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ABSTRACT 

Survival time is defined as the time duration until a certain event occurs.  It is of interest 

for researchers to estimate the distribution of survival time, and to determine what factors 

and how these factors may be associated with survival time. Unlike other statistical data, 

survival data has its own features, which leads to many statistical methods not applicable. 

In addition to non-normality, censoring and truncation are two typical features. For left-

truncated and interval-censored (LTIC) data, Shen (2015) derived a class of two-sample 

rank-based tests from weighted log-rank tests with weight parameters (𝜌, 𝛾). However, it 

may be challenging to choose the weight parameters. In this thesis, a new model-based 

linear rank-type test is proposed to compare survival distributions for LTIC data, which is 

derived from a proportional reversed hazard (PRH) model. Extensive simulation studies 

are conducted to examine the performance of the proposed test including the test size and 

power, and normality of the test statistic. Two scenarios are considered to investigate the 

robustness of the proposed test: when assumed model is true or false. The proposed test is 

also compared with an existing method. For illustration, the proposed test is applied to the 

AIDS Blood Transfusion Data collected by the Centers for Disease Control (CDC) 

(Kalbfleisch and Lawless, 1989). 
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I. INTRODUCTION 

Introduction to Survival Analysis 

Survival analysis is a branch of statistics, which is applied to analyze survival data 

in many fields, such as medicine, biology, finance, insurance, engineering, and 

environmental science. Survival time 𝑇 is the duration of time until an event occurs, for 

example, the incubation time from HIV infection to the development of AIDS. The 

following are important concepts in survival analysis. 

The probability density function of 𝑇 is defined as 

𝑓(𝑡) = lim
∆𝑡→0+

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡)

∆𝑡
, 𝑡 ≥ 0. 

The cumulative distribution function and survival function are 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑠)𝑑𝑠, 𝑡 ≥ 0
𝑡

0
, and 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡), 𝑡 ≥ 0, 

where 𝑆(𝑡) provides the probability that an individual survives beyond time t.  

The hazard function, which is also called hazard rate function, is another important 

function used in survival analysis. It is defined as 

𝜆(𝑡) = lim
∆𝑡→0+

𝑃(𝑡≤𝑇≤𝑡+∆𝑡|𝑇≥𝑡)

∆𝑡
=
𝑓(𝑡)

𝑆(𝑡)
, 

which is instantaneous failure rate or the probability that the event will occur in the next 

infinitesimal time interval (𝑡, 𝑡 + ∆𝑡), given an individual has survived up to time t. 

It is of interest for researchers to estimate survival function, hazard function, and to 

investigate what factors and how these factors may be associated with the survival time. 
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Truncation and Censoring 

Unlike other statistical data, survival data has its own features which makes many 

statistical methods inapplicable. Firstly, survival time rarely follows a normal distribution. 

Its distribution is usually skewed. Censoring is one unique feature of survival data. Survival 

time may not be observed exactly for every individual since some individuals may not have 

experienced the event in the study. This phenomenon is called censoring, and there are 

three different censoring types: left, right, and interval censoring. Left censoring occurs if 

we only know the event of interest occurred before a certain time. If the survival time is 

only known to be greater than time at the end of a study, right censoring occurs. It’s also 

possible that we only know that the survival time is between two monitoring time points. 

This type of censoring is called interval censoring.  

Truncation is another unique feature of many survival datasets, which may be 

confused with censoring. Truncation is resulted from sampling bias that only those subjects 

whose failure times are within a certain time interval can be observed or included in the 

analysis. Typically, there are left truncation and right truncation. For example, if the 

survival time of an individual is observable only if it is greater than a certain value, left 

truncation occurs. If the survival time is measurable only if it is less than a certain value, 

right truncation occurs. Censoring and/or truncation of survival data require special 

methods to analyze survival data.  

Estimation of Survival Probability 

Investigators are interested in estimating survival probabilities or survival function.  

A survival function can be estimated using parametric methods and nonparametric 

methods. In a parametric estimation, a parametric model is assumed for the distribution of 
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survival time, such as Exponential, Weibull, or Gamma distribution. If we already know 

survival time follows a certain distribution, it’s more convenient to use parametric method. 

However, we usually don’t know the actual underlying model of the survival time. If the 

parametric assumption is false, the parametric estimate may be biased and deviate from the 

truth. In order to resolve the above issue, nonparametric estimation is developed and widely 

used in survival analysis. For instance, a well-known maximum likelihood estimator of the 

survival function for right-censored data is Kaplan–Meier (KM) estimator by Kaplan and 

Meier (1958). To obtain a KM estimate, the observation time (failure time or censoring 

time) and a failure time indicator are required, and there is no need to assume a distribution 

for T. 

Comparison of Survival Distributions between Treatment Groups 

In survival analysis, a cohort study is a particular form of a longitudinal study. It 

usually investigates two or more treatment groups of people that have different factor 

levels. Through a cohort study, researchers try to understand the association between a 

shared factor of groups and an outcome and how the specific factor influences the outcome. 

For example, in a clinical trial, patients are randomly divided into two groups. One is called 

treatment group, in which patients are exposed to some type of intervention, like a drug. 

The other is called control group, in which patients are not exposed of intervention but 

receive a placebo instead. A cohort study could provide researchers an insight about the 

effects of the intervention over time and to the difference in survival time between the drug 

and placebo groups. 

To compare survival distributions between two or more treatment groups in a 

cohort study, there are some nonparametric tests. The log-rank test (Peto and Peto, 1972) 
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is one of the most commonly used tests when comparing treatment groups for right 

censored data. The log-rank statistic compares observed number of events to the expected 

one over event occurring times for each group. Therefore, log-rank test is also viewed as a 

time-stratified Cochran–Mantel–Haenszel test (Cochran, 1954; Mantel and Haenszel, 

1959). Weights for the difference between observed and expected counts could be added 

to the log-rank test, resulting in Fleming-Harrington 𝐺𝜌,𝛾 class (Fleming and Harrington, 

1991). This class can be extended to the 𝐺𝜌,𝛾 class (Oller and Gόmez, 2012) for interval-

censored data. Choice of the (𝜌, 𝛾 ) pair can help detect early, middle, or late term 

differences between survival distributions. Shen (2015) also proposed a class of two-

sample rank-based tests from weighted log-rank tests with weight parameters (𝜌, 𝛾). 

Cox proportional hazards (PH) model by Cox (1972) could also be used to compare 

survival distributions between two or more treatment groups, since it is a regression model 

allowing us to examine the association between the hazard rate and covariates. Unlike the 

log-rank test, as an alternative method, Cox PH model works for multiple covariates. Cox 

PH model examines how specified covariates affect hazard rate. The Cox PH model is 

written by the conditional hazard function denoted by 𝜆(𝑡|𝒁) and it can be estimated as 

follow:  

𝜆(𝑡|𝒁) = 𝜆0(𝑡) exp{𝛽1𝑍1 + 𝛽2𝑍2 +⋯+ 𝛽𝑝𝑍𝑝}, 

where 𝜆0(𝑡) is an unspecified baseline hazard function, which can be viewed as infinite 

dimensional parameter. That’s why Cox PH model is a semi-parametric regression model. 

𝒁 is a vector of p covariates, which many affect survival time, and 𝛽 is a vector of p 

regression parameters. If 𝒁 = 𝟎, we have 𝜆(𝑡|𝒁 = 𝟎) = 𝜆0(𝑡). 
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Statistical Computation 

In this research, R, a programming language for Statistical Computing, was used to 

implement the proposed method and an existing method. In R, I simulated data, estimated 

survival functions, and conducted the proposed test to evaluate the performance of the 

proposed test. In order to reduce runtime, the high-performance computing cluster LEAP 

was also used. 

Statement of Purpose 

Left truncation and interval-censoring (LTIC) introduce complexity in analyzing 

data from cohort studies. However, existing tests have limitations when applying to data in 

cohort studies. For example, it is known that log-rank test shows great performance but 

only for right-censored data. For interval-censored data, when applying the 𝐺𝜌,𝛾 class by 

Oller and Gόmez (2012), it may be difficult to choose proper 𝜌, 𝛾 values within the 𝐺𝜌,𝛾 

class. Shen (2015) also has a same problem of the choices of 𝜌, 𝛾 values. Cox PH model 

is not compatible for situations where survival distributions have a decreasing hazard ratio, 

because hazard ration is constant under the Cox PH model. Therefore, in this thesis project, 

a new model-based rank-type test is proposed to compare survival distributions under the 

proportional reversed hazard (PRH) model for LTIC survival data. Using simulated data, 

the size and power of proposed test is evaluated in two scenarios. Proportional reversed 

hazard (PRH) model is applied in first scenario to investigate proposed test when assumed 

model is true. In second scenario, proportional hazard (PH) model is implemented to 

evaluate the robustness of proposed test when assumed model is false. Proposed test is also 

compared with Shen’s rank-based test (Shen, 2015) using simulated data. AIDS Blood 

Transfusion Data collected by the Centers for Disease Control (CDC) (Kalbfleisch and 
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Lawless 1989) is also used to evaluate proposed test in real world. 
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II. LITERATURE REVIEW 

Left-truncated and Interval-censored (LTIC) Data 

Follow-up cohort studies often focus on time to certain event of interest. However, 

due to the limitations of these studies, investigators usually only know a time range rather 

than exact event time. Sometimes we notice that event occurs between two time points but 

don’t know exact time, resulting in interval censoring. There are different types of interval 

censoring.  For instance, there are case-I, case-II, case-k, and mixed-case depending on 

number of observation times for every individual and if they vary among individuals (Sun, 

2006; Chen, Sun, and Peace, 2013; Bogaerts, Komarek, and Lesaffre, 2020).  

Truncation also occurs in follow-up cohort studies, and it always introduces 

sampling bias. For example, in studies that allow late entry, subjects in a cohort must 

survive up to their entry times in order to be included, resulting in left truncated data. The 

survival probability will be overestimated comparing to that for the general population. 

The analysis of survival data becomes more complex when the data are subject to left 

truncation and interval censoring at the same time (Wang, 1991). 

Estimation of Survival Function for LTIC Data 

To estimate survival distribution, Turnbull (1976) proposed a self-consistency 

algorithm to obtain a nonparametric maximum likelihood estimator (NPMLE) of the 

survival function for interval-censored and truncated data. However, Turnbull’s 

characterization of 𝐹̂, the maximum likelihood estimator of the cumulative distribution 

function F, is not applicable in general. Frydman (1994) fixed the problem by modifying 

Turnbull’s characterization of 𝐹̂. Assume there are N observations in the data. For the 𝑖th 

observation, let 𝐼𝑖 = (𝐿𝑖, 𝑅𝑖] be the censoring interval and 𝐵𝑖 = (𝑉𝑖, 𝑈𝑖) be the truncation 
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interval for the survival time Ti. Left truncation corresponds to 𝑈𝑖 = ∞ for all observations. 

Two sets are formed based on the end points of censoring intervals: 𝐿 = {𝐿𝑖, 1 ≤ 𝑖 ≤ 𝑁} 

and 𝑅 = {𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑁} . Combining 𝐵𝑖  with sets 𝐿  and 𝑅 , two new sets ℒ  and ℛ  are 

generated by  ℒ′ = 𝐿 ∪  {𝑈𝑖, 1 ≤ 𝑖 ≤ 𝑁} , and ℛ′ = 𝑅 ∪  {𝑉𝑖, 1 ≤ 𝑖 ≤ 𝑁} ∪ {∞} . Then, 

Turnbull intervals can be constructed based on the modified sets ℒ′ and ℛ′.   

However, Shen (2020) pointed out that the NPMLE based on the Turnbull intervals 

above can severely underestimate the survival probabilities for LTIC data, which is caused 

by inappropriate use of left-truncation time as the left end point of censoring interval for 

left-censored observations. Instead, he proposed to use the larger one between the left-

truncated time and the smallest values of 𝑅𝑖 with 𝛿𝑖1 = 1, where 𝛿𝑖1 = 1 indicates a left-

censored observation. Based on this adjustment, Turnbull intervals  (𝑞𝑗, 𝑝𝑗]  will be 

constructed based on the following two set: ℒ̂ = {𝐿𝑖: 𝛿𝑖1 ≠ 1; 𝑖 = 1,… ,𝑁} ∪ {𝐿𝑖̂: 𝛿𝑖1 =

1; 𝑖 = 1,… ,𝑁} and ℛ′, where 𝐿𝑖̂ = max (𝑉𝑖, 𝑎̂𝑄) and 𝑎̂𝑄 = min
𝛿𝑖1=1

𝑅𝑖. Then, the NPMLE 𝐹̂ 

can be obtained using Turnbull’s self-consistency algorithm (Turnbull, 1976). 

Comparison of Survival distributions for LTIC Data 

Based on different data types, researchers have proposed different tests to compare 

survival distributions in follow-up cohort studies. When survival data are complete, Mann–

Whitney test (1947) and the Kruskal–Wallis test (1956) test are two commonly used 

nonparametric methods. The Gehan test (Gehan, 1965) and log-rank test (Peto and Peto, 

1972) are applied when data is subject to right censoring.  For right-censored data, Pepe 

and Fleming (1989) also derived a class of tests based on the integrated weighted difference 

in Kaplan–Meier estimates of survival probabilities. Fleming and Harrington (1991) also 

introduced the class 𝐺𝜌,𝛾 of weighted log-rank tests, considering for testing equality of 



 

9 

 

hazard functions against varied hazard ratio.  Lagakos et al. (1988) introduced a weighted 

log-rank test to study randomly truncated data. When truncation distribution is 

parameterized, Bilker and Wang (1996) generated a semiparametric test. For left-truncated 

and right censored survival data, Shen (2007 and 2009) derived a weighted Kaplan–Meier 

test and a class of rank-based tests. 

There are also various nonparametric tests proposed relevant to interval-censored 

data, which are based on score tests statistics, weighted log-rank tests statistics, and linear 

rank like scores in general. For example, Sun (1996), Fay and Shih (1998), and Zhao and 

Sun (2004) proposed tests when data is subject to interval censoring. Oller and Gόmez 

(2012) extended the class 𝐺𝜌,𝛾 of weighted log-rank tests that depends on parameters (𝜌, 𝛾) 

to interval-censored data. Recently Broët et al. (2022) proposed a linear rank-type test to 

investigate interval censored data facing decreasing hazard ratio based on a proportional 

reversed hazard model, which bypasses the choice of values for 𝜌, 𝛾 in the class 𝐺𝜌,𝛾. 

When left-truncation coexists with interval censoring, Shen (2015) derived a class 

of two-sample rank-based tests from weighted log-rank tests with weight parameters 

(𝜌, 𝛾) . However, choices of proper values for (𝜌, 𝛾)  pose challenges to investigators 

because they depend on knowledge about hazard ratio or more often on the observed test 

results. In addition, when left-truncated and interval-censored (LTIC) data exhibits 

decreasing hazard ratio, it may be more difficult to choose appropriate values for (𝜌, 𝛾) 

since fewer references are available. The above limitations inspired me to find an 

alternative method to compare survival distributions when facing complex survival data 

structure. As mentioned before, Broët et al. (2022) provided a way to bypass the choice of 

values for 𝜌, 𝛾. To extend this method to LTIC data, in this thesis project, a new model-
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based linear rank-type test is proposed to compare survival distributions. Based on the 

likelihood function under a proportional reversed hazard (PRH) model, a test statistic is 

derived to test the null hypothesis that there is no difference in survival among treatment 

groups against Lehmann-type alternatives.  
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III. METHODOLOGY 

Model 

For continuous survival time 𝑇, let 𝑓(𝑡) be its probability density function, 𝐹(𝑡) 

and 𝑆(𝑡) be its cumulative distribution function and survival function, respectively, with 

𝑆(𝑡) = 1 − 𝐹(𝑡) . The hazard rate function of 𝑇  is 𝜆(𝑡) = 𝑓(𝑡)/𝑆(𝑡) . Compared with 

hazard rate function, the reverse hazard rate function is defined below by Barlow et al. 

(1963): 

𝜂(𝑡) = lim
∆𝑡→0+

𝑃(𝑡 − ∆𝑡 ≤ 𝑇 ≤ 𝑡|𝑇 ≤ 𝑡)

∆𝑡
=
𝑓(𝑡)

𝐹(𝑡)
. 

To compare k treatment groups, assume a proportional reserved hazard model 

𝜂(𝑡|𝒁) = 𝜂0(𝑡)𝑒
𝜷′𝒁, 

where 𝜂0(𝑡) is an unspecified baseline reverse hazard function, 𝒁 is a vector of (k - 1) 

group indicators, and 𝜷 is a vector of regression parameters. After an exponentiation 

transformation of the baseline cumulative distribution function, we have: 𝐹(𝑡|𝒁) =

𝐹0(𝑡)
𝑒𝜷
′𝒁

, where 𝐹0(𝑡) is the baseline cumulative distribution function.  

The ratio of hazard rates between group i and group j, 𝑖 ≠ 𝑗, is represented by: 

𝜆(𝑡|𝒁𝑖)

𝜆(𝑡|𝒁𝑗)
=

𝑒𝛽 (
𝐹0(𝑡)

𝑒𝛽

1 − 𝐹0(𝑡)𝑒
𝛽)

𝐹0(𝑡)
1 − 𝐹0(𝑡)

= 𝑒𝛽

(

 

1
𝐹0(𝑡)

− 1

1

𝐹0(𝑡)𝑒
𝛽 − 1

)

 . 

Because 𝑒𝛽 is always positive and 𝐹0(𝑡) is converges from 0 to 1 when 𝑡 goes to infinity. 

Therefore, hazard ratio decreases as 𝑡 increases and tends to unity. 

Proposed Test 

Assume observed data is {𝑉𝑖,  𝐼𝑖 = (𝐿𝑖, 𝑅𝑖];  𝑖 = 1,… , 𝑛} , where 𝑉𝑖  is the left 

truncation time and 𝐼𝑖 is the censoring interval for observation i. To test the null hypothesis 
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𝐻0: 𝜷 = 𝟎 (𝑖. 𝑒. , 𝐹0(𝑡) = ⋯ = 𝐹𝑘−1(𝑡) = 𝐹(𝑡))  against the alternative hypothesis 

𝐻1: 𝜷 ≠ 𝟎, the likelihood function based on LTIC data under the proportional reversed 

hazard model is derived with the adjusted Turnbull intervals (𝑞𝑗 , 𝑝𝑗] by Shen, 𝑗 = 1,… ,𝑚 

and 0 ≤ 𝑞1 ≤ 𝑝1 < 𝑞2 ≤ 𝑝2… ≤ 𝑝𝑚 = ∞+ : 

𝐿𝑖𝑘(𝜷, 𝐹0(. )) =∏∑𝛼𝑖𝑗 [
𝐹0(𝑝𝑗)

𝑒𝜷
′𝒛𝒊

− 𝐹0(𝑞𝑗)
𝑒𝜷
′𝒛𝒊

1 − 𝐹0(𝑉𝑖)𝑒
𝜷′𝒛𝒊

]

𝑚

𝑗=1

𝑛

𝑖=1

, 

where 𝛼𝑖𝑗 = 1  if (𝑞𝑗, 𝑝𝑗] belongs to 𝐼𝑖, and 0 otherwise. 

Then the corresponding log-likelihood is: 

𝐿𝐿𝑖𝑘(𝛽, 𝐹0(. ))

=∑log [∑𝛼𝑖𝑗 [𝐹0(𝑝𝑗)
𝑒𝜷
′𝒛𝒊

− 𝐹0(𝑞𝑗)
𝑒𝜷
′𝒛𝒊

]

𝑚

𝑗=1

]

𝑛

𝑖=1

−∑log [1 − 𝐹0(𝑉𝑖)
𝑒𝜷
′𝒛𝒊]

𝑛

𝑖=1

. 

The score statistic 𝑼(𝜷=0,𝐹0) can be obtained by taking the first partial derivative of 

the log-likelihood function with respect to 𝜷  and then evaluated at 𝜷 = 𝟎: 

𝑼(𝜷=𝟎,𝐹0) =∑𝒛𝒊 {
∑ 𝛼𝑖𝑗 [𝐹0(𝑝𝑗) log (𝐹0(𝑝𝑗)) − 𝐹0(𝑞𝑗) log (𝐹0(𝑞𝑗))]
𝑚
𝑗=1

∑ 𝛼𝑖𝑗[𝐹0(𝑝𝑗) − 𝐹0(𝑞𝑗)]
𝑚
𝑗=1

𝑛

𝑖=1

+
𝐹0(𝑉𝑖) log(𝐹0(𝑉𝑖))

1 − 𝐹0(𝑉𝑖)
} 

=∑𝒛𝒊𝑐𝑖

𝑛

𝑖=1

 

with 𝑐𝑖  =
∑ 𝛼𝑖𝑗[𝐹0(𝑝𝑗)log (𝐹0(𝑝𝑗))−𝐹0(𝑞𝑗)log (𝐹0(𝑞𝑗))]
𝑚
𝑗=1

∑ 𝛼𝑖𝑗[𝐹0(𝑝𝑗)−𝐹0(𝑞𝑗)]
𝑚
𝑗=1

+
𝐹0(𝑉𝑖)log (𝐹0(𝑉𝑖))

1−𝐹0(𝑉𝑖)
. Here 𝑐𝑖  can be 

viewed as a pseudo-ranking function and 𝑼(𝜷=𝟎,𝐹0) can be considered as a left truncated 

and interval censored linear rank statistic depending on 𝐹0 (Hájek, Sidák, and Sen, 1999; 
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Kalbfleisch and Prentice, 2002). And the proposed test could be viewed as a linear rank-

type test by ∑ 𝒛𝒊𝑐𝑖
𝑛
𝑖=1 . 

The permutation distribution of 𝑼 is then obtained by permuting the labels and re-

computing the test statistic for all possible rearranged labels (Oller and Gόmez, 2012). The 

permutation can be computed exactly when the sample size is small. With large sample 

size, a version of the central Limit theorem for exchangeable random variables can be 

applied, which provides a normal approximation with expectation 𝐸(𝑼) = 𝑛 𝑐 ̅𝒛̅  and 

variance-covariance matrix 𝑽(𝜷=𝟎,𝐹0) =
1

𝑛−1
{∑ (𝑐𝑖

2 − 𝑛𝑐̅2)𝑛
𝑖=1 (∑ (𝒛𝑖𝒛𝑖

′ − 𝒛̅𝒛̅′)𝑛
𝑖=1 }, where 

𝑐̅ and  𝒛̅ can be calculated as 𝑐̅ =
1

𝑛
∑ 𝑐𝑖
𝑛
𝑖=1  and 𝒛̅ =

1

𝑛
∑ 𝒛𝒊
𝑛
𝑖=1 . Under H0, the test statistic 

based on the Mahalanobis distance is 

𝑼(𝜷=𝟎,𝐹0)
′𝑽−(𝜷=𝟎,𝐹̂0) 𝑼(𝜷=𝟎,𝐹0)

, 

where 𝐴− is a generalized inverse of matrix A. The test statistic asymptotically follows a 

𝜒𝑘−1
2  distribution under H0. 

Since the distribution function 𝐹0 is unknown, we could substitute 𝐹0(𝑡) by 𝐹̂0(𝑡), 

Shen’s modified maximum likelihood estimate (MMLE) (Shen, 2020).  Finally, the 

proposed model-based linear rank-type test statistic is  

𝑼(𝜷=𝟎,𝐹̂0)
′𝑽−(𝜷=𝟎,𝐹̂0) 𝑼(𝜷=𝟎,𝐹̂0), 

which also asymptotically follows a 𝜒𝑘−1
2  distribution. The null hypothesis will be rejected 

for large values of the test statistic above. 

For k = 2, the score statistic becomes a scalar, the proposed test statistic becomes 

𝑍 =
𝑈(𝛽=0,𝐹̂0)

√𝑉(𝛽=0,𝐹̂0)

, 

and Z ~ N(0, 1) asymptotically. 
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IV. SIMULATION STUDIES 

Simulation Settings 

For the performance of the proposed test, extensive simulation studies were 

conducted to investigate test size, power, robustness, and comparison to an existing 

method. Two-sample comparisons (k = 2) are considered in this section. The two sample 

sizes are set to 𝑛1 = 𝑛2 = 𝑛 = 100, 𝑜𝑟 200. The number of replications for each setting 

is 1000.  

Scenario 1: Under the PRH model   

Under the proportional reversed hazard model (PRH model), assume that survival 

time 𝑇𝑖
∗ of individual i follows an exponentiated Weibull distribution with CDF 𝐹𝑧(𝑡) =

[1 − exp{(−𝑎𝑡)𝑏}]𝑒
𝛽𝑧

, where z = 0 or 1. That is, for the reference group, 𝐹0(𝑡) =

[1 − exp{(−𝑎𝑡)𝑏}] and, for the other group, 𝐹1(𝑡) = [1 − exp{(−𝑎𝑡)
𝑏}]𝑒

𝛽
. Assume that 

the left-truncation time 𝑉𝑖
∗~ 𝑈(0, 𝜃) . To obtain untruncated survival times for each group, 

repeatedly generate random numbers (𝑇𝑖
∗, 𝑉𝑖

∗) according to their distributions until n pairs 

with 𝑇𝑖
∗ > 𝑉𝑖

∗are obtained. To create interval-censoring for 𝑇𝑖
∗, first generate number of 

monitoring times 𝑋𝑖 = 2 + 𝐵(4, 0.5) based on a binomial distribution. If 𝑋𝑖 = 𝑘, generate 

𝑘  uniform random numbers 𝑈𝑗𝑖~ 𝑖. 𝑖. 𝑑. 𝑈(0, 𝜃𝑑) (𝑗 = 1,… , 𝑘)  and define monitoring 

times 𝑌𝑖1
∗ = 𝑉𝑖

∗ + 𝑈1𝑖 , 𝑌𝑖2
∗ = 𝑈2𝑖 + 𝑌𝑖1

∗ , 𝑌𝑖3
∗ = 𝑈3𝑖 + 𝑌𝑖2

∗ , ⋯, 𝑌𝑖𝑘
∗ = 𝑈𝑘𝑖 + 𝑌𝑖,𝑘−1

∗ . Then, the 

censoring interval are formed as follows: (𝐿𝑖
∗, 𝑅𝑖

∗) = (𝑉𝑖
∗, 𝑌𝑖1

∗ )  if 𝑉𝑖
∗ < 𝑇𝑖

∗ < 𝑌𝑖1
∗ ; 

(𝐿𝑖
∗, 𝑅𝑖

∗) = (𝑌𝑖,𝑗−1
∗ , 𝑌𝑖𝑗

∗)  if  𝑉𝑖,𝑗−1
∗ < 𝑇𝑖

∗ < 𝑌𝑖𝑗
∗  (𝑗 = 1,… , 𝑘) ; and (𝐿𝑖

∗, 𝑅𝑖
∗) = (𝑌𝑖𝑘

∗ , 1000)  if 

𝑇𝑖
∗ > 𝑌𝑖𝑘

∗ . 

To examine whether the proposed test performs well under different settings, we 

considered three proportions of left truncation and three types of dominating censoring for 
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the reference group, and five values of , indicating the difference between the two groups.  

The obtain these settings, extensive searches were conducted to find corresponding 

combinations of values of 𝑎, 𝑏, 𝜃 and 𝜃𝑑 . The parameters 𝑎, 𝑏, 𝜃 and 𝜃𝑑  were chosen as 

follows. 

Table 1. Parameter Selection for the PRH Model. 

Left Truncation Major Censoring 𝒂 𝒃 𝜽 𝜽𝒅 

 

25% 

Left 1 2 1 1.1 

Interval 1 2 1 0.5 

Right 1 2 1 0.25 

 

55% 

Left 2 1 1 1 

Interval 2 1 1 0.35 

Right 2 1 1 0.15 

 

75% 

Left 2 1 2 0.8 

Interval 2 1 2 0.35 

Right 2 1 2 0.2 

 

Scenario 2: Under the PH model  

When the PRH model is false, a proportional hazard (PH) model is applied. 

Specifically, let the survival time 𝑇𝑖
∗ follow an exponential distribution such as for the 

reference group 𝐹0(𝑡) = 1 − exp (−𝑎𝑡)  and for the other group 𝐹0(𝑡) = 1 −

exp (−𝑎𝑡)𝑒
𝛽

. To achieve different levels of left-truncation and types of dominating 

censoring for the reference group, the parameters 𝑎, 𝜃, and 𝜃𝑑  are chosen as follows. 

Table 2. Parameter Selection for the PH Model. 

Left Truncation Major Censoring 𝒂 𝜽 𝜽𝒅 
 

25% 

 

Left 1 0.5 1.5 

Interval 1 0.5 0.7 

Right 1 0.5 0.35 

 

55% 

 

Left 2 1 1 

Interval 2 1 0.35 

Right 2 1 0.2 

 Left 2 2 0.8 
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75% 

 

Interval 2 2 0.35 

Right 2 2 0.2 

 

For test power under the alternative hypothesis, 0.5 (low power level) and 0.9 (high 

power level) are used as target values to determine four values of 𝛽(two negative and two 

positive), which determines how different the two groups are in survival distribution. 

Extensive experiments have been done for each setting. Different values of  𝛽 has used to 

find the proper value at positive and negative 0.5 and 0.9 power levels. Based on the results 

of experiments, the final special value of 𝛽 is chosen based on the range of observed 𝛽 for 

each model. Tables 3 and 4 show details on how a single 𝛽 value for each power level 

under each model is selected. 

Table 3. Selected 𝛽 Values for the PRH Model. 

Left  

Truncation 

Major  

Censoring 

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟓 

𝑵𝒆𝒈𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟓 

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟗 

𝑵𝒆𝒈𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟗 

 

25% 

 

Left 0.65 
-1 1.1 -5.1 

Interval 0.55 -0.8 0.95 -3.7 

Right 0.55 -0.9 0.97 -2.9 

 

55% 

 

Left 0.65 -1.2 1.05 -5.1 

Interval 0.55 -0.8 0.85 -3.5 

Right 0.55 -0.8 0.95 -3.5 

 

75% 

 

Left 0.4 -0.5 0.65 -1.2 

Interval 0.34 -0.4 0.6 -0.8 

Right 0.36 -0.35 0.6 -0.85 

𝛽 0.5 -0.8 0.8 -3 

 

Table 4. Selected 𝛽 Values for the PH Model. 

Left  

Truncation 

Major  

Censoring 

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟓 

𝑵𝒆𝒈𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟓 

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟗 

𝑵𝒆𝒈𝒕𝒊𝒗𝒆 𝜷  

𝒇𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 𝟎. 𝟗 

 

25% 

 

Left 
0.35 -0.35 

0.63 
-0.6 

Interval 0.37 -0.4 0.65 -0.65 

Right 0.4 -0.45 0.7 -0.73 
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55% 

 

Left 0.35 -0.3 0.65 -0.55 

Interval 0.35 -0.35 0.65 -0.61 

Right 0.37 -0.4 0.65 -0.7 

 

75% 

 

Left 0.3 -0.28 0.5 -0.45 

Interval 0.27 -0.3 0.5 -0.47 

Right 0.3 -0.4 0.55 -0.52 

𝛽 0.35 -0.35 0.6 -0.6 

 

Simulation Results 

Scenario 1: Under the PRH model  

The finite sample properties of the proposed test were examined at two sample 

sizes. For n = 100, Table 5 shows that the observed sizes (𝛽 = 0) of the proposed test for 

different settings, [0.040 – 0.057], are within the random sampling fluctuation of the 

nominal level (0.05), which indicates the proposed test has a proper size. For the power of 

the proposed test when 𝛽 ≠ 0 , there is no surprise that the power increases as |𝛽| 

increases. One observable discovery is that at lower level of left truncation (especially at 

25%) the proposed test is more powerful than higher level of left truncation, which makes 

sense because more information is available to investigators at a lower level of left 

truncation. 

Table 5. Power and Size of the Proposed Test for the PRH Model with n = 100. 

    𝜷 

Left Truncation Major Censoring -3 -0.8 0 0.5 0.8 

25% 

Interval 0.995 0.690 0.051 0.522 0.927 

Left 0.954 0.520 0.057 0.399 0.818 

Right 0.993 0.691 0.046 0.511 0.905 

55% 

Interval 0.702 0.231 0.040 0.245 0.577 

Left 0.509 0.196 0.052 0.189 0.450 

Right 0.752 0.278 0.052 0.224 0.557 
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75% 

Interval 0.661 0.236 0.048 0.243 0.518 

Left 0.542 0.170 0.040 0.157 0.410 

Right 0.735 0.262 0.043 0.198 0.524 

 

For n = 200, Table 6 shows that the observed sizes of the proposed test, [0.031 – 

0.056], are still close to the nominal level (0.05). Note that the type I error rate is 0.031 for 

55% left truncation and right major censoring, which is lower than expected. It may result 

from loss of more information when data is subject to heavy left truncation level and right 

censoring based on special selection of values for 𝑎, 𝑏, 𝜃 and 𝜃𝑑. Comparing with Table 5, 

with the increase of the sample size, Table 6 shows that the power increases as expected. 

Also note that, when sample size increases, the difference of power resulted from different 

left truncation proportions is negligible at high power level of |𝛽|. 

Table 6. Power and Size of the Proposed Test for the PRH Model with n = 200. 

    𝜷 

Left Truncation Major Censoring -3 -0.8 0 0.5 0.8 

25% 

Interval 1.000 0.942 0.056 0.851 0.998 

Left 0.999 0.846 0.050 0.708 0.991 

Right 1.000 0.946 0.044 0.821 0.999 

55% 

Interval 0.954 0.522 0.041 0.425 0.866 

Left 0.827 0.390 0.040 0.329 0.730 

Right 0.959 0.534 0.031 0.412 0.869 

75% 

Interval 0.952 0.491 0.043 0.388 0.854 

Left 0.859 0.363 0.044 0.302 0.738 

Right 0.954 0.511 0.046 0.398 0.818 

 

Scenario 2: Under the PH model  

Table 7 shows that the observed sizes, [0.045 - 0:059], are also within the random 

sampling fluctuation of the nominal significance level (0.05). It means that the proposed 
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test also has a proper size even if the model is incorrectly specified. The impact of left-

truncation proportion is not as significant as under the PRH model. 

Table 7. Power and Size of the Proposed Test for the PH Model with n = 100. 

  𝜷 

Left Truncation Major Censoring -0.6 -0.35 0 0.35 0.6 

25% 

Interval 0.775 0.365 0.053 0.398 0.824 

Left 0.857 0.403 0.046 0.411 0.837 

Right 0.615 0.248 0.048 0.325 0.732 

55% 

Interval 0.616 0.267 0.053 0.265 0.654 

Left 0.725 0.337 0.056 0.303 0.665 

Right 0.530 0.214 0.056 0.245 0.566 

75% 

Interval 0.529 0.261 0.046 0.278 0.632 

Left 0.635 0.278 0.045 0.290 0.618 

Right 0.456 0.202 0.059 0.252 0.582 

 

For a large sample size, Table 8 shows that the observed sizes, ranging from 0.043 

to 0.067, are also close the nominal level. Note that 0.063 and 0.067 are slightly higher 

than the nominal significant level 0.05. It may be due to the PH model applied in this 

scenario, which is not the true model. With the increase of sample size, there are noticeable 

power gains compared with small sample size in Table 7. The same trend for power gains 

is also observed in proportional reserved hazard model. 

Table 8. Power and Size of the Proposed Test for the PH Model with n = 200. 

    𝜷 

Left Truncation Major Censoring -0.6 -0.35 0 0.35 0.6 

25% 

Interval 0.970 0.616 0.043 0.692 0.977 

Left 0.986 0.690 0.050 0.678 0.987 

Right 0.864 0.507 0.055 0.535 0.949 

55% 
Interval 0.891 0.488 0.051 0.532 0.917 

Left 0.955 0.588 0.067 0.532 0.928 
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Right 0.814 0.386 0.051 0.481 0.866 

75% 

Interval 0.851 0.447 0.051 0.515 0.897 

Left 0.913 0.500 0.063 0.529 0.901 

Right 0.711 0.319 0.051 0.420 0.857 

 

Normality Check of the Proposed Test Statistic 

With k = 2, the test statistic of the proposed test asymptotically follows the standard 

normal distribution. To investigate the normality based on finite samples, normal QQ-plots 

were constructed. Figure 1 shows normal QQ-plot and QQ-line for the settings with  = 0 

under the PRH model n = 100. It’s validated from the QQ-plot that the test statistic follows 

a normal distribution. Normality check of the test statistic has been conducted for all 

designs. The results are similar. 

 
(a)                                    (b)                                    (c) 

  

 
                               (d)                                    (e)                                     (f) 
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                               (g)                                    (h)                                      (i) 

Figure 1. Normality of the Proposed Test Statistic under the PRH Model with n = 100: 

(a) 25% left truncation with left-censoring; (b) 25% left truncation with interval-censoring; (c) 25% left 

truncation with right-censoring; (d) 55% left truncation with left-censoring; (e) 55% left truncation with 

interval-censoring; (f) 55% left truncation with right-censoring; (g) 75% left truncation with left-

censoring; (h) 75% left truncation with interval-censoring; (i) 75% left truncation with right-censoring. 

 

Size of the Proposed Test Based on Different Models 

To check the robustness of the proposed test, two scenarios are considered. In the 

first scenario, a PRH model is used, which is the assumed model. In the second scenario, a 

PH model is used, i.e., the assumed model is false. From the Figures 2 and 3, it’s obvious 

that the proposed test is robust and has a correct size in both scenarios. The observed sizes 

for all the settings are within the random sampling fluctuation of the nominal significance 

level for both sample sizes. 

 

Figure 2. The Size of the Proposed Test under the PRH and PH Models with n = 100. 
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Figure 3. The Size of the Proposed Test under the PRH and PH Models with n = 200. 

Effect of Sample Size on the Size and Power of the Proposed Test 

Considering survival data in the real world, which might be from clinics and 

hospitals, it’s not easy to conduct studies with a large sample size. Therefore, whether the 

proposed test works well with small sample size is of significance. It’s remarkable that the 

observed type I error rates of all the settings are close to the nominal level for both sample 

sizes considered. When sample size increases, it’s noticeable that the proposed test gains 

more power for both scenarios. Because the value of test statistic increases due to the 

decrease in variance, as the sample size gets larger. 

 

Figure 4. The Size of the Proposed Test under the PRH Model with n = 100 and n = 200. 

 

Figure 5. The Size of the Proposed Test under the PH Model with n = 100 and n = 200. 
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Figure 6. The Power of the Proposed Test under the PRH Model with n = 100 and n = 

200. 

 

 

Figure 7. The Power of the Proposed Test under the PH Model with n = 100 and n = 200. 
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Effect of Level of Left Truncation on the Power Using the Proposed Test 

To study the effect of left truncation, three levels of left truncation are considered 

in simulated data: 25%, 55%, and 75%. From Figures 8 and 9, it’s obvious that for both 

models, the power for left truncation at 25% is larger than that at 55% and 75%. It may be 

due to that higher level of left truncation leads to more missing information when testing 

the difference between groups. For the PRH model, the difference is more obvious 

compared with that for the PH model. From Figures 10 and 11, it’s observable that the 

difference at the lower power level still exists under both models even with an increased 

sample size. However, the difference at high power level decreases due to the power has 

reached its maximum. 
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Figure 8. The Power for Levels of Left-Truncation under the PRH Model with n = 100. 

 

 

 

Figure 9. The Power for Levels of Left-Truncation under the PH Model with n = 100. 
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Figure 10. The Power for Levels of Left-Truncation under the PRH Model with n = 200. 

 

 

 

 

Figure 11. The Power for Levels of Left-Truncation under the PH Model with n = 200. 
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Effect of Type of Major Censoring on the Power Using the Proposed Test 

To study the influence of censoring, three types of major or dominating censoring 

are considered in data generation: left, interval and right. If there are more than half 

observations are subject to left censoring, the major censoring is denoted as left. Interval 

censoring and right censoring are also defined in the same way. From Figures 12 and 13, 

there is a significant difference between the PRH and the PH models. Majorly left censored 

data show the least power for the PRH model, while majorly right censored data show the 

least power for the PH model. Based on Figures 14 and 15, the phenomenon is still 

observable when sample size is increased. 
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Figure 12. The Power for Types of Major Censoring under the PRH Model with n = 100. 

 

 

 

 

Figure 13. The Power for Types of Major Censoring under the PH Model with n = 100. 
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Figure 14. The Power for Types of Major Censoring under the PRH Model with n = 200. 

 

 

 

 

Figure 15. The Power for Types of Major Censoring under the PH Model with n = 200. 
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Comparison to an Existing Test 

In order to further examine the performance of the proposed test, the proposed test 

is compared with a nonparametric rank-based test by Shen (2015). Based on the same 

simulated left-truncated and interval-censored datasets, the size and power of the proposed 

test are obtained in the two scenarios considered. For the weight 𝑊̂(𝑡) = [𝑆̂(𝑡 −)]𝑟[1 −

𝑆̂(𝑡 −)]𝑠𝑊𝐿̂(𝑡) of Shen’s test, I used various weight parameters:(𝑟, 𝑠) = (0, 0), (0.5, 0.5),

(0, 1), (1, 0) as Shen used in his study, where (𝑟, 𝑠) = (0, 0) corresponds to the weight 

function of the extension of log-rank test. I used 𝐵 = 500 for the number of bootstrap 

samples used in Shen’s test.  

Firstly, as shown in Tables 9 to 12, the observed type I error rates of all the settings 

are within the random sampling fluctuation of the nominal significance level for proposed 

tests. More details can be found in Figures 16 and 17: it’s clear from the butterfly figures 

that the observed type I error rates of Shen’s test is much lower than the nominal level 0.05, 

which may cause underestimation of the difference between treatment groups. It means 

that Shen’s test rejects the null hypothesis less often than it should do. 

The power is also investigated. For Shen’s test, only the results from two selections 

of weight parameters,  (𝑟, 𝑠) = (1, 0) and (0.5, 0.5) are presented (denoted Shen(1,0) and 

Shen(0.5, 0.5)), which provide top 2 performance in power. From Figures 18, 19, 20 and 

21, it is obvious that the proposed test performs better than Shen’s tests under the PRH 

model for both small and large deviation of . While Shen(1, 0) gains slightly more power 

than the proposed test with the PH model for both small and large deviation of . Both tests 

show the same power trend when sample size increases. There is a remarkable power gain, 

which has also been discussed in the previous section. Results also show that power 



 

31 

 

decreases for Shen’s test as the percentage of left truncation increases. In general, both tests 

product consistent results in two scenarios. 
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    𝜷 

    -3 -0.8 0 0.5 0.8 

Left Truncation Major Censoring 
Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

25% Interval 0.995 0.936 0.304 0.690 0.562 0.049 0.051 0.011 0.011 0.522 0.335 0.042 0.927 0.649 

25% Left 0.954 0.842 0.157 0.520 0.360 0.038 0.057 0.014 0.014 0.399 0.256 0.025 0.818 0.582 

25% Right 0.993 0.697 0.071 0.691 0.209 0.031 0.046 0.021 0.021 0.511 0.105 0.025 0.905 0.206 

55% Interval 0.702 0.638 0.090 0.231 0.223 0.017 0.040 0.020 0.020 0.245 0.162 0.024 0.577 0.391 

55% Left 0.509 0.489 0.139 0.196 0.203 0.072 0.052 0.020 0.020 0.189 0.202 0.046 0.450 0.463 

55% Right 0.752 0.321 0.044 0.278 0.093 0.022 0.052 0.016 0.016 0.224 0.059 0.018 0.557 0.127 

75% Interval 0.952 0.931 0.289 0.491 0.510 0.053 0.043 0.028 0.388 0.397 0.021 0.854 0.781 0.044 

75% Left 0.859 0.850 0.576 0.363 0.418 0.171 0.044 0.038 0.302 0.368 0.143 0.738 0.774 0.259 

75% Right 0.954 0.878 0.162 0.511 0.396 0.088 0.046 0.036 0.398 0.216 0.051 0.818 0.465 0.055 

 

 

Table 9. The Comparisons of Size and Power under the PRH Model with n = 100.   

3
2
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    𝜷 

    -3 -0.8 0 0.5 0.8 

Left Truncation Major Censoring 
Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

25% Interval 1.000 0.983 0.677 0.942 0.874 0.112 0.056 0.016 0.851 0.630 0.067 0.998 0.949 0.177 

25% Left 0.999 0.976 0.679 0.846 0.745 0.184 0.050 0.019 0.708 0.597 0.110 0.991 0.934 0.288 

25% Right 1.000 0.905 0.129 0.946 0.440 0.027 0.044 0.017 0.821 0.200 0.037 0.999 0.370 0.051 

55% Interval 0.954 0.902 0.199 0.522 0.469 0.050 0.041 0.009 0.425 0.321 0.032 0.866 0.712 0.065 

55% Left 0.827 0.799 0.545 0.390 0.384 0.168 0.040 0.022 0.329 0.355 0.128 0.730 0.741 0.313 

55% Right 0.959 0.630 0.103 0.534 0.225 0.043 0.031 0.020 0.412 0.126 0.039 0.869 0.254 0.059 

75% Interval 0.952 0.931 0.289 0.491 0.510 0.053 0.043 0.028 0.388 0.397 0.021 0.854 0.781 0.044 

75% Left 0.859 0.850 0.576 0.363 0.418 0.171 0.044 0.038 0.302 0.368 0.143 0.738 0.774 0.259 

75% Right 0.954 0.878 0.162 0.511 0.396 0.088 0.046 0.036 0.398 0.216 0.051 0.818 0.465 0.055 

 

Table 10. The Comparisons of Size and Power under the PRH Model with n = 200.   

3
3
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    𝜷 

    -0.6 -0.35 0 0.35 0.6 

Left Truncation Major Censoring 
Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

25% Interval 0.775 0.593 0.225 0.365 0.307 0.110 0.053 0.023 0.023 0.398 0.436 0.179 0.824 0.859 

25% Left 0.857 0.904 0.679 0.403 0.495 0.362 0.046 0.028 0.028 0.411 0.399 0.339 0.837 0.730 

25% Right 0.615 0.274 0.135 0.248 0.123 0.072 0.048 0.017 0.017 0.325 0.151 0.068 0.732 0.448 

55% Interval 0.616 0.513 0.115 0.267 0.238 0.063 0.053 0.015 0.015 0.265 0.381 0.077 0.654 0.763 

55% Left 0.725 0.769 0.590 0.337 0.400 0.248 0.056 0.029 0.029 0.303 0.270 0.129 0.665 0.459 

55% Right 0.530 0.275 0.110 0.214 0.117 0.054 0.056 0.013 0.013 0.245 0.221 0.029 0.566 0.557 

75% Interval 0.529 0.601 0.123 0.261 0.380 0.120 0.046 0.036 0.036 0.278 0.430 0.261 0.632 0.786 

75% Left 0.635 0.764 0.417 0.278 0.405 0.199 0.045 0.038 0.038 0.290 0.350 0.284 0.618 0.619 

75% Right 0.456 0.364 0.169 0.202 0.221 0.147 0.059 0.048 0.048 0.252 0.351 0.226 0.582 0.718 

 

 

Table 11. The Comparisons of Size and Power under the PH Model with n = 100.   

 

3
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    𝜷 

    -0.6 -0.35 0 0.35 0.6 

Left Truncation Major Censoring 
Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

Our 
Test 

Shen 
(1,0) 

Shen 
(0.5,0.5) 

25% Interval 0.970 0.829 0.365 0.616 0.534 0.198 0.043 0.027 0.027 0.692 0.746 0.347 0.977 0.991 

25% Left 0.986 0.998 0.926 0.690 0.828 0.696 0.050 0.024 0.024 0.678 0.729 0.773 0.987 0.977 

25% Right 0.864 0.340 0.175 0.507 0.188 0.081 0.055 0.021 0.021 0.535 0.290 0.117 0.949 0.651 

55% Interval 0.891 0.801 0.235 0.488 0.541 0.104 0.051 0.013 0.013 0.532 0.728 0.223 0.917 0.979 

55% Left 0.955 0.977 0.942 0.588 0.713 0.707 0.067 0.012 0.012 0.532 0.588 0.593 0.928 0.873 

55% Right 0.814 0.482 0.190 0.386 0.273 0.105 0.051 0.019 0.019 0.481 0.516 0.094 0.866 0.924 

75% Interval 0.851 0.932 0.185 0.447 0.682 0.106 0.051 0.024 0.024 0.515 0.729 0.356 0.897 0.978 

75% Left 0.913 0.974 0.867 0.500 0.679 0.597 0.063 0.019 0.019 0.529 0.617 0.704 0.901 0.933 

75% Right 0.711 0.646 0.111 0.319 0.423 0.081 0.051 0.044 0.044 0.420 0.684 0.263 0.857 0.970 

 

 

Table 12. The Comparisons of Size and Power under the PH Model with n = 200.   
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Figuer 16. The Size Comparison under the PRH Model. 

 

 

 

Figure 17. The Size Comparison under the PH Model. 
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Figure 18. The Comparison of Power under the PRH Model with a Small Deviation of . 

 

 

 

Figure 19. The Comparison of Power under the PRH Model with a Large Deviation of . 
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Figure 20. The Comparison of Power under the PH Model with a Small Deviation of . 

 

 

 

Figure 21. The Comparison of Power under the PH Model with a Large Deviation of . 
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V. APPLICATION TO A SEMI-REAL DATA 

In this section, the proposed test is applied to the AIDS Blood Transfusion Data 

(Kalbfleisch and Lawless, 1989) collected by the Centers for Disease Control (CDC) for 

illustration. The data contains all transfusion-associated AIDS cases in which the 

development of AIDS occurred prior to the end of the study, which was 06/30/1991. For 

the data, subjects who had developed AIDS prior to 07/01/1982 were excluded, which 

indicates that the data is subjected to left truncation. In order to investigate if age is 

associated to the HIV-AIDS incubation time, two subgroups are compared based on age: 

subjects whose age is between 0 and 5 belong to kids’ group; and subjects whose age is 

greater than 5 but less than and equal to 50 belong to adults’ group. The null hypothesis is 

no difference in survival distributions between two treatment groups. Because interval 

censoring was not present in the original data, censoring intervals are produced in the same 

way as discussed in the simulation section. A random number 𝑋𝑖 = 2 + 𝐵(𝑚𝑐, 0.5) is 

generated. To make sure that censoring intervals are more compatible with the scale of the 

original data, we used 𝑚𝑐 = 16, 22,   and 34 with  𝜃𝑑 =
2

3
,
1

2
,   and 

1

3
, respectively. Figure 

22 shows that it looks like there is a difference of survival distributions between kids and 

adults. In order to examine if this difference is statistically different, the proposed test is 

conducted. The proposed test is also compared with Shen’s method using this semi-real 

data. The results show that both Shen(1,0) and the proposed test rejected the null hypothesis 

with all three settings for this semi-real LTIC data with p-values less than the nominal 

significant level 0.05. On the other hand, Shen(0,0), Shen(0,1) and Shen(0.5,05) sometimes 

failed to reject null hypothesis. This result is consistent with results from the simulation 

section, which indicates that Shen(1,0) is more powerful  with the simulation data and this 
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semi-real data. 

 

Figure 22. The Comparison of Survival Distributions between Kids and Adults. 
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Mc θd 
Our Test 

Statistic 

Our 

p-value 

Shen(0,0) 

Test Statistic 

Shen(0,0) 

p-value 

Shen(0,1) 

Test Statistic 

Shen(0,1) 

p-value 

Shen(1,0) 

Test Statistic 

Shen(1,0) 

p-value 

Shen(0.5,0.5) 

Test Statistic 

Shen(0.5,0.5) 

p-value 

18 2/3 1.9549 0.0253 1.3342 0.0911 1.5908 0.0558 2.8081 0.0025 1.7508 0.0400 

24 1/2 1.7589 0.0393 4.0138 0.0000 2.2536 0.0121 3.0930 0.0010 2.3252 0.0100 

36 1/3 1.8357 0.0332 0.8937 0.1857 0.1050 0.4582 2.5527 0.0053 1.0810 0.1399 

 

Table 13. Results for the Analysis of the AIDS Blood Transfusion Data. 

4
1
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VI. CONCLUSION 

To compare two or more survival distributions with left-truncated and interval-

censored data, a new model-based linear rank-type test is proposed, which is derived from 

a proportional reversed hazard model. Under the null hypothesis, the proposed test statistic 

is asymptotically distributed as 𝜒𝑘−1
2 , where k is the number of groups. Two scenarios are 

considered in the simulation studies to evaluate performance and robustness of the 

proposed test: the underlying distributions follow a proportional reversed hazards (PRH) 

model or a proportional hazards (PH) model. The size and power of the proposed test are 

investigated in both scenarios. The simulation results show that the observed type I error 

rates in all settings considered are within a random sampling fluctuation of the nominal 

significance level 0.05, which is the probability of rejecting null hypothesis when there is 

no difference between groups. It means the proposed test is robust with different 

distributions. Besides, there is an observable power gain when sample size increases 

because of the increase of the value of the proposed test due to the decrease in its variance. 

Also, proportion of left truncation and type of interval censoring also play important roles. 

The results indicate heavier left truncation and left, or right censoring reduce the power of 

the proposed test. Comparing to Shen’s test, the proposed test shows similar performance 

and bypass the choice of weight parameters. Unlike Shen’s test, the proposed test does not 

need bootstrapping to estimate the variance of the test statistic. Thus, it is easier to 

implement and computationally inexpensive.  For illustration, the proposed test is applied 

to a set of semi-real data based on the AIDS Blood Transfusion Data collected by the 

Centers for Disease Control (CDC).    
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VII. DISCUSSION AND FUTURE RESEARCH 

It is noticeable that the proportion of left truncation and interval censoring have an 

influence on the power of proposed test. Also, when implementing the proposed test with 

semi-real data, the compatibility between simulated intervals and real data’s scale is 

important. If the simulated intervals are too large or small, they may introduce a big 

increase in right or left censoring. Then we will lose some important information, leading 

to incorrect test results for hypothesis. Therefore, investigators should study the survival 

data first before choosing proper values for parameters in the proposed test. Survival data 

is complex with its own features, case-by-case analysis is necessary when applying the 

proposed test.  

For future studies, it’s possible to achieve the following: 

• The proposed test assumes the PRH model. Model checking techniques are needed 

when analyzing real data. 

• For the robust of the proposed test, only a PH model is considered in the simulation 

studies. Other models should be investigated when PRH model is not true.  

• Due to the deviation of the size estimates of the proposed test for two settings, 

further simulation studies can be conducted, such as using 0.01 level of 

significance. 

• Create an R package by implementing the proposed test for analyzing LTIC data 

under a PRH model.  
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APPENDIX SECTION 

R code example for size test using proportional reversed hazard model with 

sample size 100 in statistical tests section:  

set.seed(1) 

#Sys.time() 

# Function to simply compute a Riemann-Stieltjes integral of the form integral[f(t)dg(t)] 

# 

# Expects: 

# f = a function of t (with potential other parameters) that is the integrand 

# g = a function of t (with potential other parameters) that is the integrator 

# lower = minimum value to integrate from (inclusive) 

# upper = maximum value to integrate to (inclusive) 

# fparams = a list of optional parameters to pass to the function f 

# gparams = a list of optional parameters to pass to the function g 

# h = step-size to use in the integration. Is uniform over the interval [lower, upper]. 

#     upper - lower should be divisible by h, otherwise upper will not be included in integration 

# 

# Returns: 

# Estimate of Riemann-Stieltjes integral 

rs_integrate = function(f, g, lower, upper, fparams = list(), gparams = list(), h = 0.001){ 

  t = seq(lower,upper,by = h) 

  w = do.call(g,append(list(t[2:length(t)]),gparams)) - do.call(g,append(list(t[1:(length(t)-1)]),gparams)) 

  evals = (do.call(f,append(list(t[2:length(t)]),fparams)) + do.call(f,append(list(t[1:(length(t)-1)]),fparams))) 

/ 2 

  return(sum(w*evals)) 

} 

# Function to evaluate the survival function from an estimate produced by Estimation_LTIC_Shen 

# 

# Expects: 

# t = vector (or single value) of time points at which to evaluate the survival function 

# est = output list produced by Estimation_LTIC_Shen 

# 

# Returns: 

# A vector of S(t) values for each t given to the function 

eval_St = function(t,est){ 

  # Read t as a vector and create return vector 

  t = as.vector(t) 

  ret_vec = rep(1,length(t)) 

  # Check for errors 

  if(any(t < 0)){ 

    stop("Function only valid for t >= 0") 

  } else { 
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    # Get indices where S(t) < 1 

    t_idx = which(t >= est$intmap[1,1]) 

    # Takes care of cases where S(t)=1 for all t 

    if(length(t_idx)>0){ 

      ret_vec[t_idx] = apply(cbind(t[t_idx]),1,function(w){ 

        # Get maximum index where t > qj 

        qp_idx = max(which(est$intmap[1,] <= w)) 

        qj = as.numeric(est$intmap[1,qp_idx]) 

        pj = as.numeric(est$intmap[2,qp_idx]) 

        # S(t) constant for [pj,qj+1] (also captures qj = pj) 

        if(w >= pj){ 

          est$sigma[qp_idx] 

          # S(t) linear on [qj,pj] (also captures constant S(t) after p(J-1) for pJ = Inf) 

        } else { 

          # min resolves issues for t in [q1,p1] 

          min(est$sigma[qp_idx-1],1) - est$pf[qp_idx]*(w-qj)/(pj-qj) 

        } 

      }) 

    } 

  } 

  return(ret_vec) 

} 

# Function to evaluate Y(t) from the weight function W(t) used in calculating the Lw statistic 

# 

# Expects: 

# t = vector (or single value) of time points at which to evaluate Y(t) 

# vals = vector of values at which Y(t) can change 

# Y = vector of Y(t) values corresponding with vals 

# 

# Returns: 

# A vector of Y(t) values for each t given to the function 

eval_Yt = function(t, vals, Y){ 

  # Read t as a vector 

  t = as.vector(t)  

  # Check for errors 

  if(any(t < 0)){ 

    stop("Function only valid for t >= 0") 

  } else { 

    # Get indices for where t falls 

    idx = apply(cbind(t), 1, function(w) max(which(vals <= w))) 

    return(Y[idx]) 

  } 

} 

# Function taking a data set and estimating its survival function using 

# the methods of Shen (2020) 

#  

# Expecting data matrix data.shen with columns: 

#     1) Left Truncation time 

#     2) Left censoring time  
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#     3) Right censoring time  

#     4) # of visits for right censoring time 

#     5) Right truncation time (=Inf for LTIC data) 

# n = sample size  

# mv = maximum # of inspection times 

# tol: convergence criterion 

# adj.shen = adjustment 

#  

# Returns the matrix of censoring indices alpha, the matrix of  

# truncation indices beta, the matrix of intervals for the survival 

# function intmap, the estimated survival function sigma, and the 

# vector of probabilities of the event occuring in each interval pf 

Estimation_LTIC_Shen = function(data.shen, n, mv=12, p1=0.8, p2=0.5, p3=0.2, tol=1e-3, maxiter=1000, 

adj.shen=1) 

{ 

  K1=K2=K3=ind1=ind2=ind3=like=like1=like2=like3=like=loglike=tmpe = rep(NA,n) 

  ER = array(NA,c(n,2)) 

  U = data.shen[,1] # LT time 

  tmpe = data.shen[,2] # L 

  tmpr = data.shen[,3] # R 

  tmpind = data.shen[,4] 

  V = data.shen[,5] 

  if(sum(tmpind < 2) >= 1){ 

    data2 = rbind(data.shen[which(tmpind < 2),])  # subset of data w/ 

    minL=min(data2[,3]) #estimate left support for left interval censored data; QZ: \hat a_Q = smallest Ri 

with delta_{i1} = 1 

    #print("minL:") 

    #print(minL) 

  } 

  for(i in 1:n) 

  { 

    if(tmpind[i] < 2) 

    { 

      if(adj.shen == 1)  # estimate S(t) instead of S(t | T > t0) 

      { 

        tmpe[i] = max(U[i],minL) #to obtain adjusted likelihood function  

      } 

      ind1[i]=0 

      ind2[i]=0 

      ind3[i]=1 #indicator for left censoring 

    } 

    else if(tmpind[i] > mv) 

    { 

      ind1[i]=0 

      ind2[i]=1  #indicator for right censoring 

      ind3[i]=0 

    } 

    else if((tmpind[i] < mv + 1) & (tmpind[i] > 1)) 

    { 
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      ind1[i]=1 #indicator for interval censoring 

      ind2[i]=0 

      ind3[i]=0 

    } 

    ER[i,] = c(tmpe[i],tmpr[i]) 

  } 

  data = cbind(U,ER) 

  q1=1-p1 

  q2=1-p2 

  q3=1-p3 

  t1=qgamma(q1,2,1) 

  t2=qgamma(q2,2,1) 

  t3=qgamma(q3,2,1)                        #0.1,0.3,0.5,0.7,0.9 

  U = data[,1] 

  L = data[,2] 

  R = data[,3] 

  #V = data[,4] 

  minu=min(U) 

  maxv=max(V) 

  adj=exp(-minu)-exp(-maxv) 

  #print("adj") 

  #print(adj) 

  #=================================== 

  #data = data[which(ind3==0),] 

  #n = dim(data)[1] 

  ruev = cbind(c(data),c(rep(0,n),rep(1,n),rep(0,n))) 

  tmp = order(ruev[,1]) 

  ruev = ruev[tmp,] 

  n2 = dim(ruev)[1] 

  P = Q = c() 

  for(i in 1:(n2-1)) 

  { 

    if((ruev[i,2]==1)&(ruev[i+1,2]==0)) 

    { 

      Q = c(Q,ruev[i,1]); 

      P = c(P,ruev[i+1,1]) 

    } 

  } 

  nJ = length(Q) 

  sj = rep(1/nJ,nJ) 

  alpha = (matrix(rep(Q,rep(n,nJ)),n,nJ)>=data[,2])&(matrix(rep(P,rep(n,nJ)),n,nJ)<=data[,3]) 

  #beta = (matrix(rep(Q,rep(n,nJ)),n,nJ)>=data[,1])&(matrix(rep(P,rep(n,nJ)),n,nJ)<=data[,4]) 

  beta = (matrix(rep(Q,rep(n,nJ)),n,nJ)>=data[,1]) 

  fflike=0 

  times=0 

  repeat{ 

    times = times+1 

    Msj = sum(1/apply(t(t(beta)*sj),1,sum)) 

    djsj = apply((alpha/apply(t(t(alpha)*sj),1,sum)) - (beta/apply(t(t(beta)*sj),1,sum)),2,sum) 
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    sjn = (1 + djsj/Msj)*sj 

    sjn=ifelse(sjn < 0, 0.00001, sjn) 

    sjn=sjn/sum(sjn) 

    diff = abs(sjn-sj) 

    sj = sjn 

    slr = cbind(sj,Q,P) 

    # Likelihood calculation: 

    # for(i in 1:n) 

    # { 

    #   tK1 <- ifelse((P>R[i]),1,0) 

    #   K1[i]=sum(tK1*slr[,1]) 

    #   tK2 <- ifelse((P>L[i]),1,0) 

    #   K2[i]=sum(tK2*slr[,1]) 

    #   tK3 <- ifelse((P>U[i]),1,0) 

    #   K3[i]=sum(tK3*slr[,1]) 

    #   like1[i]=(K2[i]-K1[i])**(ind1[i]) 

    #   like2[i]=(K3[i]-K1[i])**(ind3[i]) 

    #   like3[i]=(K2[i])**(ind2[i]) 

    #   like[i]=like1[i]*like2[i]*like3[i]/K3[i] 

    #   loglike[i]=log(like1[i])+log(like2[i])+log(like3[i])-log(K3[i]) 

    # } 

    # #flike=log(prod(like1))+log(prod(like2))+log(prod(like3)) 

    # flike=sum(loglike) 

    # diff=abs(fflike-flike) 

    if(sum(diff) < tol) break 

    if(times == maxiter) break 

    #cat(times," - ",fflike,flike,diff,"\n") 

    #fflike=flike 

  } 

  sigma = 1-cumsum(sj) 

  intmap = rbind(Q,P) 

  ret = list(alpha = 1*alpha, beta = 1*beta, intmap = intmap, sigma = sigma, pf = sj) 

  return(ret) 

  #print("Estimated PDF") 

  #print(slr) 

  # if(adj.shen == 1) 

  # { 

  #   tslr1 = slr[which(P>t1),] 

  #   #Fa.hat = sum(atslr[,1]) 

  #   F1.hat = sum(tslr1[,1]) 

  #   #F1.hat.seq[r]=F1.hat 

  #   tslr2 = slr[which(P>t2),] 

  #   F2.hat = sum(tslr2[,1]) 

  #   #F2.hat.seq[r]=F2.hat 

  #   tslr3 = slr[which(P>t3),] 

  #   F3.hat = sum(tslr3[,1]) 

  #   #F3.hat.seq[r]=F3.hat 

  #   print("F1.hat, F2.hat, F3.hat") 

  #   print(c(F1.hat, F2.hat, F3.hat)) 
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  # } 

  # else 

  # { 

  #   atslr = slr[which(P>minL),] 

  #   Fa.hat = sum(atslr[,1]) 

  #   tslr1 = slr[which(P>max(t1,minL)),] 

  #   F1.hat = sum(tslr1[,1]) 

  #   cF1.hat = F1.hat/Fa.hat 

  #   tslr2 = slr[which(P>max(t2,minL)),] 

  #   F2.hat = sum(tslr2[,1]) 

  #   cF2.hat = F2.hat/Fa.hat 

  #   tslr3 = slr[which(P>max(t3,minL)),] 

  #   F3.hat = sum(tslr3[,1]) 

  #   cF3.hat = F3.hat/Fa.hat 

  #   print("Fa.hat, F1.hat, F2.hat, F3.hat, cF1.hat, cF2.hat, cF3.hat") 

  #   print(c(Fa.hat, F1.hat, F2.hat, F3.hat, cF1.hat, cF2.hat, cF3.hat)) 

  # } 

} 

# Function to compute the Lw statistic as in Shen (2014) 

# 

# Expects: 

# A = data matrix with columns: 

#         1) Left Truncation Time 

#         2) Left Censoring Time 

#         3) Right Censoring Time 

#         4) # of Visits for Right Censoring Time 

# trt = the vector of treatment groups for the data (should take the value of 0 or 1) 

# mv = maximum number of visits for interval-censored data 

# r = value of r to be used as the power for the weight of S(t) in the test statistic 

# s = value of s to be used as the power for the weight of [1-S(t)] in the test statistic 

# h = the step size to use when numerically estimating the Riemann-Stieltjes integral for the Lw statistic 

# tol = tolerance for the convergence of the estimated survival function 

# maxitter = maximum number of iterations for estimating the survival function 

# inf = value representing infinity in the data for right censoring 

# adj.shen = 0 or 1, whether or not to apply the adjustment introduced by Shen (2020) 

# 

# Returns: 

# The computed Lw statistic 

calc_Lw = function(A, trt, mv=13, r=0, s=0, h=0.005, tol=1e-06, maxiter=5000, inf1=Inf, adj.shen=1){ 

  # Set right censored observations to Inf 

  A[A[,3]==inf1,3] = Inf 

  # Check data format 

  if(ncol(A) == 4 && all(A[,2] >= A[,1]) && all(A[,3] >= A[,2]) && all(A[,4]>0) && all(A[,4]<=mv+1) 

&& length(unique(trt)) == 2 && all(trt>=0) && all(trt< 2)){ 

    #Set parameters for easier calculation 

    n = dim(A)[1] 

    n1 = sum(trt==0) 

    n2 = sum(trt==1) 

    # Calculate the estimates for the 2 treatment groups 
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    est1 = Estimation_LTIC_Shen(cbind(A[trt==0,],rep(Inf,n1)), n1, mv=mv, tol=tol, maxiter=maxiter, 

adj.shen=adj.shen) 

    est2 = Estimation_LTIC_Shen(cbind(A[trt==1,],rep(Inf,n2)), n2, mv=mv, tol=tol, maxiter=maxiter, 

adj.shen=adj.shen)     

    # Create Delta(t) from S(t) 

    Deltat = function(t,est){ 

      return(-log(eval_St(t,est))) 

    } 

    # Calculate Y1 and Y2 

    vals = sort(unique(c(0,A[,1],A[,2],A[,3],Inf))) 

    Y1 = rep(0,length(vals)) 

    Y2 = rep(0,length(vals)) 

    for(i in 1:length(vals)){ 

      Y1[i] = sum((1*(A[trt==0,1]<=vals[i]) + 1*(A[trt==0,2] > vals[i]))==2, (1*(A[trt==0,2] <= vals[i]) + 

1*(A[trt==0,3] >= vals[i]) + 1*(is.finite(A[trt==0,3])))==3) 

      Y2[i] = sum((1*(A[trt==1,1]<=vals[i]) + 1*(A[trt==1,2] > vals[i]))==2, (1*(A[trt==1,2] <= vals[i]) + 

1*(A[trt==1,3] >= vals[i]) + 1*(is.finite(A[trt==1,3])))==3) 

    } 

    # Check if we need to calculate S(t) 

    if(r==0 && s==0){ 

      # Create function for W(t) without S(t) 

      Wt = function(t, vals, Y1, Y2){ 

        WL = (eval_Yt(t,vals,Y1)*eval_Yt(t,vals,Y2))/(eval_Yt(t,vals,Y1)+eval_Yt(t,vals,Y2)) 

        WL[is.nan(WL)] = 0 

        return(WL) 

      } 

      # Find b 

      b = 

min(max(vals[eval_St(vals,est1)>0]),max(vals[eval_Yt(vals,vals,Y1)>0]),max(vals[eval_St(vals,est2)>0]),

max(vals[eval_Yt(vals,vals,Y2)>0]))  

      # Calculate the test statistic 

      Lw = rs_integrate(Wt, Deltat, 0, b, fparams=list(vals=vals,Y1=Y1,Y2=Y2), gparams=list(est=est1), 

h=h) 

      Lw = Lw - rs_integrate(Wt, Deltat, 0, b, fparams=list(vals=vals,Y1=Y1,Y2=Y2), 

gparams=list(est=est2), h=h) 

      Lw = sqrt(n/(n1*n2))*Lw    

    } else {   

      # Calculate S(t) 

      est = Estimation_LTIC_Shen(cbind(A,rep(Inf,n)), n, mv=mv, tol=tol, maxiter=maxiter, 

adj.shen=adj.shen)       

      # Create function for W(t) 

      Wt = function(t, est, vals, Y1, Y2, r, s){ 

        WL = (eval_Yt(t,vals,Y1)*eval_Yt(t,vals,Y2))/(eval_Yt(t,vals,Y1)+eval_Yt(t,vals,Y2)) 

        WL[is.nan(WL)] = 0 

        return(WL*(eval_St(t,est)^r)*(1-eval_St(t,est))^s) 

      } 

       

      # Find b 

      b = 
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min(max(vals[eval_St(vals,est1)>0]),max(vals[eval_Yt(vals,vals,Y1)>0]),max(vals[eval_St(vals,est2)>0]),

max(vals[eval_Yt(vals,vals,Y2)>0])) 

       

      # Calculate the test statistic 

      Lw = rs_integrate(Wt, Deltat, 0, b, fparams=list(est=est,vals=vals,Y1=Y1,Y2=Y2,r=r,s=s), 

gparams=list(est=est1), h=h) 

      Lw = Lw - rs_integrate(Wt, Deltat, 0, b, fparams=list(est=est,vals=vals,Y1=Y1,Y2=Y2,r=r,s=s), 

gparams=list(est=est2), h=h) 

      Lw = sqrt(n/(n1*n2))*Lw 

    }     

    return(Lw) 

  } else { 

    stop("Please Verify data format, # of samples, and treatment indicator!") 

  } 

} 

# Function to calculate the variance of a test statistic using the simple bootstrap method 

# 

# Expects: 

# A = matrix of data 

# trt = treatment group vector. If bootstrapping without treatment groups, set trt = rep(0,n) 

# fun = function to calculate the test statistic of interest 

# B = number of times to perform the bootstrap 

# params = list of parameters to pass to the function calculating the test statistic. 

#           Requires all non-default parameters after the matrix of data to be included. 

# 

# Returns: 

# The unbiased estimate of the variance of the test statistic calculated via the bootstrap 

 

bootstrap_var = function(A, trt, fun, B = 100, params=list()){ 

  # Create output vectors 

  test_stat = rep(0,B) 

  # Perform B bootstraps 

  for(i in 1:B){ 

    AA = A 

    for(k in unique(trt)){ 

      AA[trt==k,] = A[sample(which(trt==k),sum(trt==k),replace = TRUE),] 

    } 

    test_stat[i] = do.call(fun,append(list(AA),params)) 

  } 

  # Return the variance of the test statistic 

  return(sum((test_stat-mean(test_stat))^2)/(B-1)) 

} 

myfunction = function(n=400, a=4,b, beta=0, mv=12, theta=0.01, thetad=0.2, inf=10000000000,p1=0.8, 

p2=0.5, p3=0.2,r1,s1, h=0.005, B=100, tol=1e-06, maxiter=1000, adj.shen=1) 

{ 

  #define and Store survival time (T),left truncation time(U), value representing infinity for right 

censoring(V) 

  Z=T=U=V=X=rep(NA,n) 

  ###for observations from i=1 to 1=n:  
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  i=1 

  tot.samp = 0 

  repeat{ 

    #########Based on Exponentiated Weibull, creating tmpt############# 

    tmpt=(1/a)*(-log(1-runif(1,0,1)^exp(-beta*0)))^(1/b) # distribution of survival time: Ti ~ Exponentiated 

Weibull with a, b, beta and Z 

    ################################################################### 

    tmpt = round(tmpt, digits = 3) # Round generated value 

    tmpu = theta*runif(1,0,1) #distribution of left truncation times 

    tmpu = round(tmpu, digits = 3) # Round generated value 

    tmpv=tmpu+inf 

    ###When survival time > left truncated time, we can obtain data, and get 

    if(tmpt>=tmpu){ 

      U[i] = tmpu   # left truncated time 

      V[i] = tmpv   # value representing infinity for right censoring 

      T[i] = tmpt 

      Z[i] = 0# Survival time 

      i=i+1 

    } 

    tot.samp = tot.samp + 1 

    if(i==n/2+1) break 

  } 

  i=n/2+1 

  tot.samp = n/2 

  repeat{ 

    #########Based on Exponentiated Weibull, creating tmpt############# 

    tmpt=(1/a)*(-log(1-runif(1,0,1)^exp(-beta*1)))^(1/b) # distribution of survival time: Ti ~ Exponentiated 

Weibull with a, b, beta and Z 

    ################################################################### 

    tmpt = round(tmpt, digits = 3) # Round generated value 

    tmpu = theta*runif(1,0,1) #distribution of left truncation times 

    tmpu = round(tmpu, digits = 3) # Round generated value 

    tmpv=tmpu+inf 

    ###When survival time > left truncated time, we can obtain data, and get 

    if(tmpt>=tmpu){ 

      U[i] = tmpu   # left truncated time 

      V[i] = tmpv   # value representing infinity for right censoring 

      T[i] = tmpt 

      Z[i] = 1# Survival time 

      i=i+1 

    } 

    tot.samp = tot.samp + 1 

    if(i==n+1) break 

  } 

  ###################after we set up survival time, left truncated time and theoretical infinity, 

  ###################based on fixed visit interval (5 days), we create # of inspection times for each 

observation,  

  ###################then we could obtain Set (L_i, R_i). 

  tmpx=rep(NA,n)  # define and store # of inspection times for each observation i 
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  tmpU=matrix(0,n,mv) # Store details of each inspection time (total mv inspection times ) for each 

observation i (total n) 

  tmpZ=matrix(NA,n,mv+2) # Store LT time, inspection times, and 10000 (but repeats the largest 

inspection time until 10000) of the subjects 

  tmpind=rep(NA,n) # define and store # of inspection times for each observation i 

  tmpe=rep(NA,n) # define and store Li 

  tmpr=rep(NA,n) # define and store Ri 

  for(i in 1:n){ 

    tmpx[i] = 2 + rbinom(1,mv-2,0.5)  # generate #. of inspection times 

    tmpU[i,] = c(thetad*runif(tmpx[i]),rep(0,mv-tmpx[i])) #based on #. of inspection times, we know visit 

interval is 5 days and how many visits for each observation i 

    tmpU[i,] = round(tmpU[i,], digits = 3) # Round generated values 

    tmpZ[i,] = c(U[i],cumsum(tmpU[i,])+U[i],inf) #for each observation i, store, left truncated time U, last 

visit time under left truncated, value representing infinity for right censoring 

    tmpind[i] = max(which(T[i]>=tmpZ[i,])) #store # of inspection times for each observation i  

    tmpe[i] = tmpZ[i,tmpind[i]] #store Li 

    tmpr[i] = tmpZ[i,tmpind[i]+1] #store Ri 

    X[i] = tmpx[i]  #  # of inspection times 

  } 

  data.EW= cbind(U,tmpe,tmpr,tmpind,V,Z,T)# contains LT time, L, R, # of visits for Right censoring time 

######################################################################################

################################## 

  K1=K2=K3=ind1=ind2=ind3=like=like1=like2=like3=like=loglike=tmpe = rep(NA,n) 

  ER = array(NA,c(n,2)) 

  U = data.EW[,1] # LT time 

  tmpe = data.EW[,2] # L 

  tmpr = data.EW[,3] # R 

  tmpind = data.EW[,4] 

  V = data.EW[,5] 

  Z = data.EW[,6] 

  if(sum(tmpind < 2) >= 1){ 

    data2 = rbind(data.EW[which(tmpind < 2),])  # subset of data w/ 

    minL=min(data2[,3]) #estimate left support for left interval censored data; QZ: \hat a_Q = smallest Ri 

with delta_{i1} = 1 

    #print("minL:") 

    #print(minL) 

  } 

  for(i in 1:n) 

  { 

    if(tmpind[i] < 2) 

    { 

      if(adj.shen == 1)  # estimate S(t) instead of S(t | T > t0) 

      { 

        tmpe[i] = max(U[i],minL) #to obtain adjusted likelihood function  

      } 

      ind1[i]=0 

      ind2[i]=0 

      ind3[i]=1 #indicator for left censoring 

    } 
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    else if(tmpind[i] > mv) 

    { 

      ind1[i]=0 

      ind2[i]=1  #indicator for right censoring 

      ind3[i]=0 

    } 

    else if((tmpind[i] < mv + 1) & (tmpind[i] > 1)) 

    { 

      ind1[i]=1 #indicator for interval censoring 

      ind2[i]=0 

      ind3[i]=0 

    } 

    ER[i,] = c(tmpe[i],tmpr[i]) 

  } 

   

  data = cbind(U,ER) 

  q1=1-p1 

  q2=1-p2 

  q3=1-p3 

  t1=qgamma(q1,2,1) 

  t2=qgamma(q2,2,1) 

  t3=qgamma(q3,2,1)                        #0.1,0.3,0.5,0.7,0.9 

  U = data[,1] 

  L = data[,2] 

  R = data[,3] 

  #V = data[,4] 

  minu=min(U) 

  maxv=max(V) 

  adj=exp(-minu)-exp(-maxv) 

  #print("adj") 

  #print(adj) 

  #=================================== 

  #data = data[which(ind3==0),] 

  #n = dim(data)[1] 

  ruev = cbind(c(data),c(rep(0,n),rep(1,n),rep(0,n))) 

  tmp = order(ruev[,1]) 

  ruev = ruev[tmp,] 

  n2 = dim(ruev)[1] 

  P = Q = c() 

  for(i in 1:(n2-1)) 

  { 

    if((ruev[i,2]==1)&(ruev[i+1,2]==0)) 

    { 

      Q = c(Q,ruev[i,1]); 

      P = c(P,ruev[i+1,1]) 

    } 

  } 

  nJ = length(Q) 

  sj = rep(1/nJ,nJ) 
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  alpha = (matrix(rep(Q,rep(n,nJ)),n,nJ)>=data[,2])&(matrix(rep(P,rep(n,nJ)),n,nJ)<=data[,3]) 

  #beta = (matrix(rep(Q,rep(n,nJ)),n,nJ)>=data[,1])&(matrix(rep(P,rep(n,nJ)),n,nJ)<=data[,4]) 

  beta = (matrix(rep(Q,rep(n,nJ)),n,nJ)>=data[,1]) 

  fflike=0 

  times=0 

  repeat{ 

    times = times+1 

    Msj = sum(1/apply(t(t(beta)*sj),1,sum)) 

    djsj = apply((alpha/apply(t(t(alpha)*sj),1,sum)) - (beta/apply(t(t(beta)*sj),1,sum)),2,sum) 

    sjn = (1 + djsj/Msj)*sj 

    sjn=ifelse(sjn < 0, 0.00001, sjn) 

    sjn=sjn/sum(sjn) 

    diff = abs(sjn-sj) 

    sj = sjn 

    slr = cbind(sj,Q,P) 

    # Likelihood calculation: 

    # for(i in 1:n) 

    # { 

    #   tK1 <- ifelse((P>R[i]),1,0) 

    #   K1[i]=sum(tK1*slr[,1]) 

    #   tK2 <- ifelse((P>L[i]),1,0) 

    #   K2[i]=sum(tK2*slr[,1]) 

    #   tK3 <- ifelse((P>U[i]),1,0) 

    #   K3[i]=sum(tK3*slr[,1]) 

    #   like1[i]=(K2[i]-K1[i])**(ind1[i]) 

    #   like2[i]=(K3[i]-K1[i])**(ind3[i]) 

    #   like3[i]=(K2[i])**(ind2[i]) 

    #   like[i]=like1[i]*like2[i]*like3[i]/K3[i] 

    #   loglike[i]=log(like1[i])+log(like2[i])+log(like3[i])-log(K3[i]) 

    # } 

    # #flike=log(prod(like1))+log(prod(like2))+log(prod(like3)) 

    # flike=sum(loglike) 

    # diff=abs(fflike-flike) 

    if(sum(diff) < tol) break 

    if(times == maxiter) break 

    #cat(times," - ",fflike,flike,diff,"\n") 

    #fflike=flike 

  } 

  sigma = 1-cumsum(sj) 

  intmap = rbind(Q,P) 

  E.EW = list(alpha = 1*alpha, beta = 1*beta, intmap = intmap, sigma = sigma, pf = sj, Z = Z,Q=Q) 

######################################################################################

############ 

  fpj=rep(NA,sum(E.EW[["pf"]]>=0)) 

  alphaa=TOP=BOT=matrix(NA,n,sum(E.EW[["pf"]]>=0)) #calculation middleman 

  SUMTOP=SUMBOT=CC=ZZ=UU=rep(NA,n) #calculation middleman, sum step  

  Uscore=VVV=Test.Statistic=NA # score statistics 

  alphaa=E.EW[["alpha"]] # alpha censoring indicator for Turnbull intervals from above steps 

  fpj=cumsum(E.EW[["pf"]]) #probability at right-end p for Turnbull intervals from above steps 
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  Sigma=E.EW[["sigma"]] 

  ####### 

  fqj=c(0,head(fpj,sum(fpj>=0)-1)) #probability at left-end q for Turnbull intervals from above steps 

  ZZ=E.EW[["Z"]] #group indicator 

  for(i in 1:n) #n observations 

  { 

    for(j in 1:sum(fqj>=0)) #j Turnbull intervals 

    { 

      if(fqj[j]==0 & fpj[j]==0) 

      { 

        TOP[i,j]=0 

        BOT[i,j]=0 

      } 

      else if(fqj[j]==0 & fpj[j]!=0) 

      { 

        TOP[i,j]=alphaa[i,j]*fpj[j]*log(fpj[j]) 

        BOT[i,j] = alphaa[i,j]*fpj[j] 

      } 

      else if(fqj[j]!=0 & fpj[j]!=0) 

      { 

        TOP[i,j]=alphaa[i,j]*(fpj[j]*log(fpj[j])-fqj[j]*log(fqj[j])) 

        BOT[i,j] = alphaa[i,j]*(fpj[j]-fqj[j]) 

      } 

      #top[j]=fpj[j]*log(fpj[j])-fqj[j]*log(fqj[j])  

      #TOP[i,j]=alpha[i,j]*(fpj[j]*log(fpj[j])-fqj[j]*log(fqj[j])) 

      #if(alpha[i,j]*(fpj[j]*log(fpj[j])-fqj[j]*log(fqj[j])) < 10^(-10) & alpha[i,j]*(fpj[j]*log(fpj[j])-

fqj[j]*log(fqj[j])) > -10^(-10))   # estimate S(t) instead of S(t | T > t0) 

      #{ 

      #TOP[i,j]=0 #to obtain adjusted likelihood function  

      #} 

      #else 

      #{ 

      #TOP[i,j]=alpha[i,j]*(fpj[j]*log(fpj[j])-fqj[j]*log(fqj[j])) 

      #} 

      #TOP[i,j]=alpha[i,j]*(fpj[j]*log(fpj[j])-fqj[j]*log(fqj[j]))  ###fqj[1]=0 and Top[i,j] shows 

NAN!!!!!!!!!!!!! ERROR!!!!!!!!!!!!!!! 

      #BOT[i,j] = alpha[i,j]*(fpj[j]-fqj[j]) 

    } 

  } 

  ############################################# 

  FU=rep(NA,n) 

  CUMFU=1-Sigma 

  for(i in 1:n) #n observations 

  { 

    if(data.EW[i,1] < E.EW[["intmap"]][2,1] & data.EW[i,1] >= E.EW[["intmap"]][1,1]) 

    { 

      FU[i]=CUMFU[1]*(data.EW[i,1]-E.EW[["intmap"]][1,1])/(E.EW[["intmap"]][2,1]-

E.EW[["intmap"]][1,1]) 

    } 
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    else if(data.EW[i,1] < E.EW[["intmap"]][1,1]) 

    { 

      FU[i]=0 

    } 

  } 

   

  for(i in 1:n) #n observations 

  { 

    for(j in 2:sum(fqj>=0)) #j Turnbull intervals 

    { 

      if(data.EW[i,1] < E.EW[["intmap"]][2,j] & data.EW[i,1] >= E.EW[["intmap"]][1,j]) 

      { 

        FU[i]=CUMFU[j-1]+E.EW[["pf"]][j]*(data.EW[i,1]-E.EW[["intmap"]][1,j])/(E.EW[["intmap"]][2,j]-

E.EW[["intmap"]][1,j]) 

      } 

      else if(data.EW[i,1] < E.EW[["intmap"]][1,j] & data.EW[i,1] >= E.EW[["intmap"]][2,j-1]) 

      { 

        FU[i]=CUMFU[j-1] 

      } 

    } 

  } 

  TOPFU=BOTFU=rep(NA,n) 

  for(i in 1:n) #n observations 

  { 

    if(FU[i]==0) 

    { 

      TOPFU[i]=0 

    } 

    else if(FU[i]!=0) 

    { 

      TOPFU[i]=FU[i]*log(FU[i]) 

    } 

  } 

  BOTFU=1-FU 

  CCFU=UUFU=rep(NA,n) 

  for(i in 1:n) #n observations 

  { 

    CCFU[i]=TOPFU[i]/BOTFU[i] 

    #UUFU[i]=ZZ[i]*CCFU[i] 

  } 

  #UFU=sum(UUFU) 

  #VFU=(1/(n-1))*sum((CCFU-mean(CCFU))^2)*sum((ZZ-mean(ZZ))^2) 

  ##################################################### 

  SUMTOP=rowSums(TOP) 

  SUMBOT=rowSums(BOT) 

  for(i in 1:n) #n observations 

  { 

    CC[i]=SUMTOP[i]/SUMBOT[i] 

    #UU[i]=ZZ[i]*CC[i] 
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  } 

  CCC=CC+CCFU 

  UUU=ZZ*CCC 

  Uscore=sum(UUU) 

  VVV=(1/(n-1))*sum((CCC-mean(CCC))^2)*sum((ZZ-mean(ZZ))^2) 

  #Uscore=sum(UU) # find estimated score statistic 

  #VV=(1/(n-1))*sum((CC-mean(CC))^2)*sum((ZZ-mean(ZZ))^2) #permutation to gain Variance of 

Uscore 

  ##### 

  #UUU=Uscore+UFU 

  #VVV=VFU+VV 

  Test.Statistic=(Uscore^2)*VVV^-1 #final test statistic from U*V^(-1/2) following chi-square with df=1 

  Indicator=ifelse(Test.Statistic>qchisq(0.95,1),1,0) 

  ########################################################################### 

  AAA=data.EW[,-5] 

  A=AAA[,-6] 

######################################################################################

################################## 

  # Set right-truncated values to have Inf as their right censoring time 

  A[A[,3]==inf,3] = inf 

  # Check data format 

  if(ncol(A) == 5 && all(A[,2] >= A[,1]) && all(A[,3] >= A[,2]) && all(A[,4]>0) && all(A[,4]<=mv+1) 

&& length(unique(A[,5])) == 2 && all(A[,5]>=0) && all(A[,5]< 2)){ 

    # split up input data to clean up notation 

    AA = A[,-5] 

    trt = A[,5] 

    # Calculate test statistic 

    Lw1 = calc_Lw(AA, trt, mv=mv, r=r1, s=s1, h=h, tol=tol, maxiter=maxiter, adj.shen=adj.shen) 

    # Calculate test variance via bootstrap 

    params1 = list(trt=trt, mv=mv, r=r1, s=s1, h=h, tol=tol, maxiter=maxiter, adj.shen=adj.shen) 

    sig2_hat1 = bootstrap_var(AA, trt, fun=calc_Lw, B=B, params=params1) 

    # Calculate Z-score and p-value 

    Zshen1 = Lw1/sqrt(sig2_hat1) 

    pshen1 = 1 - pnorm(abs(Zshen1),0,1) 

    Indicator1=ifelse(pshen1<0.05,1,0) 

    # Output the test results 

  } else { 

    stop("Please Verify data format, # of samples, and treatment indicator!") 

  } 

  return(c(Indicator,Indicator1)) 

} 

df=data.frame(n=rep(200,1000), 

a=rep(2,1000), 

b=rep(1,1000), 

beta=rep(0,1000), 

mv=rep(6,1000), 

theta=rep(2,1000), 

thetad=rep(0.35,1000), 

inf=rep(1000,1000), 
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p1=rep(0.8,1000), 

p2=rep(0.5,1000), 

p3=rep(0.2,1000), 

r1=rep(0,1000), 

s1=rep(0,1000), 

h=rep(0.005,1000), 

B=rep(500,1000), 

tol=rep(1e-06,1000), 

maxiter=rep(1000,1000), 

adj.shen=rep(1,1000)) 

dfm=as.matrix(df) 

library(parallel) 

SIZEmcl=mclapply(seq_len(nrow(dfm)),function(x) do.call(myfunction,as.list(dfm[x,])),mc.cores=28) 

#testresult=myfunction(n=200, a=0.25, b=2, beta=0, mv=12, theta=0.5, thetad=1, inf=10000,tol=1e-6, 

maxiter=1000, adj.shen=1) 

#SIZE=mcmapply(myfunction,n, a, b, beta, mv, theta, thetad, inf,r, s, h, B, tol, maxiter, 

adj.shen,mc.cores=parallel::detectCores()-1) 

print(SIZEmcl) 

#SIZE6=as.data.frame(t(SIZEmcm)) 

#write.csv(SIZEmcm,"0330-1.csv") 

#Sys.time() 

#nohup bash -c 'time Rscript --verbose mcl-real.R > mcl-real.Rout.txt' 
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