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AVERY FIXED POINT THEOREM APPLIED TO
HAMMERSTEIN INTEGRAL EQUATIONS

PAUL W. ELOE, JEFFREY T. NEUGEBAUER

ABSTRACT. We apply a recent Avery et al. fixed point theorem to the Ham-
merstein integral equation
T2
2= [ TG sE@) s e m. T
1

Under certain conditions on G, we show the existence of positive and positive
symmetric solutions. Examples are given where G is a convolution kernel
and where G is a Green’s function associated with different boundary-value
problem.

1. INTRODUCTION

Let T1,T5 € R with T7 < T5. Consider the Hammerstein integral equation
T
x(t) = . G(t,s)f(z(s))ds, te [T, T3], (1.1)
1
where f € C([0,0),[0,00)). We show that if G satisfies certain conditions, a fixed
point theorem due to Avery, Anderson, and Henderson can be applied to show the
existence of nonnegative solutions of .

In recent years, multiple researchers have applied various methods from fixed
point theory to general Hammerstein integral equations. In [I7], Cabada, Cid, and
Infante apply fixed point index theory to a Hammerstein integral equation and then
give an example where the kernel is a Green’s function for a second-order system of
ordinary differential equations. Figueroa and Tojo [22] use general cones and fixed
point index theory to show the existence of concave solutions of a Hammerstein
integral equation. As an example, they show the existence of concave solutions of
a second-order boundary-value problem. This work is particularly motivated by
the recent work of Webb [32], in which he considers a general Hammerstein inte-
gral equation, assumes the kernel satisfies basic properties, and applies fixed point
index theory to obtain sufficient conditions for fixed points. He then applies these
results to many boundary-value problems. For more examples of recent work on
Hammerstein integral equations, see [16] 18] 23], 26] BI] and the references therein.

Recently, Avery et al. have been developing extensions of the Leggett-Williams
fixed point theorem [25] to allow for more flexibility in the conditions required for
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the existence of a fixed point of an operator. In [I4], an extension was given that
does not require either of the functional boundaries to be invariant with respect to
the functional wedge. This fixed point theorem has been applied to several different
boundary-value problems [I], 2, [0, 15]. In this paper, the results from previous
applications are generalized and extended. The hypotheses on G match with the
properties of G when G is the Green’s function associated with the boundary-value
problems in the aforementioned papers. We also obtain new applications to integral
equations with convolution type kernels, a fractional boundary-value problem, and
an ordinary differential equation satisfying Lidstone boundary conditions.

While this article is concerned with integral equations on the real line, these
results could be extended to time scales. This extension would generalize the results
on time scales in [27] and on difference equations [3, 29]. Generally, applications
of Avery type fixed point theorems (see, for example, [4] 5] 6] [7, 8, 10, 1T, 12 [13])
take advantage of the properties of G mentioned in this paper. Therefore, this work
could be extended to apply these Avery fixed point theorems.

1.1. Definitions. In thissubsection, we present definitions that will be used through-
out the rest of this article.

Definition 1.1. Let E be a real Banach space. A nonempty closed convex set
P C FE is called a cone provided:

(i) z € P, A > 0 implies Az € P;

(ii) = € P, —x € P implies z = 0.

Definition 1.2. A map « is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if a : P — [0, 00) is continuous and

alte+ (1 —t)y) > ta(z) + (1 — t)a(y)

for all z,y € P and ¢t € [0,1]. Similarly we say the map § is a nonnegative
continuous convex functional functional on a cone P of a real Banach space F if
B :P —[0,00) is continuous and

Btz + (1 —t)y) < tB(x) + (1 - )B(y)
for all z,y € P and t € [0, 1].

2. FIXED POINT THEOREM

We first define sets that are integral to the fixed point theorem. Let o and v be
nonnegative continuous concave functionals on P, and let § and 8 be nonnegative
continuous convex functionals on P. We define the sets

A= Ao, B,a,d) ={x € P:a< alz) and g(z) < d},
B =B(4,b) ={x € A:6(z) < b},
C=C,c)={reA:c<ypx)}.
The following fixed point theorem is attributed to Anderson, Avery, and Henderson
[14] and is an extension of the original Leggett-Williams fixed point theorem [25].

Theorem 2.1. Suppose P is a cone in a real Banach space E, o and ¥ are non-
negative continuous concave functionals on P, § and B are nonnegative continuous
convez functionals on P, and for nonnegative real numbers a, b, ¢, and d, the sets
A, B, and C are defined as above. Furthermore, suppose A is a bounded subset of
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P, T :A— P isa completely continuous operator, and that the following conditions
hold:

(Al) {z e A:c<(z) and §(z) < b} # 0, {z € P:a(zr) <a andd < B(z)} =

=

)

2

(Tz) > a for all x € B;

(Tz) > a for allx € A with §(Tx) > b;
(Tz) <d for all x € C; and

) B(Tz) <d for all x € A with (Tx) < c.

Then T has a fixed point x* € A.

(A2
(A3) «
(A4) B
(A5) 3

3. POSITIVE SOLUTIONS OF THE HAMMERSTEIN EQUATION

We make the following assumptions on G.
(A6) Ge C([Tl,TQ] X [Tl,TQ], [07 OO)) and G(t, S) 5_'5 0.
(A7) For each s, if t1,ts € [T1,To] with t1 < to, then G(t1, s) < G(te, s).
(A8) There exists a k > 0 such that for any y,w € [T}, Ts] with y < w,
(y = T1)*G(w,s) < (w = T1)*C(y,s).
We point out that assumption (A8) implies
T>

(y —T1)" G(w,s)ds < (w—Ty)* " G(y, s) ds. (3.1)
T T:

Let B = C([T1,Tz],R) be the Banach Space composed of continuous functions
defined from [T7, T3] into R with the norm

= t)|.
I = masxa(t)
We define the operator T : B — B by
T
Tx(t) = G(t,s)f(x(s))ds, te[T,Ts].
Th

Then z is a solution of (1.1)) if and only if z is a fixed point of T'.
We define the cone P C B by

P = {1: € B : x is nonnegative, nondecreasing, and
(y — T)Fz(w) < (w—T1)*x(y) for all y,w € [Th, Ty] with y < w}.
Theorem 3.1. The operator T : P — P and is completely continuous.

Proof. Let x € P. By (A6), for any t € [Ty, Ts],

T:
Tx(t) = G(t,s)f(z(s))ds > 0.
T
So T is nonnegative. By (A7), for ¢1,ty € [T}, To] with t; < to,
Ty
Tx(t:) = G(t1,s)f(2(s)) ds
T
T
< [ Gl rtate) as
T

So T is nondecreasing.
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By (A8) and (3.1)), if y,w € [Ty, T3] with y < w, then
T

(y =) Ta(w) = (y - T1)" . G(w,s)f(x(s))ds

T
<w-10" [ "G fals)ds
T
— (w — T\)*Ta(y).
SoT :P — P. A standard application of the Arzela-Ascoli theorem shows T is
completely continuous. O

For fixed 7, u,v € [T1, T3], define the nonnegative concave functionals o and v
to be

a(z) = terﬁir;,z] a(t) =a(r), ()= téﬁﬁh%z] z(t) = z(p),

and the nonnegative convex functionals § and S to be

§(z) = t) = : = t) = z(Ts).
(@) = max o(t) =z@), Blz)= max x(t)=a2(T2)
Notice by (A6), the values 7, y, and v can be chosen so that [~ G(r,s)ds > 0,

ij G(u,s)ds > 0, and ijlz G(v,s)ds > 0.

Theorem 3.2. Assume (A6)—(A8) hold. Choose T, pu,v € [T1,Ts] with Ty < 17 <
p<v<Ty, [[G(r,s)ds >0, szG s)ds > 0, and fTTZ (v,s)ds > 0. Let d

and m be positive reals with 0 < m < (” o ) d and suppose f : [0,00) — [0,00)
is continuous and satisfies the conditions:

T— k T— v—
() () 2 g fraia Jorw e [(F28)"d (325) d);

(ii) f(w) is decreasing forO <w<m and f( ) > f(w) form <w <d; and
(iii) " G(Tg,s)f(((z §1)km) ds <d— f(m) [ G(Iy,5) ds.

Then ) has at least one positive solution x* € A(a B, ( 1T ) d, d)
Proof. Define

T — T1 k vV — T1 k m— Tl k
@ (TQ—T1> d b (T2—T1) r (TQ—TI)
Notice that if z € A C P, then ||z| = z(T2) = B(x) < d. So A is bounded.
First, we show (A1) holds. Let
—Ty)kd —Ty)kd
K e ( (#k Ti) (v-T) )
(To = Tu)* [, G(,u,s)ds (Ty —T1) fT (v,s)ds
which, by , is well-defined. We define

T>
() =K G(t,s)ds

Ty

Soxx € P,

T>
alzg) =K G(r,s)ds

T
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and
Blzrk) =K ; G(Ty, s)ds
(v —Ty) kdsz G(Ty, s)ds
(T — T [ G(v, 5) ds
_ (LTt fT (v, 5) ds

(I —T1) fT (v,s)ds

So zg € A. Now

and
0zg)=K G(v,s)ds

(V T)kd [,

(Tg Ty)k ;,:2 G(z/, s) ds
(l/ Tl)

(L -T)k ="

Sozxg €e{reA:c<i(zr)and §(z) < b}, and {z € A: c < () and §(z) < b} #
0. If € P and B(z) > d, then

(T—Tl)k T—T1 k T—T1 k
> LTy — = a.
=D —Tl)kx(TQ) <T2 —Tl) Blz) > (T2 —Tl) d=a
So{r €P:a(zx) <aandd< f(z)} =0. Thus (Al) holds.

Next, we show (A2) holds. Let z € B. Then §(z) < b. By (i),
T

a(Tx) = G(r,s)f(x(s))ds
T

> [ " G(r5) fla(s)) ds

'ﬂ
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v (7 — T1)kd
z/T G(T,s)((TQ_Tl)kf:G(m)dr)ds

() e

Now, we show that (A3) holds. Let x € A with §(Tz) > b. Then, by (3.1),

r—T k Ts

> T2 [ cmartatas
T— 17 k

= Eyggké(ﬂv)
(T—Tl)k Z/—T1 k

> (I/—Tl)k (T2 —T1> d

T—T1\*
- (Tgfilil) ¢=a

Here, we show that (A4) holds. Let x € C. Then ¢¥(x) = z(u) > c¢. So for
te [Tla :u]a

(-T)F . (-TF (T
z(t) > (t =T (1) = = Tl)kc = (u—T1)*
Then by (ii) and (iii),
T
B(Tz) = A G(Ty, s) f(x(s))ds
" ™
_ / G(Ty, ) f(a(s)) ds + / G(Ty, s)f(w(s)) ds
T H
(S — Tl)k &

n
</, G(Tg,S)f(mm> ds + ) G(Ty, s)f(m)ds < d.

So (A4) holds.
Finally, we show that (A5) holds. Let x € A with ¢(Tz) < ¢. So

B(Tx) = ; ’ G(Ty, 8)f(z(s))ds
_ kT2
<O [ ettt as
Ty — T1)*
- G
(Ty — T1)*
(n—Ty)* ¢
(L -T)" p—TiNk,
N (:— Tll)’f (T2 —T1> d=d

So (A5) holds.
Thus T has a fixed point * € A which is a positive solution of (L.1)). O
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4. POSITIVE SOLUTIONS OF INTEGRAL EQUATIONS AND BOUNDARY-VALUE
PROBLEMS
Example 4.1. Consider the integral equation with kernel of convolution type

T>
z(t) = . K(t—s)f(x(s))ds. (4.1)

If K e C([Tl — TQ,TQ — 111]7 [O,C)O))7 if K(tl) < K(tg) for tl,tz (S [Tl — TQ,TQ — Tl}
with ¢; < to, and if there exists a k > 0 such that for any y, w € [T, Ts] with y < w,
(y = T)"K(w—s) < (w—T1)"K(y - s),

then Theorem [3.2| can be applied to show the existence of a positive solution of

).

Note when k = 1, (A8) is equivalent to concavity in the traditional sense. So if
K € CO([Ty — Ty, Ty — T1], [0, 00)) with K'(t) > 0 for t € [Ty — Ta, Ty — T}] and
K"(t) <0fort € [Th — Tz, T — T3], then Theorem can be applied to show the
existence of a positive solution of (4.1]).

Specifically, consider the integral equation

w/4 -
x(t) = /0 sin (t — s+ Z)f(a:(s)) ds. (4.2)

Note that sin (t—|— %) >0, %sin (t+ %) = CoS (t—i— 1) >0, and %Sin (t—|— %) =

—sin (t + %) < 0 for t € [-%F,%]. So Theorem can be applied to show the

existence of a positive solution of (4.2).
Example 4.2. The Green’s function associated with the boundary-value problem
2+ f(x) =0, te(0,1), (4.3)
z(0) =0, 2'(1)=0, (4.4)
given by G(t,s) = min{¢, s}, satisfies (A6)—(A8) with k = 1. Since solutions of
, are solutions of the integral equation

J;(t):/o Gt s)f(x(s))ds, te[0,1],

Theorem [3.2]can be used to show the existence of positive solutions of the boundary-
value problem (4.3), (4.4]). In this case, Theorem [3.2|is equivalent to [15, Theorem
5].

Example 4.3. Consider the 2nth order differential equation
(—1)"2C™ = f(z), te(0,1), (4.5)
satisfying the boundary conditions
220y =0, 2%*tD1)=0, i=0,1,...,n (4.6)

If G(t,s) = min{¢, s}, by letting G1(t,s) = G(t,s), we can recursively define, for
-2, ..

j '7”7

Gj(t,s):/O G(t,r)Gj-1(r,s)dr.
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As a result, G, (t, s) is the Green’s function corresponding to (—1)"z(?" =0, (4.6)).
Thus, z(t) is a solution of (4.5)), (4.6) if and only if

t):LA Gt $)f (2(s)) ds.

Since G(t,s) > 0, G,,(t,s) > 0. So G satisfies (A6).
For (1&7)7 let t1,tg € [O 1] with ¢; <t9. Now G(tl, ) < G(tQ,S), SO

tl, / th, n 1(7“ S)d
/ G(to,r)Gp—1(r,s)dr

So G, satisfies (AT).
It is also known that G(¢,s) satisfies (A8) with k = 1. Thus,

1
yGn(w,s):/ yG(w,r)Gp_1(r,s)dr
0

1
S/ wG(y7T)Gn—1(raS)dT
0

Thus (A8) is satisfied with k£ = 1.
Thus G,, satisfies (A6)—(A8) with & = 1. Since solutions of (4.5)), (4.6) must

solve the integral equation
1
- [ Glt.s)sats) as
0

Theorem can be applied to show the existence of a positive solution of (4.5)),
(4.6)-

Corollary 4.4. Let ,p,v € [0,1) with0 < 7 < pu <wv < 1. Let d and m be positive
reals with 0 < m < ud and suppose f : [0,00) — [0,00) is continuous and satisfies
the conditions:

(i) flw) > Wir)dr for w € [rd,vd];
(ii) f(w) is decreasing for 0 <w <m and f(m) > f(w) form <w < d; and
(iii) fo“ m)ds < d— f(m fMG (1,5)ds.

Then , has at least one positive solution x* € A(a, 8,7d,d).

Example 4.5. Consider, forn e Ny n >3, n—1< a <n, 8 € [1,n— 1], the
fractional differential equation

D8+1' + f(z) =0, te(0,1), (4.7)
satisfying the boundary conditions
z(0)=0, i=0,...,n—2, D x(1)=0, (4.8)

where D, , Dg + are the Riemann-Liouville fractional derivatives of order « and 5.
For a detailed view of fractional calculus, see the books by Diethelm [19], Kilbas,
Srivastava, and Trujillo [24], Miller and Ross [28], or Podlubny [30].
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The Green’s function for —D§, = 0 satisfying the boundary conditions (4.8)) is

to—1(1—g)o—1-F8 B (t—s)o1

G(t S) _ T'(a) T(a) 0 S s<t S 17 (4 9)
’ t(’wl(l—s)ailiﬁ7 0<t<s<l ’
I'(a) ’ -7 = :

Therefore, x is a solution of (4.7)), (4.8) if and only if = solves the integral equation

1
x(t) :/0 G(t,s)f(z(s))ds, te]0,1].

In [20], it is shown that G satisfies (A6) and (A7). The argument used in [2I] with
a > 2 shows G(t, s) has the property that
Yy G(w, ) < w* Gy, s)

for all y,w € [0, 1] with y < w. So (A8) holds with k¥ = o — 1. Thus Theorem
can be applied to give the existence of a positive solution of (4.7)), (4.8]).

Corollary 4.6. Let 7,u,v € [0,1] with 0 < 7 < pu < v < 1. Let d and m be
positive reals with 0 < m < p®~1d and suppose f : [0,00) — [0,00) is continuous
and satisfies the conditions:
: rot a— a—
(i) f(w) = Wﬂf)dr for w € [r*~d,v1d];
(ii) f(w) is decreasing for 0 < w < m and f(m) > f(w) for m <w < d; and
1

(i) fy G(1,5)f (4=rm) ds < d — f(m) [, G(1,5)ds.
Then (A7), (4.8) has at least one positive solution z* € A(a, 8,7 d, d).

5. POSITIVE SYMMETRIC SOLUTIONS OF THE HAMMERSTEIN EQUATION
Define T = % Define the cone
K={zeB:a(Ta—t+Ty) =xz(t) for all t € [T}, T>],
x is nonnegative on [T, T3], nondecreasing on [T1,7], and
(y — Ty)Fz(w) < (w—T1)*x(y) for all y,w € [T1, Ty] with y < w}.
We need the following additional assumptions.
(A9) Let t1,ts € [Ty, T) with ¢; < to.
(1) If t2 S S S T2 - tg + Tl, then G(tl,s) S G(tg,s).

(ii) If s <9, then G(t1, S)+G(T2—t1 +T17, S) < G(tz, S)+G(T2_t2+T1, S)
(A10) For all ¢, s € [Ty, T5],

G(TQ —t+ Tl,TQ — S+ Tl) = G(t, S).
Lemma 5.1. Assume (A6), (A8)—(A10). Then the operator T : K — K and is

completely continuous.

Proof. Let x € K. By (A6), for any ¢ € [Ty, T3],
T
Tx(t) = G(t,s)f(z(s))ds > 0.

T>

So T is nonnegative on [T7, T5].
By (A10), if ¢t € [T1, T3], then, by making the substitution o = To — s + T,
T
Te(To —t+Ty) = G(Ty —t+Ty,s)f(x(s))ds

T
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Th
= — G(TQ—t+T1,T2—O’+T1)f(£U(T2—U+T1))d0
T
T
= [ G(to0)f(x(0))do
T
= Tz(t).

Next, for t1,t5 € [Tl,T] with t1 < to,

T
Tx(ty) = ; G(t1,8)f(x(s))ds

To—t2+T1
= G(t1,s)f(z(s)) ds—|—/t G(t1,s)f(z(s))ds

T

T
+/ G(t1,s)f(z(s))ds.

To—t2+T,

By (A9)

@),
To—to+Th To—to+T1
/t G(t1, ) f(x(s)) ds < /t Glt, 5)f(2(s)) ds.

By (A9) (ii) and by (A10),

to T>

G(t1,s)f(z(s)) ds+/ G(t1,s)f(z(s))ds

Ty To—t1+Th

= /t2 G(t1,s)f(z(s))ds + ’ G(t1, Ty — s+ T1) f(z(s)) ds

T1 Tl

:/ﬁmmg+aﬂfh+ﬂJW@®Ns

g/[mm@+mﬂ—b+ﬂﬁW@@Ns

T>

_ / "Gt 5)f(w(s)) ds + / Glts, 5) f(x(s)) ds.

To—to+T1
Thus

ta

To—t2+T,
Txz(t) = G(t1,s)f(x(s)) ds—|—/t G(t1,s)f(xz(s))ds

T

T
+/ G(t1,s)f(z(s))ds
To—t2+T,

To—t2+T,
< G(tQ,s)f(:c(s))ds—i-/t G(ta,s)f(x(s))ds

T

Ts
+/ Gt 5)f(x(s)) ds

To—to+T,

So Tz is nondecreasing on [17,T].
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By (A8) and (3.1)), if y,w € [Ty, T3] with y < w, then

T
(v — T Te(w) = (y — T1)* /T Glw, 3)f (x(s)) ds
<w-m) | "Gy, 5) f(x(s)) ds

= (w—T)*Tx(y).

SoT : K — K. A standard application of the Arzela-Ascoli theorem shows T is
completely continuous. (I

For fixed 7, u, v € [T}, T], define the nonnegative concave functionals a and 9 to
be

a(e) = min 2(t) =o(r), (@)= min (t) = (),
te[r,T] te(p,T|

and the nonnegative convex functionals § and 5 to be

0(z) = téI[l’l%},{u] x(t) =z(v), PB(z)= teIFTE?XT] x(t) = (7).

Theorem 5.2. Assume (AG), (A8)— (AlO) hold. Choose T, u,y € [T, T) with Ty <

r<pu<v<T, fVGTs)ds>0f w,s)ds > 0, andfT (v,s)ds > 0. Let
d and m be positive reals with 0 < m < (“ Tl) d and suppose f : [0,00) — [0, 00)
is continuous and satisfies the conditions:

. T—T1)"d =T, v=Ty\k 77.

(1) f(w) > 7= T()k f”l)(;(w)dr forw e [(T—Tl) d, (F=7) d];

)

(ii) f(w) is decreasing for 0<w<mand f(m ) for m < w <d; and

> flw
(i) 2 [ G(T,s)f (&= §1km)ds<d_2f ) [, G(T,s
B

(n—

Then (1.1) has at least one positive solution x* € A(a, (% ) d, d)

Proof. Define
_ k _ k — k
o= ()@ v=(F=p) ¢ = (=)
Note that if z € A C P, then ||z| = 2(T) = B(z) < d. So A is bounded.
First, we show that (A1) holds. Let
E( ] (u—gl)’“d (V—Tl)’“d )
(T —=T)* [ G(u, ) ds (T - Ty) fT (v,s)ds
which, by , is well-defined. We define

T>
zr(t) =K G(t,s)ds.
T
Sozkx € P,
T>
alzg) =K G(r,s)ds
T,

(w—"T kdf;} (7, s) ds
>
(T —Ty) fT i,
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T
(r—T)kd [ )ds
>
(T —T) fT

- (7=3) a-e

and
Ts
Blex) =K G(T,s) ds

- (Z/—Tl)kdfT2 G(T,s) ds
(T—Tl)’C (V,S)
(T Ty) kdf v,s)ds
(T —Ty) fT (v,s)ds B

So zx € A. Now
T>

Y(xg)=K G(u,s)ds

T

_ (=T fr Gl s)ds

(T = T0)* [ Glu,s)ds
_ (p =Tk
(T -Ty)k

:C7

and
T
ozg)=K G(v,s)ds

T

(v — Tl)kdf;f G(v, s)ds

Soxk € {reA:c<(z)and 6(z
0

.Ifxepand B(x) > d, then
(1 —Ty)* T—T1\* T—T1\*
a(r) = (1) > (T_Tll)kx(Tz): (T—Tll) B(x) > <T—T1) d=a.

So{zre€P:azx) <aand d< f(z)} =0. Thus (Al) holds.
Next, we show that (A2) holds. Let € B. Then §(x) < b. By (i),
T

a(Tz) = G(r,s)f(x(s))ds

> / "G, ) f(a(s)) ds

_ Tk
/ G(1,s) (r 1;1) d )ds
T Tk [CG(r,r)dr
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— T\
= (7: L ) d = Q.
T-T
Now, we show that (A3) holds. Let © € A with 6(Tx) > b. Then, by (3.1)),
Ts
ao(Tz) = G(r,s)f(x(s)ds

Penultimately, we show that (A4) holds. Let x € C. Then ¢(z) = z() > ¢. So
for ¢t € [Ty, p],
(t—Ty)*
(n—T)*

(t—1)k
(p—Tr)*

(t—1)k
€= (w—T)F""

o(t) > () >

Then by (ii) and (iii),

T
B(Tx) :/ G (T,s) f(z(s))ds

T

T
= Z/T1 G (T,s) f(z(s))ds

n B T
= 2/ G (T,s) f(z(s)) d5+2/ G (T,s) f(z(s))ds

T

o _ (S_Tl)k T _
<2 A G(T,s)f(mm) ds+2/ﬂ G(T,s)f(m)ds <d.

So (A4) holds.
Finally, we show that (A5) holds. Let x € A with ¢(Tz) < ¢. So

_ k T
< e [ G e as
- ((H—Tl))k v(Te)
- (T—Tl)kc
(p—T0)*
(T-T)f rp—Ti\k,
C (p—T)" (T—T1> d=d

So (A5) holds.
Thus T has a fixed point * € A which is a positive solution of (L.1)). O
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6. POSITIVE SYMMETRIC SOLUTIONS OF BOUNDARY VALUE PROBLEMS

Example 6.1. In [2], the Green’s function corresponding to the Dirichlet problem
2 = f(z), te(0,1), (6.1)
z(0)=0, z(1)=0, (6.2)
given by

Git,s) = t(l1—s), 0<t<s<l,
U s(1—t), 0<s<t<1,

is shown to satisfy (A6) and (A8) with k = 1, and (A10).
We verify (A9). Let t1,t2 € [0, %} with ¢ < t5. Suppose to < s <1 —ty. Then

G(t1,s) =t1(1 — s5) <t2(1 —s) = G(t2,s).
Next, suppose s < ty. Notice 1 —t; > 1 -1ty > % > s. Notice
G(ta,8) + G(1 —ta,8) =s(1 —ta) +s(1 = (1 —t2)) = s.
First, suppose s < t;. Then
G(t1,8) +G(1 —t1,8) =s(1 —t1) +s(1 — (1 — t1))
=s
= G(t2,8) + G(1 — ta, 5).
Next, suppose t; < s < ty. Then
G(t1,s) + Gl —t1,8)=t1(1 —s)+s(1— (1 —t1))
=t
<s
= G(ta,s) + G(1 — ta, 5).
So G satisfies (A9). Since solutions of (6.1, must solve the integral equation

#(t) = / G(t, 5) f(x(s)) ds,

Theorem can be applied to show the existence of positive symmetric solutions
of the boundary-value problem (6.1)), (6.2)). In this case, Theorem is equivalent
to |2, Theorem 3.5].

Example 6.2. In [9], it is shown that the Green’s function corresponding to the
two point problem
35(4) = f(x)v te (07 1)7 (63)
@0)=0, z91)=0, i=0,1, (6.4)
given by
G(t,s) =
(t:9) 6 |s2(1—1)2(3(t—s)+2(1—1)s), 0<s<t<1,
satisfies (A6) and (A8) with k = 2, and (A10).
Note that for ¢ € [0,1] and ¢ < s, we have
0 1

aG(t, S) = it

1{tQ(l—5)2(3(s—t)+2(1—s)t), 0<t<s<l,

(1—s)2(25(1—1t)—1)
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> %t(l —s)2(2s(1 - %) ~s)=0.

So for t1,ty € [0, 3] with t; <ty <5 < 1—ty, G(t1,s) < G(ta,s). Now for t € [0, 1],
s <t,
G(t,s) + G(1 —t,s) = 3%t — 35%t? — 5>,

Here
% (G(t,s) +G(1 —t,5)) = 3s% — 65°t
=3s%(1—2t) > 0.
Soif s <t <ty < %,G(tl,s)—&—G(l—tl,s) < G(ta,8) + G(1 —tg,s). Ift < s < %,

then
G(t,s) + G(1 —t,s) = 3st? — 357t — 3.
So

% (G(t,s) + G(1 —t,s)) = 6st — 6s°t — 3t
= 3t(2s — 25* — 1)
> 3t(2s — 25% — 5)
= 3t(s(1 —2s)) > 0.
Therefore, if t1 < s <ty < %, then
G(t1,s) +G(1 —t1,8) < G(s,s) + G(1 —s,5) < G(te,s) + G(1 —ta, s).

So (A9) is satisfied.
Now solutions of (6.3, (6.4) must solve the integral equation

1
x(t) = /0 G(t,s)f(x(s))ds.

Thus, like in [9], Theorem can be used to prove the existence of positive sym-
metric solutions of the given boundary-value problem. In fact, Theorem [5.2] is
equivalent to [9, Theorem 3.4] for the given Green’s function.

Example 6.3. Consider the 2nth order differential equation

(~1)"2 = f(z), te(0,1), (6.5)
satisfying the Lidstone boundary conditions
@) 0)=0, 2®91)=0, i=01,...,n—1. (6.6)

If
(1 — <t <s<1
G(t,S): ( 8)7 07 =S5 1
s(I—t), 0<s<t<1,

by letting G (¢, s) = G(t, s), we can recursively define, for j = 2,...,n,

Gy(t,s) = /O Glt,1)Gy 1 () dr.

As aresult, G, (t, s) is the Green’s function corresponding to (—1)"z?») = 0, (6.6).
Thus, z(t) is a solution of (6.5)), if and only if

x(t):/o Gn(t,s)f(z(s))ds.
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It is known that G,(t,s) > 0 and G, (1 —¢,1 — s) = G,(t,s). So G satisfies (A6)
and (A10).
It is also known that G(, s) satisfies (A8) with k = 1. Thus,

1
yGn(w,s):/ yG(w,r)Gp_1(r,s)dr
0

1
< / wG(y7 T)Gn—l(ra 5) dr
0
= wGy(y, s).

Thus (A8) is satisfied with k& = 1.
We prove directly that G satisfies (A9). Let ¢ € [0,4]. Then for t < s <1—t¢,

Gg(t,s):/o G(t,r)G(r,s)dr

= /0 r(l—t)r(l—s)dr+ /t t(l—r)r(l—s)dr+ /S t(1—r)s(1—r)dr

- %(1—5)15(23—82—752).

Therefore,

gGg(t, s) = é(l —5)(2s — 5% — 3t%)

ot
_ %(1—3)(1—(1—3)2—2%2)
> S(1-5)(1— (1 1)~ 37)

_ éa —8)(26(1 — 20)) > 0.

So for t1,t5 € [0, 3] with t5 < s <1 — 5, we have Ga(t1,s) < G(ta, s).
Now for t € [0,1/2], s <*t,

Ga(t,s) + Go(1—t,5) = /I[G(tﬂ”) + G(1—t,7)|G(r,s)dr
0
= /S[T(l —t)+rtlr(l —s)dr + /t[r(l —t) +rt]s(1 —r)dr
0 S
+/ [t —r)+rt]s(1—r)dr

1
+/1 tA—r)+ (1 —-t)(1 —7)]s(1—7r)dr

—t

1 1 1
= —633 =+ ist — §St2.

Here

0 1
o (Ga(t,s) + Ga(1 —t,5)) = 25~ st

:4%—&20



EJDE-2019/99 AVERY FIXED POINT THEOREM 17

Soif s <t <ty < %, then Gg(tl,s) + Gg(l — tl,S) < GQ(t27S) + Gg(l — tg,S). If
t; < s<1/2, then

Gz(tl, S) + Gg(l — tl,s)

= /Ol[G(t,r) +G(1—t,7)|G(r,s)dr
= /t[r(l —t) +rt]r(l — s)dr + /S[t(l —r)+rtlr(l —s)dr
0 ¢
+ / [t(1—7)+rt]s(l —r)dr

+ /1—t[t(1 —r)+(1-t)1—r)]s(1—r)dr

_L1, 1o 1lg
—2st 25t 6t.
Now
O (Galt,s) + Gal1 — t,5)) = (5 — 52 — 2)
ot 2(l, S 2 5 S —28 S
1
25(3—32—32)
= %(5(1 —2s5)) > 0.

Therefore, if t1 < s <ty < %, then
G(t1,8) + G(1 —t1,8) < G(s,8) + G(1 — s,5) < G(ta,s) + G(1 — ta, s).

So (A9) is satisfied.
Since G, satisfies (A9), this implies for ¢1,t5 € [0, %] with 7 < t3 and for
t2 é S S 1-— t2,

1 1
/ G(t1,r)G(r,s)dr < / G(te,r)G(r, s)dr,
0 0

and for s < tq,
/I[G(thr) + G —t1,7)]G(r,s)dr < /I[G(tg,r) + G(1 — ta,7)]G(r, s) dr.
0 0

Let t1,t5 € [0, 3] with t; <t5. For to < s <1—to,
1
Gn(tl,s):/ G(t1,7)Gp—1(r,s)dr
0
1 1
:/ G(tl,r){/ G(r,u)Gpn—2(u, ) du] dr
0 0
1 1 -
:/ Gn_g(u,s)[/ G(t1,7)G(r,u)dr| du
0 0 !
1 1 -
§/ Gn_g(u,s)[/ G(te,r)G(r,u)dr| du
0 0 /

— /01 G(ta, ) {/01 G(r,u)Gn_a(u, s) du: dr
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/ th, n 1(7“ S)d
(tQ’ )

Also, for s < t5,

Goltr,s) + Gu(1 — 11, 5) = /Ol[G(tl,r) + G = t1,1)]Go (1, 5) dr

1 1
- /0 [G(tl,r)+G(1_t1,T)][ /0 G(r,u)Gn_g(u,s)du] ar

:/ Gn—2(u,s) /[G(tl,r)+G(1—t1,r)]G(r,u)dr du

]
/ Gra(u, ) /[G(tg,r)+G(17t2,r)]G(r,u)dr} du

:/O [G(ta,7) + G(1 — ta,7) / G(r,u)Gp—a(u, s)du] dr

= /0 [G(ta,r) + G(1 — to,7)|Gr—1(r,s)dr

= Gn(tQ,T) + Gn(l — tg,T).

So G, satisfies (A9).
Thus G, satisfies (A6) and (A8) with k = 1, (A9), and (A10). Since solutions
of (6.5)), must solve the integral equation

1
£(t) = / Golt, ) f(x(s)) ds,

Theorem can be applied to show the existence of positive symmetric solutions
of (6.3), (6.6)-

Corollary 6.4. Let 7,p,v € [0,1/2] with0 < 7 < p <v <1/2. Let d and m be
positive reals with 0 < m < 2d and suppose f : [0,00) — [0,00) is continuous and
satisfies the conditions:

(1) f(w) f”%ﬁlr)dr fO’f‘ w e [2’7‘d, 2I/d} N
(ii) f(w) is decreasing for 0 < w < m and f(m) > f(w) for m <w < d; and

(iii) 2f0 2,s)f( )d3<d 2f(m fl/zG (5,8)ds.
Then , ) has at least one positive symmetric solution x* € A(a, 8,27d,d).
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