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Elliptic equations with one-sided critical growth ∗

Marta Calanchi & Bernhard Ruf

Abstract

We consider elliptic equations in bounded domains Ω ⊂ RN with non-
linearities which have critical growth at +∞ and linear growth λ at −∞,
with λ > λ1, the first eigenvalue of the Laplacian. We prove that such
equations have at least two solutions for certain forcing terms provided
N ≥ 6. In dimensions N = 3, 4, 5 an additional lower order growth term
has to be added to the nonlinearity, similarly as in the famous result of
Brezis-Nirenberg for equations with critical growth.

1 Introduction

We consider the superlinear problem

−∆u = λu+ u2?−1
+ + g(x, u+) + f(x) in Ω
u = 0 on ∂Ω

(1.1)

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, 2? =

2N/(N − 2) is the critical Sobolev exponent, g(·, s+) ∈ C(Ω̄ × R,R+) has a
subcritical growth at infinity, and s+ = max{s, 0}. Furthermore, we assume
that λ > λ1, the first eigenvalue of the Laplacian. This means that the function

k(s) = λs+ s2?−1
+ + g(x, s+)

“interferes” with all but a finite number of eigenvalues of the Laplacian, in the
sense that

λ1 < λ = lim
s→−∞

k(s)
s

< lim
s→+∞

k(s)
s

= +∞

For subcritical nonlinearities, such problems have been treated by Ruf-Srikanth
[11] and de Figueiredo [4], proving the existence of at least two solutions provided
that the forcing term f(x) has the form

f(x) = h(x) + te1(x), (1.2)
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2 Elliptic equations with one-sided critical growth EJDE–2002/89

where h ∈ Lr(Ω), for some r > N , is given, e1 is the (positive and normal-
ized) first eigenfunction of the Laplacian, and t > T , for some sufficiently large
number T = T (h).

We remark that the search of solutions for forcing terms of the form (1.2)
is natural if the nonlinearity crosses all eigenvalues, i.e. λ < λ1 (then the
problem is of so-called Ambrosetti-Prodi type); indeed, in this case there exists
an obvious necessary condition of the form

∫
Ω
fe1dx < c. In the present case

there does not seem to exist a necessary condition for solvability, and therefore
one might expect solutions for any forcing term in L2(Ω). This is an open
problem; the only positive result known is for the corresponding ODE with
Neumann boundary conditions, cf. [7].

Equation (1.1) with nonlinearities with critical growth have recently been
considered by de Figueiredo - Jianfu [6], proving a similar existence result as the
one stated for the subcritical case, however with the restriction that the space
dimension N satisfies N ≥ 7. While it is known that in problems with critical
growth the low dimensions may show different behavior (see Brezis - Niren-
berg [3], where different behavior occurs in dimension N = 3), it is somewhat
surprising to encounter difficulties already in the dimensions 4, 5 and 6.

The present work is motivated by the mentioned work of de Figueiredo and
Jianfu [6], who treated equation

−∆u = λu+ u2?−1
+ + f(x) in Ω

u = 0 on ∂Ω.
(1.3)

They established the existence of at least two solutions under suitable conditions
on f = h+ te1, more precisely they proved:

Theorem 1.1 (de Figueiredo - Jianfu [6]) Suppose that
i) λ > λ1

ii) h ∈ Lr(Ω), r > N , is given, with h ∈ ker(−∆− λ)⊥ if λ is an eigenvalue.
Then there exists T0 = T0(h) > 0 such that if t > T0 then problem (1.3) has a
negative solution φt ∈W 2,r ∩W 1,r

0 ⊂ C1,1−N/r.
Suppose in addition that

iii) λ is not an eigenvalue of (−∆,H1
0 (Ω))

iv) N ≥ 7
Then problem (1.3) has a second solution for t > T0.

We remark that in [6] only h ∈ L2(Ω) is assumed, however this seems not
sufficient to get the stated results.

In this paper we improve and extend the result of de Figueiredo and Jianfu
in the following ways:

Main Results:

1) λ > λ1 and λ is not an eigenvalue:
N ≥ 6: if h ∈ Lr(Ω) (r > N), then equation (1.1) has a second solution
for f = h+ te1, with t > T0(h).
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N = 3, 4, 5: if h ∈ Lr(Ω) (r > N) and g(x, s+) ≥ csq for some q = q(N) >
1 and c > 0, then equation (1.1) has a second solution for f = h + te1,
with t > T0.

2) λ is an eigenvalue, i.e. λ = λk, for some k ≥ 2: If h ∈ Lr(Ω) (r > N) satisfies
h ⊥ ker(−∆ − λk,H1

0 (Ω)), then equation (1.1) has a second solution for
f = h+ te1 with t > T0 (in dimensions N = 3, 4, 5 the assumptions made
in 1) have to be added).

3) λ in a left neighborhood of λk, k ≥ 2: There exists a δ > 0 such that if
λ ∈ (λk − δ, λk) and h ∈ Lr(Ω) (r > N) satisfies h ⊥ ker(−∆,H1

0 (Ω),
then equation (1.1) has at least three solutions for f = h+te1, with t > T0

(in dimensions N = 3, 4, 5 the assumptions made in 1) have to be added).

For proving these statements, one proceeds as follows: the first (negative)
solution is easily obtained (see [11], [4], [6]). To obtain a second solution, one
uses the saddle point structure around the first solution and applies the gen-
eralized mountain pass theorem of Rabinowitz [10]. To prove the Palais-Smale
condition, one proceeds as in [3], using a sequence of concentrating functions
(obtained from the so-called Talenti function). However due to the presence of
the first solution, lower order terms appear in the estimates. To handle these
estimates, an “orthogonalization” procedure based on separating the supports
of the Talenti sequence and the (approximate) first solution is used (this ap-
proach was introduced in [8]). With this method we obtain the results 1) and
2).

To prove 3), one shows that the “branch” of solutions with λ ∈ (λk, λk+1) can
be extended to λ = λk if h ⊥ ker(−∆). Actually, this branch can be extended
slightly beyond λk, i.e. to λ ∈ (λk − δ, λk], and the corresponding solutions are
clearly bounded away from the negative solution. Since in λk starts a bifurcation
branch (λ, u) emanating from the negative solution and bending to the left (as
shown by de Figueiredo - Jianfu [6]), we conclude that for λ to the left of and
close to λk there exist at least three solutions.

2 Statement of theorems

In this section we give the precise statements of the theorems. Furthermore, the
notation and basic properties are introduced. We consider problem (1.1) under
the following conditions on the nonlinearity g:

(g1) g : Ω̄× R→ R
+ is continuous;

(g2) g(x, s) ≡ 0 for s ≤ 0, i.e. g(x, s) = g(x, s+) with g(x, 0) = 0;

(g3) There exist constants c1 > 0 and 1 < p < (N + 2)/(N − 2) such that
g(x, s) ≤ c1|s|p, for all s ∈ R;

For N = 3, 4, 5 we assume in addition:
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(g4) There exist c > 0 and q with max
{

N
2(N−1) ,

2
3

}
< q+1

2? < 1, such that
g(x, s+) ≥ c(s+)q, for all s ∈ R.

We prove the following results:

Theorem 2.1 N ≥ 6: Let h ∈ Lr(Ω), r > N , be given, and let T0 = T0(h)
the number given by Theorem 0. Assume that λ > λ1, and that g satisfies
(g1), (g2), (g3). If λ is an eigenvalue, say λ = λk, assume in addition that
h ⊥ ker(−∆− λk). Then problem (1.1) has a second solution for f = h+ te1,
with t > T0.

Theorem 2.2 3 ≤ N ≤ 5: Let h ∈ Lr, r > N , be given, and suppose that all
other assumptions of Theorem 2.1 are satisfied. If g satisfies also (g4), then
problem (1.1) has a second solution for f = h+ te1, with t > T0.

Theorem 2.3 Assume the hypotheses of Theorems 2.1 and 2.2, and assume in
addition that h ⊥ ker(−∆− λk), for some k ≥ 2. Then there exists δ > 0 such
that for λ ∈ (λk−δ, λk) problem (1.1) has at least three solutions for f = h+te1,
with t > T0.

The first solution of equation (1.1) is a negative solution, and its existence,
for t sufficiently large, is not difficult to prove (see [4], [6]): first note that a
negative solution satisfies the linear equation

−∆y − λy = h+ te1 in Ω
y = 0 on ∂Ω

(2.1)

The solution of this equation is unique, and we denote it, in dependence of
te1, by φt (we remark that if λ = λk then h ⊥ ker(−∆ − λk) is required, and
the solution is unique in (ker(−∆ − λk))⊥). Note that we may assume that∫

Ω
he1dx = 0, and then the solution φt can be written as φt = w + ste1, with∫

Ω
we1dx = 0 and st = t/(λ1 − λ) (and with w ⊥ ker(−∆ − λk) if λ = λk).

Since h ∈ Lr, r > N , we have w ∈ C1,1−N/r(Ω), and it is known (see [9]) that
on ∂Ω the (interior) normal derivative ∂

∂ne1(x) is positive; hence φt < 0 for t
sufficiently large.

To find a second solution of equation (1.1), we set u = v + φt; then v solves

−∆v = λv + (v + φt)2?−1
+ + g(x, (v + φt)+) in Ω

v = 0 on ∂Ω
(2.2)

Clearly v = 0 is a solution of this equation, corresponding to the negative
solution φt for equation (1.1). To find a second solution of equation (2.2) one
can look for non trivial critical points of the functional

J(v) =
1
2

∫
Ω

(|∇v|2 − λv2)dx− 1
2?

∫
Ω

(v + φt)2?

+ dx−
∫

Ω

G(x, (v + φt)+)dx,

where G(x, s) :=
∫ s

0
g(x, ξ) dξ.
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This was the approach of de Figueiredo-Jianfu in [6]. For applying the
Generalized Mountain Pass theorem of Rabinowitz [10] one needs to prove some
geometric estimates. Furthermore, since the nonlinearities have critical growth,
one needs to show that the minimax level avoids the non-compactness levels
given by the “concentrating sequences” uε (see [3] and below).

In these estimates, the terms of the form v+φt + uε are not easy to handle.
In this paper we apply a method introduced in [8] to make such estimates easier.
The idea consists in separating the supports of v + φt and uε by concentrating
the support of the functions uε in small balls, and “cutting small holes” into the
functions v + φt such that the respective supports are disjoint. These manipu-
lations create some errors, but these are easier to handle than to estimate the
“mixed terms” arising in expressions like (v + φt + uε)

p
+. Moving these “small

holes” near ∂Ω where the first solution φt is small allows to further improve the
estimates.

3 Variational setting and preliminary properties

We begin by replacing equation (2.2) by an approximate equation. We denote
by Br(x0) ⊂ Ω a ball of radius r and center x0 ∈ Ω. Choose m ∈ N so large that
B2/m(x0) ⊆ Ω, and let ηm ∈ C∞0 (Ω) such that 0 ≤ ηm(x) ≤ 1, |∇ηm(x)| ≤ 2m
and

ηm(x) =

{
0 in B1/m(x0)
1 in Ω \B2/m(x0)

Define the functions φmt = ηmφt and set

fm = −∆φmt − λφmt .

Setting as before u = v + φmt in equation (1.1), we see that then v = φt − φmt
solves the equation

−∆v = λv + (v + φmt )2?−1
+ + g(x, (v + φmt )+) + (f − fm) in Ω
v = 0 on ∂Ω

(3.1)

Clearly v = φt − φmt corresponds to the trivial solution of this equation; for
finding other solutions of (3.1) we look for critical points of the functional,
J : H → R,

J(v) =
1
2

∫
Ω

(|∇v|2 − λv2)− 1
2?

∫
Ω

(v + φmt )2?

+

−
∫

Ω

G(x, (v + φmt )+)−
∫

Ω

(f − fm)v ,

where H denotes the Sobolev space H = H1
0 (Ω), equipped with the Dirichlet

norm ‖u‖ = (
∫

Ω
|∇u|2 dx)1/2.

We begin by estimating the “error” given by the term f − fm.
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Lemma 3.1 For N ≥ 3, as m→ +∞ we have:

‖φt − φmt ‖ ≤ cm−N/2; (3.2)∣∣∣ ∫
Ω

(f − fm)ψ dx
∣∣∣ ≤ c‖ψ‖m−N/2, for all ψ ∈ H. (3.3)

Proof. Note first that by the regularity assumption h ∈ Lr, r > N , it follows
that φt ∈ C1,1−N/r(Ω), and hence in particular that there exists c > 0 such that
for any point x̄ ∈ ∂Ω

|φt(x)| ≤ c|x− x̄|.

Furthermore we may choose for every large m ∈ N a point x0 at distance 4/m
from the boundary point x̄, such that

|φt(x)| ≤ c1
m
, ∀x ∈ B4/m(x0). (3.4)

We may assume that x0 = 0 for every choice of m; from now on we write
Br = Br(0). Thus, we can estimate∫

Ω

|∇(φt − φmt )|2

=
∫

Ω

|∇φt(1− ηm)− φt∇ηm|2

=
∫
B 2
m

|∇φt|2|1− ηm|2 − 2
∫
B 2
m
\B 1

m

|∇φt|(1− ηm)|φt| |∇ηm|

+
∫
B 2
m
\B 1

m

|φt|2|∇ηm|2

≤c1m−N + c2m
−N + c3m

−N = cm−N ,

hence (3.2). The estimate (3.3) is now obtained as follows:∣∣∣ ∫
Ω

(f − fm)ψ dx
∣∣∣ =
∣∣∣ ∫

Ω

|∇(φt − φmt )∇ψ − λ(φt − φmt )ψdx
∣∣∣

≤c‖φt − φmt ‖ ‖ψ‖ ≤ c‖ψ‖m−N/2 ,

for all ψ ∈ H.
Let λ1 < λ2 ≤ . . . the eigenvalues of −∆ and e1, e2 . . . , the corresponding

eigenfunctions. Take m as before and let ζm : Ω→ R be smooth functions such
that 0 ≤ ζm ≤ 1, |∇ζm| ≤ 4m and

ζm(x) =

{
0 if x ∈ B2/m

1 if x ∈ Ω \B3/m

We define “approximate eigenfunctions” by emi = ζmei. Then the following
estimates hold.
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Lemma 3.2 As m → ∞, we have emi → ei in H. Moreover, in the space
H−j,m = span{em1 , . . . , emj }, we have

max
{
‖u‖2 : u ∈ H−j,m,

∫
Ω

u2 = 1
}
≤ λj + cjm

−N

and ∫
Ω

∇emi ∇emj dx = δij +O(m−N ).

Proof. See [8] and observe that, since ∂Ω is of class C1, also for the eigen-
functions ei an estimate as (3.4) holds.

Consider the family of functions

u?ε(x) =
[√N(N − 2)ε

ε2 + |x|2
](N−2)/2

which are solutions to the equation

−∆u = |u|2
?−2u in RN

u(x)→ 0 as |x| → ∞

and which realize the best Sobolev embedding constant H1(RN ) ⊂ L2∗(RN ),
i.e. the value

S = SN = inf
u 6=0

‖u‖H
‖u‖L2∗

.

Let ξ ∈ C1
0 (B1/m) be a cut–off function such that ξ(x) = 1 on B1/2m, 0 ≤

ξ(x) ≤ 1 in B1/m and ‖∇ξ‖∞ ≤ 4m.
Let uε(x) := ξ(x)u?ε(x) ∈ H. For ε→ 0 we have the following estimates due

to Brezis and Nirenberg

Lemma 3.3 (Brezis-Nirenberg, [3]) For fixed m we have

(a) ‖uε‖2 = SN/2 +O(εN−2)

(b) ‖uε‖2
?

2? = SN/2 +O(εN )

(c) ‖uε‖22 ≥ K1ε
2 +O(εN−2)

(d) ‖uε‖ss ≥ K2ε
N−N−2

2 s.

Moreover, for m→∞ and ε = o(1/m), we have (see [8])

(e) ‖uε‖2 = SN/2 +O((εm)N−2)

(f) ‖uε‖2
?

2? = SN/2 +O((εm)N )

while (c) and (d) hold independently of m.
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Proof. We only prove (d); for the other estimates, see [3, 8, 12].∫
Ω

usε dx ≥c
∫
B 1

2m

( ε

ε2 + |x|2
)N−2

2 s
dx

≥c
∫ ε

0

( ε

ε2 + ρ2

)N−2
2 s

ρN−1dρ ≥ cε−
N−2

2 sεN .

which completes the proof.

4 The linking structure

In this section we prove that the functional J has a “linking structure” as
required by the Generalized Mountain Pass Theorem by P. Rabinowitz [10]. For
the rest of this article, we assume λ ∈ [λk, λk+1). Let H+ = [span{e1, . . . , ek}]⊥,
Sr = ∂Br ∩H+, H−m = span{em1 , . . . , emk } and Qεm = (BR ∩H−m) ⊕ [0, R]{uε},
where m ∈ N is fixed. Define the family of maps H = {h : Qεm → H continuous :
h
∣∣
∂Qεm

= id}, and set
c̄ = inf

h∈H
sup

u∈h(Qεm)

J(u) (4.1)

Then the Generalized Mountain Pass theorem of P. Rabinowitz states that if

1) J : H → R satisfies the Palais-Smale condition (PS)
2) there exist numbers 0 < r < R and α1 > α0 such that

J(v) ≥ α1, for all v ∈ Sr (4.2)
J(v) ≤ α0, for all v ∈ ∂Qεm , (4.3)

then the value c̄ defined by (4.1) satisfies c̄ ≥ α1, and it is a critical
value for J .

First note that for v ∈ H−m ⊕ R{uε}, v = w + suε, we have by definition
supp(uε) ∩ supp(w) = ∅. It is easy to prove that this implies that

J(v) ≡ J(w + suε) = J(w) + J(suε) .

We begin by showing that the functional J satisfies condition (4.2).

Lemma 4.1 There exist numbers r > 0 and α1 > 0 such that

J(v) ≥ α1 for all v ∈ Sr = ∂Br ∩H+

Proof. Let v ∈ H+. From the variational characterization of λk+1 and the
Sobolev embedding theorem, we have, using (g3) and Lemma 3.1,

J(v) ≥ 1
2
(
1− λ

λk+1

) ∫
Ω

|∇v|2 − 1
2?

∫
Ω

v2?

+ − c
∫

Ω

vp+1
+ −

∫
Ω

(f − fm)v

≥ c1‖v‖2 − c2‖v‖2
?

− c3‖v‖p+1 − c4m−N/2‖v‖
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Let km(s) = c1|s|2 − c2|s|2
? − c3|s|p+1 − c4m−N/2|s|. Clearly, there exists m0

such that maxR km(s) = Mm ≥ Mm0 > 0 for all m ≥ m0. Thus there exist
α1 > 0 and r > 0 such that

J(v) ≥ α1 > 0 for ‖v‖ = r.

which completes the proof.
Next we prove condition (4.3).

Lemma 4.2 There exist R > r and α0 < α1 such that for ε sufficiently small

J
∣∣
∂Qεm

< α0 .

Proof. Let v = w+suε ∈ (H−m∩ B̄R)⊕ [0, R]{uε]. Since J(v) = J(w)+J(suε)
we can estimate J(w) and J(suε) separately.

J(w) ≤ 1
2

∫
Ω

|∇w|2 dx− λ

2

∫
Ω

|w|2 dx− 1
2?

∫
Ω

(w + φmt )2?

+ dx ,

since
∫

Ω
(f − fm)w dx =

∫
Ω
∇(φt − φmt )∇w dx− λ

∫
Ω

(φt − φmt )w dx = 0.

J(suε) ≤ s2

2

∫
B 1
m

|∇uε|2 dx−
λs2

2

∫
B 1
m

|uε|2 dx

− s2?

2?

∫
B 1
m

|uε|2
?

dx−
∫
B 1
m

f suε dx.

Let ∂Qεm = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 = {v ∈ H : v = w + suε, w ∈ H−m, ‖w‖ = R, 0 ≤ s ≤ R},
Γ2 = {v ∈ H : v = w +Ruε, w ∈ H−m ∩ B̄R},
Γ3 = H−m ∩ B̄R .

Note that it follows by Lemma 3.2 that∫
Ω

|∇w|2 dx ≤ (λk + ckm
−N )

∫
Ω

|w|2 dx, for all w ∈ H−m

1. Suppose v ∈ Γ1; then v = w + suε with ‖w‖ = R and 0 ≤ s ≤ R.
(i) if λ ∈ (λk, λk+1), we choose m0 such that ckm−n < λ−λk

2 , for m ≥ m0.
Then, using Lemma 3.3

J(v) ≤1
2
(
1− λ

λk + ckm−N
) ∫

Ω

|∇w|2 dx− 1
2?

∫
Ω

(w + φmt )2?

+ dx

+
s2

2

∫
B 1
m

|∇uε|2 dx−
λs2

2

∫
B 1
m

u2
ε dx−

s2?

2?

∫
B 1
m

u2?

ε dx+ s‖f‖2‖uε‖2

≤− cR2 + SN/2
[s2

2
− s2?

2?
]

+R2?O(εN ) +R2O(εN−2) + cs

≤− cR2 + c1 + c2R+ c3R
2?εN−2 .
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Thus J(v) ≤ 0 for R ≥ R0 and ε > 0 sufficiently small.
(ii) if λ = λk, for w = Rw̄ ∈ H−m with ‖w̄‖ = 1 we write w̄ = αy + βemk , with
y ∈ span{em1 , . . . , emk−1} and ‖y‖ = 1. Then

J(w) =
R2

2

∫
Ω

(|α∇y + β∇emk |2 − λk|αy + βemk |2) dx− R2?

2?

∫
Ω

(
w̄ +

φt
R

)2?
+
dx.

Using Lemma 3.2, we can estimate the first integral as follows∫
Ω

(|α∇y + β∇emk |2 − λk|αy + βemk |2) dx

≤ α2
(
1− λk

λk−1 + cm−N
)

+ β2
(
1− λk

λk + cm−N
)

+2αβ
∫

Ω

(∇y∇emk − λkyemk ) dx

≤ −cα2 + c1(β2 + 2αβ)m−N .

Note now that if |α| ≥ δ > 0, for some δ > 0, then

J(w) ≤ −cδ
2R2

2
+ c1m

−N

and hence J(v) ≤ 0 for R ≥ R1(δ).
We show now that there exists δ > 0 such that if |α| ≤ δ, then there exist

constants c2 > 0 and R2 > 0 such that∫
Ω

(
w̄ +

φt
R

)2?
+
≥ c2 > 0

for all R ≥ R2 and for all w ∈ H−m ∩∂BR. To this aim we prove that there exist
δ > 0 and η > 0 such that

max
Ω̄

(αy + βemk ) ≥ η > 0 for all y ∈ H−k−1,m, ‖y‖ = 1, |α| ≤ δ .

By contradiction assume that there exist sequences |αn| ≤ 1/n, yn ∈ H−k−1,m

with ‖yn‖ = 1 such that

max
Ω̄
{αnyn + βne

m
k } → 0 as n→ +∞.

Then αnyn → 0, β2
n = 1 − α2

n + O(m−N ) → β2 = 1 + O(m−N ) ≥ 1/2, for
m ≥ m0. Therefore, we conclude that

max
Ω̄

(βemk ) = 0 , with β2 ≥ 1
2

for m ≥ m0 i.e. (emk )+ = 0 .

This is a contradiction since emk → ek in H implies that emk must change sign,
for m large. Therefore, there exist δ > 0, η > 0 such that

max
Ω̄
{w̄, |α| ≤ δ} ≥ η > 0 , ∀w̄ ∈ H−k,m, ‖w̄‖ = 1,m ≥ m0 .
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Denoting Ωw̄ = {x ∈ Ω : w̄(x) ≥ η/2}, then |Ωw̄| ≥ ν > 0, ∀w̄ ∈ H−k,m, with
‖w̄‖ = 1 and |α| ≤ δ, m ≥ m0, since the functions w̄ ∈ H−k,m are equicontinuous.
Moreover

φt
R
> −η

4
for R sufficiently large .

Then ∫
Ω

(w̄ +
φt
R

)2?

+ ≥ (
η

4
)2? |Ωw̄|.

Thus, we can conclude that there exists R2 > 0 such that

J(w) ≤ cR2 −R2?
∫

Ω

(w̄ +
φt
R

)2∗

+ ≤ cR2 −R2?(
η

4
)2∗ ν ≤ 0 ,

for all R ≥ R2. In particular J(w)→ −∞ as R→ +∞.
2. Let v ∈ Γ2, i.e. v = w +Ruε with ‖w‖ ≤ R. Then

J(v) =J(w) + J(Ruε)

≤cm−N‖w‖2 +
R2

2

∫
B 1
m

|∇uε|2 dx−
R2?

2?

∫
Ω

u2?

ε dx+R‖f‖2‖uε‖2 < 0 ,

for R sufficiently large. Now fix R > 0 such that the previous estimates hold.
3. Let v ∈ Γ3, i.e. v = w ∈ H−m ∩BR. Hence

J(v) ≤ c1m−N‖w‖2 −
1
2?

∫
Ω

(w + φt)2?

+ ≤ α0

if m is sufficiently large.

5 Existence of a second solution

In this section we prove Theorems 2.1 and 2.2. By the Linking Theorem we con-
struct a Palais–Smale sequence {vn} ⊂ H at the minimax level c̄; the sequence
{vn} satisfies

J(vn) =
1
2

∫
Ω

(|∇vn|2 − λv2
n) dx− 1

2?

∫
Ω

(vn + φmt )2?

+ dx

−
∫

Ω

G(x, (vn + φmt )+) dx+
∫

Ω

(f − fm)vn dx = c̄+ o(1)
(5.1)

and

〈J ′(vn), z〉 =
∫

Ω

(∇vn∇z − λvnz) dx−
∫

Ω

(vn + φmt )2?−1
+ z dx

−
∫

Ω

g(x, (vn + φmt )+)z dx+
∫

Ω

(f − fm)z dx = o(1)‖z‖
(5.2)

for all z ∈ H.
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Lemma 5.1 Under the hypotheses of Theorem 2.1 or Theorem 2.2, the sequence
{vn} is bounded in H.

Proof. ¿From (5.1) and (5.2), it follows that

J(vn)− 1
2
〈J ′(vn), vn〉

=
1
N

∫
Ω

(vn + φmt )2?

+ −
1
2

∫
Ω

(vn + φmt )2?−1
+ φmt

−
∫

Ω

G(x, (vn + φmt )+) +
1
2

∫
Ω

g(x, (vn + φmt )+)vn −
1
2

∫
Ω

(f − fm)vn

= c̄+ o(1) + o(1)‖vn‖

Therefore, using that φmt ≤ 0 and Lemma 4,

1
N

∫
Ω

(vn + φmt )2?

+ dx ≤
∫

Ω

G(x, (vn + φmt )+) dx

−1
2

∫
Ω

g(x, (vn + φmt )+)(vn + φmt ) dx

+c+ (o(1) + dm−N )‖vn‖

Then by (g3), we get∫
Ω

(vn + φmt )2?

+ dx

≤ c1

∫
Ω

(vn + φmt )p+1
+ dx+ c+ (o(1) + dm−N )‖vn‖

≤ c1

(∫
Ω

(vn + φmt )2?

+ dx
) p+1

2?

+ c+ (o(1) + dm−N )‖vn‖

Since p+ 1 < 2?, we obtain∫
Ω

(vn + φt)2?

+ dx ≤ c+ (o(1) + dm−N )‖vn‖ ≤ c1 + c2‖vn‖ (5.3)

(i) First we consider the case λ ∈ (λk, λk+1). Let vn = v+
n + v−n (as in [6]), with

v−n ∈ H−k = span{e1 . . . ek} and v+
n ∈ (H−k )⊥. We obtain

〈J ′(vn), v+
n 〉 =

∫
Ω

(|∇v+
n |2 − λ(v+

n )2) dx−
∫

Ω

(vn + φmt )2?−1
+ v+

n dx

−
∫

Ω

g(x, (vn + φmt )+)v+
n dx−

∫
Ω

(f − fm)v+
mdx = o(1)‖v+

n ‖
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From the variational characterization of λk+1 we get, using the Hölder and
Young inequalities and (5.3),(

1− λ

λk+1

)
‖v+
n ‖2

≤
∫

Ω

(vn + φmt )2?−1
+ v+

n + c

∫
Ω

(vn + φmt )p+|v+
n |+ o(1)‖v+

n ‖+ dm−N‖v+
n ‖

≤ ε
(∫

Ω

|v+
n |2

?
)2/2?

+ cε(
∫

Ω

(vn + φmt )2?

+ )
2(2?−1)

2?

+c
(∫

Ω

(vn + φmt )2?

+

)p/2?(∫
Ω

|v+
n |

2?
2?−p

) 2?−p
2?

+ c‖v+
n ‖

≤ ε‖v+
n ‖2 + cε

(∫
Ω

(vn + φmt )2?

+

) 2(2?−1)
2?

+ ε
(∫

Ω

|v+
n |

2?
2?−p

)2 2?−p
2?

+cε
( ∫

Ω

(vn + φmt )2?

+

)2p/2?

+ c‖v+
n ‖

By (5.3) and by the Sobolev embedding theorems, we obtain

‖v+
n ‖2 ≤ c+ o(1)

(
‖vn‖

N+2
N + ‖vn‖

2p
2?
)

+ c‖v+
n || (5.4)

For v−n ∈ H−, we have

(
λ

λk
− 1)

∫
Ω

|∇v−n |2

≤
∫

Ω

(vn + φmt )2?−1
+ |v−n |+

∫
Ω

g(x, (vn + φmt )+)|v−n |+
∫

Ω

|f − fm||v−n |

In the same way we obtain

‖v−n ‖2H1 ≤ c̄+ o(1)
(
‖vn‖

N+2
N + ‖vn‖

2p
2?
)

+ c‖v−n ‖ (5.5)

Joining (5.4) and (5.5), we find

‖vn‖2 ≤ c+ c(‖vn‖
N+2
N + ‖vn‖

2p
2? ) + c‖vn‖,

so vn is bounded in H.
(ii) If λ = λk we write vn = v−n +v+

n +βnek = wn+βnek, where we denote with
v−n and v+

n the projections of vn onto the subspace H−k−1 = span{e1, . . . , ek−1}
and H+

k = (H−k )⊥ respectively. With a similar argument as above we obtain
the following estimate

‖wn‖2 ≤ c+ c
(
‖vn‖

N+2
N + ‖vn‖

2p
2?
)

+ c‖wn‖ (5.6)

We can assume ‖vn‖ ≥ 1. Then, from (5.6), we have

‖wn‖2 ≤ c+ c‖vn‖
2p
2? ≤ c+ c(‖wn‖+ |βn|)

2p
2? (5.7)
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If βn is bounded we conclude as above. If not, we may assume βn → +∞ and
‖wn‖ → +∞ (we neglect the case ‖wn‖ ≤ c which is much easier). Therefore,
from (5.7),

‖wn‖2 ≤
[1
2

(‖wn‖+ β2
n)
]p/2?

.

Then ‖wn‖ ≤ cβ
p/2?

n and ‖wnβn ‖ → 0 since p
2? < 1. Therefore, possibly up to a

subsequence, wn/βn → 0 a.e. and strongly in Lq, 2 ≤ q < 2?. Therefore, for all
q ∈ (2, 2?) ∫

Ω

(
wn + φmt

βn
+ ek)q+ek dx →

∫
Ω

(ek)q+1
+ dx. (5.8)

Moreover, since

o(1) = 〈J ′(vn), ek〉

= −
∫

Ω

(vn + φmt )2?−1
+ ek −

∫
Ω

g(x, (vn + φmt )+)ek +
∫

Ω

(f − fm)ek

we get, using (g3)∫
Ω

(wn + φmt
βn

+ ek
)2?−1

+
ek ≤ o(1) +

c

β2?−1−p
n

∫
Ω

(wn + φmt
βn

+ ek
)p

+
ek.

Finally, by (5.8) we get ∫
Ω

(ek)2?

+ ≤ 0

which is a contradiction. Thus (vn) is bounded.
Returning to relation (5.2), we may therefore assume, as n→ +∞: vn ⇀ v

weakly in H1
0 , vn → v in Lq 2 ≤ q < 2? and vn → v a. e. in Ω. In particular,

it follows that v is a weak solution of

−∆v = λv + (v + φmt )2?−1
+ + g(x, (v + φmt )+) + f − fm in Ω
v = 0 on ∂Ω

(5.9)

To conclude the proof, It remains to show that v 6= φt − φmt , the “trivial”
solution of (5.9). First, we estimate

J(φt − φmt )

=
1
2

∫
Ω

|∇(φt − φmt )|2 − λ

2

∫
Ω

|φt − φmt |2 −
∫

Ω

(f − fm)(φt − φmt )

= −1
2

∫
Ω

[
|∇(φt − φmt )|2 − λ|φt − φmt |2

]
.

From Lemma 3.1 we get, taking εβ = 1
m 0 < β < 1,

|J(φt − φmt )| ≤ cm−N := cεβN . (5.10)
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Since v is a weak solution of (5.9), we have∫
Ω

(|∇v|2 − λv2) dx−
∫

Ω

(v + φmt )2?

+ dx+
∫

Ω

(v + φmt )2?−1
+ φmt dx

−
∫

Ω

g(x, (v + φmt )+)v dx−
∫

Ω

(f − fm)v dx = 0

By the Brezis–Lieb Lemma ([2])∫
Ω

(vn + φmt )2?

+ dx =
∫

Ω

(vn − v)2?

+ dx+
∫

Ω

(v + φmt )2?

+ dx+ o(1) (5.11)

Since vn → v in Lq 2 ≤ q < 2?, we have∫
Ω

G(x, (vn + φmt )+) dx−
∫

Ω

G(x, (v + φmt )+) dx = o(1). (5.12)

Since vn ⇀ v in H,∫
|∇vn|2 =

∫
|∇v|2 +

∫
|∇(vn − v)|2 + o(1). (5.13)

Then, by (5.1), (5.11) and (5.13), we find

c̄+ o(1) = J(vn) (5.14)

= J(v) +
1
2

∫
Ω

|∇(vn − v)|2 dx− 1
2?

∫
Ω

(vn − v)2?

+ dx+ o(1)

Similarly, since J ′(v) = 0, we obtain

〈J ′(vn), vn〉 =
∫

Ω

|∇(vn − v)|2 −
∫

Ω

(vn − v)2?

+ −
∫

Ω

(vn − v)2?−1
+ φmt

−
∫

Ω

g(x, (vn + φmt )+)vn +
∫

Ω

g(x, (v + φmt )+)v + o(1).

Since ∫
Ω

(vn − v)2?−1
+ φmt dx = o(1)

and ∫
Ω

g(x, (vn + φmt )+)vn dx−
∫

Ω

g(x, (v + φmt )+)v dx = o(1),

we get ∫
Ω

|∇(vn − v)|2 dx =
∫

Ω

(vn − v)2?

+ dx+ o(1). (5.15)

Now, let

K = lim
n→+∞

∫
Ω

|∇(vn − v)|2 dx.
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If K = 0, then vn → v strongly in H and in L2? ; then by (5.14) and (5.10)

J(v) = c̄ ≥ α1 > cεβN ≥ J(φt − φmt )

so that v 6= φt−φmt . If K > 0, using the Sobolev inequality and (5.15), we have
(as in [6])

‖vn − v‖2 ≥ S
(∫

Ω

|vn − v|2
?

dx
)2/2?

≥ S
(∫

Ω

(vn − v)2?

+ dx
)2/2?

≥ S
(∫

Ω

|∇(vn − v)|2 dx+ o(1)
)2/2?

This implies that K ≥ SK N−2
N , that is K ≥ SN/2.

To complete the proof we use the following Lemmas which will be proved
below.

Lemma 5.2 Under the hypotheses of Theorem 2.1 one has, for εβ = 1/m, with
α/N < β < (N − 4)/(N − 2),

c̄ <
1
N
SN/2 − cε2. (5.16)

Lemma 5.3 Suppose that the hypotheses of Theorem 2.22 are satisfied. Then
for εβ = 1/m, with

max
{

1− N − 2
2N

(q + 1),
2(N − 1)
N − 2

− (q + 1)
}
< β <

1
2

(q + 1)− 2
N − 2

,

we have
c̄ <

1
N
SN/2 − cεN−

N−2
2 (q+1).

By (5.14) and (5.15) we get

J(v) +
K

N
= c̄ ≤ 1

N
SN/2 −

{
cε2 (Theorem 2.1)
cεN−

N−2
2 (q+1) (Theorem 2.2)

Assume now by contradiction that v ≡ φt − φmt . Then we get by (5.10)

K

N
+ J(v) ≥ 1

N
SN/2 − cεβN

which is impossible, due to the choice of β.

Proof of Lemma 5.2. Let ε > 0 and m ∈ N be fixed such that the hypotheses
of the Linking Theorem are satisfied. For v = w + suε, we have

J(v) = J(w) + J(suε)

≤ J(w) +
s2

2

∫
B 1
m

|∇uε|2 −
s2?

2?

∫
B 1
m

u2?

ε −
λs2

2

∫
B 1
m

u2
ε

+s
∫
B 1
m

|f − fm| |uε|
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As above, we have J(w) ≤ cm−N .
To estimate the last inequality we use the argument developed in [8] (Lemma

3.1). We have from (e) and (f) in Lemma 3.3

s2

2

∫
B1/m

|∇uε|2 −
s2?

2?

∫
B1/m

u2?

ε ≤ (
s2

2
− s2?

2?
)
[
SN/2 +O((εm)N−2)

]
≤ (

1
2
− 1

2?
)
[
SN/2 +O((εm)N−2)

]
≤ SN/2

N
+ c(εm)N−2.

(since s2

2 −
s2
?

2? attains its maximum at s = 1)
We make use of the Hölder inequality to estimate the last term. Let α be

such that 1
α + 1

r + 1
2 = 1, i.e. 1

α = 1
2 −

1
r >

1
2 −

1
N = 1

2? , in particular 2? > α.
Since supp fm ⊆ Ω\B1/m we have∫

B1/m

|f − fm| |uε| ≤
(∫

B1/m

|f |r
)1/r(∫

B1/m

|uε|2
)1/2

(µ(B1/m))1/α

≤ cεm−N/α.

If εβ = 1/m with 0 < β < 1 we have, by (c) in Lemma 3.3,

J(v) ≤ 1
N
SN/2 + c1m

−N + c2(εm)N−2 − c3ε2 + c4εm
N/α

=
1
N
SN/2 + c1ε

Nβ + c2ε
(1−β)(N−2) − c3ε2 + ε1+βN/α

(5.17)

We choose β such that
α

N
< β < 1− 2

N − 2
.

Such a choice is possible only for N ≥ 6. This then implies that for ε > 0
sufficiently small

J(v) <
1
N
SN/2 − cε2,

in particular c̄ < 1
N S

N/2 − cε2.

Proof of Lemma 5.3. With a similar argument as above and using (g4) and
Lemma 3.3(d), we obtain

J(v) = J(w) + J(suε)

≤ J(w) +
s2

2

∫
Ω

|∇uε|2 dx−
λs2

2

∫
Ω

u2
ε dx−

s2?

2?

∫
Ω

u2?

ε dx

−
∫

Ω

G(x, (suε + φmt )+) dx− s
∫

Ω

(f − fm)uε dx
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Reasoning as in Lemma 5.2 from (d) in Lemma 3.3 we obtain as in (5.17)

J(v) ≤ SN/2

N
+ c1ε

Nβ + c2ε
(1−β)(N−2) − c3sq+1

∫
Ω

uq+1
ε dx+ c4ε

1+βN/α

≤ SN/2

N
+ c1ε

Nβ + c2ε
(1−β)(N−2) − c3ε−

N−2
2 (q+1)+N + c4ε

1+βN/α

Using that α < 2?, we get the following condition on β ∈ (0, 1)

N − N − 2
2

(q + 1) <


βN

1 + βN
2?

(1− β)(N − 2)

which is equivalent to the system

1− N − 2
2N

(q + 1) < β < − 2
N − 2

+
1
2

(q + 1)

2(N − 1)
N − 2

− (q + 1) < β < − 2
N − 2

+
1
2

(q + 1)

This choice is possible if

q + 1 >

{
N2

(N−1)(N−2)
2
3 ·

2N
N−2

Therefore the result follows.

6 Existence of a third solution

We consider only the case N ≥ 6 and g ≡ 0; the other cases follow with small
changes.

Let φt(λ) denote the negative solution of (1) for λ ∈ (λk − δ, λk). Since
h ∈ ker(−∆ − λk)⊥, φt(λ) is uniformly bounded when λ → λk. Consider the
functional

Jλ(v) =
1
2

∫
Ω

(|∇v|2 − λv2) dx− 1
2?

∫
Ω

(v + φt(λ))2?

+ dx−
∫

Ω

(f − fm)v dx.

We prove the main geometrical properties of the functional Jλ.

Lemma 6.1 Let H+ = span{e1, . . . , ek}⊥. There exist ᾱ > 0, r̄ > 0 such that

Jλ(v) ≥ ᾱ > 0 for all v ∈ Sr̄ = ∂Br̄ ∩H+, λ ∈ (λk−1, λk).
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Proof. With a similar argument as in Lemma 4.1, since λ < λk, we have

Jλ(v) ≥ 1
2
(
1− λ

λk+1

)
‖v‖2 − c2‖v‖2

?

− c3m−N/2‖v‖

≥ 1
2
(
1− λk

λk+1

)
‖v‖2 − c2‖v‖2

?

− c3m−N/2‖v‖

Then there exist m0, ᾱ and r̄ such that for m ≥ m0,

Jλ(v) ≥ ᾱ > 0

for ‖v‖ = r̄ and all λ ∈ (λk−1, λk).
Now let H−m = span{em1 , . . . , emk } as in the proof of Theorems 2.1 and 2.2.

Lemma 6.2 Let Qm = (H−m ∩BR(0))⊕ [0, R]uε, where εβ = 1/m. Then, if R
is large enough, there exists m̄ ≥ m0 such that:
(i) J∂Qm̄ < ᾱ

(ii) supQm̄ J <
SN/2

N − cε̄2.

Proof. (i) Let ∂Qm̄ = Γ1 ∪ Γ2 ∪ Γ3 as in Lemma 4.2.
(1) For v = w+ suε ∈ Γ1 we have J(v) = J(w) + J(suε). Arguing as in Lemma
4.2 (ii) we have

J(suε) ≤ c3R2?εN−2 + c1 + cR (6.1)

Writing w = Rw̄ ∈ H−m with ‖w̄‖ = 1, w̄ = αy + βemk , y ∈ span{em1 , . . . , emk−1},
‖y‖ = 1, it was shown in Lemma 4.2 (ii) that there exists a number σ > 0 such
that for |α|2 ≤ σ,

J(w) ≤ c1R2 − c2R2? . (6.2)

On the other hand, if |α|2 > σ, one deduces as in Lemma 4.2 (ii) (using that
δ < λk − λk−1) that

J(w) ≤ R2

2

∫
(α∇y + β∇emk )2 − λ|αy + βemk |2

≤ R2

2

[
α2(1− λ

λk−1 + cm−N
) + β2(1− λ

λk + cm−N
)

+2αβ
∫

(∇y∇emk − λyemk )
]

≤ R2

2

[
σ
λk−1 − (λk − δ) + cm−N

λk−1 + cm−N
+ β2 δ + cm−N

λk + cm−N
+ 2αβcm−N

]
≤ R2[−cσ + c1δ + c2m

−N ].

Thus, we get in this case, for δ sufficiently small and m sufficiently large

J(w) ≤ − c
2
σR2. (6.3)
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Joining (6.1), (6.2) and (6.3) we have

J(v) = J(w) + J(suε) ≤ 0,

for δ small, R sufficiently large and ε sufficiently small.
(2) Let v ∈ Γ2, i.e. v = w +Ruε with ‖w‖ ≤ R; then

J(v) = J(w) + J(Ruε) ≤ c(m−N + δ)R2 +
R2

2

∫
B 1
m

|∇uε|2 dx

−R
2?

2?

∫
B 1
m

u2?

ε dx+R‖f‖ ‖uε‖ < 0

for R sufficiently large.
(3) Let v ∈ Γ3 = B̄R ∩H−m. Then

J(v) ≤ c1(m−N + δ)‖w‖2 − 1
2?

∫
B 1
m

(w + φt(λ))2?

+ dx

≤ c1(m−N + δ)‖w‖2 < α0

if m ≥ m1 and δ > 0 sufficiently small.
ii) For v ∈ Qm we have as in Lemma 5.2 inequality (5.17),

J(v) ≤ 1
N
SN/2 + c1(m−N + δ)R2 + c2(εm)N−2 − c3ε2 − c4εm−N/2

If εβ = 1/m, with β as in Lemma 5.2, then

J(v) ≤ SN/2

N
− cε2 + c4δR

2

Then there exists δ1 such that if 0 < δ < δ1, then

J(v) ≤ SN/2

N
− c

2
ε2.

Arguing as in Theorem 2.1, we find a critical point vλ of the functional Jλ at a
level cλ ≥ ᾱ > 0 with ᾱ independent of λ ∈ (λk − δ, λk).

It was shown in [6, Theorem 1.3] that in every λk, k ≥ 1, starts a bifurcation
branch (λ, k) emanating from the negative solution and bending to the left
(Prop. 4.2) (and thus “corresponding” to our second solution). We conclude
that for λ to the left and close to λk there exist at least three solutions for
equation (1.1), for t > T0 with T0 = T0(h) sufficiently large.
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