

fashion in the network connections and weights. 

Popularized by Rumelhart et. al (1986), backpropagation uses errors in the output 

to determine measures of hidden layer output errors, which are used as a basis for the 

adjustment of connection weights between the layers. Although very effective, the 

strength of backpropagation lies in its use of differences in the actual output vector of the 

network and a desired or 'ideal' output vector. When the desired output is known and 

the actual output is compared to the desired output and weights are modified based on an 

error gradient, the learning algorithm is performing supervised learning. In contrast, 

reinforcement learning provides a general feedback measure at the end of a sequence of 

tasks, and is more suitable for many real world tasks in which a desired output is not 

always available. 

Backpropagation measures the differences in the desired output vector and the 

actual output vector calculated by the network. Adjustments to weights between the ith 
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neuron in the hidden layer and the Jh output neuron are performed according to the 

equation: 

where Wh is the weight matrix for the hidden layer to output layer, ~ 0 is a 

learning rate parameter usually between .01 and .50, Yi is the output of the ith hidden layer 

neuron, and ~ is the Jh component of output error at the output layer. 

White (1989) mathematically reduced a popular backpropagation algorithm to the 

stochastic approximation methods used in training networks in their infancy in the 

1950's. Trends have returned to stochastic methods, with neuro-evolution using genetic 

algorithms becoming more prominent as a training method. This trend has been due to 

specific advantages of the neuro-evolution approach in difficult decision tasks, and its 

extreme flexibility over a range of neural network models and feedback responses used to 

assess the performance and direction of the training. 

3.3 Advantages of Neuro-Evoultion 

A neuro-evolutionary approach to neural network training encodes network (and/or 

individual neuron) information in a chromosome. While the specific information to be 

encoded in the chromosome depen~s on the specific implementation and is open to much 

debate, the approach used in this research is to encode connections and weights for 

hidden layer neurons, as shown in Figure 3-3. 

Each neuron in the hidden layer is encoded in such a manner, and networks are 

formed of groups of such structures. These chromosomes are then subjected to the 

crossover and mutation operators in a search for a globally optimal solution. Although a 

genetic algorithm may fall into local optima in the search space, there are several 
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Neuron 
Chromosome 

Connection Weight Connection Weight Connection Weight Connection Weight Connection Weight 

Figure 3-3. Chromosome encoding of a neuron In the hidden layer 

A primary advantage of hybrid neuro-evolution searches over more traditional 

gradient-descent searches is the ability to implement reinforcement learning rather than 

supervised learning. Sutton (1988) has described learning under very general and often 

infrequent reinforcements as reinforcement learning. Supervised learning methods (such 

as back.propagation) require a smooth, continuously differentiable activation function 

from which gradient information can be derived for the back.propagation of error signals 

for every iteration of the network. This means that for training purposes, the network 

must receive feedback as to its performance after every output. In many domains, this 

output may not co~e until a sequence of events has occurred. Training a neural network 

using back.propagation or other supervised learning methods to perform a sequential 

decision task requires a determination of which specific decisions were responsible for 

any errors based upon an evaluation of a series of such decisions. This is Minsky's credit 

assignment problem. 
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Reinforcement learning circumvents the credit assignment problem by assigning a 

performance measure to an entire system, even after several decisions have been made. In 

many tasks, continuous performance information is very difficult or impossible to obtain 

from the environment, and reinforcement learning becomes the natural choice for 

evaluating performance and selecting favorable agents. 

3.1.2 Recurrency 

An additional advantage of not having to compute gradients for backpropagation 

is that recurrent neural networks can be evolved at no additional expense (Moriarty, 

1997.) Supervised learning attempts to correct the system at every step, and this becomes 

more difficult with recurrent connections. Supervised learning in recurrent networks can 

be performed, however existing algorithms are complex and difficult to extrapolate to 

new neural models. In neuro-evolution, a feedforward or recurrent network may be 

created, evolved by an EA, and evaluated, without regard for whether the network is 

feedforward or recurrent. 

Potter (1992) used an evolutionary algorithm in place of the quickprop learning 

method and achieved better results. Quickprop is a modified version of backpropagation 

designed to run faster. 
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4. SANE - Symbiotic Adaptive Neuro-Evolution 

David Moriarty and Risto Miikkulainen have developed a unique and very powerful 

neuro-evolution tool called SANE, for Symbiotic, Adaptive, Neuro-Evolution. SANE is 

a C program run under Visual C++ 5.0 for this research. Almost every existing neuro

evolution tool evolves network structures (Whitley et al 1993.), but SANE is unique in 

that it uses an evolutionary algorithm to evolve neurons and network 'blueprints'. SANE 

evolves partial solutions to problems in neurons, combines the neurons into networks, 

and evolves the best network structures. 

4.1 SANE Implementation 

SANE encodes weight and connection information for each neuron in the neuron 

population. These neurons are then combined and formed into networks. The networks 

are evaluated in some domain, and the neurons are rated based on the• best networks in 

which the neurons participated. This is shown in Figure 4-1, reproduced from Moriarty 

(1997.) 

The neurons are evolved in the context of the other neurons in the population. This 

strategy allows the neurons to rely on other neuron 'specializations' that form in the 

COMBINA110N 
INTO 

NE'IWORKS 

FITNESS 
NORMALIZA

TION 

Figure 4-1. High level SANE operation 

SELKCI10N 
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NEWNEURONS 



population, and helps prevent premature convergence of the population, as discussed in 

the following chapter. Neurons are encoded as described in Figure 3-3, and maintained 

as a population. 

Neuron 1 Neuron 2 

Network chromosome 

Input Layer 

.62 

Neuron n 

·CEJ 
/ 

/ 
,,.butput Layer 

/ 
i ~.14 

Figure 4-2. A hidden layer (network) encoding in a chromosome 

A layer of neural network blueprints is also evolved on top of the neuron population, 

with network blueprints maintained as a separate population. These blueprints are 

collections of neurons grouped together to form a hidden layer of a neural network. 

Since the number of input neurons and output neurons are fixed in a particular 

environment in SANE, an entire network can be defined by the hidden layer neurons and 

their weighted connections to the input and output layer. Networks are also encoded in 

chromosomes as shown in Figure 4-2 for purpcs;~s of crossover and mutation. The 
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blueprint population is evaluated, and the crossover and mutation operations are 

performed as the genetic search for the best network progresses. 

Each member of the network blueprint population specifies a number of pointers to 

members of the neuron population equal to the hidden layer size. Neurons are combined 

systematically based on past performance, and are thus grouped in network structures 

with neurons that perform well together. The network blueprint and neuron populations 

are diagrammed in Figure 4-3. 

Network Population (with 
Various Sized Networks) 

Neuron Population 

-.... I ____ F_Igur __ e_4-_3_. _Th_e_n_etw-or_k_an_d_n_e_ur_on_po_p_uia_tt_o_m ____ __, 

4.2 Results 

In traditional network evolution, the evolutionary search focuses on a single, 

dominant individual, and can often converge prematurely on local optima. Networks that 

perform well are bred with other networks that perform well, and the population of 

networks often becomes very homogeneous, which decreases population diversity and 
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discourages alternative and possibly higher scoring approaches to the network 

architecture. 

In contrast, SANE restricts the scope of each individual to a single neuron, with each 

neuron optimizing a particular sub-task of the network (Moriarty, 1997.) When a neuron 

is ranked highly (because of participating in high scoring networks), it will usually be 

found several times in subsequent generations of networks. These networks do not 

typically perform well because a good network usually needs several types or 

'specializations' of neurons. These homogeneous networks receive lower scores, thus 

selecting against the neurons in these networks in subsequent generations, restoring 

diversity to the population (Moriarty, 1997.) Moriarty defines Symbiotic in the SANE 

acronym as symbiotic evolution in which "individuals explicitly cooperate with each 

other and rely on the presence of other individuals for survival." (Moriarty, 1997.) 

SANE achieves very good results in sequential decision tasks. It has been applied to 

a number of domains, including the game of Go (Richards, et al. 1997.) It has been used 

to evolve a network for controlling a robotic arm (Moriarty, 1997), balancing an inverted 

pendulum (Moriarty, 1997), balancing 2 inverted pendulums (Gomez and Miikkulainen, 

1998), and capturing simulated prey (Gomez, 1996.) In almost every simulation, SANE 

has been shown to evolve networks more quickly, keep a more diverse population of 

Pole Balance Attemets CPU Time 
Method Mean Best Worst St. Dev. Mean Best Worst St. Dev. Failures 
1-layer AHC 430 80 7373 1071 49.4 14 250 52.6 3 
2-layer AHC 12513 3458 45922 9338 83.8 13 311 61.6 14 
Q-leaming 2402 426 10056 1903 12.2 4 41 7.8 0 
GENITOR 2578 415 12964 2092 9.8 4 54 7.9 0 
SANE 900 101 2502 598 7.7 4 17 2.9 0 

Figure 4-4. Comparison of several learning techniques in pole balancing over 50 trials 
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neurons and networks, and outperform other neuro-evolution strategies. A comparison of 

several learning methods is reproduced from Moriarty (1997) in Figure 4-4. The results 

are from a pole or "inverted pendulum" balancing test and demonstrate that SANE 

outperforms 1 and 2 layer Adaptive Heuristic Critics, and Q-learning. SANE's 

performance was very similar to GENITOR (Whitley et al 1993), a neuro-evolution 

strategy shown to be successful on the inverted pendulum problem. The pole-balance 

attempts in Figure 4-4 are the number of training episodes necessary to find a network 

successfully balancing a pendulum mounted to a cart on rails for 120,000 time steps. 

CPU time comparisons are in seconds. 
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5. Related Literature 

Numerous researchers have explored neuro-evolution and have applied its techniques 

to a broad range of control and decision tasks. A common thread and development in 

these investigations has been improvements in autonomy, robustness, performance, and 

difficulty of task. Hybrid neuro-evolution techniques have taken many different 

approaches, with the EA training the network, or serving as an input preprocessor for 

scaling or selecting network inputs from a range of possible input choices. 

5.1 Neuro-Evolution 

Kupinski and Giger (1995) used a different hybrid neuro-evolutionary approach in a 

neural network based mammogram cancer detection scheme. The EA does not train the 

network directly, but rather selects a subset of features from the mammogram slide as 

inputs to the network to detect-possible malignancies. This is an example of an 

evolutionary algorithm selecting the inputs to a neural network from a larger set of 

potential inputs. The EA works as a filter for determining worthwhile inputs. 

Fullmer and Miikkulainen (1992) explored marker based encoding of neural 

networks. Using this strategy, networks are encoded in a single circular chromosome, 

with start and end markers indicating the beginning and end of neurons in the network. 

Weight and connection information is encoded within the start and end markers, and the 

networks are recurrent. The marker-based encoding is unique in that position X on the 

chromosome does not have a fixed meaning as in most encodings. The interpretation of 

each allele is independent of its locus in the chromosome. Each position is used in such a 
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way that produces the maximum benefit for the network. In the crossover operator, 

neurons may be added or taken away, and connections may feed back to other neurons or 

even to themselves. This encoding was very loose and dynamic, and the idea of growing 

a network to fit the problem at hand was used extensively in this research. 

The authors did pioneering work in representing neural structures in an evolutionary 

algorithm, and applied the work to an object recognition task requiring exploration and 

discrimination of objects in a simulated environment. Tests confirmed that agents were 

able to discriminate objects in an environment even when memory was required. 

Moriarty and Miikulainen (1995) continued the marker based encoding strategy 

by applying neuro-evolution to the domain of Othello play. Othello is another interesting 

Figure 5-1. An Othello board with legal moves for white indicated with an 'X'. 

test, as the game has quite simple rules, but is very difficult to master. Othello is played 

on an 8 x 8 board with pieces black on one side and white on the other. Players take 
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turns and may only move in unoccupied squares that are flanked by an opponent's piece 

or pieces and one piece of the player's own color. In other words, a player must linearly 

surround the opponent's piece or pieces horizontally, diagonally, or vertically. After 

doing so, the player flips the opponent's pieces to her color and play continues. The 

game ends when there are no legal moves for either player, in which case the player with 

the most pieces of her color wins. A possible board with the legal moves for white is 

indicated in figure 5-1. If white plays in the square marked with a shaded X, white then 

flips the two bottom black pieces. Beginning players usually try to maximize their piece 

count at all times, while more advanced players will adopt a positional strategy based on 

taking comers (which can never be retaken) and adding pieces along the edges. 

Tournament level players have developed a mobility strategy based on actually 

maintaining a low piece count, but holding strategic positions and forcing the opponent to 

make poor moves, surrendering good positions. Mobility is much harder to learn than a 

positional strategy. 

The network evolved was feedforward with 2 input neurons for each board 

position, one 'on' if the network's piece occupies the square, the other 'on' if the 

opponent occupies the square, and both 'off' if the squai:e is empty. The authors used the 

power of the marker based encoding strategy and refined its representation of the 

network. Only hidden layer neurons are represented in the chromosome, with 

connections to the output layer specifically encoded in the connection information. In the 

earlier version, output nodes were explicitly defined. 

The authors pitted the network against a random player, a minmax search with a-B 

pruning, and finally against themselves. With enough evolution (typi1.:ally 24 hours on an 
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IBM RS6000 25T workstation), the network defeated all three. According to the authors, 

after 2000 generations, the networks are employing a beginning mobility strategy. David 

Shaman, the 1993 world Othello champion, described the network's play as follows: 

This is someone who has been playing for a while and thought about the game. 
They've just been introduced to the idea of mobility. They are not very good yet. 
They are usually choosing the right type of move, but only occasionally choosing the 
best move. Unfortunately, sometimes they seem at a bit of a loss as to what to do -
they then often revert to positional play or even just play an inexplicable bad move. 
(taken from Moriarty and Miikkulainen, 1995.) 

This is exceptional performance for a system having no domain knowledge and 

discovering mobility strategy on its own. 

Floreano and Mondada (1995), used an evolutionary algorithm to adjust weights and 

thresholds for a fixed size fully connected neural network. The network consists of eight 

input units attached to sensors on a Khepera mobile robot, and two output units 

controlling motors on each wheel of 

Motorola 68331 
On Board 
Processor 

Infra-Red Sensors 

Motor 

Figure 5-2. A diagram of the Khepera mobile robot 
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the robot. This research is 

particularly interesting because it 

moves beyond the realm of computer 

simulation and tests neuro-evolution 

on tiny Khepera robots, 55mm in 

diameter. The input sensors and 

motors are shown in Figure 5-2, 



adapted from Floreano and Mondada (1995.) Neural networks control the robot 

dynamically in a maze, interfacing with the Khepera via serial cable. 

The robot is placed in the maze and is evaluated based on speed maximization, 

straight direction, and obstacle avoidance. The authors achieved very good results, with 

the robots learning to navigate the maze and avoid obstacles in less than 100 generations. 

The best individuals moved extremely smoothly, never bumped into walls, and perform 

complete laps of the maze corridor. 

5.2 Recurrency 

Elman (1990) explored recurrent neural networks that provide the system with 

memory. This is done in the context of giving the system "dynamic properties that are 

responsive to temporal sequences." This work included a time parameter, which 

necessitated a new network model for representing inputs to the system in previous time 

Hidden Layer 

Input Units Context Units 

Figure 5-3. Simple model of an Elman recurrent n2twm·k 
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steps. Elman added context units to a standard neural architecture. These context units 

function similarly to input units, but receive their input from the output of the previous 

iterations hidden layer as shown in Figure 5-3. This diagram is a generalization, for a 

more detailed model, see Figure 2-4. 

Elman applied this new architecture to the temporally based problem of predicting 

the XOR function from a bit stream. A network was given an input stream, such as 

110101101000011, in which every third input is the XOR result of the previous two. By 

sequentially inputting each bit to a neural network, a network remembering the first input 

should be able to predict the third input upon receiving the second. This would not be 

possible in a standard feedforward network, as the first input would propagate through 

the network, followed by the second, with no internal state representation. 

Elman notes that in feedforward networks, the hidden units develop internal 

representations of input patterns ·and recode those patterns to produce the correct output 

for any given input. In this recurrent structure, the context units serve as memory for 

previous internal states. The hidden units in this model thus have the dual task of 

mapping both an external input and the previous internal state saved in the context units. 

The internal representations that develop have an implicit temporal property. (Elman, 

1990.) 

Elman' s results confirmed that the network learned something ahout the temporal 

structure of the input, with the networks error dropping dramatica] l) when prediction of 

the 3rd bit was possible (when two complete inputs to the XOR fin .c ion had been input to 

the network), and rising at other times. 
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5.3 SANE Over Various Domains 

Richards et al. (1997) applied SANE to the game of Go. Computers have had 

limited success in the game of Go. Despite its simple gameplay, Go is deceptively hard 

to master. Black and white stones are alternately placed on a board until both players 

mutually decide the game is over and pass, at which time the score is calculated and a 

winner determined. 

Go is largely pattern based, which makes it particularly suited for implementation 

by a neural network. The authors used SANE to evolve a feedforward network with two 

input neurons and one output neuron for each board position. Input neuron one is fed a 

boolean value indicating the presence or absence of a black stone, and input neuron two 

represents a white stone. The output neurons are fuzzy values indicating a range of 

relative 'goodness' of a move to a particular board position. In this manner, the output 

neurons encode some semantics of the network's decision. The higher the output neurons 

value for a board position, the better the move to that position. 

SANE achieved quite good results in evolving Go playing networks. SANE was 

able to defeat a publicly available Go program called Wally, developed by Bill Newman, 

on small boards. SANE was able to defeat Wally up to a 9 x 9 board, but took 5 days of 

CPU time. The authors estimated the time to evolve a successful network on a full sized 

19x19 board at over a year. 

An important conclusion of this experiment was an insight into neural networks 

and evolutionary algorithms. The authors discovered that SANE evolved to defeat 

deterministic opponents quite quickly, but" .. .learned little about playing Go and only 

34 



learned what was necessary to win against that particular opponent." (Richards, et al 

1997.) When 10% non-determinism was applied to the Wally opponent in the form of 

random legal moves, SANE actually required more generations to defeat the opponent. 

The authors concluded that SANE was finding holes in the deterministic opponent's 

strategy, but actually learning Go strategy against the non-deterministic opponent. These 

results are used later in this research in making a Pac-Man opponent non-deterministic to 

decrease the possibility of learning loopholes in the opponent's strategy. 

Gomez and Miikkulainen (1997 & 1998) introduce the ideas of incremental 

evolution, ..1-coding, and enforced sub-populations. Discussed in more detail in the next 

chapter, these modifications to SANE are designed to assist in non-Markovian tasks and 

other tasks that are difficult to evolve directly. By incrementally evolving successively 

more sophisticated behavior, the authors were able to achieve very good results on more 

difficult problems. 

The idea of incremental evolution and ..1-coding is to start with simpler tasks and 

evolve more sophisticated behavior on top of the existing knowledge. If an infant were 

dropped on a deserted island with a Sun workstation, it is hard to imagine that he would 

ever learn to use it. This is the coricept behind incremental evolution. Starting with 

smaller goals, more complex behavior can generally be evolved than starting from 

scratch. 

Enforced sub-populations are an addition to SANE making it more feasible to 

evolve recurrent networks. The neuron population is partitioned into sub-populations, 

with a neuron replaced only with neurons from the same sub-population. This allows 

35 



sub-populations to specialize and gives recurrent networks more stability and better 

performance. Sub-populations are discussed extensively in the next chapter and are 

included in the models used in this research. 

Gomez and Miikkulainen applied incremental learning to the tasks of prey capture 

and simultaneously balancing two inverted pendulums. Both tasks were handled by 

recurrent networks and included sub-populations. The prey capture task was 

incrementally made more difficult by increasing the prey's head start, and increasing its 

speed. The prey was eventually given a large enough head start to move out of the 

agent's sensor range, and required the agent to have memory of the last direction it saw 

the prey moving. Despite the advanced behavior required of successful networks, SANE 

evolved solution networks that effectively captured the prey. In addition, SANE 

incrementally evolved networks to balance two inverted pendulums of very similar length 

without pole velocity information, a non-Markovian task previously unsolved. 
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6. SANE Modifications 

SANE 2.0 has been modified by several people. The primary modifications 

involve sub-populations, recurrency, and delta-coding. This research uses the sub

population modification of Faustino Gomez and Risto Miikkulainen, and introduces 

hidden layer growth, and Elman recurrency (a variant of the recurrency introduced by 

Gomez). SANE is a C program that runs under Visual C++ 5.0 for this research. 

Additionally, since variable hidden layer sizing works well with large populations, SANE 

2.0 was ~onverted to dynamic memory allocation for the larger memory requirements 

imposed by large neuron and network populations. 

6.1 Enforced Sub-populations 

In unmodified SANE, the neurons are in one large population, and a network may be 

made of neurons from the entire population. As Moriarty (1997) showed, in the 

advanced stages of evolution; instead of converging to a single individual as a standard 

evolutionary algorithm would, the neuron population forms groups of individuals 

(neurons) that perform "specialized functions in the target behavior." These neurons 

specialize to perform a specific feature of the task, combining into networks to form 

effective solutions to the entire problem. 

Sub-population modifications split the neuron population into sub-populations. A 

sub-population is maintained for each neuron that may be in a hidden layer, and neurons 

are only replaced in a network from this respective sub-population. For example, hidden 

neuron 3 in a network will only be replaced by neurons from the 3rd sub-population. This 

is in an effort to circumscribe the "species" which evolve in advanced stages of SANE 
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evolution, and thus speed up the evolutionary process. This modification also allows 

each neuron to be evaluated on how well it performs in the context of the other neurons. 

Neuron specialization, which is hopefully contained in each sub-population, is not 

hindered or contaminated by recombination across specialization or sub-population. 

Sub-populations also increase the performance and allow for more effective 

creation of recurrent networks. As discussed in 2.3, the effectiveness of a neuron is more 

critically dependent on the neurons to which it is connected in a recurrent network. The 

specialization of neurons in each sub-population allows recurrent neurons to rely more 

upon the type of neuron to which they are connected, and the performance of a recurrent 

network is boosted. 

6.2 Recurrency 

In order to provide the network with short term memory and give the network the 

ability to define the problem domain in simpler terms, for the recurrent portion of this 

experiment, tests were run with an Elman recurrent neural network. By using previous 

state information, the environment becomes more accessible. The recurrent network has 

feedback connections from the previous iterations hidden layer activation, and thus has 

access to information about previous states. 

In SANE, as long as this information does not improve the performance of the 

networks, the recurrent network is free to ignore this information and evolve zero weights 

for the feedback connections. Hence, the network functions as a feedforward network. 

The previous state information provided by recurrent networks is essential in non

Markovian tasks, where recurrent networks provide significant feedback for decomposing 

difficult tasks. 
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The number of examples needed to train a neural network to learn a function 

increases roughly exponentially with the number of input neurons (Baum, 1994.) Game 

playing typically requires at least two input neurons per game square, and most 

interesting problems have a high input dimension. This is a problem with feedforward 

approaches. Recurrent networks can decompose a high dimensional function into many 

lower dimensional functions connected in a feedback loop, and in a fashion similar to 

recursion reduce the difficulty of the problem (Jones, 1992.) 

6.3 Variable Hidden layer sizing 

Varying the size of the hidden layer in a neural network is achieved by varying the 

number of neurons in the hidden layer. Since the input and output neurons have 

semantics associated with them, the size of the input and output layers are almost always 

fixed in a neural network implementation. The exception to this is some pattern 

recognition problems where the most appropriate inputs are not always known. For 

example, in modeling a commodity market, there is often a massive amount of 

information available, and preprocessing must be done to determine a subset and the 

quantity of appropriate inputs. 

The optimal size of the hidden layer in a neural network has been the topic of much 

debate and is still very much an open research issue. A common heuristic has been "an 

extremely non-linear problem requires a larger hidden layer size", but the number of 

neurons in the hidden layer of the network is often left to guesswork, or trying several 

sizes until acceptable results are achieved empirically. 

There have traditionally been three approaches to attempting to automate the hidden 

layer size in a network. One may build a large network and prune it, start with a small 
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network and add to it as needed, or start with a 'sufficient' size, and add or subtract and 

retrain. 

This research proposes a new solution working in conjunction with the genetic 

selection inherent in the training and creation of networks created with SANE. The 

hidden layer size becomes another parameter in the genetic search for weights and 

connections, and networks are evolved with hidden layer size as a genotype along with 

weight and connection information. Network size is another trait of the individuals in the 

network population. 

6.3.1 Motivation 

Varying the hidden layer size creates a more autonomous learning system, and 

eliminates some of the guesswork associated with finding the proper hidden layer size, 

and thus decreases the development time. In a rough sense, nature has taught us a similar 

strategy of growing and refining neural processors. 

In early childhood, the brain grows dramatically, particularly in the telencephalon or 

forebrain, with an infant's skull still soft to allow for the growth. Later, this growth 

slows for fine-tuning of the connections between neurons (Shepherd, 1994.) This fme 

tuning and connection adjustment results in infolding of the cortical surface, continuing 

throughout life. Copying this growth and refinement process, by evolving network size 

and weights, allows us to more closely simulate the processes of nature. 

Varying the hidden layer size is also motivated by the earlier work of Moriarty, 

Miikkulainen, and Fullmer, who developed the marker based encoding strategy. These 

auLho:·s achieved good results by allowing recurrent networks to assume any size 
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necessary. A strength of reinforcement learning, when combined with EAs, is the ability 

to vary network parameters and architecture easily while selecting those individuals 

which perform the best, regardless of size. 

An additional motivation for varying hidden layer size is the ability to explore larger 

networks that may be required to solve a particular problem. Complex problems may 

require larger hidden layers. The ability to evolve a population to more closely match 

this larger hidden layer size requirement is an important consideration in any learning 

system. 

As mentioned earlier, maintaining population diversity is critical to the effective 

performance of any evolutionary algorithm. By forcing variable sized networks, a 

measure of diversity is introduced into the network population. Varying the number of 

neurons in the hidden layer makes the population of networks more diverse. Network 

"blueprints" not only explore different combinations of neurons, but different quantities 

as well. Adding and removing neuron specializations dynamically increases the 

dimensionality of the network evolution, as will be discussed more thoroughly in Chapter 

7. 

6.3.2 Implementation and Functionality in SANE 

It is important to note that varying the hidden layer size does not inherently give the 

networks more power. Networks with hidden layers from 10 to 20 neurons are no more 

effeclive than networks with 20 fixed neurons, since the fixed network may evolve zero 

vdued weights for the 10 to 0 extra neurons. In addition, the fixed network may not 

m ol, e c,mnections to the extra neurons at all, and effectively becomes a network with 
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fewer hidden layer neurons. This could be seen as the traditional approach of starting 

with a large network and pruning 'useless' connections. 

Pruning is often accomplished by searching for nodes whose associated connection 

weights have very small magnitude, or running a lesion study to find connections whose 

existence does not significantly affect network outputs. If "iJo/ow is negligible for a given 

node, where o is the output of the node and w is the weight for a connection, then this 

node may be pruned. 

The advantages of dynamic evolutionary hidden layer sizing are: a) the elimination of 

searches for 'prunable' nodes, b) increases in network population diversity, c) implicit 

elimination of excess nodes, d) extensibility to A-coding, and e) more performance 

increase per generation for the experiments in this study. 

By including various sized networks in. the population of candidate solutions, 

networks are more efficiently sized for the task at hand. Allowing a larger network to 

evolve zero weights or connections to certain neurons slows the search. Allowing a 

hidden layer size genotype in the genetic representation of the neuron forces networks to 

explore different sizes, since networks will rarely evolve all zero weights and connections 

for a neuron. 

The enhancements provided by variable hidden layer sizing are similar to those 

introduced by enforced sub-populations. Sub-populations form in SANE after several 

generations, due to neuron specialization (Moriarty, 1997.) By forcing sub-populations, 

however, the formation of sub-populations is speeded and performance improves, 

particularly in recurrent networks. Including those features from the start that evolve 

naturally gives the system a "head start" and allows the evolutionary search to focus on 
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optimal solutions rather than forming specializations first and then optimizing. Having 

variable sized networks, the evolutionary algorithm eliminates the search for possibly 

beneficial null connections in a larger network. 

Although SANE with the hidden layer size modifications did evolve better networks 

faster, the standard version provided acceptable results. Hidden layer size evolution may 

be necessary for acceptable performance when combined with A-coding on non

Markovian tasks, and for the esoteric ideal of creating truly automated learning systems. 

Variable hidden layer models require slight modifications to the crossover and 

mutation operators found in the outer loop evolutionary algorithm of SANE. Since the 

network population sizes are initialized randomly, the crossover operator often performs 

Crossover Point Crossover Point 

Cluomosome 1 Child 1 

Cluomosome 2 Child2 

Figure 6-1. Crossover operator under variably sized network chromosomes 

crossover between two networks of different sizes. Networks are initialized to a random 

size between two user-defined numbers. A minimum size and maximum size are 

included to refine searches, as very broad ranges of size require a very large and often 

unfeasible network population to achieve good results. The following equation produced 

the best results for the tests in this research, although this is domain dependent. 

5 ~ (Max_Net_Size- Min_Net_Size) ~ 10 

A crossover point is selected to be somewhere between the start and the end of the 

shorter network chrom< ,sqme, and crossover is performed as usual One child assumes 
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the size of the shorter length parent and one assumes the length of the larger parent, as 

shown in Figure 6-1. 

The mutation operator is also modified slightly to explore larger networks. Instead 

of traditional mutation, in which a bit is flipped, or a connection or weight value in a 

chromosome is randomly altered, mutation in variable hidden layer sizing was performed 

by adding a neuron to each chromosome (if the length of the chromosome is less than 

Mutation 

Figure 6-2. Mutation operator under variably sized network chromosomes 

Max_Net_Size). This operator is performed on a user-defined percentage of the network 

population per generation to further explore the search space, as shown in Figure 6-2. 

The diagram illustrates a bit string representation for simplicity, but in SANE a complete 

neuron structure including weights and connections is added to the end of a network 

chromosome. 

6.4 ~-coding 

Delta-coding was not included in the experiments for this research, but merits 

discussion due to its importance in hidden layer growth and future work. Originally 

included in SANE by Faustino Gomez, Delta-coding is a method developed by Whitley 

et al (1991.) The concept of Delta-coding is to search the neighborhood around the best 

solution found so far. 
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After many generations, the population of neurons will become more homogeneous, 

and the evolutionary algorithm will perform poorly or fail to find a global optimum. 

When the neuron sub-population has reached a minimum diversity (defined by the user), 

the chromosome encoding the network with the highest score as defined in the 

environment is saved. This chromosome is the best solution found so far. New sub

populations are then initialized with ~-values representing small differences in the 

Figure 6-3. A fitness landscape 

connection weights for each neuron in the best network found so far. Thus, each neuron 

in the best network has a specific sub-population of neuron Delta-chromosomes designed 

to improve this neuron specifically. Delta values are added to the connection weights in 
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the best solution and the resulting chromosomes are termed A-chromosomes. Those 

Delta-chromosomes that improve performance are kept and bred. 

Delta-coding is similar to evolving a network population, arriving at the highest 

scoring network, and then starting over, using this best network as a starting point. 

Gomez and Miikkulainen (1997) showed that Delta-coding can be used to implement 

incremental evolution by successively evolving more complex prey capture behavior. 

As shown in Figure 6-3, Delta-coding may "bump" an EA stuck in the locally optimal 

star position out, hopefully allowing the EA to converge on the globally optimal arrow 

position in the diagram. Figure 6-3 is a simplified fitness landscape of a state space 

search for a globally optimal solution. A global optimum is a candidate solution whose 

quality is better than or equal to the quality of every other candidate solution. A local 

optimum is a candidate solution whose quality cannot be improved by any single move. 

That is to say, its neighbors in the state space are of lower quality. 

The idea of a fitness landscape has often been used in conjunction with search 

algorithms. The modality, or number of peaks on a landscape has been used as a measure 

of difficulty associated with finding global optima, and an abundance of local optima has 

been taken as harmful and misleading to the search process (Kingdon, 1997.) 

Although Delta-coding is very effective in incremental evolution of complex 

behaviors, it requires a decomposition of the task into pieces that can be incrementally 

evolved and encoded in the population of candidate solutions. For some problems, this is 

rather simple- an agent can be given a head start in pursuing a moving target, with this 

lead incrementally diminished as the agent learn'.s a generalization nf t 11' task to be 
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performed. For other tasks, decomposition may be more difficult, or impossible to 

automate without human intervention. For the goal of a truly automated learning system, 

automatic task decomposition is an important future direction. Varying the hidden layer 

size, or adding neurons to the hidden layer when needed is an important corollary to this 

decomposition, and will be discussed thoroughly in Chapter 10. 
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7. Preventing Premature Convergence 

The strategies presented in the previous chapter are designed to improve the 

performance of evolutionary algorithms by increasing the diversity of a population 

initially and reintroducing diversity after a population has converged. Maintaining the 

diversity of a population of candidate solutions in a genetic algorithm is tantamount to 

preventing premature convergence of that population to a less than optimal solution, or 

falling into a shallow pit in the fitness landscape in Figure 17. An evolutionary algorithm 

flounders without a diverse population of genetic material. Maintaining this population 

diversity is a very difficult task and remains an open evolutionary algorithm research 

issue. 

A traditional approach to maintaining population diversity has been to increase the 

mutation rate. This approach injects new genetic material into the population, but only 

rarely produces better individuals, and follows no specific heuristic to improve 

performance. A better approach, introduced by Kenneth DeJong, has spawned many 

similar versions. In DeJong style crowding, when two chromosomes are crossed-over, 

the children become new individual genotypes. These new children replace the members 

of the population most similar to them. This preserves more varied members of the 

population, and improves overall diversity. More powerful techniques, including those 

that identify chromosomes that contribute to low scoring solutions, are available. 

However, these techniques are costly and add CPU time to a system that is already very 

computationally expensive. An approach that builds diversity into the chromosome 

populations while requiring little or no additional processing would be ideal. 
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7.1 Evolving neurons increases population diversity 

By evolving neurons, which are partial solutions to the problem to be solved by 

the resulting networks, SANE automatically maintains diversity in the population. 

(Moriarty, 1997.) If one neuron is a member of one or more particularly high scoring 

networks, its genetic material will begin to permeate throughout the neuron population. 

In that case, networks evolve that contain several copies of this neuron. These networks 

will rarely perform well, as difficult tasks often require several different types or 

"specializations" of neurons. This poor performance will garner a low fitness rating, and 

lower the chance that the dominant neuron will reproduce in subsequent generations, thus 

restoring diversity to the population. 

This is one of the major contributions of SANE over previous neuro-evolution 

tools and is one of its major strengths. Although EAs are inherently stochastic 

techniques, effectively and intelligently guiding evolution toward global optima is the 

main goal of the current trends in evolutionary algorithms. A primary advantage of EAs 

over gradient descent methods is that the search is not inherently biased toward a locally 

optimal solution. On the other hand, they differ from purely random sampling algorithms 

due to their ability to direct the search toward relatively "prospective" regions in the 

search space (Patnaik & Mandavilli, 1996.) 

7.2 Varying Hidden Layer Size 

Varying the hidden layer size in network blueprint chromosomes also injects diversity 

into the network blueprint population. As Moriarty (1997) has shown, SANE forms 

specializations among the neuron population, each optimizing a particular aspect of the 

total task, and searches for effoctivc ,:;ombinations of these specializations. Diversity is 
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increased in the network population by evolving networks that combine different 

numbers of neurons (or specializations.) 

These combinations are possible with a large fixed hidden layer model, but 

specifically removing a neuron is rarely explored by a fixed network architecture. That is 

to say, a neuron in the hidden layer rarely evolves with all zero connections and weights 

to other neurons under a fixed architecture. Varying the size of the hidden layer forces 

this evolution, and increases the dimensionality of the search, not only exploring different 

combinations of specializations, but different quantities as well. 
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8. Experiments 

8.1 Playing Blackjack 

SANE was modified with sub-populations and hidden layer growth, and applied 

to the game of blackjack. Two versions were created and tested, one as a feedforward 

network, the other as an Elman recurrent network. In both cases, the environment is a 

partially observable Markov decision problem. Blackjack provides a unique test, as 

feedforward networks are trained to make sound decision strategies, yet have no history 

information of previous cards played. These networks simply evolve to form the best 

decisions for a given hand. Recurrent networks are applied to the same task with the 

opportunity to evolve into more complex agents, taking advantage of previous state 

information. By using knowledge of cards played in previous hands, the network can 

gather more information from the environment, or in a more formal sense, the network 

can make the environment more accessible. Despite increases in accessibility through 

information from recurrent connections of previously played cards, the environment still 

remains inaccessible because there are some cards the network will never see, and thus 

some uncertainty in the environment. This problem is interesting because making the 

problem easier or more accessible can be a goal of the network evolution, by evolving 

useful recurrent connections. 

8.1.1 Experiment Description 

For the purpose of experimentation, blackjack was played with a single deck, with 

standard rules. Pair splitting, insurance, and doubling down were not allowed. The 



player and the dealer were initially dealt two cards, with the player aware of one of the 

dealer's cards (the up card). The network was aware of the total of its (the player's) 

hand, and the dealer up card. The network is then activated, and can decide to hit or 

stand. Hitting gives another card, with the goal of reaching 21. Cards are worth their 

face value, with 10s, Kings, Queens, and Jacks worth 10 points. An ace is worth 1 or 11, 

and a player with a hand containing an ace has an option of using the ace as 1 or 11 (if 

using the ace as an 11 does not make the total more than 21). A hand with this option is 

referred to as 'soft'. For example, a hand consisting of {A,5} is a soft 16, because hitting 

and receiving a Jack for {A,5,J} is still 16, although now it is a hard 16. The network 

(player) wins if it has a higher point total than the dealer, without going over 21 (busting). 

An initial deal of a 10 value card and an ace is an automatic victory for the player 

(assuming the dealer does not also have 21), and is referred to as a 'natural.' Ties in 

blackjack are referred to as a 'push', and the player's bet is returned. 

Input Layer 

I 
I 
.8 
£ • IS • l • S' • 0 
~ • fl 
~ • .8 • i. • IS • E 
ll,. • 8 • :3' • IS • 'iil • Cl • 

Hidden Layer 

• • • 

Output Layer 

~111111111----+ Stand 

Increase Next Bet } 
Recurrent Models Only e---+ Decrease Next Bet 

Most connections omitted for simplicity 

Context neurons (in recurrent models) omitted for simplicity 

Figure 8-1. Network structure for blackjack tests 
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Figure 8-1 depicts the blackjack network. The networks consist of 41 input 

neurons for the player's point total (separate neurons for hard or soft totals) and the 

dealer's up card. For example, a player receiving { 10,6} with a dealer up card of {8} 

activates the hard 16 input neuron and the dealer's 8th neuron. The network has 2 output 

neurons, for hit and stand. If the hit neuron's output is higher, the network hits, and vice 

versa. Recurrent networks are outfitted with two additional neurons for raising or 

lowering the bet.on the next hand. 

The inputs of the recurrent model depend on the hidden layer activation of the 

previous iteration, as well as the card total of the player and the dealer up card. The 

recurrent model can be thought of as having a short-term memory of the network's 

activation from the previous iteration. Test parameters for both feedforward and 

recurrent tests are given in Figure 8-2. 

Recurrent tests were conducted with networks outfitted with two additional output 

neurons, for determining the next bet. By varying bets, the network can influence its 

monetary outcome based on the additional information and accessibility from recurrent 

connections and weights conveying previous decision information. From a domain 

Blackjack feedforward recurrent 
fixed variable fixed variable 

Decks of play per network evaluation 35 35 35 35 
Number of decks used (shue size) 1 1 1 1 
Hidden layer size 20 15-20 25 20-25 
NetVlt'Ork population size 140 140 140 140 
Neuron population size 4000 4000 5000 5000 
Sub-population size 200 200 200 200 
Adding neuron mutation rate 2% 2% 2% 2% 

Figure 8-2. Blackjack test parameters 
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specific standpoint, this can be thought of as counting cards, or changing present 

behavior based on previous states and previous cards played. 

Card counting is a strategy employed by blackjack professionals to significantly 

improve the player's odds. Simply stated, the more 10 value cards remaining in the deck, 

the more favorable future hands will be to the player. Similarly, if all of the face cards 

and 10s are dealt out early, later hands will favor the dealer. A recurrent network that 

increases its bets when the deck becomes favorable demonstrates an effective use of the 

additional information provided by the feedback connections. 

There are widely available blackjack tables, which indicate the correct hit/stand 

decision for each possible point total in a player's hand, based upon the dealer's up card. 

The dealer in blackjack has no choices - the dealer must hit a 16 or below, and must stay 

on 17 or higher. The dealer does hit a soft 17. This was the only dealer rule variant 

introduced in the experiment, to make play slightly harder for the network. Since the 

dealer's down card is revealed after the network has made a decision, the network is not 

ever aware of the dealer's down card, which is not standard in normal blackjack play. 

This makes keeping track of unplayed cards more difficult for the network. 

Two main blackjack experiments were conducted, one with a feedforward 

network, and one with an Elman recurrent network. In each case, one test was conducted 

with networks evolving with a variable hidden layer size, and one test with networks 

evolving with a fixed hidden layer size. The fixed model has 20 neurons in the hidden 

layer, while the variable model could have 15 to 20 neurons in the hidden layer. With a 

20 neuron fixed hidden layer, the fixed model could evolve all of the networks the 
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variable model could. Evolving zero weights for the connections to extra neurons 

effectively makes the fixed model the same size as a smaller network. The fixed model 

was just as powerful as the flexible model, spending more time optimizing its fixed 

network structure rather than finding the optimal network size. By comparison, the 

variable sized networks had more built-in population diversity in terms of the network 

structures, but had to spend generations exploring appropriate network size as well as 

finding appropriate weights. 

During and after training, the feedforward network model behaved 

deterministically for each distinct set of input (for example, if the network decided to hit 

a hard 15, it always did so.) The feedforward model was allowed to bet 1 unit of money 

for each hand. As the feedforward model has no short-term memory from recurrent 

connections, varying bets would only improve performance as the result of lucky guesses 

on the part of the network. However, the recurrent model could learn the remaining 

contents of the deck and use this information to increase the bets on the next hand when 

the deck becomes 'favorable' (more high cards left in the deck), or lower the bet when 

the deck is 'unfavorable' (more non-10 value cards remaining in the deck.) In this sense, 

if the system evolves networks that take advantage of this additional information, the 

problem becomes more accessible - that is, more information from the environment is 

available to the agent, and performance will improve. 

In order to roughly compare the recurrent and feedforward tests, both network 

architectures were evaluated based upon the mean of the amount of money at the end of 

35 decks of blackjack, and the percentage of correct hit/stand decisions made by the 

network, as defined by known blackjack tables. The net work player started with a 
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bankroll of 100 units, and feedforward networks bet 1 unit per hand, while recurrent 

networks could dynamically determine the next bet in the range of 1 unit to 5 units. Bet 

varying was allowed in the recurrent networks, and the mix of performance based on an 

average of money remaining and mathematically correct decisions was deemed 

appropriate. This measure was used to balance the 'real-life' goal of competitive 

blackjack - to make money, while preventing lucky high bets on the part of the recurrent 

network by requiring that half of performance be based on the correct decisions 

according to a blackjack table. 

8.1.2 Analysis of Results 

Overall, all blackjack networks both recurrent and feedforward, fixed and variable 

sized, performed well by making intelligent decisions, and by evolving a strategy similar 

to a player utilizing the blackjack tables. Given the rules of the game used for these tests, 

with no doubling down or pair splitting, no insurance, and dealer hitting soft 17, the 

'house edge' was 3.28% (Humble & Cooper, 1980.) When the best network in the entire 

testing series was run over 20 decks of test play, the network had $116, after starting with 

$100. Due to the house edge, and an average of 8 hands per deck, a player playing 

exactly according to blackjack tables should have only had $94.75. It is important to note 

that this best network was a recurrent network evolved with variable hidden layer sizing. 

The feedforward and recurrent tests cannot be directly compared, as network and 

neuron population size for recurrent tests was higher. As shown later, however, recurrent 

models demonstrated a positive use of past state i,1fo1T,1ation to improve scores. The size 

and population advantage was given because, crnpi icr.lly, the more complex recurrent 
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networks required more powerful architectures to evolve performance above simple 

random guesses or "always stand" strategies. As an interesting corollary, very early 

generations evolved networks employing the "always stand" strategy, a very beginning 

and ineffective strategy found in some human players. 

8.1.2.1 Feedforward Models 

The results of the feedforward test are presented in Figure 8-3. All tests consisted 

of 50 trials. Both variable and fixed hidden layer models evolved successful strategies 

often similar to blackjack tables. Varying the hidden layer size increased the average 

score per generation by 24.03% in this test, and produced more consistent results with a 

lower standard of deviation for the score. Due to extremely computationally expensive 

tests, SANE was run for 200 generations and the score achieved at generation 200 taken 

as the score for the network on that trial. Each testtook approximately 1.5 hours of CPU 

time on a K6-233 NT Workstation. The average generation is the generation at which the 

Feedforwa-d Blackjack Tests 

Variable Hidden Layer Size Fixed Hidden Layer Size 
Average Size 17.423 Average Size 
Average Score 74.546 Average Score 
Average Generation 82.923 Average Generation 
Average Score/ Average Gen 0.899 Average Score/ Average Gen 
Standard Dev. Of Score 15.52 Standard Dev. Of Score 

Figure 8-3. Feedforward blackjack results 

average network achieved its highest score. Beyond this generation (and up to 200 

generations, when the test was halted), no higher scoring individuals were evolved. 
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8.1.2.2 Recurrent Models 

Recurrent tests produced better results on average, both with and without variable 

hidden layer sizes, as shown in Figure 8-4. This is an indication that to a certain extent, 

Recurrent Blackjack Tests 

Variable Hidden Layer Size 
Average Size 
Average Score 
Average Generation 
Average Score/Averar;p Gen 
Standard Deviation of Score 

22. 
77. 
82. 
0. 

9. 

Fixed Hdden Layer Size 
Average Size 
Average Score 
Average Generation 
Averar;p Score/Average Gen 
Standard Deviation of Score 

Figure 8-4. Recurrent blackjack results 

2 

8 
0. 
16.232 

networks were using previous decisions to improve performance. Despite the higher 

scores, only a very small number of networks varied their bets. This means that most 

networks used feedback information to refine the hit/stand decision rather than 

attempting to bet more when the deck was favorable. The networks that did modify their 

betting strategy did so successfully. This was an advanced trait and was only evolved by 

2 networks (out of the 100 recurrent trials.) A particularly interesting transcript over 20 

decks of test data on one of these networks is reproduced in Appendix A, along with 

some comments. As Appendix A illustrates, this network was betting on future hands by 

raising its bet and succeeding with a 64% accuracy rate. That is, when the network 

decided to raise its next bet, it won the next hand 64% of the time. A non card-counting 

player following the statistical black jack rules, as defined in this test, would have won 
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only 47.72% of the time. This strategy could not be duplicated often enough to confirm 

any trends, or prove a prediction ability. 

The trend of larger score gains per generation for the variable hidden layer model 

was continued in this test, with variably sized networks gaining an average of 0.13 points 

more per generation than the fixed size models. Test results were similar to the trends in 

the feedforward test, with growth providing lower standard deviation of score, higher 

score, and more score gain per generation. 

8.2 Pac-Man 

Pac-Man is a classic video game created in 1980 by Namco, Inc. Pac-Man 

Figure 8-5. The arcade Pac-Man screen 

and there were no large dots. 

consists of a roundish character eating dots in a 

maze, avoiding ghosts. The only goal in Pac-Man 

is accumulating points by eating dots. 

The arcade Pac-Man maze is displayed in 

Figure 8-5. For this research, a smaller and simpler 

maze was used with 1 ghost trying to catch the Pac

Man. This is a classical exploration and obstacle 

avoidance problem. In the arcade game, the player 

could eat a large dot and temporarily eat the ghosts. 

When this effect wore off after a few seconds, the 

player became the prey once again. For this test, 

the ghost was always to be avoided by the network, 
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For this experiment, tests were conducted on the smaller and simpler map shown 

in Figure 8-6. The black bunkers are immobile barriers and the player and ghost are 

shown in random starting positions. 

8.2.1 Experiment Description 

To prevent memorization of a correct 

strategy, based on the conclusions of Richards, et al. 

( 1997) regarding better performance against non

deterministic opponents, the Pac-Man was placed 

randomly along the upper row, and the ghost was 

placed randomly along the bottom row. 

Additionally, the ghost's behavior was generally to 

pursue the Pac-Man, but 8% of the time it made a 

random move, both to induce non-deterministic 

behavior, and to prevent the occasional stalemate from 

Figure 8-6. The Pac-Man test board 

a network hiding in the comer with a ghost 2 squares diagonally in a bunker. The 

random moves would 'pop' the ghost out of the bunker and continue pursuit behavior. 

The Pac-Man receives 5 points for every dot it eats, and loses a point for bumping 

into a wall or a bunker. If the ghost and the player occupy the same cell for 1 move, the 

game ends with the player receiving his accumulated points. The game also ends after 

100 moves, or if the player clears all of the dots. 

Network parameters for the Pac-Man test are shown in Figure 8-7. Networks 

consist of 29 inpuL neu··ons, with 7 neurons for inputting the player's x coordinate 
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(neuron n is activated for player in x-coordinate n), 7 neurons for the player's y

coordinate, and a similar 14 neurons for the ghost's location. An additional input neuron 

indicates a bump into the wall or a bunker. Four output neurons enable the player to 

move in four directions. 

Input Layer Hidden Layer Output Layer 

bump 

Moo connections omitted for simplicity 

Context neurons omitted for simplicity 

Figure 8-7. Network structure for Pac-Man tests 

The ghost pursues the Pac-Man by moving in the direction of the Pac-Man along 

the x or y axis. The pursuit algorithm moves the ghost toward the player (Pac-Man) 

along the axis of greatest distance from the player. For example, if the ghost is one 

column away (x-axis) and five rows away (y-axis), the ghost will move toward the Pac

Man along the y-axis. This allows the ghost to chase the Pac-Man when they are both on 

the same horizontal or vertical axis. Should this strategy fail due 10 a bunker in the way, 
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the ghost moves toward the Pac-Man along the other axis. Unlike the arcade game, 

where any contact by the player and the ghost ends play immediately, the ghost and the 

player must occupy the same square for 1 move. This makes the ghost an eliminator for 

players that make errors, usually by going to a comer and then moving into a wall. When 

the player makes a move into the wall, the ghost has time to catch up and occupy the 

same space as the player for 1 time step, thus eliminating the player. 

Pac-Man-

Mazes run per netvvork evaluation 
Hidden layer size 
Netvvork population size 
Neuron population size 
Sub-population size 
Adding neuron mutation rate 

recurrent 
fixed variable 

20 20 
20 15-20 
140 140 
4000 4000 
200 200 
2% 2% 

Figure 8-8. Pac-Man test parameters 

This test was performed exclusively with Elman recurrent networks, testing 

variable hidden layer sizes versus fixed hidden layer size models. In this experiment, the 

variable hidden layer model is tested with hidden layers ranging in size from 15 to 20 

neurons. The fixed model has 20 hidden layer neurons. Parameters for the Pac-Man test 

are given in Figure 8-8. 

8.2.2 Analysis of Results 

Figure 8-9 represents the results of 50 trials for the simulated Pac-Man 

environment for fixed and variable hidden layer networks. Scores for both models were 

virtually identical, although !.h~ variable model continued to have a larger performance 

increase per generation. ~;co ·e; are an average of the scores received by a player over 20 
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Recurrent Pac-Man Tests 

Variable Hidden Layer Size Fixed Hidden Layer Size 
Average Size 18.125 Average Size 20.000 
Average Score 82.286 Average Score 82.979 
Average Generation 65.500 Average Generation 81.375 
Av. Score/Av. Gen 1.256 Av. Score/Av. Gen 1.020 
St. Dev. of Score 10.650 Standard Dev. Of Score 16.785 

Figure 8-9. Results of the Pac-Man test 

trails, each one initialized with the player and ghost in random positions along opposite 

walls. Scores were measured at the end of 200 generations. The average generation in 

Figure 8-9 represents the average generation at which the highest score was achieved. 

Evolution beyond this generation did not produce better scoring networks. 

The Pac-Man network is always aware of its position and the position of the ghost. 

Therefore, the Pac-Man experiment has an accessible environment, which differs from 

the inaccessible blackjack environment. 

Most networks followed the outer edges of the maze and ate the dots along the side 

walls. Higher scoring networks initially followed this strategy and then moved to the 

center of the maze. Finding a path to the center was a discriminator between average 

networks and high scoring models. However, without advance knowledge of bunker 

placement or ghost avoidance, high scoring networks navigated well. They rarely if ever 

bumped into walls and formed efficient paths to eat large numbers of dots. 
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Chapter 9 

Contributions of This Research 

9.1 Evolutionary Algorithm Performance Increases 

9.2 New Domains 
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9. Contributions of This Research 

This research has demonstrated a new modification to the SANE neuro-evolution 

tool and established the effectiveness of evolving Elman recurrent networks. In addition, 

performance enhancements in the form of more consistent network evolution and higher 

score increases per generation were also achieved. This conclusion was confirmed by 

tests in the domain of partially observable Markov decision problems, exploration and 

obstacle avoidance, and trivial tests evolving networks to add a predetermined number of 

inputs (not reproduced here because of triviality). 

9.1 Performance of the Evolutionary Algorithm 

Allowing the evolutionary algorithm to modify the number of hidden layer 

neurons in the networks increased the average scores over the domain of blackjack, but 

had no effect on the raw scores in the Pac-Man test. Average score increases per 

generation were higher in variably sized hidden layer models for every test conducted in 

this research. Average score per generation increased by using variable hidden layer 

sizing by 4.44% on recurrent blackjack tests to 24.03% on feedforward blackjack tests. 

The networks, with variable hidden layer size, were more consistent in performance 

(lower standard deviation of scores), and demonstrated performance equal to fixed hidden 

layer models more quickly (higher average score/average generation to reach high score). 

9.2 New Domains 

This research extended the domain of SANE applications to partially observable 

Markov decision problems and exploration and obstacle avoidance. SANE evolved a 
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network capable of predicting cards in future blackjack hands and evolved to make its 

environment more accessible, as defined in Section 1.1, by using previous state 

information. 

SANE, modified with variable hidden layer sizing, was particularly effective in 

partially observable Markov decision problems. It has only been recently that neuro

evolution has evolved the power to solve non-Markovian problems. SANE has 

demonstrated effectiveness in these domains and varying the size of the hidden layer has 

improved performance and created higher performing networks more quickly (Gomez, 

1997, Gomez and Miikkulainen, 1998.) 

SANE was also modified with the ability to evolve Elman recurrent networks. 

For the domain of blackjack play, this modification evolved networks that displayed 

predictive abilities. Elman recurrent networks are an efficient addition to SANE as they 

require little modification to the internals of SANE. A distinction is simply made in the 

connection of a neuron to indicate a connection to a context neuron. Context neurons 

then function as input units and SANE can be applied to many new domains. 

This research has also made some headway into creating neuro-evolution models 

capable of "scaling up" to larger and more complex domains. Tests in this research have 

confirmed that growing or varying the hidden layer size is an effective technique for 

creating larger neural models, and may improve network performance for many domains. 
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Conclusion and Future Work 
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10. Conclusion and Future Work 

The goal of dynamic construction of neural networks supports a reduction in 

development time and is a step toward, in the general sense, a more autonomous learning 

system (Romaniuk, 1996.) Automating the selection of hidden layer siz.e augments this 

goal and simply becomes another search criterion for the evolutionary algorithm. For the 

domains in this research, varying the hidden layer siz.e has been shown to improve the 

score of the network per generation and provide a direction toward that autonomy. 

Neuro-evolution researchers have demonstrated the ability to effectively solve 

problems in many domains. Allowing an evolutionary algorithm to determine the 

appropriate network size is another step toward this truly autonomous learning system. 

Networks evolved in this research, with no prior domain knowledge of the game of 

blackjack, developed a very effective card counting strategy and employed that strategy 

to overcome the dealer's built-in advantage. 

Future directions for neuro-evolution research include refining and modifying the 

very effective SANE model and adding functionality and applicability to newer and more 

difficult classes of problems. Research in the area of reducing CPU time of evolutionary 

algorithms is an important step in evolving more complex behavior. An interesting area 

of future research is augmenting the work of Gomez and Miikkulainen in incrementally 

evolving behaviors. Networks under incremental evolution are not evolved from a 

random population of neurons and networks, but rather start evolution by building upon 

previously evolved decision strategies. 
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Delta-coding and hidden layer size variation are together significant in 

incremental evolution, since they are both methods that can be used when a population 

has converged. Delta-coding has been shown to be effective in incremental evolution. 

Hidden layer growth could be combined with Delta-coding to provide more power to 

networks attempting to achieve higher scores in difficult, non-Markovian tasks. Delta

coding increases the diversity of the candidate solutions and hidden layer growth 

increases the dimensionality of the solution. Exploring this combination for solving non

Markovian tasks is an interesting consideration for future research. 

As stated in 6.4, incremental evolution with Delta-coding requires a decomposition of 

the main task into sub-tasks to be performed by the networks. These tasks build upon 

one another and are combined to allow the successful evolution of more complex 

behavior. Expecting a network to evolve tournament-level chess play from scratch is 

unrealistic. However, by steadily increasing task difficulty and building upon knowledge 

gained earlier, incremental evolution seems a promising approach to solving more 

difficult classes of problems. In each step of the incremental evolution, the difficulty of 

the task increases and the network requires more power. Varying or growing the hidden 

layer size may provide additional power to the network evolving more difficult decision 

strategies on non-Markovian tasks. 

Another future area for exploration is on-line learning. For the experiments in this 

research, network weights and connections were not modified after training. On-line 

learning systems continue to fo,,rn during their "lifetime" as an agent, provided 

performance feedback mens 1rc:: are available. Growing the hidden layer size under on

line learning is another intrn ~:,tJn:~ investigation, as networks that learn on-line must be 
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more adaptable and robust. Inputs to the network during on-line learning may be outside 

the range anticipated by the designer's training inputs. As a result, networks using on

line learning must be able to adapt to these changes. Variable hidden layer sizing could 

help in this adaptability. 
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Appendix A 

An Interesting Blackjack Trial 

It is important to note that among the recurrent networks evolved to play '21 ', 

only the top 2% varied their bets and gave any indication of using feedback information 

to affect future decisions. This is one such network with the results of a test conducted 

over 20 decks of play. While this network appears to exhibit some predictions of future 

cards based on bet increases, it is impossible to prove that this network was not simply 

lucky. There were not enough networks evolved with these advanced abilities to make 

generalization possible. It is also interesting that when the network decided to increase 

its bet for the next hand, the network won the next hand 64% of the time. If a human 

player in Las Vegas achieved this percentage, they could become rich very quickly. In 

the following tables, winning hands are shaded. The hands, where the network decided 

to raise the bet for the next hand and the next hand was lost, are covered in black. The 

hands, where the network decided to increase the bet on the next hand and the next hand 

won, are shaded (as winning hands) and bordered in black. 
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: Hard 13 • 3 ! $1 • Stand ' No · $112 : ' · l I · · ! -' ' ! · · 

!]&ilJ·f ff ::~;:.•:: .• a::.::.:.•:m.1.·:·.:·.:.1:•·:•:••·:·::.: ••·••••· .J .F:.••·'•: : .. i •.. · ....... :.:•.•·········:·:·.···1.::::.t•.::::•••·:: .:1 •:.•••::.:: ... ::••:::.: ....• 

l .... ~.~.~~ .. f? ... L. ... ~ .. ::Li1 .. , ... ~~~~~·••:•• ·· ···~~ ..... : .. ~~)) .. L .... ...•.............. , .............. ..•.. .. ...... ...•...... .. : ..............•.......... ..... ~ ........... .;. .......•. ::::::::::: .. L: ......................... . 
: Hard 9 9 : $2 • Hit · Yes Hard 16: $1 · Stand · No • $111 • : · : i · : · 
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• Hard 17 , J : $1 : Stand : Yes : $121 : : : : : : : : : : • , '. 

:::·:·:·:ffiid:iJtt·il:·JWHJtMf.Wfl#W# #(Wi#O=i ::~iftfii@JlMlWrMt#1UMt:\:\?=lWW:HW:@t:ltlMFl::%=W@@tP:JtlllW#fNW1MWlFJltkW 
• Soft 17 : 7 : $1 : Hit • Yes Hard 16 $1 : Stand : Yes : $121 • : : • : : : • i 
'.:·:·:·a~mtr:=:t:te=r•:·::tt=/:\stsMt:7=:•:wts:\'h:·1:nt:::\=•:•:•:•=:·'?':··;·:tt==:=·t=:y:=·=··:·\·:)=·?Vt=:·:t·p:=:=:=·=:7k:t:·:t·=:::··=t·=:=·•:t:===:f·==:t==:·:=(tft:t:=·:··::~=:d:t··N==:•:=:::?='·:•:::=:=·=:>\:=:::::=:::·:f=·=:::=:=:: 

; •••••• ;~m:i~=·t=:=:=:=:·~:=:::=:t :=::;t~:·=·~:::;.=·:·:n=:=:; =·~=·==:=( ••• =:;=~~4::=::=:=k:M·W:~==~=:=:=¥:=:=:::=:=:=:=:=t•·==:=:==:~==w:n=:=:=+1+=t===~~ •• w~=···+:%·=~===t=n==t==·=·====L:=·===-==···====·=·t==·=·=@:f .=.=:::=:=·===·==t=\=::====:=:::=:t=·:·=··=·t:=*M·=·:=-::==·=·; 
: Hard 5 : 6 $1 : Stand : No . $121 . . . : : : • : . . l r;. Evii .. ifrc K . r ········~··· ············:-··············•·····'.·· . . ··· ·······r·····r··•·········=·· . . . : . ·· ····i 

ifiil~·-••tlliliiiaa,,■•-~ 
: Hard 16 : 3 : $1 : S1and : Yes • $121 : : : : : : : : : : : · 1 
r·· Ha~d·1·4········a·······$1···r····Hii··········v~·s·· ···i~ia·rd·1·iti"1 .. r·· s1anei······ ···No·····:··i1io··r·· ·· ··-:-···· ··· ·······:··· ··· ·········-;---··········=·········:············ ···; ··············· ···· ·· ······1 
rN·Ew D E,C:K .... : ··.·.··J ........ ... .. ,.. ···· ·····················:···· ···.· ··· ... ············ ·· :·····.· . ···r.·· ·.·)·· ············· ··:·· ········· ............ . 
= . .. ~~r.~ .. ~.? .. , ... .. ~ ..... , .. J1 .. .i .... ~.~~.r:i.~ ... • .. ... x~~ ..... :.J1.~.~ .. ; .... .... , ............... • ................ , ............. i ... ..... i ............... , ................•......... .. .•........ ; ............... = ....... ... ..... .. , ....... . 

: Hard 17 : 10 : $1 • Stand : Yes : $118 , • : : : : : : : , • : 1 :·· ·Hard·"i·o···:- ····;(:"····,·· ·$·2·-r···siiirid···:··· ··yas·····,··s1·1·,··,········,···············: ······· ········ -r············=········=··············-:-···············,············=········,··············r················,·· ········1 
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li;rrT'''.~'.'IiTEr-I?:TTrrn:rT:~r::""'"~T''.;'C:':'T'~''':I=,,,,,,::,,:~~r'.';'.°"'~I,: ~:;T~:~;t~,: :~,e:~,:: 't::~,1 
: Hard 12 : A : $1 : Hit , Yes Hard 14; $1 : stand : Yes , $116 : : , : : : : • : 
l i¾am:i~v~~-·-.·.! ·<·j::·•ilJh-:••·:jtiU~ij::)h::-ya(n)·si~i?i=\>::,.::=i•::ii:::::::·:::::::i::i\/:/i)·:i:i:::::::iifr?:~·i·m?::\-::·h··==~•:::. •. :::•:•.·•:=:-·•·:::•-w.·y•:•+···•--:=❖t·=·=·=~·.:·:·.-.::•:::w:•:.:.: ...... •.·•:•:•·:·.·•:•:•·=:=<·.w.•.<•.:, 
~'i~i~·~o~E:c·l·····i ··~~ ... l ... ?!~.~~ .. L .... x~~ ..... :. J~.~.~+······.:..·············/···············;.···········{·······L··············: ............... : ............ : ........ l .............. i ................ 1 ......... . : 

'M#ifr:i,~,):~ •- !h· ·~ )--·,·•:i,Jh700@:·,;,:'rnufflil:U;fi!ffik'1Mill\tTut'illiiN"'illlWfit'tl'li!@M'!&'W• 
• Hard 10 : 4 • $1 : Hit : Yes Hard 20: $1 • Stand • Yes : $115 • : : : : : , : : 
t .. ~.ax~.1.~ ... i ..... ?. ... . : .. ~~ ... l ... ~!~.~~ ... :.:.:.x~~ ..... i.J1.1.~:.: ... : .... .:.:: .. :: .. : ..... : .. .. : ....... .. . : ..... ....... / ....... L .............. l .... ........... ! .... .... : ... l ........ l .............. : ..... : ... : .. : ... :.. . 
: Hard 20 : J : $2 Stand Yes : $113 • • • • • • 
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AppendixB 

Source Code 

The original SANE 2.0 C source code is available from the UTCS Neural Networks' 

home page: http://www.cs.utexas.edu/users/nn/ 

SANE source code modified with sub-populations, dynamic memory allocation, 

variable hidden layer sizing and Elman recurrency can be obtained by e-mailing Dr. 

Khosrow Kaikhah at kk:02@swt.edu. The latter version is in C, but was compiled under 

Visual C++ 5.0 and is easier to port to an NT workstation. The following code is used to 

perform the blackjack and pacman tests. The code is called each time SANE evaluates a 

network. Each function performs the test, rates the agent (network) in the environment, 

and returns a score. 
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Bjack.h 

// bjack.h 
// header file for bjack.c 

float play(networle); r returns a float for this networks performance */ 
r performance is # of chips at end of <ROUNDS> decks of play */ 

r set up the cards*/ 
r shuffle the deck*/ 

void init_deck(deck*); 
void shuffle(deck*); 
int find_in(char); r find the input neuron for a card*/ 

/* depends on which card in hand it is */ 
double find_bet(double,double,double); /* find the next bet based on network output*/ 
int acc_check(int,int,int); /* check the hit/stand decision for accuracy*/ 
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Bjack.c 

// Bjack.c 
II 
// Ryan Garlick 
II 
// this file is the blackjack simulator for testing sane 
// sane plays alone against the dealer - standard blackjack 
// rules - dealer hits soft 17, stays on hard 17, hits 16. 
// Double down is an optional feature, but splitting is not 
// allowed. 
II To reduce the search space, the network is not allowed to 
// hit a 21 or higher. 

// ouput neuron 0 higher than output neuron 1 indicates hit, 
// opposite is stand. output 3 is the next bet (higher for higher bet) 

#include "sane.h" 
#include "sane-util.h" 
#include "bjack.h" 
#include "sane-nn.h" 

float play(net) 
network* net; 

//main blackjack function 

{ 
deck my_deck; 
int i,j,remain; 
int p_tot,p_alt_tot; 

int d_tot,d_alt_tot; 
float bank=100.0; 

//struct for the deck of cards 

//player total and player alt. total 
//alt totals will always be higher if ace 

//dealer total and dealer alt. total 
//the players bankroll -

//used to find network fitness 
int q,dealer_hold,play_hold; //holder for neurons to activate based on cards 
float tot_dec,corr_dec; //total and correct decisions made by the network 
float bet = 2.0; //bet = 1, next bet determined by network 
float next_bet = 2.0; //first bet will be 1 regardless 
int hit; //boolean if the network hit 
float ret_val,bet_val,bet_val2; //return performance-average of money and accuracy 

tot_dec = corr_dec = 0.0; //zero out total and correct decisions 
for (i=O;i<ROUNDS;++i) { 

init_deck(&my_deck); 
shuffle(&my_deck); 

remain = 51; //counter for# of remaining cards - 51 to 0 

while (remain >= 12) 
{ //lets play a deck 

bet=next_bet; 
p_tot = p_alt_tot = 0; //clear player hand 

d_tot = d_alt_tot = 0; //clear dealer hand 
forU=0;j<41 ;++j) //init input neurons to 0 
net->input[j] = 0.1000; 
p_tot += my_deck.cards[remain].value; // get player card 1 
if (my_deck.cards[remain].value = 1) 

p_alt_tot += 11; 
else 

p_alt_tot += my_deck.cards[remain].value; 
remain-= 1; 
p_tot += my_deck.cards[remain].value; //get player card 2 
if (my_deck.cards[remain].value = 1) { 

if (p_alt_tot < 11) 
p_alt_tot += 11; 
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else 
p_alt_tot += 1; 

} 
else 

p_alt_tot += my_deck.cards[remain].value; 
if(p_alt_tot>p_tot) //input to net 

play _hold:p _alt_tot +6; 
else 

play_hold:p_tot-4; 
net->input[play_hold]=.500; 

remain -=1; 

d_tot += my_deckcards[remain].value; // get dealer card 1 
if (my_deck.cards[remain].value == 1) 

d_alt_tot += 11; 
else· 

d_alt_tot += my_deck.cards[remain].value; 
remain-= 1; 

d_tot += my_deckcards[remain].value; 
if (my_deck.cards(remain].value = 1) 

if ( d_alt_tot < 11) 
d_alt_tot += 11; 

else 
d_alt_tot += 1 ; 

} 
else 

//get dealer card 2 
{//this is the up card 

d_alt_tot += my_deck.cards[remain].value; 
dealer_hold=find_in(my_deck.cards[remain].face); 
net->input(dealer_hold]=.500; //input dealer up card to net 

remain -=1; 
if (remain < 47) 

activate_net(net,0); //if 1st time thru deck, zero context layer history 
else 

activate_net(net, 1 ); 
bet_val=net->sigout[2]; 
bet_val2=net->sigout[3]; 
next_bet=find_bet(bet_ val, bet_ val2, bet); 
tot_dec += 1; 
if (net->sigout[0]>net->sigout[1]) 

hit= 1; 
else 

hit= 0; 
corr_dec += acc_check(play_hold,dealer_hold,hit); //was it correct? 

while((net->Sigout[1]<net->sigout[0])&&(p_tot<22)) { 
p_tot += my_deck.cards[remain].value; //get player next card 
if (my_deck.cards[remain].value = 1) { 

if (p_alt_tot < 11) 
p_alt_tot += 11; 

else 
p_alt_tot += 1; 

} 
else 

p_alt_tot += my_deck.cards[remain].value; 

for( q=0;q<41 ; ++q) 
net->input[ q]=0.1000; 

if(p_tot<22) { 
if((p_alt_tot>p_tot)&&(p_alt_tot<22)) //input t l !let 

play_hold=p_alt_tot+6; 
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else 
play_hold=p_tot-4; 

net->input[dealer_hold]=.500; //input dealer up card to net 
net->input[play_hold]=.500; //input player card to net 
activate_net(net,0); //get a hit/stand decision 
bet_val=net->sigout[2]; //nexJ. bet is last output of sigout[2] 
bet_val2=net->sigout[3]; 
nexJ._bet=find_bet(bet_ val, bet_ val2,bet); 
tot_dec += 1; 

if (net->sigout[0]>net->sigout[1]) 
hit= 1; 

else 
hit= 0; 
corr_dec += acc_check(play_hold,dealer_hold,hit); 

} 
remain-= 1; 

// player is done hitting or standing, now find dealer total 
while (({d_tot==d_alt_tot)&&{d_tot<17))11({d_tot<d_alt_tot)&&{d_alt_tot<18))) { 

d_tot += my_deck.cards[remain].value; //get dealer nexJ. card 
if (my_deck.cards[remain].value == 1) { 

if ( d_alt_tot < 11) 
d_alt_tot += 11; 

else 
d_alt_tot += 1; 

} 
else 

d_alt_tot += my_deck.cards[remain].value; 
remain -=1; 

} //end of dealer hitting 
if ({p_alt_tot<22)&&{p_alt_tot>p_tot)) //now determine the winner 

p_tot = p_alt_tot; 
if ( ( d_alt_tot<22)&&( d_alt_tot>d_tot)) 

d_tot = d_alt_tot; 
if (((p_tot>d_tot)&&{p_tot<.22))11({p_tot<22)&&{d_tot>21))) //player wins 

bank+= bet; 
if (({d_tot>p_tot)&&{d_tot<.22))11({d_tot<.22)&&(p_tot>21))) //dealer wins 

bank-= bet; 

//end of this deck (while remaining cards >= 12) 
} //end of rounds for loop 
if {bank< 0) 

bank= 0; 
ret_val= ((bank+((corr_dec/tot_dec)*100))/2); 

// if (ret_val < 0) 
// ret_val = 0; 

return ret_val; 
} //end of play 

void init_deck(my_deck2) //this function creates a deck 
deck* my_deck2; 
{ 
inti; 
for (i=0;i<4*NUM_DECKS;++i) { 

my_deck2->eards[i].face='A'; 
my_deck2->eards[i].value=1; 

} 
for (i=4*NUM_DECKS;i<8*NUM_DECKS;++i) { 

my_ deck2->eards[ij.f ace='2'; 
my_deck2->eards[i].value=2; 
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for (i::8*NUM_DECKS;i<12*NUM_DECKS;++i) { 
my _deck2->eards[i].face='3'; 
my_deck2->eards[i].value=3; 

} 
for (i=12*NUM_DECKS;i<16*NUM_DECKS;++i) { 

my_deck2->eards[i].face='4'; 
my_deck2->eards[i).value=4; 

} 
for (i=16*NUM_DECKS;i<20*NUM_DECKS;++i) { 

my _deck2->eards[i). face='5'; 
my _deck2->eards[i]. value=5; 

} 
for (i=20*NUM_DECKS;i<24*NUM_DECKS;++i) { 

my _deck2->eards[i). face='6'; 
my_deck2->eards[i).value=6; 

} 
for (i=24*NUM_DECKS;i<28*NUM_DECKS;++i) { 

my _deck2->eards[i].face='7'; 
my _deck2->eards[i).value= 7; 

} 
for (i=28*NUM_DECKS;i<32*NUM_DECKS;++i) { 

my_deck2->eards[i].face='8'; 
my_deck2->eards[i).value=8; 

} 
for (i=32*NUM_DECKS;i<36*NUM_DECKS;++i) { 

my _deck2->eards[i).face='9'; 
my_deck2->eards[i).value=9; 

} 
for (i=36*NUM_DECKS;i<40*NUM_DECKS;++i) { 

my _deck2->eards[i].face='1 '; 
my _deck2->eards[i).value=1 O; 

} 
for (i=40*NUM_DECKS;i<44*NUM_DECKS;++i) { 

my_deck2->eards[ij.face='J'; 
my _deck2->eards[ij.value=1 O; 

} 
for (i=44*NUM_DECKS;i<48*NUM_DECKS;++i) { 

my_deck2->eards[ij.face='Q'; 
my_deck2->eards[i).value=1 O; 

} 
for (i=48*NUM_DECKS;i<52*NUM_DECKS;++i) { 

my_deck2->eards[ij.face='K'; 
my_deck2->eards[ij.value=1 O; 

} 
} 

void shuffle(my_deck) //shuffles the cards 
deck* my_deck; 
{ 
char tempf ace; 
int tempval; 
int h,i,randhold; 
for (h=O;h<2;h++){ 

for (i=O;i<52*NUM_DECKS;++i) { 
randhold = randint(0,51 *NUM_DECKS); 
tempface = my_deck->eards[i).face; 
tampval = my_deck->eards[i).value; 
1 ny_deck->eards[i].face = my_deck->eards[randhold].face; 
my _deck->eards[i].value = my _deck->eards[randhold). value; 
rny_deck->eards[randhold).face = tempface; 
rny_deck->eards[randhold).value = tempval; 
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int find_in(face) 
char face; 

//find the input neuron for this 

{ 
if (face= 'A') 

return 28; 
if (face = '2') 

return 29; 
if (face = '3') 

return 30; 
if (face = '4') 

return 31; 
if (face = '5') 

return 32; 
if (face = '6') 

return 33; 
if (face = '7') 

return 34; 
if (face = '8') 

return 35; 
if (face = '9') 

return 36; 
if (face = '1 ') 

return 37; 
if (face= 'J') 

return 38; 
if (face = 'Q') 

return 39; 
if (face = 'K') 

return 40; 
} 

double find_bet(netout,netout2,prev _bet) 
double netout, netout2; 
double prev_bet; 

{ 
double ret_bet; 
next bet 

if (netout<netout2) { 
if (prev_bet=1.00) 

return prev_bet; 
else { 

} 
} 
else { 

more next time 

ret_bet = prev_bet - 1.00; 
return ret_bet; 

if (prev_bet==5.00) 
return prev_bet; 

else { 
ret_bet = prev_bet + 1.00; 

return ret_bet; 
} 

} 

int acc_check(play,deal,dec) 

//card and this input order (2nd card, etc.) 

//find the bet based on output neuron 3 

//return value of 

//bet less next time 

//bet 



int play, deal, dee; //dee is decision 1 for hit, 0 for stand 
{ 

switch(play) { 

case O: 

case 1: 

case 2: 

case 3: 

case 4: 

case 5: 

case 6: 

case 7: 

case 8: 

case 9: 

if(dec=1) 
return 1; 

else 
return O; 

if(dec=1) 
return 1; 

else 
return O; 

if(dec=1) 
return 1; 

else 
' return O; 

if(dee=1) 
return 1; 

else 
return O; 

if(dec=1) 
return 1; 

else 
return O; 

if(dec=1) 
return 1; 

else 
return O; 

if(dec=1) 
return 1; 

else 
return O; 

if(dee=1) 
return 1; 

else 
return O; 

if ((deal<34)&&(deal>30)) 
if ( dec=::0) 

return 1; 
else 

return O; 
else 

if (dee==1) 
return 1; 

else 
return O; 

if ((deal<34)&&(deal>28)) 

//hard 4 - always hit 

//hard 5 - always hit 

//hard 6 - always hit 

//hard 7 - always hit 

//hard 8 - always hit 

//hard 9 - always hit 

//hard 10 - always hit 

//hard 11 - always hit 

//hard 12 - stay against dealer 4,5,6 

//hard 13 - stay against dealer 2 thru 6 
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if (dec==O) 
return 1; 

else 
return O; 

else 
if (dec=1) 

return 1; 
else 

return O; 
case 1 O: //hard 14 - stay against dealer 2 thru 6 

if ((deal<34)&&(deal>28)) 
if (dec=O) 

return 1; 
else 

return O; 
else 

if (dec=1) 
return 1; 

else 
return O; 

case 11: //hard 15 - stay against dealer 2 thru 6 
if ((deal<34)&&(deal>28)) 

if (dec==O) 
return 1; 

else 
return O; 

else 
if (dec==1) 

return 1; 
else 

return O; 
case 12: //hard 16 - stay against dealer 2 thru 6 

case 13: 

if ((deal<34)&&(deal>28)) 
if (dec=O) 

return 1; 
else 

return O; 
else 

if (dec=1) 
return 1; 

else 

if(dec=O) 
return 1; 

else 
return O; 

return O; 
//hard 17 - always stay 

case 14: //hard 18 - always stay 
if(dec=O) 

return 1; 
else 

return O; 
case 15: //hard 19 - always stay 

if(dec==O) 
return 1; 

else 
return O; 

case 16: //hard 20 - always stay 
if(dec=O) 

return 1; 
else 

return O; 
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case 17: //hard 21 - always stay 
if(dec=O) 

return 1; 
else 

return O; 

case 18: //soft 12 - always hit 
if(dec=1) 

return 1; 
else 

return O; 

case 19: //soft 13 - always hit 
if(dec=1) 

return 1; 
else 

return O; 

case 20: //soft 14 - always hit 
if(dec=1) 

return 1; 
else 

return O; 

case 21: //soft 15 - always hit 
if(dec=1) 

return 1; 
else 

return O; 

case 22: //soft 16 - always hit 
if(dec==1) 

return 1; 
else 

return O; 

case 23: //soft 17 - always hit 
if(dec=1) 

return 1; 
else 

return O; 

case 24: //soft 18 - hit against dealer 9, 1 O,j,q,k,a 

case 25: 

if ((deal 28)11((deal<41)&&(deal>35))) 
if (dec=1) 

return 1; 
else 

return O; 
else 

if (dec=O) 
return 1; 

else 

if(dec=O) 
return 1; 

else 
return O; 

return O; 
//soft 19 - always stay 

case 26: //soft 20 - always stay 
if(dec==O) 

return 1; 
else 
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return O; 
case 27: //soft 21 - always stay 

if(dec=O) 
return 1; 

else 
return O; 

default: 
printf("lnvalid parameter for player hand"); 
exit(1 ); 

} //end of switch statement 
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llpacman.c 
II 
II Ryan Garlick 
II 
II Performs the pacman simulation 

#include "sane.h" 
#include "sane-util.h" 
#include "pacman.h" 
#include "sane-nn.h" 

float pacman(net) 
network* net; 

{ 
cell world[W _SIZE][W _SIZE]; 
ag_stat agent; 
int i,j,q; 
float score_sum = 0.0; 
int gx,gy; 
int ax,ay; 
int gh_x,gh_y; 
int high_out; 
int in_neur1,in_neur2; 
int g_in_neur1, g_in_neur2; 
float ReturnVal; 
int randmove; 
II initialize the world 

for (q=0;q<ROUNDS;++q) { 
gx = randint(0,W _SIZE-1 ); 
gy =6; 
ax = randint(0,W _SIZE-1 ); 
ay=0; 

for(i=0;i<W _SIZE;++i) 
for (i=0;j<W_SIZE;++j) { 

world[i][j].ghost = 0; 
world[ijU].dot = 1; · 

world[i][j].bunker = 0; 

world[1 ][1 ].bunker = 1; 
world[2][1 ].bunker = 1; 
world[4][1 ].bunker= 1; 
world[5][1 ].bunker = 1; 
world[1][2].bunker = 1; 
world[5][2ibunker = 1; 
world[1][4].bunker = 1; 
world[5][4].bunker = 1; 
world[1 ][SJ.bunker = 1; 
world[2][5].bunker = 1; 
world[4][5].bunker = 1; 
world[5][5].bunker = 1; 

Pacman.c 

//main pacman experiment function 

//ghost x and ghost y; 
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//place the ghost 
world[gx][gy].ghost = 1; 
gh_X= gx; 
gh_y = gy; 

//place the agent 
agent.ag_x = ax; 
agent.ag_y = ay; 
agent.in_ghost = O; 
agent.dotcount = 37; 
agent.move_count = O; 
agent.score= 0.00; 

for (i=O;i<NUM_INPUTS;++i) 
net->input[i] = .1000; 

//input to net 
do{ //main loop 
if (agent.ag_X=O) 

in_neur1 = 1; 
if (agent.ag_x==1) 

in_neur1 = 2; 
if (agent.ag_x==2) 

in_neur1 = 3; 
if (agent.ag_x'-3) 

in_neur1 = 4; 
if (agent.ag_x--4) 

in_neur1 = 5; 
if (agent.ag_x==5) 

in_neur1 = 6; 
if (agent.ag_x'--6) 

in_neur1 = 7; 

if (agent.ag_y==D) 
in_neur2 = 8; 

if (agent.ag_y=1) 
in_neur2 = 9; 

if (agent.ag_y--2) 
in_neur2 = 1 O; 

if (agent.ag_y==3) 
in_neur2 = 11; 

if (agent.ag_y==4) 
in_neur2 = 12; 

if (agent.ag_y==5) 
in_neur2 = 13; 

if (agent.ag_y=6) 
in_neur2 = 14; 

if (gh_x 0) 
g_in_neur1 = 15; 

if (gh_x=1) 
g_in_neur1 = 16; 

if (gh_x 2) 
g_in_neur1 = 17; 

if (gh_X=3) 
g_in_neur1 = 18; 

if (gh_:x= 4) 
g_in_neur1 = 19; 

if (gh_x==5) 
g_in_neur1 = 20; 

if (gh_:x=:6) 
g_in_neur1 = 21; 



if (gh_y-::0) 
g_in_neur2 = 22; 

if (gh_y=1) 
g_in_neur2 = 23; 

if (gh_y==2) 
g_in_neur2 = 24; 

if (gh_y=3) 
g_in_neur2 = 25; 

if (gh_y==4) 
g_in_neur2 = 26; 

if (gh_y==5) 
g_in_neur2 = 27; 

if (gh_y==6) 
g_in_neur2 = 28; 

net->input[in_neur1) = .5000; 
net->input[in_neur2] = .5000; 
net->input[g_in_neur1] = .5000; 
net->input[g_in_neur2] = .5000; 

if (agent.move_count=0) 
activate_net(net, 1 ); //get a decision 

else 
activate_net(net,0); 

for (i=0;i<NUM_ TRUE_INPUTS;++i) 
net->input[i] = .1000; 

agent.move_count += 1; 
high_out = 0; 

for (i=O;i<NUM_OUTPUTS;++i) { 
if (net->sigout[i]>net->sigout[high_out]) 

high_out = i; 

switch (high_outY { 
case 0: //move forward 

if ((agent.ag_y == W _SIZE-1 )ll(world[agent.ag_x][agent.ag_y+ 1 ).bunker==1)) { 
net->input[0] = .5000; //bumped into a wall 

} 
else { 

} 
break; 

if (agent.score> 1.000) 
agent.score-= 1.000; 

agent.ag_y += 1; 

case 1: //go right 
if ((agent.ag_x = W_SIZE-1)11(world(agent.ag_x+1](agent.ag_y).bunker==1)) { 

net->input(0) = .5000; //bumped into a wall 

} 
else { 

} 
break; 

if (agent.score> 1.000) 
agent.score -= 1.000; 

agent.ag_x += 1; 

case 2: //go left 
if ((agent.ag_x == 0)ll(world[agent.ag_x-1][agent.ag_y).bunker=1 )) { 

net->input[0l = .5000; //bumped into a wall 
if (agent.score> 1.000) 

agent.score -= 1.000; 
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else { 

} 
break; 

agent.ag_x -= 1; 

case 3: //go backwards 
if ((agent.ag_y = 0)ll(world[agent.ag_x][agent.ag_y-1].bunker=1)) { 

net->input[0] = .5000; //bumped into a wall 
if (agent.score> 1.000) 

} 
else { 

agent.score -= 1.000; 

agent.ag_y -= 1; 
} 
break; 

} //end of case statement 

if (wortd[agent.ag_x][agent.ag_y].dot == 1) { 
world[agent.ag_x][agent.ag_y].dot = 0; 
agent.dotcount -= 1; 
agent.score+= 5.00; 
} 
if (world[agent.ag_x][agent.ag_y].ghost == 1) { 

agent.in_ghost = 1; 
} 

//move the ghost 
randmove = 0; 
if (randint(0, 100)<9) { 

if (randbit()) { 

} 
else { 

if (randbit()) { 

} 

if ((world[gh_x+1][gh_y].bunker = 0) && (gh_x+1 <W_SIZE)) { 
world[gh_x][gh_y].ghost = 0; 
gh_x += 1; 

world[gh_x][gh_y].ghost = 1; 
} 

else { 
if ((world[gh_x-1][gh_y].bunker = 0) && (gh_x != 0)) { 

world[gh_x][gh_y].ghost = 0; 
gh_x-= 1; 

world[gh_x][gh_y].ghost = 1; 
} 

if (randbit()) { 
if ((world[gh_x][gh_y+1].bunker = 0) && (gh_y+1 < W_SIZE)) { 

world[gh_x][gh_y].ghost = 0; 

} 

gh_y += 1; 
world[gh_x][gh_y].ghost = 1; 

} 

else { 
if ((world[gh_x][gh_y-1].bunker == 0) && (gh_y != 0)) { 

world[gh_x][gh_y].ghost = 0; 
gh_y-= 1; 

world[gh_x][gh_y].ghost = 1; 
} 
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randmove = 1 ; 
} 
if ( ((abs(agent.ag_x-gh_x))>=(abs(agent.ag_y-gh_y)))&&(randmove = 0)) { 

} 

if ( (agent.ag_x > gh_x) && (world[gh_x+ 1 ][gh_y].bunker == 0) ) { 
world[gh_x][gh_y].ghost = 0; 

} 
else { 

gh_X+= 1; 
worlc(gh_x][gh_y].ghost = 1; 

if ( (agent.ag_x < gh_x) && (world[gh_x-1][gh_y].bunker = 0)) { 
world[gh_x][gh_y].ghost = 0; 

} 
else { 

gh_x-= 1; 
world[gh_x][gh_y].ghost = 1; 

if ( (agent.ag_y > gh_y) && (world[gh_x][gh_y+ 1].bunker == 0) ) { 
world[gh_x][gh_y].ghost = 0; 

else { 

gh_y += 1; 
world[gh_x][gh_y].ghost = 1; 

if ( (agent.ag_y < gh_y) && (world[gh_x][gh_y-1].bunker = 0)) 
world[gh_x][gh_y].ghost = 0; 
gh_y-= 1; 
world[gh_x][gh_y].ghost = 1; 

else if ( ((abs(agent.ag_x-gh_x))<(abs(agent.ag_y-gh_y)))&&(randmove =0)) { 
if ( (agent.ag_y > gh_y) && (world[gh_x][gh_y+1].bunker = 0)) { 

world[gh_x][gh_y].ghost = 0; 

} 
else { 

gh_y += 1; 
world[gh_x][gh_y].ghost = 1; 

if ( (agent.ag_y < gh_y) && (world[gh_x][gh_y-1].bunker = 0)) { 
world[gh_x][gh_y].ghost = 0; 

} 
else { 

gh_y-= 1; 
world[gh_x][gh_y].ghost = 1; 

if ( (agent.ag_x > gh_x) && (world[gh_x+ 1 ][gh_y].bunker == 0) ) { 
world[gh_x][gh_y].ghost = 0; 
gh_X+= 1; 
world[gh_x][gh_y].ghost = 1; 

else { 
if ( (agent.ag_x < gh_x) && (world[gh_x-1][gh_y].bunker == 0)) { 

worlc(gh_x][gh_y].ghost = 0; 
gh_x-= 1; 
world[gh_x][gh_y].ghost = 1; 

}while( ( agent. in_ghost==O) &&(agent. m,JVe_ count <1 00)&&( agent.dotcount>O)); 
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score_sum += agent.score; 

} // end of for loop for ROUNDS 

Return Val = (score_sum / ROUNDS); 
return ReturnVal; 

} //end of pacman 
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