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EXISTENCE AND UNIQUENESS OF TRAVELLING
WAVEFRONTS FOR A BIO-REACTOR EQUATIONS WITH

DISTRIBUTED DELAYS

ZHIHONG ZHAO, YUANTONG XU, YONGJIN LI

Abstract. We consider the diffusive single species growth in a plug flow re-

actor model with distributed delay. For small delay, existence and uniqueness

of such wavefronts are proved when the convolution kernel assumes the strong
generic delay kernel. The approaches used in this paper are geometric singular

perturbation theory and the center manifold theorem.

1. Introduction

There has been considerable interest recently in the system of reaction-diffusion
equations

St = εSxx − αSx − f(S)u

ut = uxx − αux + (f(S)− k)u,
(1.1)

as a mathematical model to study some problems in biology and chemical reaction.
Most recently (1.1) has been derived in [1] to study a single population microbial
growth for a limiting nutrient in a flow reactor, where α > 0 is the flow velocity,
S(x, t) and u(x, t) are the concentrations of nutrient and microbial population at
position x and time t, respectively. We refer readers to [1, 7, 10] and the references
therein for further details of model description. To best describe this phenomenon
[10], we consider an infinitely long flow reactor. Suppose that the amount S0 of
nutrient is input at a constant velocity α at one end of the flow reactor, says at
x = −∞. On the other hand, assume that the nutrient uptake function f satisfies
f(0) = 0, f ′ > 0 and f(S0) > k (see [10]), where k > 0 is the cell death rate.
We naturally expect that the nutrient should be sufficient for growth upstream of
the pulse and be depleted below the level at which bacteria can grow downstream
of the pulse. Hence one many expect that a hump-shaped bacteria population
density u(x, t) moves towards the other end of reactor. That is, we expect that
there are constants c, S0 with f(S0) < k, and nonnegative travelling wavefronts
S(x, t) = S(x + ct) and u(x, t) = u(x + ct) satisfy

S(−∞) = S0, u(−∞) = 0, S(+∞) = S0 < S0, u(+∞) = 0. (1.2)
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The equations satisfied by S(z) and u(z), where z = x + ct are

0 = εS′′ − (α + c)S′ − f(S)u

0 = u′′ − (α + c)u′ + (f(S)− k)u.
(1.3)

From (1.2) and (1.3), we get S0 must satisfy

(α + c)(S0 − S0) = k

∫ +∞

−∞
u(z)dz. (1.4)

The question of the existence of travelling wavefronts of (1.1) and (1.2) has recently
been solved that can be summarized as follows.

Proposition 1.1. Assume ε ≥ 0, k > 0 are constants, and suppose that f satisfies
f(0) = 0, f ′ > 0 and f(S∗) = k for some positive number S∗. Then, given S0 >
S∗ and there is a unique S0 ∈ (0, S∗) such that (1.1) has a travelling wavefronts
S(x + ct), u(x + ct) satisfying the boundary condition (1.2) if and only if c + α ≥
C∗ :=

√
4(f(S0)− k). Moreover, S(z) is strictly decreasing and u(z) is strictly

positive for z ∈ R.

The objective of the present paper is to address the question of the existence and
uniqueness of travelling wavefronts solution of the following more general version
of the system (1.1) with ε = 0,

St = −αSx − f(S)(g ∗ u)

ut = uxx − αux + (f(S)− k)(g ∗ u),
(1.5)

where the convolution g ∗ u is defined by

(g ∗ u)(x, t) =
∫ t

−∞
g(t− s)u(x, s)ds (1.6)

and the kernel g : [0,∞) → [0,∞) satisfies

g(t) ≥ 0, ∀t ≥ 0 and
∫ ∞

0

g(t)dt = 1. (1.7)

The delay kernel g are frequently of the form

g(t) = δ(t− τ), g(t) =
1
τ

e−t/τ , g(t) =
t

τ2
e−t/τ . (1.8)

In each of these cases, the parameter τ > 0 measures the delay. The first of these
kernels gives rise to a model having a discrete time-delay, where δ denotes Dirac’s
delta function. The other two kernels in (1.8) are called weak and strong generic
delay kernels. The “weak” case g(t) = 1

τ e−t/τ reflects the idea that the importance
of the past decreases exponentially the further one looks into the past. The “strong”
case g(t) = t

τ2 e−t/τ can be regarded as a smoothed out version of the discrete delay
case g(t) = δ(t− τ). This strong kernel implies that a particular time in the past,
namely τ time units ago, is more important than any other since kernel achieves
its unique maximum at t = τ .

The remaining part of this paper is organized as follows. Section 2 is devote
to some preliminary discussion mainly focus on the particular case of the kernel.
In Section 3, we establish the existence and uniqueness of travelling wavefronts
solutions when τ is small. Geometrical singular perturbation theory and the center
manifold theory play a major role in the proofs.
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2. preliminaries

The purpose of this section is to establish propositions that will serve main proof
of the existence and uniqueness of the travelling wavefront.

At first, the results on travelling fronts for the non-delay equation is needed.
(1.3) with ε = 0 can read as a system of first-order equations

u′′ = (c + α)u′ − (f(S)− k)u

S′ = −f(S)u/(c + α)
(2.1)

which is equivalent to (see [10])

u′ = (c + α)[−G(S0) + u + G(S)]

S′ = −f(S)u/(c + α)
(2.2)

where

G(S) = S − k

∫ S

S∗

1
f(s)

ds, S > 0. (2.3)

The function G satisfies

G(0+) = G(+∞) = +∞, G(S∗) = S∗, G′(S) =
f(S)− k

f(S)
, G′′(S) > 0. (2.4)

The following lemma yields the existence of a travelling wavefront solution of the
non-delay equation (2.2).

Lemma 2.1 ([10]). If c + α ≥ C∗ :=
√

4(f(S0)− k), then in the (S, u) phase
plane, a heteroclinic connection exists between the critical points (S, u) = (S0, 0)
and (S0, 0) for S0 > S∗, G(S0) = G(S0) and S(·) is strictly decreasing and u(·) is
positive and unimodal.

We return now to the delay equation (1.5). The travelling wavefronts is a solution
of the form S(x, t) = S(z), u(x, t) = u(z), where z = x+ ct and c > 0 is called wave
speed, satisfies

0 = −(α + c)S′ − f(S)(g ∗ u)

0 = u′′ − (α + c)u′ + (f(S)− k)(g ∗ u)
(2.5)

with

(g ∗ u)(z) =
∫ ∞

0

g(w)u(z − cw)dw. (2.6)

We shall seek leftward-moving waves, thus we take

S(−∞) = S0, S(+∞) = S0, u(−∞) = 0, u(+∞) = 0. (2.7)

Next, we shall analyze (2.5) for travelling wavefronts in the particular case when
the kernel g is the third of (1.8), the strong generic delay case. The corresponding
calculations for the weak kernel are similar and will be omitted. Recall that the
parameter τ measures the delay. It is useful to reference (2.5) as

u′′ = (c + α)u′ − (f(S)− k)(g ∗ u)

S′ = − f(S)
(c + α)

(g ∗ u).
(2.8)

Thus
g(t) =

t

τ2
e−t/τ , τ > 0,
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and we define
p(z) = (g ∗ u)(z) =

∫ ∞

0

t

τ2
e−t/τu(z − ct)dt.

Differentiating with respect to z, we obtain
dp

dz
=

1
cτ

(p− q),

where
q(z) =

∫ ∞

0

1
τ

e−t/τu(z − ct)dt.

Similarly,
dq

dz
=

1
cτ

(q − u).

If we further denote u′ = v, then (2.8) with the kernel given above can be replaced
by the system

u′ = v

v′ = (c + α)v − (f(S)− k)p

S′ = − f(S)
(c + α)

p

cτp′ = p− q

cτq′ = q − u,

(2.9)

Note that if τ = 0, then (2.9) reduces to

u′ = v

v′ = (c + α)v − (f(S)− k)u

S′ = −f(S)u/(c + α),

(2.10)

the autonomous ordinary differential system for travelling wavefronts solutions of
(1.5) in the non-delay case.

For τ > 0, (2.9) defines a system of ODEs whose solutions evolve in the five-
dimensional (u, v, S, p, q) phase space. In this phase space, E = {(0, 0, S, 0, 0)} is
the one-dimensional manifold of critical for (2.9). A travelling wavefronts solution
of the (2.8) will exist if among the solutions of (2.9), there exists a heteroclinic
connection between the two critical points in E.

Then, we will show that (2.9) has travelling wavefronts for sufficiently small τ > 0
by the geometric singular perturbation theory and the center manifold theorem.
Note that when τ = 0, system (2.9) does not define a dynamical system in R5.
This problem may be overcome by the transformation z = τη, under which the
system becomes

u̇ = τv

v̇ = τ [(c + α)v − (f(S)− k)p]

Ṡ = τ [− f(S)
(c + α)

p]

cṗ = p− q

cq̇ = q − u,

(2.11)

where a dot on top of a variable denotes differentiation with respect to η. We refer
to (2.9) as the slow system and (2.11) as the fast system. The two are equivalent
when τ > 0.
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Consider the fast system (2.11), for τ = 0, then the flow of that system is confined
to the set

M0 = {(u, v, S, p, q) ∈ R5 : p = u, q = u}, (2.12)

which is, therefore, a three-dimensional invariant manifold for (2.9). E ⊂ M0 and
an easy calculation shows that the eigenvalues of the Jacobian, on setting τ = 0,
has 3 zero eigenvalues corresponding the tangent space of M0 and two same positive
eigenvalues, namely 1

c . Thus, M0 is normally hyperbolic manifold.
According to Fenichel’s Invariant Manifold Theorem (see [4], [8]), there exist a

locally invariant three-dimensional manifold Mτ with τ is sufficiently small. It can
be written in the form

Mτ =
{
(u, v, S, p, q) ∈ R5 : p = u + h̃1(u, v, S, τ), q = u + h̃2(u, v, S, τ)

}
, (2.13)

where the functions h̃1, h̃2 are smooth functions defined on a compact domain, and
satisfies h̃1(u, v, S, 0) = h̃2(u, v, S, 0) = 0 and thus that

h̃1(u, v, S, τ) = τh1(u, v, S, τ), h̃2(u, v, S, τ) = τh2(u, v, S, τ). (2.14)

Since τ is small, h̃1, h̃2 can be expanded into the form of Taylor series about τ , and
h1, h2 can express as

h1(u, v, S, τ) = h
1

1(u, v, S) + τh
2

1(u, v, S) + . . . ,

h2(u, v, S, τ) = h
1

2(u, v, S) + τh
2

2(u, v, S) + . . . .
(2.15)

By substituting (2.14) into (2.9), we see that h1, h2 must satisfy

c(v+τ(
∂h1

∂u
v+

∂h1

∂v
((c+α)v−(f(S)−k)(u+τh1))−

∂h1

∂S

f(S)
(c + α)

(u+τh1))) = h1−h2

and

c(v + τ(
∂h2

∂u
v +

∂h2

∂v
((c+α)v− (f(S)− k)(u+ τh1))−

∂h2

∂S

f(S)
(c + α)

(u+ τh1))) = h2

Substitute (2.15) into the above two equations and comparing powers of τ yields,
we obtain

h1(u, v, S, τ) = 2cv + 3τc2((c + α)v − (f(S)− k)u) + . . . ,

h2(u, v, S, τ) = cv + τc2((c + α)v − (f(S)− k)u) + . . . .
(2.16)

We study the flow of (2.9) restricted to Mτ and show that it has a travelling
front solution. The slow system (2.9) restricted to Mτ is given by

u′ = v

v′ = (c + α)v − (f(S)− k)(u + τh1(u, v, S, τ))

S′ = − f(S)
c + α

(u + τh1(u, v, S, τ)).

(2.17)

which is equal to

u′ = v

v′ = (c + α)v − (f(S)− k)u + τh1(u, v, S, τ)

S′ = − f(S)
c + α

u + τh2(u, v, S, τ),

(2.18)
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where h1(u, v, S, τ) = −(f(S)− k)h1(u, v, S, τ), h2(u, v, S, τ) = − f(S)
c+α h1(u, v, S, τ).

Note that when τ = 0, this system reduces to the corresponding system for the
non-delay (2.10). It is easily verified that for τ > 0, system (2.18) still has one-
dimensional manifold of critical E = (0, 0, S).

3. main results

In this section, we discuss the existence and uniqueness of travelling wavefronts
solutions of (1.5)

The ideas of the following proof are similar to those of Smith and Zhao [10] who
were considering the question of persistence of travelling wavefronts solutions in an
equation with a fourth-order spatial derivative but no time delay.

Note that system (2.10) is equivalent to (2.1). According to Lemma 2.1 and
[10], for 0 < S0 < S∗ and c + α > 0, the positive branch of the one-dimensional
stable manifold of (0, 0, S0) for system (2.10), W s

0 (S0), connect to (0, 0, S0), where
G(S0) = G(S0) > S∗. We want to show that for τ > 0 but very small, the
positive branch of one-dimensional stable manifold of (0, 0, S0) for system (2.18),
W s

τ (S0), also connects to (0, 0, S0). We may describe the local stable manifold as
the forward orbit {xτ (z) : z ≥ 0} of (2.18) through a point xτ := xτ (0) on the local
stable manifold, which depends continuously on τ , and by a compact piece of the
global stable manifold we mean {xτ (z) : z ≥ −Z} (Z � 1), with endpoint xτ (−Z).
We expect that such a compact piece of WS

τ (S0) has endpoint nearby (0, 0, S0) for
small τ > 0. The next result indicates what happens to the backward orbit through
this endpoint.

Lemma 3.1. Given S0 > S∗ and δ0 > 0, there exists τ0, δ > 0 such that if
ξ = (u, v, S) satisfies |ξ − (0, 0, S0)| < δ and 0 ≤ τ < τ0, then the solution of
starting at ξ, xτ (z) = (uτ (z), vτ (z), Sτ (z)), satisfies |xτ (z)− (0, 0, S0)| < δ0 for all
z < 0, and there exist βτ = (0, 0, Sτ ) such that xτ (z) → βτ as z → −∞.

Proof. Appending an equation for τ to (2.18), we shall argument the system (2.18)
with equation for τ .

u′ = v

v′ = (c + α)v − (f(S)− k)u + τh1(u, v, S, τ)

S′ = − f(S)
c + α

u + τh2(u, v, S, τ)

τ ′ = 0

(3.1)

We apply the center manifold theory in [2] to the time reversed system (3.1). Note
that this four-dimensional system has the two-dimensional manifold of critical given
by N = {u = v = 0}. Focus on one of steady states N0 = (0, 0, S0, 0). A change of
variables S → S1 given by

S1 = S − S0 +
f(S0)

r
(u− v

c + α
), r = f(S0)− k. (3.2)
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Translates N0 to the origin and de-couples the linear parts of the time reversed
system (3.1). Then resulting system is

u′ = −v

v′ = ru− (c + α)v + (f(S)− f(S0))u− τh1(u, v, S, τ)

S′1 =
1

(c + α)r
(f(S)− f(S0))u− τh2(u, v, S, τ)

τ ′ = 0

(3.3)

where S is determined by (3.2). We let x = (S1, τ) and y = (u, v), then (3.3) has
the form

x′ = Ax + f(x, y)

y′ = By + g(x, y),
(3.4)

where A is the zero matrix and B =
(

0 −1
r −C

)
where C = c+α, all the eigenvalues

of B have negative real parts,

f(x, y) = f(u, v, S1, τ) =

(
f(S)−f(S0)

Cr u− τh2(u, v, S, τ)
0

)
and

g(x, y) = g(u, v, S1, τ) =
(

0
(f(S)− f(S0))u− τh1(u, v, S, τ))

)
.

We have f(0, 0) = 0, f ′(0, 0) = 0, and g(0, 0) = 0, g′(0, 0) = 0. [2, Theorem 1]
asserts there exists a center manifold for (3.3), but we already know that the center
manifold which is unique in our case, is just the manifold of critical N (see [10]).
The dynamical on N is trivial:

S′1 = 0

τ ′ = 0,
(3.5)

Since critical point (S1, τ) = (0, 0) is stable for the dynamics on N , from [2, throem
2], we get that the origin is stable for (3.3). Furthermore, by the second assertion
of [2, Theorem 2], a solution (u(z), v(z), S1(z), τ) of (3.3) which start (0, 0, S0

1 , τ)
near the origin, such that as z → +∞,

u(z) = O(e−γz), v(z) = O(e−γz), S1(z) = S0
1 + O(e−γz),

where γ > 0. Thus, we get S(z) = S0 + S0
1 + O(e−γz). This is exactly what we

assert above. �

Now we prove the main results in this section.

Theorem 3.2. Let S0 satisfy 0 < S0 < S∗ and let S0 > S∗ satisfy G(S0) = G(S0).
If τ > 0 is sufficiently small and c + α > 0 the system (1.5) has a unique travelling
wavefronts solution (S(z), u(z))(z = x + ct) connecting (S0, 0) and (S0, 0) with
u(z) > 0 for z ≈ +∞.

Proof. For 0 < S0 < S∗, by [8, Fenichel Invariant Manifold Theorem 2], “compact
pieces” of the positive branch of the one-dimensional stable manifold of (0, 0, S0) for
(2.18), WS

τ (S0), lie within O(τ) of, and are diffeomorphic to WS
0 (S0). But WS

0 (S0)
connects (0, 0, S0) to (0, 0, S0) by Lemma 2.1. If S0 satisfies G(S0) = G(S0), δ0

satisfies 0 < δ0 < 1
2 (S0 − S∗) and δ > 0 is as in Lemma 3.1, then there exists

τ1 > 0, such that for all τ ∈ [0, τ1), a compact piece of WS
τ (S0) has end point
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with in distance δ of (0, 0, S0). We can assume that τ1 < τ0 of Lemma 3.1 and so,
according to Lemma 3.1, the backward continuation of the compact piece of WS

τ (S0)
is asymptotic to a point βτ = (0, 0, Sτ ) satisfying |βτ − (0, 0, S0)| < δ0. Thus, we
have shown the existence of a heteroclinc orbit for (2.18) connecting (0, 0, S0) to
βτ . That is there exists a heteroclinc orbit of (2.9) connecting (0, 0, Ŝ, 0, 0) to
(0, 0, S0, 0, 0) where βτ = (0, 0, Ŝ).

Next, we prove that Ŝ = S0. As in (1.4), we have

(α + c)(Ŝ − S0) = k

∫ +∞

−∞
(g ∗ u)(z)dz = k

∫ +∞

−∞
p(z)dz. (3.6)

From then third equation of (2.9) we find that

p = − (c + α)S′

f(S)
,

which, substituting into (3.6) and integrating, lead to

G(Ŝ) = G(S0), (3.7)

where G is defined by (2.3), by (2.4) we get that Ŝ(τ) = S0. Consequently, the
heteroclinc orbit of (2.9) connecting (0, 0, S0, 0, 0) to (0, 0, S0, 0, 0) �

Remark 3.3. The travelling wave solution described in the Theorem 3.2 depends
on τ and c + α.

Note that we make no assertions about the signs of u and S′. In the next theory,
we take up these issues.

Theorem 3.4. Let S0 satisfies 0 < S0 < S∗ and c + α > C∗ :=
√

4(f(S0)− k).
If τ > 0 is sufficiently small, then the travelling wavefronts solution described in
Theorem 3.2, (S(x + ct), u(x + ct)), has the property that S(·) is strictly decreasing
and u(·) is positive and unimodal.

Proof. For τ = 0, we can get (2.10) is the same as (2.1) and from the second
equation of (2.1), u(z), u′(z) satisfies

u′(z)
u(z)

= −u′(z)
S′(z)

f(S(z))
c + α

.

Letting z → −∞, from [2, Corollary 2.1], the ratio approaches

2(
r0

c + α
)[

1
1 + (1− χ)

1
2
] < 2

r0

c + α
<

c + α

2
,

where χ = 4(f(S0)−k)
(c+α)2 and we use (c+α)2

4 > r0 = f(S0)− k in the last inequality. If
Z is sufficiently large, then u(−Z), u′(−Z) > 0 and

u′(−Z)
u(−Z)

<
c + α

2
.

By continuity, for τ > 0 sufficiently small, we have that u > 0 along the part
of the heteroclinic orbit which lies outside the small δ−neighborhood of (0, 0, S0)
identified in Lemma 3.1. By choosing Z larger if necessary, we can assume that
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u(z), v(z), S(z) belongs to the δ−neighborhood of (0, 0, S0) for z < −Z, that u(z) >
0 for −Z ≤ z < ∞, v(−Z) > 0 and that

v(−Z)
u(−Z)

<
c + α

2
. (3.8)

We wish to show that u(z) > 0 for all z. Therefore, it is only necessary to consider
(u(z), v(z), S(z)) for z ≤ −Z.

It is useful to reverse ”time” by setting z → −z, then we consider the heteroclinic
orbit for (u(z), v(z), S(z)) for z ≥ Z, which belongs to the δ−neighborhood of
(0, 0, S0). Now we replacing (u, v) in (2.18) by polar coordinates (ρ, θ), then we get

ρ2θ′ = −(c + α)uv + ru2 + v2 − τuh1

ρρ′ = −(1− r)uv − (c + α)v2 − τvh1

S′ =
f(S)
c + α

u− τh2,

(3.9)

where r = f(S) − k depend on S(z). We are interested in (3.9) for z ≥ Z where
S(z)−S0 is so small that (c+α)2

4 − r > 0. By (3.8), we see that (u(Z), v(Z)) belong
to the open first quadrant and that

0 < θ(Z) = tan−1(
v(Z)
u(Z)

) < θ0 := tan−1(
c + α

2
).

If θ(z) = 0(i.e., v = 0), the first equation of (3.9) become ρ2θ′ = ru2− τuh1 substi-
tuting (3.8) into it and we get ρ2θ′ = [r − 3τ2c2r2]u2 + O(τ3), for τ is sufficiently
small, the sign of θ′(z) depend on r, thus θ′(z) > 0 whenever θ(z) = 0. If θ(z) =
θ0(i.e., v = c+α

2 u), the first equation of (3.9) become ρ2θ′ = −( (c+α)2

4 −r)u2−τuh1

the same way we get the sign of θ′(z) depend on −( (c+α)2

4 −r), thus θ′(z) < 0 when-
ever θ(z) = θ0. Thus, 0 ≤ θ(z) ≤ θ0 for all z ≥ Z and, in particular, u(z) > 0 for
z ≥ Z. Thus, u(z) > 0 for all z.

For the third equation of (2.18) substituting (2.16) into it and we get

S′ = −f(S)u/(c + α)− τvf(S) + O(τ2) = −f(S)(
u

c + α
+ τv) + O(τ2)

Since u > 0, τ is sufficiently small, we have S′ < 0 for all z ∈ R.
From [2], we can get (2.9) is equals to

u′ = (c + α)[−G(S0) + u + G(S)]

S′ = − f(S)
c + α

p

cτp′ = p− q

cτq′ = q − u

(3.10)

where G is defined by (2.3). It has two critical points (0, S0, 0, 0) and (0, S0, 0, 0).
The linearized matrix J of system (3.10) is

J(u, S, p, q) =


c + α −(c + α)G′(S) 0 0

0 f ′(S)
c+α p − f(S)

c+α 0
0 0 1

cτ − 1
cτ

− 1
cτ 0 0 1

cτ

 (3.11)
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The eigenvalues λ of this matrix at critical points satisfy

(cτ)2λ4 − ((cτ)2(c + α) + 2cτ)λ3 + (1 + 2cτ(c + α))λ2 − (c + α)λ− (f(S)− k) = 0

At critical point (0, S0, 0, 0), for S0 > S∗, sufficiently small τ and c > 0, this
equation has four positive real part. At critical point (0, S0, 0, 0), for S0 < S∗,
this equation has there positive real part and one negative real part. Then the
heteroclinic orbit of (3.10) approaches (0, S0, 0, 0) tangent to the eigenvector corre-
sponding to the negative eigenvalue λ−. An easy calculation of the eigenvector on
u− S phase plane leads to its slope:

4u

4S
=

(c + α)G′(S)
λ− − (c + α)

> 0

Since S′ < 0, then v = u′ is negative when z is very close to +∞. As u(±∞) = 0,
v = u′ admits at least one zero. By the first equation of (3.10) and (2.17), it follows
that

v′ = u′′

= (c + α)G′(S)S′ = (k − f(S))p

= (k − f(S))u + O(τ2) whenever v(z) = 0.

(3.12)

Let z0 be the largest zero of v. Then v′(z0) ≤ 0 and v < 0, hold for any z > z0.
Suppose v′(z0) = 0, for τ is sufficiently small, then (3.12) implies that v′′(z0) =
−f ′(S)S′(z0)u(z0)+O(τ2) > 0, hence v(z0) = 0 is the local minimum of v(z) around
z0, which contradicts the choice of z0. Hence, we get v′(z0) < 0 i.e., S(z0) > S∗.
Since S′(z) < 0, for all z ∈ R, we get S(z) > S∗ hold for any z ∈ (−∞, z0), hence
v′ < 0 hold for any z ∈ (−∞, z0). Thus, v(z) admits no zero in (−∞, z0) and v > 0.
So v = u′ has precisely one zero z0 and v(z) > 0 for all z ∈ (−∞, z0) and v(z) < 0
for all z ∈ (z0,∞). Hence u(z) is positive and unimodal. �

Remark 3.5. We have considered travelling wavefronts of a plug flow reactor model
(1.1) with ε = 0, and with distributed delay in the form of an integral convolution
in time, mainly using strong generic kernel. It should certainly be applicable in
principle to (1.1) with ε > 0 involving time delay

St = εSxx − αSx − f(S)(g ∗ u)

ut = uxx − αux + (f(S)− k)(g ∗ u)
(3.13)

and other coupled system.
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