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Introduction 

 Quantum mechanics has some probabilistic or statistical features that have been 
considered paradoxical or exotic; at least, this impression is frequently conveyed in 
introductory textbooks on the subject and when physicists produce informal 
explanations of quantum theory. No doubt specialists in atomic physics have a solid 
grasp of these issues and can at any rate agree to disagree about difficult points of 
theory and experiment. But the often idiosyncratic treatment of statistics and probability 
in quantum mechanics seems unhelpful to the student and the interested layperson: it 
may tend to exaggerate and mystify the real differences between the microscopic and 
the macroscopic worlds, suggesting that the two worlds have little in common with 
respect to methodology. In this paper I try to show that some of the statistical esoterica 
of quantum mechanics can be made more transparent by their very close analogies to 
several macroscopic topics.  
 On the other hand, quantum mechanics also involves philosophical questions 
about epistemology and the nature of reality --questions which, though raised in the 
context of the atomic world, are as old as metaphysics. “Does the Moon exist just 
because a mouse looks at it ?” Einstein’s incredulous query echoes the ancient debate 
between nominalists and realists. This brief essay can contribute little to the clarification 
of such venerable issues except perhaps to cite the opinion of a wise practitioner, Henri 
Theil (1971, p. vi):  “It does require maturity to realize that models are to be used but not 
to be believed.” 
 
Uncertainty principle I: an ubiquitous trade-off 

 An important task of physics is to describe and predict an object’s trajectory 
through time –a planet’s orbit or the path of a rocket. A trajectory is constructed from 
sequential measurements of an object’s position and momentum: where is it now, in 
which direction is it going, and how fast is it moving ? At the atomic level, the objects of 
interest include, for example, electrons and photons. However, Heisenberg’s uncertainty 
principle shows that the trajectories of these particles cannot be determined exactly. 
The more accurately one measures a particle’s position, the more error one introduces 
into the measurement of its momentum, and vice versa (Hannabuss 1997, p. 83-86; 
Rae 1996, p. 76-80). In quantum-mechanical notation, the one-dimensional version of 
this trade-off is concisely expressed as 



   ∆x∆px ≥ h/4π  ,       (1) 

where ∆x is the standard deviation of the particle’s position, ∆px is the standard 
deviation of its momentum, h is Planck’s constant, and π is the familiar mathematical 
constant. Equation (1) means that the product of the standard deviations of position and 
momentum has a lower bound greater than zero. Beyond some point, a smaller ∆x is 
associated with a larger ∆px  and conversely. Since the magnitude of Planck’s constant 
is not negligible on the subatomic scale, the uncertainty principle implies an unavoidable 
indeterminacy for the trajectory of any particular particle; its path must be described in 
probabilistic terms.  
 On the other hand, Planck’s constant is insignificant on a macroscopic scale, so 
the trajectories of planets and rockets can in practice be predicted with an accuracy 
limited only by the apparatus of measurement and observation. Therefore physicists 
frequently assert, in pedagogical and popular expositions, that the uncertainty principle 
has no application beyond quantum mechanics. Irving Kristol (1994) may perhaps 
speak for many physicists when he says, “Every time there is a major advance in 
physics or mathematics, some social scientists and humanists are quick to see in it a 
new paradigm for their own modes of thought. It was this way with Newtonian physics, 
Einstein’s theory of relativity, the Heisenberg principle, and now chaos theory. All such 
‘trendy’ efforts are soon revealed to be transient and foolish.”   
 Nevertheless, the uncertainty trade-off is indeed implicit in many models that 
represent macroscopic phenomena in the natural and social sciences. For example, the 
covariance-stationary time-series models at the core of quantum mechanics are also 
used successfully in many other fields. Consider the simplest case, a first-order 
autoregression for some variable Y: 

   Yt = ρYt-1 + ut             ,                                                                  (2) 

where for stationarity -1 < ρ < 1. The innovation ut is white noise with expectation zero 
and variance σ2. At any time t, the variable’s “position” is just Yt, and during any interval 
its “momentum” is simply Yt – Yt-1. The variance of position is  

σ
2
 /(1 – ρ 2)              ,          (3) 

and it is straightforward to show that the variance of momentum is 

 2σ2/(1 + ρ)              .          (4) 

 These expressions are graphed in Figure 1, where it is clear that both variances 
decrease as ρ increases from -1 toward zero. However, as ρ increases from zero, the 
trade-off emerges: the two variances move inversely. By analogy to equation (1), we 
minimize the product of (3) and (4) –or its logarithm-- with respect to ρ and determine 
that the lower bound is about 1.3σ2 when ρ = 1/3. Here the general scale parameter σ 
plays the role of h in equation (1). While Planck’s constant is specific to quantum 
mechanics, σ has the dimension of Y, which depends on the context. Nevertheless, σ 



like h is supposed to be a constant; and like h it sets a bound on the accuracy with 
which the time path of Y can be known.   
 
 

 
 
 As another instance of the uncertainty principle’s appearance outside quantum 
mechanics, we remark that mathematicians and physicists have noted strong analogies 
between the Heisenberg trade-off and the Cramer-Rao minimum-variance bound that 
has a prominent role in linear statistical models (Frieden 1998, Stam 1959). Or we can 
cite examples from microeconomics that do not involve time series at all. If the 
government operates a buffer stock to mitigate the fluctuations of a commodity’s price, 
is it an undiluted benefit for buyers and sellers ?  Building on earlier work by F. Waugh 
and W. Oi, Massell (1969) analyzes this problem in a comparative-statics framework, a 
simplified version of which is shown in Figure 2.  
 



 

 
 In the left-hand panel, the private market for an agricultural commodity is 
characterized by stable demand but unstable supply. The equilibrium price fluctuates 
widely between episodes of meager harvest (S1) and abundant harvest (S2) so the 
government creates a buffer stock to contain price movements within a narrow band 
around the average price. This is accomplished by buying for inventory when the price 
is below average and selling from inventory when the price moves above average; the 
effect of these operations is shown in the right-hand panel, where the demand curve is 
flatter (more elastic) than before the buffer stock. The range of price variation has 
indeed narrowed, but the range of quantity variation is much wider than in the private 
market. The government cannot stabilize the price without destabilizing the equilibrium 
quantities traded. Massell discusses the consequences of this trade-off for market 
participants.   

Uncertainty principle II: it doesn’t commute 

 Around 1925, when Werner Heisenberg was formulating the uncertainty 
principle, he collaborated with fellow physicists Max Born and Pascual Jordan, who 
recognized the matrix algebra underlying Heisenberg’s work and recast the uncertainty 
principle in terms of “matrix mechanics.” The scalar equation (1) can be replaced by its 
matrix counterpart: 

   PXX – XPX = (2πh/i)I               ,                             (5) 



where PX and X are respectively the momentum and position matrices, I is the identity 
matrix, and i2 = -1. Unfamiliar with matrix algebra, Heisenberg was at first disconcerted 
that the matrix products PXX and XPX are not equal as they would be in the case of 
scalars. Today students of physics don’t find non-commutating matrices perplexing, but 
the need for imaginary numbers may be puzzling; and in any case the standard 
treatment of (5) seems unnecessarily opaque.  
 Very simply, position and momentum are both modeled as stationary time series, 
so their cross-correlation matrix is asymmetric (Cryer and Chan 2008, p. 260-261): the 
correlation when position lags momentum by k time units is generally unequal to the 
correlation when momentum lags position by k time units. After all, if the two time series 
were monthly steel production and monthly auto production, would the correlation when 
autos lag steel by two months necessarily equal the correlation when steel lags autos 
by two months ? There is no reason to suppose so. This asymmetry accounts for the 
difference between PXX and XPX; and if the cross correlations are transformed from the 
time domain to the frequency domain, the imaginary unit i shows up because position 
and momentum are not “in phase” with each another.    
 
Uncertainty principle III: time and energy 
 
 Related to the indeterminacy of position and momentum is another physical law 
called the “time-energy” uncertainty principle (Hannabuss 1997, p. 86-88), according to 
which a particle’s energy can change abruptly during a brief time interval. The shorter 
the time interval, the greater the energy change can be. An electron may occasionally 
penetrate a barrier that it would normally find impassable; still one cannot say that the 
electron has violated an energy conservation law, for the instantaneous “tunneling” does 
not permit even a virtual measurement.   
 Suppose that Y in equation (2) is the price of a financial asset such as an 
exchange rate. Modern financial markets often use high-frequency data, including data 
collected in real time. As the discrete time interval in (2) shrinks toward zero, the 
autocorrelation ρ must approach 1; after all, the time series can change very little during 
an instant. It follows from (3) that Y’s variance (“energy”) is exploding. Y is transitioning 
from a stationary process to a process with a unit root –a random walk in the parlance 
of finance, Brownian motion to physicists. The statistical properties of economic and 
financial time series with ρ ≈ 1 have been studied intensively during the last three 
decades (Phillips 1992; Cryer and Chan 2008, chapter 5).   
 
The collapse of the wave function 
 
 In the 1920s, Heisenberg was not the only physicist unfamiliar with matrix 
algebra; many of his colleagues found the new mechanics uncongenial. They were 
more at home in the frequency domain and welcomed Erwin Schödinger’s equivalent 
formulation in terms of a “wave function.” Indeed, any stationary stochastic process 
indexed on time t has a unique power spectrum (i. e., variance) indexed on frequency f; 
by definition, t = 1/f. For example, the first-order autoregression in equation (2) has the 
power spectrum  

2σ2/(1+ρ2 - 2ρcos(2πf))        (6)  



for frequencies between 0 and ½ cycles per time period. If ρ is not much smaller than 1, 
the autoregression’s variance is concentrated at low frequencies; if ρ is close to -1, then 
high-frequency variation is dominant.  

The “dear radioactive ladies and gentlemen” (Pauli 1930) were probably happy to 
be at work again in the familiar domain of frequency, but an unpleasant surprise awaited 
them: the squared amplitudes of the Schrödinger equation do not correspond to actual 
waves at all but are instead probability densities as required by the uncertainty principle. 
For some physicists, that was a bridge too far. For example, how is the “collapse of the 
wave function” to be understood? The concept, inscrutable if one adheres to the notion 
of a physical wave, has a straightforward interpretation in terms of statistical sampling. 
While an experiment is being conceived and designed, several outcomes –perhaps 
many outcomes—are possible; and they can often be summarized by a probability 
density, e. g., the wave equation’s squared amplitudes. Once the experiment has been 
performed, the a priori probabilities no longer apply to that particular experiment 
because its outcome has been ascertained; the wave function has collapsed. Speaking 
carelessly, a researcher might say, “In my data set, the 95-percent confidence interval is 
the sample mean ± 5 centimeters, so there’s a 95-percent probability that the population 
mean falls in that range.”  Not so. The experiment has been performed, the sample has 
been drawn, the wave function has collapsed to either 1 or 0:  the population mean, 
although unknown, is either in the interval ū ± 5 cm or it is not. [However, it is correct to 
assert that the population mean falls within the computed interval for 95 percent of a 
large number of random samples (experiments) having the same number of 
observations.] 
 
Bell’s inequality 
 
 This issue “goes back to Einstein, who was never happy with the primacy of 
statistical laws in quantum theory. In 1935, in collaboration with Boris Podolsky and 
Nathan Rosen, he discovered one of the most puzzling paradoxes of the theory, which 
exhibits very clearly the grounds for his unease. The paradox relies on the fact that 
conservation laws often provide information about one part of the system in terms of 
another. For example, if a stationary atom spontaneously decays into two fragments, 
their momenta must be equal and opposite. Measuring the momentum of fragment A 
tells us the momentum of fragment B as well. This suggests that we might be able to 
beat the uncertainty principle by measuring the position of B and the momentum of A. 
Combining the information would give both the position and momentum of B” 
(Hannabuss 1997, p. 167), the so-called EPR paradox.   
 However, Neils Bohr and his colleagues argued that “the system” cannot be 
separated into parts: the wave equation pervades the system, and its collapse due to a 
measurement at one point simultaneously impacts the other particles; they are 
“entangled.” Einstein responded that such interactions across big distances (on an 
atomic scale) are counterintuitive, “spooky,” and reminiscent of discredited notions like 
the luminiferous ether. He concluded that quantum mechanics is “incomplete” and 
conjectured that there might be “hidden variables” of which physicists are still unaware.  
Naturally, Einstein argued that realism requires such hidden variables to act locally, not 
spookily.   



 Subsequently, David Bohm proposed a thought experiment that applies an EPR-
type strategy not to position and momentum but instead to the intrinsic angular 
momentum (spin) of a photon, which is characterized as being either up (+) or down (-). 
“An atom of calcium is irradiated by two lasers which excite it to a state of higher 
energy. It subsequently decays back to its original state emitting two photons of 
wavelengths 551.3 and 422.7 nanometers, respectively. Since the angular momentum 
of the initial and final states is the same one can show that the two photons emitted in 
opposite directions are identically polarized….By putting polarizing filters in the paths of 
the two photons one can find the correlations between them….” (Hannabuss 1997, p. 
170). 
 Quantum theory produces an expression for the correlation between the two 
photons, but a different expression is implied by theories that satisfy Einstein’s criteria 
for realism. Both theoretical correlations are functions of the angle at which the 
polarizing filter is set.  J. S. Bell produced a theorem showing the polarizing angles at 
which the quantum-mechanical correlation and the “realistic” correlation would differ the 
most. The theorem involves an inequality which, if violated by the experimental data, is 
considered to be evidence in favor of the quantum theory and against the realistic 
theory.    
 An experiment consists of generating many photon pairs and computing their 
correlation. This process is repeated for a series of polarizing angles between 0 and π, 
the angle being set after the photons have moved apart “so that the second photon 
would pass through its polarizing filter before any signal could arrive (even at the speed 
of light) to reveal which polarization direction had been chosen for the first filter. In this 
way direct communication between the photons could be ruled out” (Hannabus 1997, p. 
171-172); and Einstein’s local hidden variables could not be invoked to explain 
violations of Bell’s inequality.     
 The inequality has generated intense interest not only from physicists and 
mathematicians but also among philosophers of science and even in pop culture. Since 
the 1970s, Bell’s inequality has been subjected to numerous experiments of increasing 
sophistication; and with few exceptions the inequality is violated, which has been 
interpreted as a vindication of quantum theory. It remains the case, however, that the 
efficiency of the experiments is often low: only 5-30 percent of the photons pairs are 
actually detected at both polarizing filters, the requirement to compute the relative 
frequencies.  
 Khrennikov (2008) has recently pointed out that Bell’s inequality was known to 
mathematicians beginning with George Boole in the mid-nineteenth century. Of course, 
Boole and other mathematicians did not study the inequality in the context of quantum 
mechanics; instead they viewed it as a necessary condition for the existence of a single 
probability measure for the random variables. Violation of the inequality would mean 
that the probability space is not defined: for some values of the random variables, there 
would be negative probabilities, which are inadmissible. [Khrennikov (2008, p. 1457) 
comments briefly about the appearance of such anomalies in actual tests of Bell’s 
theorem.] 
 Khrennikov then summarizes the situation from a probabilist’s perspective: “We 
note that our considerations do not imply that the traditional interpretation of Bell’s 
inequality…should be rejected. In principle, Bell’s conditions (nonlocality, “death of 



reality”) can also be taken into account. Our aim is to show that Bell’s conditions are 
only sufficient but not necessary for a violation of Bell’s inequality. Therefore, other 
interpretations of the violation of this inequality are also possible. Bell’s alternatives, 
either quantum mechanics or local realism, can be extended: either the existence of a 
single probability measure for incompatible experimental contexts or quantum 
mechanics. We note that the existence of such a single probability was never assumed 
in the classical (Komolgorov) probability theory, but Bell used it to derive his 
inequality.…The question arises why we should use such an assumption in quantum 
physics although we have never used it in the classical probability theory….We 
emphasize that for mathematicians consideration of Bell-type inequalities did not 
provoke a revolutionary reconsideration of the laws of nature. The joint probability 
distribution does not exist simply because those observables cannot be measured 
simultaneously” (Khrennikov 2008, p. 1448, 1450).   
 In terms of Bohm’s version of the EPR experiment outlined above, Khrennikov 
argues that Bell erred in defining a single probability space for the entire apparatus; 
instead, a distinct probability space should be specified for each of the polarizing filters, 
which has its own operating characteristics and statistical variability. “In contrast to Bell, 
Boole would not be so excited by evidence of a violation of Bell’s inequality in the EPR-
Bohm experiment. The situation where pairwise probability distributions exist but a 
single probability measure cannot be constructed is rather common” (Khrennikov 2008, 
p. 1451).  
 “The consequences of the modern interpretation of the violation of Bell’s 
inequality for the foundations of quantum mechanics…are really tremendous. Hence, 
the conditions for deriving this inequality should be carefully checked” (Khrennikov 
2008, p. 1449).  
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