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CLASSICAL-REGULAR SOLVABILITY OF INITIAL BOUNDARY
VALUE PROBLEMS OF NONLINEAR WAVE EQUATIONS WITH

TIME-DEPENDENT DIFFERENTIAL OPERATOR AND
DIRICHLET BOUNDARY CONDITIONS

SALIH JAWAD

Abstract. This article concerns the nonlinear wave equation

utt −
nX

i,j=1

∂

∂xi

˘
aij(t, x)

∂u

∂xj

¯
+ c(t, x)u+ λu

+ F′`|u|2´u+ ζu = 0, t ∈ [0,∞), x ∈ Ω̄

u(0, x) = ϕ, ut(0, x) = ψ, u|∂Ω = 0.

Essentially this article ascertains and proves the important mapping property

M : D
`
A(k′′0 +1)/2(0)

´
→ D

`
Ak′′0 /2(0)

´
, D(A(0)) = H1

0 (Ω) ∩H2(Ω),

as well as the associated Lipschitz condition

‖Ak′′0 /2(0)(Mu−Mv)‖

≤ k
“
‖A(k′′0 +1)/2(0)u‖+ ‖A(k′′0 +1)/2(0)v‖

”‚‚A(k′′0 +1)/2(0)(u− v)‖,

where

A(t) := −
nX

i,j=1

∂

∂xi

˘
aij(t, x)

∂

∂xj

¯
+ c(t, x) + λ,

Mu := F′`|u|2´u+ ζu,

k′′ ∈ N, k′′ >
n

2
+ 1, k′′

0 := min{k′′},

and k(·) ∈ C0
loc

`
R+,R++

´
is monotonically increasing. Here are R+ = [0,∞),

R++ = (0,∞
´
. This mapping property is true for the dimensions n ≤ 5. But

we investigate only the case n = 5 because the problem is already solved for
n ≤ 4, however, without the mapping property.

With the proof of the mapping property and the associated Lipschitz con-

dition, the problem becomes considerably comparable with a paper from von
Wahl, who investigated the same problem as Cauchy problem and solved it
for the dimensions n ≤ 6, i.e. without boundary condition. In the case of the

Cauchy problem there are no difficulties with regard to the mapping property.
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1. Introduction

This article concerns the classical solvability of the nonlinear wave equation

utt −
n∑

i,j=1

∂

∂xi

{
aij(t, x)

∂u

∂xj

}
+ c(t, x)u+ λu

+ F′
(
|u|2
)
u+ ζu = 0, t ∈ [0,∞), x ∈ Ω̄

u(0, x) = ϕ, ut(0, x) = ψ, u|∂Ω = 0.

(1.1)

von Wahl considered in his thesis [10] the above problem as Cauchy problem
and solved it for the dimensions n ≤ 6. In contrast to Cauchy problem, the above
mentioned mapping property is the real problem in our case of boundary value
problem. von Wahl [11, 12] solved problem (1.1) for dimensions n = 3, 4. The proofs
therein avoid the mapping property and they are complicated therefore. In this
article, we prove this mapping property and the associated Lipschitz condition for
the dimension n = 5 (Theorem 4.4), which means that it holds for lower dimensions
also. With that we solve problem (1.1) completely because the rest is more or less
similar to [10] or follows from the abstract part of that (i.e. the solution in abstract
Hilbert space). Our treatment is based on Hilbert space methods. Furthermore,
the discussion in this Introduction consider only initial boundary value problems
with Dirichlet boundary condition.

The paper by Sather [6] belongs to the beginnings, in which the author obtained
classical solutions for dimension n = 3 and the condition A(t) = −∆ (i.e. A(t) is
constant) and Mu = u3 and the region Ω ⊂ R3 is bounded. This boundedness is a
consequence of the application of the Galerkin proceeding for the existence of the
solution. This proceeding depends on the eigenfunctions of the Laplace operator
∆, which (the eigenfunctions) does not exist if Ω is unbounded.

Pecher [5] investigate a similar problem type and obtained classical solutions for
dimensions n ≤ 5 under different conditions on the nonlinearity as ours and with
A(t) = A (i.e. A(t) is constant).

Brenner and von Wahl [2] obtained also classical solutions for the same problem
in dimensions n = 5, 6, 7, but under the condition that the differential operators
A(t) are constant. Scarpellini and Uesaka [7, 9] generalized the problem area and
obtained via different methods strong solutions for special cases of our problem.

The present results include those in [4], in which the authors considered F(s) ≤ 0.
That means that an a priori estimate for the energy norm fails. The authors use
the Galerkin method that yields a unique global weak solution for the problem
with bounded Ω and small initial data as well as A(t) = −∆. All the solutions
mentioned above are real valued, while ours are complex valued as in [10].

2. Preliminaries

In this chapter, we give an insight in our strategy and prepare some of the needed
tools. Our approach is based on Hilbert space methods. That means a treatment of
the problem first local (i.e. in some interval [t0, t0 + T0] ⊂ R+) in abstract Hilbert
space H. Later we set H = L2(Ω). The problem in the abstract Hilbert space H
means with k ∈ N:

u′′(t) + A(t)u(t) + Mu(t) = 0, t ∈ [t0, t0 + T0]

u(t0) = ϕ ∈ D(A(k+1)/2(0)), u′(t0) = ψ ∈ D(Ak/2(0)).
(2.1)
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Here, A(t), t ∈ R+ is a family of self-adjoint, positive definite operators in H with
a constant domain of definition (i.e. D(A(t)) = D(A(0)). We assume further that
for each ν ∈ N there exists a constant L(ν) such that

‖(Aν/2(t)−Aν/2(s))A−ν/2(r)‖ ≤ L(ν)|t− s|, t, s, r ∈ R+, (2.2)

which implies the relations

‖Aν/2(t)A−ν/2(0)‖, ‖Aν/2(0)A−ν/2(t)‖ ≤ (1 + L(ν))t

as well as for u ∈ D(Aν/2(0))

‖Aν/2(0)u‖ = ‖Aν/2(0)A−ν/2(t)Aν/2(t)u‖ ≤ (1 + L(ν)t)‖Aν/2(t)u‖, t ∈ R+.

The k ∈ N above represents the degree of the regularity of the solution, which relates
in the concrete case to the suitable Sobolev spaces, in correspondence with the
required classical regularity (i.e. twice continuously differentiability in t and x) for
the solution via Sobolev theorems. For clearness, in the concrete case: D(A(0)) =
D(A(t)) = H1

0 (Ω) ∩H2(Ω), D(A1/2(0)) = H1
0 (Ω), and

D(A(k+1)/2(0)) = D(A(k+1)/2(t)) ⊂ H1
0 (Ω) ∩Hk+1(Ω).

In the concrete case, the above relation (2.2) is a consequence of the differentiability
of Aν/2(t).

We suppose also that A(t) is strongly continuously differentiable on D(A(0))
and set:

A′(t)x :=
d

dt
(A(t)x), t ∈ R+, x ∈ D(A(0)).

Theorem 2.1 (v. Wahl [10, Satz 8, page 275]). Let H be an abstract Hilbert space.
Let A(t), t ∈ R+, be a family of self-adjoint, positive definite operators in H with a
constant domain of definition (i.e. D(A(t)) = D(A(0))). Suppose that A(t)x, x ∈
D(A(t)), is continuously differentiable. Then the domain of definition of A1/2(t)
is also constant and A1/2(t)x, x ∈ D(A1/2(0)), is continuously differentiable with
respect to t.

We set

(A1/2(t))′x =
d

dt
(A1/2(t)x), t ∈ R+, x ∈ D(A1/2(0)).

We need also the following 2 results.

Proposition 2.2 (v. Wahl [10, Hilfssatz 3, page 251]). It is for all t ∈ R+, ν ∈ N:
Aν/2(t)(A1/2(t))′A−

ν+1
2 (t) ∈ L(H), with

‖Aν/2(t)(A1/2(t))′A−(ν+1)/2(t)‖ ≤ L(ν) + L(ν + 1), t ∈ R+, ν ∈ N.

Proposition 2.3 (v. Wahl [10, Hilfssatz 3a, page 252]). For every ν ∈ N and
x ∈ H, the function Aν/2(t)(A1/2(t))′A−

ν+1
2 (t)x is continuous in t.

Regarding the nonlinearity, let the mapping

M : D(A(k+1)/2(0))→ D(Ak/2(0)) (2.3)

satisfy the following conditions:
(I’) Continuity: Let {uν} be a sequence in D(A(k+1)/2(0)) which converges to

u in the graph norm of A(k+1)/2(0). Then {Muν} converges to Mu in the
graph norm of D(Ak/2(0)).
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(II’) Local Lipschitz Condition: Let u, v ∈ D(A(k+1)/2(0)). If for C ≥ 0, t ≥ 0:

sup
τ∈[t,t+1]

(
‖A(k+1)/2(τ)u‖+ ‖A(k+1)/2(τ)v‖

)
≤ C

then it is for all τ ∈ [t, t+ 1],

‖Ak/2(τ)
(
Mu−Mv

)
‖ ≤ k(C, t) ‖A(k+1)/2(τ)(u− v)‖.

Here k(·, ·) ∈ C0
loc(R+ × R+,R++) is a fixed function to be found.

(III’) Null Point Property: M(0) = M0 = 0.
For the transition to the concrete case in L2(Ω), the following definition is suitable.

Definition 2.4 (v. Wahl [10, page 253]). Let ϕ ∈ D(A(k+1)/2(0)), ψ ∈ D(Ak/2(0)),
k ∈ N, k ≥ 1. The function u ∈ C2([a, b], H) is called a k-regular solution of the
differential equation (2.1) on [a, b] ⊂ R+ if u(a) = ϕ, u′(a) = ψ and for every
t ∈ [a, b]:

u(t) ∈ D(A(k+1)/2(0)), u′(t) ∈ D(Ak/2(0)), u′′(t) ∈ D(A
k−1
2 (0))

such that
u(·) ∈ Ci

(
[a, b], D(A

k−i+1
2 (0))

)
, i = 0, 1, 2.

Finally u′′ + A(t)u+ Mu = 0 in [a, b].

The above details are not directly applicable for our purpose because the directly
treatment of (2.1) is not easy job. Therefore, we use a detour via the first order
differential equation in abstract Hilbert space Ĥ (later we set Ĥ = H ×H):

û′(t) + Â(t)û(t) + M̂(t, û(t)) = 0 , t ∈ [t0, t0 + T0]

û(t0) = ϕ̂ ∈ D
(
Âk(0)

)
.

(2.4)

Here, iÂ(t), t ≥ 0, are a family of self-adjoint operators in Hilbert space Ĥ with
D(Âν(t)) = D(Âν(0)), ν ∈ N. Further, every Â(t) possesses a bounded inverse in
Ĥ. Moreover, for every ν ∈ N, there exists a constant L̂(ν) such that

‖
(
Âν(t)− Âν(s)

)
Â−ν(r)‖ ≤ L̂(ν)|t− s| , t, s, r ≥ 0.

Because iÂ(t) is self-adjoint,

‖
(
I + αÂ(t)

)−1‖ ≤ 1 , α > 0

and because

‖
(
Â(t)− Â(s)

)(
I + Â(r)

)−1‖ ≤ ‖
(
Â(t)− Â(s)

)
Â−1(r)‖ ‖Â(r)

(
I + Â(r)

)−1‖

≤ 2L̂(1)|t− s|, t, s, r ∈ R+,

it follows by Kato [3, Theorem 3, page 210], (see also [10, page 244]) the existence
of the evolution operator Û(t, s) ∈ L(Ĥ), t, s ∈ R+, t ≥ s, such that

‖Û(t, s)‖ ≤ 1, Û(t, t) = I,

Û(t, s)Û(s, r) = Û(t, r), Û(t, s)D
(
Â(0)

)
⊂ D

(
Â(0)

)
,

(2.5)

as well as for every x ∈ D
(
Â(0)

)
and every s ∈ R+, Û(t, s)x is continuously

differentiable in t with
∂

∂t

(
Û(t, s)x

)
+ Â(t)Û(t, s)x = 0. (2.6)
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Moreover, for every x ∈ Ĥ, Û(t, s)x is simultaneously continuous in t, s. The
evolution operator Û(t, s) is uniquely determined by those properties. The following
2 statements are a consequence of the above discussion.

Theorem 2.5 (v. Wahl [10, Satz 1, page 245]). Let ν ∈ N. Then

Â(t)Û(t, s)Â−1(s) ∈ L(Ĥ),

‖Âν(t)Û(t, s)Â−ν(s)‖ ≤ eL̂(ν)(t−s) .

Proposition 2.6 (v. Wahl [10, Hilfssatz 2, page 246]). Let x ∈ Ĥ, ν ∈ N. Then
the function Âν(t)Û(t, s)Â−ν(s)x is continuous in t for a fixed s and continuous
in s for a fixed t.

Regarding the nonlinearity M̂(t, û) in (2.4), we have the following conditions in
conformity with our differential equation (2.1). Let

M̂ : R+ ×D
(
Âk(0)

)
→ D

(
Âk(0)

)
(2.7)

be a mapping with the following properties:
(I) Continuity: Let {tν}, tν ∈ R+, be a sequence which converges to t, and

let {ûν} be a sequence in D
(
Âk(0)

)
which converges in the graph norm

of D
(
Âk(0)

)
to û. Then the sequence {M̂(tν , ûν)} converges in the graph

norm of D(Âk(0)) to M̂(t, û).
(II) Local Lipschitz Condition: Let û, v̂ ∈ D

(
Ak(0)

)
, t ∈ R+, C ∈ R+, and

sup
τ∈[t,t+1]

(
‖Âk(τ)û‖+ ‖Âk(τ)v̂

∥∥) ≤ C.
Then for τ ∈ [t, t+ 1] it holds

‖Âk(τ)M̂(τ, û)− Âk(τ)M̂(τ, v̂)‖ ≤ k̂(C, t)‖Âk(τ)(û− v̂)‖.

Here k̂(·, ·) ∈ C0
loc

(
R+ × R+,R++

)
is a fixed function to be found.

(III) Null Point Property: M̂(t, 0) = 0, t ∈ R+.
Now, we conform definition for the solution of (2.4).

Definition 2.7 (v. Wahl [10, page 247]). Let ϕ̂ ∈ D
(
Âk(0)

)
, k ∈ N, k ≥ 1. The

function û ∈ C1
(
[a, b], Ĥ

)
is called a k-regular solution of (2.4) on [a, b] ⊂ R+ if

the following conditions are satisfied
(1) û(a) = ϕ̂;
(2) For every t ∈ [a, b] : û(t) ∈ D

(
Âk(0)

)
, û′(t) ∈ D

(
Âk−1(0)

)
;

(3) Âk−j(0)
(
dj

dtj û
)
(·) ∈ C0

(
[a, b], Ĥ

)
, j = 0, 1;

(4) û′ + Â(t)û+ M̂(t, û) = 0 in [a, b].

In contrast to (2.1), there exists a suitable integral equation for (2.4), namely

û(t) = Û(t, a)ϕ̂−
∫ t

a

Û(t, s)M̂(s, û(s))ds , t ∈ [a, b]. (2.8)

According to v. Wahl [10, Satz 2, page 248], the use of the successive approxi-
mation proceeding on (2.8) yields the existence of a unique k-regular solution for
the associated differential equation (2.4) on [t0, t0 + T0] (i.e. with t0 = a) for some
T0 > 0. Of course, a further existence interval [t0 +T0, t0 +T0 +T1] is also available
and with that the existence of a unique k-regular solution for (2.4) on a maximal
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interval [t0, T ) with limt→T ‖Âk(t)û(t)‖ =∞, otherwise we can extend further. So,
if there is an a priori estimate for ‖Âk(t)û(t)‖ on [0,∞) then the k-regular solution
of (2.4) is extendable on the whole [t0,∞).

We suppose now that the mapping property (2.3) and their conditions (I’)–(III’)

are satisfied. We set Ĥ := H×H, û :=
(
u1

u2

)
, and Â(t) :=

(
−iA1/2(t) 0

0 iA1/2(t)

)
.

Then for t ∈ R+, û :=
(
u1

u2

)
∈ D

(
Âk(0)

)
and by Propositions 2.2 and 2.3, the

mapping M̂(t, û) : R+ ×D
(
Âk(0)

)
→ D

(
Âk(0)

)
defined by

M̂(t, û) :=
1
2

(
M(−iA−1/2(t)(u1 − u2)
M(−iA−1/2(t)(u1 − u2)

)
+

1
2

(
(A1/2(t))′A−1/2(t)(u1 − u2)
−(A1/2(t))′A−1/2(t)(u1 − u2)

)
(2.9)

holds and fulfils obviously the mapping property (2.7) and their conditions (I)–(III)
(see also v. Wahl [10, page 253]).

We set now the transition theorem from Ĥ to H.

Theorem 2.8 (v. Wahl [10, Satz 3, page 254]). Let ϕ ∈ D
(
A(k+1)/2(0)

)
,

ψ ∈ D
(
Ak/2(0)

)
, t0 ∈ R+, and set

ϕ̂ :=
1
2

(
iA1/2(t0)ϕ+ ψ
−iA1/2(t0)ϕ+ ψ

)
.

Moreover, let û(·) ∈ C1
(
[t0,t0 + T0], Ĥ]

)
be the unique k-regular solution of the

differential equation (2.4). Then there exists a unique k-regular solution of the
differential equation (2.1) on the interval [t0, t0 + T0]. It is

u = −iA−1/2(t)(u1 − u2),

where û =
(
u1

u2

)
.

Corollary 2.9. We have u1 − u2 = iA1/2(t)u. On the other hand, in the proof of
[10, Theorem 3 (Satz 3), page 255] is shown that u1 + u2 = u′. It follows that

u1 =
1
2
(
u′ + iA1/2(t)u

)
, u2 =

1
2
(
u′ − iA1/2(t)u

)
.

Regarding the nonlinearity, we have

M̂(t, û) =
1
2

(
Mu
Mu

)
+

1
2

(
i(A1/2(t))′u
−i(A1/2(t))′u

)
.

For the transition to the concrete case (i.e. H = L2(Ω)), we need the following
well-known Sobolev Embedding Theorem (see v. Wahl [10, page 259]).

Theorem 2.10. (1) Let m ∈ N ∪ {0}, 2 ≤ p < ∞ with 1
p ≥

1
2 −

m
n . Then

Hm(Ω) = Hm,2(Ω) ⊂ Lp(Ω) with a continuous embedding.
(2) If m > n

2 + k, k ∈ N ∪ {0} then Hm(Ω) ⊂ Ck(Ω), with a continuous
embedding.

Based on this fact, in the k′′0 -regular context (i.e. 5 = k′′0 + 1 > n
2 + 2, see the

Abstract), for the solution of (2.1) we have the following result.
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Proposition 2.11 (v. Wahl [10, Hilfssatz 8, page 263]). In dimension n = 5, the
4-regular solution of Theorem 2.8 is as a function of t, x1, . . . , x5 twice classical
continuously differentiable with respect to all these variables, and( ∂ν

∂tν
u
)

(t, x1, . . . , x5) =
( dν
dtν

u
)

(t, x1, . . . , x5), ν = 1, 2.

Proof. By the Embedding Theorem 2.10 and Theorem 3.1 (set x = (x1, . . . , x5)),∣∣∣u(t+ h, x)− u(t, x)
h

−
( d
dt
u
)

(t, x)
∣∣∣

≤ c1
∥∥u(t+ h, x)− u(t, x)

h
−
( d
dt
u
)

(t, x
∥∥
H3(Ω)

≤ c2
∥∥∥A 3

2 (0)
(u(t+ h)− u(t)

h
− u′(t)

)∥∥∥→ 0

as h→ 0. The other derivatives and continuities follow by a similar process. �

In context with the Embedding Theorem above, we take from [10] the following
2 statements; the proofs depend merely on the Hölder inequality and the above
Embedding Theorem 2.10 as in [10].

Proposition 2.12 (v. Wahl [10, Hilfssatz 6, page 260]). Let m,N ∈ N, m > n
2 ,

and α1, . . . , αN are multi-indexes belong to Rn with α :=
∑N
ν=1 αν , |α| ≤ m. If

u1, . . . , uN ∈ Hm(Ω) then
∏N
ν=1 uν ∈ Hm(Ω) and∥∥ N∏

ν=1

Dανuν
∥∥ ≤ c1 N∏

ν=1

‖uν‖Hm(Ω) .

Proposition 2.13 (v. Wahl[10, Hilfssatz 7, page 261]). Let m,N ∈ N, m ≥ n
2 ,

and let α1, . . . , αN be as in Proposition 2.11. If u1, . . . , uN ∈ Hm+1(Ω), then there
exists ν0 ∈ N, 1 ≤ ν0 ≤ N such that∥∥ N∏

ν=1

Dανuν
∥∥ ≤ c2‖uν0‖Hm+1(Ω)

∏
ν 6=ν0

‖uν‖Hm(Ω)

holds. Especially,
∏N
ν=1 uν ∈ Hm+1(Ω).

3. Differential operators A(t)

In the following let n = 5 and Ω ⊂ R5 be bounded or unbounded domain with
∂Ω ∈ C∞. Define the operators

A(t) := −
5∑

i,j=1

∂

∂xi

{
aij(t, x)

∂

∂xj

}
+ c(t, x) + λ, t ∈ R+

with the following properties:
(1) aij(t, x), c(t, x) ∈ C∞(R+×Ω̄,R) (i, j = 1, . . . , 5). Moreover these functions

and their derivatives are uniformly bounded;
(2) Symmetry: aij(t, x) = aji(t, x), (i, j = 1, . . . , 5),
(3) Ellipticity: The operators A(t) are uniformly elliptic on Ω, i.e. there is a

µ0 > 0 such that for all ξ = (ξ1, . . . , ξ5) ∈ C5, x ∈ Ω the inequality:
5∑

i,j=1

aij(t, x)ξiξ̄j ≥ µ0|ξ|2
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holds, where µ0 is independent from t;
(4) Positive definiteness: λ is sufficiently large. This condition is necessary to

guarantee the positive definiteness of A(t) and it has only formally meaning
because this λ can be subtracted at the end from the nonlinearity. The
positive definiteness of A(t) is necessary because we will operate with the
root of A(t).

Of course, under the above assumptions, A(t)u, u ∈ D(A(0)), is infinitely differen-
tiable with respect to t with:

A(ν)(t)u = −
5∑

i,j=1

∂

∂xi

{( ∂ν
∂tν

aij(t, x)
) ∂u
∂xj

}
+
∂ν

∂tν
c(t, x)u.

It is well-known that under the above conditions the operators A(t) are self-adjoint
and positive definite on the constant domain of definition D(A(t)) = D(A(0)) =
H1

0 (Ω)∩H2(Ω) with D(A1/2(t)) = H1
0 (Ω) (see Tanabe [8, page 113]). Furthermore

for m ∈ N,
D(A

m
2 (t)) ⊂ H1

0 (Ω) ∩Hm(Ω).

Theorem 3.1. For m ∈ N and u ∈ D(A
m
2 (0)) it is:

c1(m)‖u‖Hm(Ω) ≤ ‖A
m
2 (0)u‖ ≤ c2(m)‖u‖Hm(Ω). (3.1)

Proof. By induction. We prove first that

c1(1)‖u‖H1(Ω) ≤ ‖A1/2(0)u‖ ≤ c2(1)‖u‖H1(Ω), u ∈ D(A1/2(0)) = H1
0 (Ω).

For u ∈ D(A(0)) = H1
0 (Ω) ∩H2(Ω),

(A(0)u, u) = −
5∑

i,j=1

∫
Ω

(
aij(0, x)uxi

)
xj
ū dx+

∫
Ω

(
c(0, x) + λ

)
uū dx

=
5∑

i,j=1

∫
Ω

aij(0, x)uxi ūxj dx+
∫

Ω

(
c(0, x) + λ

)
|u|2 dx

≥ µ0

5∑
i=1

∫
Ω

|uxi |2 dx+
∫

Ω

(
c(0, x) + λ

)
|u|2 dx (ellipticity condition)

≥ c1(1)2‖u‖2H1(Ω). (λ sufficiently large)

On the other hand it is obvious via the Hölder inequality that

(A(0)u, u) ≤ sup
Ω̄

∣∣aij(0, x)
∣∣ 5∑
i,j=1

(∫
Ω

|uxi |2 dx
)1/2(∫

Ω

|uxj |2 dx
)1/2

+ λ0

∫
Ω

|u|2 dx

≤ c2(1)2‖u‖2H1(Ω),

i.e. for u ∈ D(A(0)) we have

c1(1)‖u‖H1(Ω) ≤
∥∥A1/2(0)u

∥∥ ≤ c2(1)‖u‖H1(Ω).

Let now u ∈ D(A1/2(0)) = H1
0 (Ω). There exists a sequence un ∈ C∞0 (Ω) with

‖un − u‖H1(Ω) → 0 as n→∞. From the above, we have

‖A1/2(0)(un − um)‖ ≤ c2(1)‖un − um‖H1(Ω) → 0 (n,m→∞),
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i.e. A1/2(0)un → v, un → u (n→∞). Thus v = A1/2(0)u. The assertion follows
via limits for

c1(1)‖un‖H1(Ω) ≤ ‖A1/2(0)un‖ ≤ c2(1)‖un‖H1(Ω).

Suppose now that (3.1) is true for m ≤ k, i.e.,

c1(k)‖u‖Hk(Ω) ≤ ‖Ak/2(0)u‖ ≤ c2(k)‖u‖Hk(Ω), u ∈ D(Ak/2(0)).

Let now u ∈ D(A
k+1
2 (0)), i.e. A(0)u ∈ D(A

k−1
2 (0)). According to Agmon, Douglis

and Nirenberg [1, Theorem 15.2, page 704],

‖u‖Hk+1(Ω) ≤ c1
(
‖A(0)u‖Hk−1(Ω) + ‖u‖

)
≤ c2‖A(0)u‖Hk−1(Ω)

≤ 1
c1(k + 1)

‖A
k+1
2 (0)u‖,

i.e. c1(k+ 1)‖u‖Hk+1(Ω) ≤ ‖A
k+1
2 (0)u‖, u ∈ D(A

k+1
2 (0)). The another direction of

the proof is obvious. �

4. Nonlinearity

Let k, k′, k′′ ∈ N with

k >
n

2
, k′ ≥ n

2
, k′′ >

n

2
+ 1, k′′0 := min{k′′}.

That means with n = 5: k ≥ 3, k′ ≥ 3, k′′ ≥ 4, k′′0 = 4.
Now, let F ∈ Ck

′′+3
loc (R+,R). For Mu := F′

(
|u|2
)
u + ζu, it is obvious that

M : Hk(Ω)→ L2(Ω). Further the following result holds.

Proposition 4.1. For n
2 < k < k′′ + 1,

M : Hk(Ω)→ Hk(Ω).

Proof. Take u ∈ Hk(Ω). Then

‖F′
(
|u|2
)
u‖2Hk(Ω) =

∑
|α|≤k

‖DαF′
(
|u|2
)
u‖2,

where DαF′
(
|u|2
)
u, |α| ≤ k, is a finite sum of terms of the form

F(ν)
(
|u|2
) N∏
ρ=1

Dαρuρ

and 1 ≤ ν ≤ |α| + 1,
∑N
ρ=1 |αρ| = |α|, uρ ∈ {u, ū}. The use of the Embedding

Theorem 2.10 and Propostion 2.12 yield∥∥F(ν)
(
|u|2
) N∏
ρ=1

Dαρuρ
∥∥ ≤ c( sup

0≤σ≤c′‖u‖
Hk

∣∣F(ν)(σ2)
∣∣2)1/2

‖u‖NHk <∞.

�

For the proof of the desired mapping property, we need the following 2 well-
known facts.

Proposition 4.2. Let u ∈ H1(Ω) and u|∂Ω = 0 a.e. Then it is u ∈ H1
0 (Ω).

Proposition 4.3. Let u ∈ H1
0 (Ω) ∩Hk(Ω), k > n

2 , then u|∂Ω = 0 a.e.
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Theorem 4.4. Suppose n = 5 and F ∈ C7
loc(R+,R), u ∈ D(A5/2(0)). Then

Mu = F′(|u|2)u+ ζu ∈ D(A2(0)), ζ ∈ C,

i.e. the mapping property

M : D(A5/2(0))→ D(A2(0)) (4.1)

holds. Moreover let u, v ∈ D(A5/2(0)), C ≥ 0, t ≥ 0. Then it holds the associated
Lipschitz condition

‖A2(τ)(Mu−Mv)‖ ≤ k(C, t)‖A5/2(τ)(u− v)‖, (4.2)

for τ ∈ [t, t+ 1] and

sup
τ∈[t,t+1]

(
‖A5/2(τ)u‖+ ‖A5/2(τ)v‖

)
≤ C

and where k(·, ·) ∈ C0
loc(R+ × R+,R++) (i.e. the function k(·, ·) must be found

here).

Proof. Since u ∈ D(A5/2(0)) ⊂ H1
0 (Ω) ∩H5(Ω), by Proposition 4.3: u|∂Ω = 0 a.e..

According to Proposition 4.1, F′
(
|u|2
)
u ∈ H4(Ω) and with that continuous on Ω̄

(Embedding Theorem 2.10), i.e. F′
(
|u|2
)
u|∂Ω = 0 a.e., so that via Proposition 4.2:

F′
(
|u|2
)
u ∈ H1

0 (Ω). Thus we have

F′
(
|u|2
)
u ∈ H1

0 (Ω) ∩H4(Ω) ⊂ H1
0 (Ω) ∩H2(Ω) = D(A(0)).

Therefore,

A(t)F′
(
|u|2
)
u

= −
5∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
F′
(
|u|2
)
u−

5∑
i,j=1

(
aij(t, x)

)
xi

∂

∂xj
F′
(
|u|2
)
u

+ c(t, x)F′
(
|u|2
)
u+ λF′

(
|u|2
)
u

= −
{

F′
(
|u|2
) 5∑
i,j=1

aij(t, x)uxixj +
5∑

i,j=1

aij(t, x)F′′
(
|u|2
)
uxi2 Re(ūuxj )

+
5∑

i,j=1

aij(t, x)F′′
(
|u|2
)
uxj2 Re(ūuxi)

+
5∑

i,j=1

aij(t, x)F′′
(
|u|2
)
u2 Re(ūuxixj )

+
5∑

i,j=1

aij(t, x)F′′
(
|u|2
)
u2 Re(ūxjuxi)

+
5∑

i,j=1

aij(t, x)F′′′
(
|u|2
)
u2 Re(ūuxi)2 Re(ūuxj )

}

−
{

F′
(
|u|2
) 5∑
i,j=1

(
aij(t, x)

)
xi
uxj +

5∑
i,j=1

(
aij(t, x)

)
xi

F′′
(
|u|2
)
u2 Re(ūuxj )

}
+ c(t, x)F′

(
|u|2
)
u+ λF′

(
|u|2
)
u.
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In this sum, the four terms containing F′
(
|u|2
)

represent

F′
(
|u|2
)
A(t)u

with A(t)u ∈ D(A3/2(0)) ⊂ H1
0 (Ω) ∩ H3(Ω), i.e. A(t)u|∂Ω = 0 a.e. by Propo-

sition 4.3, so that F′
(
|u|2
)
A(t)u|∂Ω = 0 a.e.. Furthermore it is obvious that

F′
(
|u|2
)
A(t)u as well as the other terms admit 2 further derivatives, belong so

to H2(Ω). Since all the remaining terms contain u and are continuous, all the
terms vanish on ∂Ω, belong so to H1

0 (Ω) by Proposition 4.2. So, it is summarized:

A(t)F′
(
|u|2
)
u ∈ H1

0 (Ω) ∩H2(Ω) = D(A(t)),

i.e. F′
(
|u|2
)
u ∈ D(A2(0)). The mapping property is proved.

Concerning the associated Lipschitz condition, we prove that first is of the form

‖A2(0){F′
(
|u|2
)
u− F′

(
|v|2
)
v}‖ ≤ k̃(c)

∥∥A5/2(0)(u− v)‖

for all u, v ∈ D(A5/2(0)) with

‖A5/2(0)u‖+ ‖A 5
5 (0)v‖ ≤ c,

where k̃(·) ∈ C0
loc(R+,R++) is monotonically increasing.

Let now u, v ∈ D(A5/2(0)). By (3.1) we have

‖A2(0){F′
(
|u|2
)
u− F′

(
|v|2
)
v}‖2 ≤ c2(4)2‖F′

(
|u|2
)
u− F′

(
|v|2
)
v‖2H4(Ω)

= c2(4)2
∑
|α|≤4

‖Dα{F′
(
|u|2
)
u− F′

(
|v|2
)
v}‖2.

Here Dα
{
F′
(
|u|2
)
u− F′

(
|v|2
)
v
}

consists of terms of the form

F(ν)
(
|u|2
) N∏
ρ=1

Dαρuρ − F(ν)
(
|v|2
) N∏
ρ=1

Dαρvρ,

where 1 ≤ ν ≤ |α| + 1,
∑N
ρ=1 |αρ| = |α|, uρ ∈ {u, ū}, vρ ∈ {v, v̄}. For such term,

we have

‖F(ν)
(
|u|2
) N∏
ρ=1

Dαρuρ − F(ν)
(
|v|2
) N∏
ρ=1

Dαρvρ‖

≤ ‖
{
F(ν)

(
|u|2
)
− F(ν)

(
|v|2
)} N∏

ρ=1

Dαρvρ‖

+ ‖F(ν)
(
|u|2
){ N∏
ρ=1

Dαρuρ −
N∏
ρ=1

Dαρvρ
}
‖ =: T1 + T2.

Since F ∈ C7
loc(R+,R), via the Embedding Theorem 2.10, Theorem 3.1, and Propo-

sitions 2.12 and 2.13, it follows that

T1 =
∥∥∫ 1

0

∂

∂τ
F(ν)

({
τ |u|+ (1− τ)|v|

}2) dτ
N∏
ρ=1

Dαρvρ
∥∥

≤ 2
∫ 1

0

∥∥∥F(ν+1)
({
τ |u|+ (1− τ)|v|

}2){
τ |u|+ (1− τ)|v|

}
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×
(
|u| − |v|

) N∏
ρ=1

Dαρvρ

∥∥∥ dτ

≤ c1
(

sup
0≤σ≤c2

(
‖u‖H5+‖v‖H5

)∣∣F(ν+1)(σ2)
∣∣2)1/2(

‖u‖H5 + ‖v‖H5

)N+1‖u− v‖H5

≤ c3
(

sup
0≤σ≤c4

(
‖A5/2(0)u‖+‖A5/2(0)v‖

)∣∣F(ν+1)(σ2)
∣∣2)1/2

×
(
‖A5/2(0)u‖+ ‖A5/2(0)v‖

)N+1‖A5/2(0)(u− v)‖

≤ k̃1(c)‖A5/2(0)(u− v)‖,

where ‖A5/2(0)u‖+‖A5/2(0)v‖ ≤ c and k̃1(·) ∈ C0
loc(R+,R++) is the monotonically

increasing multiplier.

T2 ≤
(

sup
0≤σ≤c5‖A5/2(0)u‖

∣∣F(ν)(σ2)
∣∣2)1/2

‖
N∏
ρ=1

Dαρuρ −
N∏
ρ=1

Dαρvρ‖.

Then

‖
N∏
ρ=1

Dαρuρ −
N∏
ρ=1

Dαρvρ‖

≤ ‖Dα1(u1 − v1)Dα2u2 · · ·DαNuN‖
+ ‖Dα1v1(Dα2u2 · · ·DαNuN −Dα2v2 · · ·DαN vN )‖

≤ c6‖u− v‖H5‖u‖N−1
H5 + ‖Dα1v1D

α2(u2 − v2)Dα3u3 · · ·DαNuN‖
+ ‖Dα1v1D

α2v2(Dα3u3 · · ·DαNuN −Dα3v3 · · ·DαN vN )‖

≤ c7‖A5/2(0)u‖N−1‖A5/2(0)(u− v)‖

+ c8‖A5/2(0)v‖ ‖A5/2(0)u‖N−2‖A5/2(0)(u− v)‖
+ ‖Dα1v1D

α2v2(Dα3u3 · · ·DαNuN −Dα3v3 · · ·DαN vN )‖
. . .

≤ c9
(
‖A5/2(0)u‖+ ‖A5/2(0)v‖

)N−1‖A5/2(0)(u− v)‖,

i.e.
T2 ≤ k̃2(c)‖A5/2(0)(u− v)‖,

where k̃2(·) ∈ C0
loc(R+,R++) is also monotonically increasing. Set k̃(·) := k̃1(·) +

k̃2(·), and summarize the above as

‖A2(0)
{
F′
(
|u|
)2
u− F′

(
|v|
)2
v
}
‖ ≤ k̃(c)‖A5/2(0)(u− v)‖

with ‖A5/2(0)u‖+ ‖A5/2(0)v‖ ≤ c.
The operators A(t) fulfill condition (2.2):

‖
(
Aν/2(t)−Aν/2(s)

)
A−ν/2(r)‖ ≤ L(ν)|t− s|, t, s, r,∈ R+, ν ∈ N.

This implies

‖Aν/2(t)A−ν/2(0)‖, ‖Aν/2(0)A−ν/2(t)‖ ≤ 1 + L(ν)t, t ∈ R+,
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and for u ∈ D
(
Aν/2(0)

)
:∥∥Aν/2(0)u‖ = ‖Aν/2(0)A−ν/2(t)Aν/2(t)u‖ ≤

(
1 + L(ν)t

)
‖Aν/2(t)u

∥∥, t ∈ R+.

Take now t ∈ R+, τ ∈ [t, t+ 1]. Then

‖A2(τ)
{
F′
(
|u|2
)
u− F′

(
|v|2
)
v
}
‖

= ‖A2(τ)A−2(0)A2(0)
{
F′
(
|u|2
)
u− F′

(
|v|2
)
v
}
‖

≤ ‖A2(τ)A−2(0)‖‖A2(0)
{
F′
(
|u|2
)
u− F′

(
|v|2
)
v
}
‖

≤ (1 + L(4)τ)k̃
(
‖A5/2(0)u‖+ ‖A5/2(0)v‖

)
‖A5/2(0)(u− v)‖

≤ (1 + L(4)(t+ 1))(1 + L(5)(t+ 1))k̃
(
(1 + L(5)(t+ 1))

× sup
τ∈[t,t+1]

(
‖A5/2(τ)u‖+ ‖A5/2(τ)v‖

))
‖A5/2(τ)(u− v)‖

≤
(
1 + L(4)(t+ 1)

)(
1 + L(5)(t+ 1)

)
k̃
(
(1 + L(5)(t+ 1))C

)
‖A5/2(τ)(u− v)‖

with
sup

τ∈[t,t+1]

(
‖A5/2(τ)u‖+ ‖A5/2(τ)v‖

)
≤ C.

Thus, with

k(C, t) :=
(
1 + L(4)(t+ 1)

)(
1 + L(5)(t+ 1)

)
k̃
(
(1 + L(5)(t+ 1))C

)
+ |ζ|,

the associated Lipschitz condition (4.2) is satisfied. �

Proposition 4.5. Let u ∈ D(A5/2(0)) and ν = 3 or 4 as well as F ∈ C7(R+,R),
ζ ∈ C. Then

‖Aν/2(0)
(
F′
(
|u|2
)
u+ ζu

)
‖ ≤ fν

(
‖Aν/2(0)u‖

)
‖A

ν+1
2 (0)u‖

with fν ∈ C0
loc(R+,R++) monotonically increasing.

Proof. Since u ∈ D(A5/2(0)), by Theorem 4.4,

F′
(
|u|2
)
u+ ζu ∈ D(A2(0)) ⊆ D(Aν/2(0)) ⊂ H1

0 (Ω) ∩Hν(Ω).

Moreover, by Theorem 3.1,

‖Aν/2(0)
(
F′
(
|u|2
)
u+ ζu

)
‖2 ≤ c2(ν)‖F′

(
|u|2
)
u+ ζu‖2Hν(Ω)

= c2(ν)
∑
|α|≤ν

‖Dα
(
F′
(
|u|2
)
u+ ζu

)
‖2,

where DαF′
(
|u|2
)
u consists of a finite sum of terms of the form

F(µ)
(
|u|2
) N∏
ρ=1

Dαρuρ

and 1 ≤ µ ≤ |α|+ 1,
∑N
ρ=1 |αρ| = |α| ≤ ν, uρ ∈ {u, ū}.

Since u ∈ H5(Ω) ⊆ Hν+1(Ω) ⊂ Hν(Ω), ν = 3 or 4 > n
2 , it follows via the

Embedding Theorem 2.10 and Proposition 2.12 that

‖F(µ)
(
|u|2
) N∏
ρ=1

Dαρuρ‖2
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=
∫

Ω

∣∣F(µ)
(
|u|2
)∣∣2∣∣ N∏

ρ=1

Dαρuρ
∣∣2 dx

≤
(

sup
0≤σ≤c1‖u‖Hν

∣∣F(µ)(σ2)
∣∣)2

‖
N∏
ρ=1

Dαρuρ‖2

≤ c2
(

sup
0≤σ≤c1‖u‖Hν

∣∣F(µ)(σ2)
∣∣)2

‖u‖2NHν(Ω)

≤ c2
(

sup
0≤σ≤c1‖u‖Hν

∣∣F(µ)(σ2)
∣∣)2

‖u‖2(N−1)
Hν(Ω) ‖u‖

2
Hν+1(Ω)

≤ c3
(

sup
0≤σ≤c3‖Aν/2(0)u‖

∣∣F(µ)(σ2)
∣∣2)2

‖Aν/2(0)u‖2(N−1)‖A
ν+1
2 (0)u‖2,

i.e. we have the assertion. �

Proposition 4.5 is necessary to increase the regularity farther than D(A3/2(0)).
The next Proposition is necessary to ensure the a priori estimates for ‖A1/2(t)u(t)‖,
‖A(t)u(t)‖ and ‖A3/2(t)u(t)‖, where u(t) ∈ D(A5/2(0)) is the 4-regular solution in
the maximal interval [0, T ).

Proposition 4.6. Let u ∈ D(A5/2(0)) and as previously F ∈ C7
loc(R+,R).

(a) If |F′(σ)| ≤ cσ1/3, then

‖F′
(
|u|2
)
u‖ ≤ c1‖A1/2(0)u‖5/3.

(b) Moreover, if

|F′′(σ)| ≤

{
cσ

1
3−1 σ ≥ 1

c σ ≤ 1,

i.e. |F′′(σ)σ| ≤ cσ1/3, then

‖A1/2(0)F′
(
|u|2
)
u‖ ≤ c2‖A1/2(0)u‖ 2

3 ‖A(0)u‖.
(c) In addition if

|F′′′(σ)| ≤

{
cσ

1
3−2 σ ≥ 1

c σ ≤ 1,
then

‖A(0)F′
(
|u|2
)
u‖ ≤ f2

(
‖A(0)u‖

)
‖A3/2(0)u‖,

with monotonically increasing f2 ∈ C0
loc(R+,R++).

The proof of the above proposition is exactly the same proof of Proposition 4.5
under the consideration of the growth restrictions.

5. A priori estimates and the classical solvability

The classical solvability of (1.1) corresponds with the 4-regular solution for:

u′′ + A(t)u+ Mu = 0

u(0) = ϕ ∈ D(A5/2(0)), u′(0) = ψ ∈ D(A2(0)) .
(5.1)

On the other hand, the 4-regular solution of (2.4) corresponds to this 4-regular
soluton of (5.1) by Theorem 2.8. By Theorem 4.4, the mapping property (2.3)
and their conditions (I’)–(I”’) are satisfied for k = 4 which implies the mapping
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property (2.7) and their conditions (I)–(III) with k = 4. That means a unique
4-regular solution for (5.1) first on a maximal interval [0, T ). For extending this
solution on the whole [0,∞), we need still a priori estimates for ‖û(t)‖, ‖Â(t)û(t)‖,
. . . , ‖Â4(t)û(t)‖. Each of these a priori estimates depends on the one before. By
Corollary 2.9,

û(t) =
1
2

(
u′(t) + iA1/2(t)u(t)
u′(t)− iA1/2(t)u(t)

)
, Â(t) =

(
−iA1/2(t) 0

0 iA1/2(t)

)
,

M̂(t, û(t)) =
1
2

(
Mu(t)
Mu(t)

)
+

1
2

(
i(A1/2(t))′u(t)
−i(A1/2(t))′u(t)

)
.

Originally û(t) is the solution of

û(t) + Â(t)û(t) + M̂(t, û(t)) = 0, û(0) = ϕ̂

as well as of the associated integral equation

û(t) = Û(t, 0)ϕ̂−
∫ t

0

Û(t, s)M̂(s, û(s))ds .

Theorem 5.1. Let ϕ ∈ D(A5/2(0)), ψ ∈ D(A2(0)), F ∈ C7
loc(R+,R) with F(σ) ≥

0. Furthermore let the conditions

|F′(σ)| ≤ k1σ
1/3, |F′′(σ)| ≤ k1σ

−2/3, |F′′′(σ)| ≤ k1σ
−3/2

be satisfied for σ ≥ 1. Then there exists a unique 4-regular solution for (5.1) on
[0,∞).

Proof. We show first the a priori estimate for ‖û(t)‖. We have

‖û(t)‖ =
∥∥∥(u′ + iA1/2(t)u
u′ − iA1/2(t)u

)∥∥∥ =
(
‖u′‖2 + ‖A1/2(t)u‖2

)1/2

,

where
1√
2

(
‖u′‖+ ‖A1/2(t)u‖

)
≤
(
‖u′‖2 + ‖A1/2(t)u‖2

)1/2

≤ ‖u′‖+ ‖A1/2(t)u‖.

Scalar multiplication of (5.1) with u′ yields

(u′′, u′) + (A(t)u, u′) + (Mu, u′) = 0.

Then (see von Wahl [10, page 270])

d
dt

(A(t)u, u) = (A(t)u, u′) + (A′(t)u, u) + (u′,A(t)u)

= (A′(t)u, u) + 2 Re(A(t)u, u′),

where

(A′(t)u, u) =
(
(A1/2(t)A1/2(t))′u, u

)
=
(
(A1/2(t))′A1/2(t)u, u

)
+
(
A1/2(t)(A1/2(t))′u, u

)
=
(
A1/2(t)u, (A1/2(t))′u

)
+
(
(A1/2(t))′u,A1/2(t)u

)
= 2 Re

(
A1/2(t)u, (A1/2(t))′u

)
≤ 2‖A1/2(t)u‖ ‖(A1/2(t))′u‖

≤ 2c‖A1/2(t)u‖2,
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(see von Wahl [10, page 279]). So, the above scalar multiplication with M̃u :=
Mu− ζu yields

d
dt
‖u′‖2 +

d
dt
‖A1/2(t)u‖2 =

(
A′(t)u, u

)
− 2 Re(M̃u, u′) + 2 Re ζ(u, u′)

≤ 2c‖A1/2(t)u‖2 − 2 Re(M̃u, u′) + 2 Re ζ(u, u′).

Integrating from 0 to t yields

‖u′‖2 + ‖A1/2(t)u‖2

≤ ‖A1/2(0)ϕ‖2 + ‖ψ‖2 + 2c
∫ t

0

‖A1/2(s)u(s)‖2 ds

−
∫ t

0

2 Re
(
M̃u(s), u′(s)

)
ds+ |ζ|

∫ t

0

(
‖u′(s)‖2 + ‖A1/2(s)u(s)‖2

)
ds

where (see [10, page 271])

d
dt

∫
Ω

F
(
|u(t, x)|2

)
dx = 2 Re

(
M̃u, u′

)
.

It follows that

‖u′‖2 + ‖A1/2(t)u‖2 ≤ ‖A1/2(0)ϕ‖2 + ‖ψ‖2 +
∫

Ω

F
(
|ϕ|2

)
dx

−
∫

Ω

F
(
|u(t, x)|2

)
dx+ c1

∫ t

0

(
‖u′(s)‖2 + ‖A1/2(s)u(s)‖2

)
ds,

so that via Gronwall’s Lemma the a priori estimate for ‖u′‖2 + ‖A1/2(t)u‖2 and
with that for ‖û(t)‖ follows.

To obtain the a priori estimate for ‖Â(t)û(t)‖, we operate with

û(t) = Û(t, 0)ϕ̂−
∫ t

0

Û(t, s)M̂(s, û(s)) ds,

which by Theorem 2.5 implies

‖Â(t)û(t)‖ ≤ ‖Â(t)Û(t, 0)Â−1(0)‖ ‖Â(0)ϕ̂‖

+
∫ t

0

‖Â(t)Û(t, s)Â−1(s)‖ ‖Â(s)M̂(s, û(s))‖ ds

≤ eL̂(1)t‖Â(0)ϕ̂‖+
∫ t

0

eL̂(1)(t−s)‖Â(s)M̂(s, û(s))‖ds

≤ eL̂(1)t‖Â(0)ϕ̂‖+ 2eL̂(1)t

∫ t

0

‖A1/2(s)Mu(s) ds‖

+ 2eL̂(1)t

∫ t

0

‖A1/2(s)(A1/2(s))′u(s)‖ ds.

By Proposition 2.2,

‖A1/2(s)(A1/2(s))′u(s)‖ ≤ ‖A1/2(s)(A1/2(s))′A−1(s)‖ ‖A(s)u(s)‖
≤ c2‖A(s)u(s)‖.
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and via Proposition 4.6(b) and the above a priori estimate for ‖A(t)u(t)‖, we
continue the above calculation on [0, T ):

‖Â(t)û(t)‖ ≤ eL̂(1)t‖Â(0)ϕ̂‖+ c3e
L̂(1)t

∫ t

0

(
‖A1/2(s)u(s)‖ 2

3 + 1
)
‖A(s)u(s)‖ ds

≤ c1(T ) + c2(T )
∫ t

0

(
‖A1/2(s)u′(s)‖+ ‖A(s)u(s)‖

)
ds

≤ c1(T ) +
√

2c2(T )
∫ t

0

‖Â(s)û(s)‖ ds,

so that the desired a priori estimate for ‖Â(t)û(t)‖ follows by Gronwall’s Lemma.
We estimate now ‖Â2(t)û(t)‖. On [0, T ) we have

‖Â2(t)û(t)‖ ≤ ‖Â2(t)Û(t, 0)Â−2(0)‖ ‖Â2(0)ϕ̂‖

+
∫ t

0

‖Â2(t)Û(t, s)Â−2(s)‖ ‖Â2(s)M̂(s, û(s))‖ds

≤ eL̂(2)T ‖Â2(0)ϕ̂‖+ eL̂(2)T

∫ t

0

‖Â2(s)M̂(s, û(s))‖ds.

By Propositions 4.6(c) and 2.2, under the consideration of the previous estimate,
we have

‖Â2(s)M̂(s, û(s))‖ ≤ c3
(
‖A(s)Mu(s)‖+ ‖A(s)(A1/2(s))′u(s)‖

)
≤ c′3

(
f2

(
‖A(s)u(s)‖

)
+ 1
)
‖A3/2(s)u(s)‖

≤ c′′3(T )‖A3/2(s)u(s)‖.
It follows that

‖Â2(t)û(t)‖ ≤ c3(T ) + c4(T )
∫ t

0

(
‖A(s)u′(s)‖+ ‖A3/2(s)u(s)‖

)
ds

≤ c3(T ) +
√

2c4(T )
∫ t

0

‖Â2(s)û(s)‖ ds.

So the a priori estimate for ‖Â2(t)û(t)‖ follows via Gronwall’s Lemma.
This power 2 of Â2(t)û(t) is the critical power, so that the remaining a priori

estimates for ‖Âν(t)û(t)‖, ν = 3, 4, follow immediately via Proposition 4.5 applied
on the integral equation directly since a sufficient regularity is available meanwhile
(see [10, pages 269, 270]). �

A consequence of Proposition 2.11 is the following result.

Corollary 5.2. The 4-regular solution of the previous Theorem 5.1 for (5.1) and
with that for (1.1) is as a function of t, x1, . . . , x5 twice classical continuously dif-
ferentiable. Moreover, because of u(t, x), u′(t, x), u′′(t, x) belong to H1

0 (Ω)∩H3
0 (Ω),

it follows by Proposition 4.3 that for all t ∈ [0,∞): u(t, x), u′(t, x), u′′(t, x)
∣∣
∂Ω

= 0
a. e.
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