
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 68, pp. 1–16.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

BLOW UP OF SOLUTIONS TO ORDINARY DIFFERENTIAL

EQUATIONS ARISING IN NONLINEAR DISPERSIVE

PROBLEMS

MILENA DIMOVA, NATALIA KOLKOVSKA, NIKOLAI KUTEV

Communicated by Jerry Bona

Abstract. We study a new class of ordinary differential equations with blow
up solutions. Necessary and sufficient conditions for finite blow up time are

proved. Based on the new differential equation, a revised version of the con-

cavity method of Levine is proposed. As an application we investigate the
non-existence of global solutions to the Cauchy problem of Klein-Gordon, and

to the double dispersive equations. We obtain necessary and sufficient con-

dition for finite time blow up with arbitrary positive energy. A very general
sufficient condition for blow up is also given.

1. Introduction

The finite time blow up of the solutions to nonlinear dispersive equations has
been intensively investigated in the previous decades. The blow up phenomena
for semilinear wave equations, generalized Boussinesq equation, double dispersive
equation and others have been studied basically by means of the concavity Levine’s
method. The main idea in Levine’s method [8] is based on the fact that if a twice
continuously differentiable function z(t) is a concave function, i.e.

z′′(t) ≤ 0, t > 0 and z(0) > 0, z′(0) < 0, (1.1)

then there exists T∗, 0 < T∗ <∞ such that

z(t)→ 0 as t→ T∗, t < T∗. (1.2)

To apply Levine’s method to global non-existence of solutions to a nonlinear evo-
lution equation one has to find a positive, smooth function Ψ(t), such that z(t) =
Ψ1−γ(t) for some γ > 1 satisfies (1.1) or equivalently Ψ(t) is a solution to the
problem

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ 0, t > 0, γ > 1, Ψ(0) > 0, Ψ′(0) > 0. (1.3)

Then Ψ(t) tends to infinity for a finite time T∗.
In these applications Ψ(t) is a nonnegative functional of the solution to the corre-

sponding nonlinear dispersive equation. For example, for semilinear wave equations
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Ψ(t) is defined as Ψ(t) =
∫
R u

2(t, x) dx; while for fourth and sixth order differen-

tial equations Ψ(t) is a more complicated functional including the H1 norm of the
solution.

In a modification of the concavity method suggested in [4] the authors used that
if the function z(t), instead of (1.1), satisfies the second order differential inequality

z′′(t) + δz′(t) + µz(t) ≤ 0, t > 0, δ ≥ 0, µ ≥ 0 (1.4)

with suitable initial data, then there exists T∗ such that (1.2) holds. In this case if
Ψ(t) is a solution to the inequality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −2δΨ(t)Ψ′(t)− µΨ2(t), t > 0, γ > 1, δ ≥ 0, µ ≥ 0

equipped with appropriate initial conditions, then the function z(t) = Ψ1−γ(t)
satisfies (1.4).

Another application of the concavity method is done in [5, 13], where the in-
equality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −βΨ(t), t > 0, γ > 1, β > 0 (1.5)

is proposed. Then the function z(t) = Ψ1−γ(t) satisfies (1.1) for a spacial choice of
Ψ(0) and Ψ′(0).

In our previous paper [6] we suggest a new inequality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ αΨ2(t)− βΨ(t), t > 0, γ > 1, α > 0, β > 0. (1.6)

Note, that for suitable chosen initial data Ψ(0), Ψ′(0), the function z(t) = Ψ1−γ(t)
fulfills (1.1). In comparison with (1.5) the new inequality (1.6) includes an addi-
tional positive term αΨ2(t) on the right-hand side. This term naturally appears in
the investigation of some nonlinear dispersive equations as Klein-Gordon equation,
double dispersive equation with linear restoring force and others.

In [6] the finite time blow up of the solutions to inequality (1.6) is proved under
very general conditions on the initial data. However, these conditions are only
sufficient and not necessary ones.

Let us mention that in the concavity method there is no precise formulation of
the blow up result of the solutions to (1.3) and its generalizations (see [4, 5, 8, 13]).
Namely, the main assumption in this method is that Ψ(t) is a twice continuously
differentiable function for every t ≥ 0. However, under some conditions on the
initial data, it follows, that Ψ(t) blows up for a finite time, i.e. Ψ(t) is not defined
for every t ≥ 0.

To give a rigorous formulation of blow up for Ψ(t), we replace inequality (1.6)
by the corresponding differential equation

Ψ′′(t)Ψ(t)− γΨ′2(t) = αΨ2(t)− βΨ(t) +H(t), t ∈ [0, Tm), 0 < Tm ≤ ∞,
γ > 1, α > 0, β > 0.

(1.7)
Here Ψ(t) ∈ C2([0, Tm)) is a nonnegative solution to (1.7) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞ and

H(t) ∈ C([0, Tm)), H(t) ≥ 0 for t ∈ [0, Tm). (1.8)

Note, that in the analysis of nonlinear dispersive equations Ψ(t) is a solution to (1.7)
with some function H(t), see e.g. Lemma 4.4 below for Klein-Gordon equation.
Usually H(t) can not be expressed explicitly by Ψ(t). That is why, up to now, the
nonnegative term H(t) has been neglected and the corresponding inequality (1.6)
has been investigated.
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By equation (1.7) we are able to formulate and to prove necessary and sufficient
condition for blow up of Ψ(t) at the right-end point Tm (see Theorem 2.4). More-
over, we prove that the blow up time Tm is finite (see Theorem 2.3). In Theorem 3.1
we give new easy checkable sufficient condition for finite time blow up of the solu-
tions to (1.7). This condition generalizes the corresponding ones for blow up of the
solutions to inequality (1.6), given in [1, 6]. The necessary and sufficient condition
(2.7) sheds light on the reasons for blow up of the solutions to (1.7) and gives a
better understanding of the different sufficient conditions and their interrelations.

We apply the results for ordinary differential equation (1.7) to Klein-Gordon
equation

utt − uxx + u = f(u), (t, x) ∈ R+ × R, (1.9)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R, (1.10)

u0(x) ∈ H1(R), u1(x) ∈ L2(R) (1.11)

and to double the dispersive equation with linear restoring force

utt − uxx − uttxx + uxxxx + u+ f(u)xx = 0, (t, x) ∈ R+ × R, (1.12)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R, (1.13)

u0 ∈ H1(R) ∩ Ḣ−1(R), i.e. u0 ∈ H1(R), (−∆)−1/2u0 ∈ L2(R),

u1 ∈ L2(R) ∩ Ḣ−1(R), i.e. u1 ∈ L2(R), (−∆)−1/2u1 ∈ L2(R).
(1.14)

Here (−∆)−su = F−1
(
|ξ|−2sF(u)

)
for s > 0, F(u), F−1(u) are the Fourier trans-

form and the inverse Fourier transform, respectively.
The nonlinearity f(u) in (1.9) and (1.12) has one of the following two forms:

f(u) =

l∑
k=1

ak|u|pk−1u−
s∑
j=1

bj |u|qj−1u,

f(u) = a1|u|p1 +

l∑
k=2

ak|u|pk−1u−
s∑
j=1

bj |u|qj−1u,

(1.15)

where the constants ak, pk (k = 1, 2, . . . , l) and bj , qj (j = 1, 2, . . . , s) fulfill the
conditions

a1 > 0, ak ≥ 0, bj ≥ 0 for k = 2, . . . , l, j = 1, . . . , s,

1 < qs < qs−1 < · · · < q1 < p1 < p2 < · · · < pl < 5.
(1.16)

For example, the nonlinear term (1.15)-(1.16) includes the quadratic-cubic non-
linearity (f(u) = u2 + u3), which appears in a number of mathematical models
of physical processes, e.g. dislocations of crystals [9], propagation of longitudinal
strain waves in an isotropic cylindrical compressible elastic rod [11, 12] and others.

Let us recall that in the case of subcritical initial energy (0 < E(0) < d) the
global behaviour of the solutions is fully investigated by means of the potential well
method, suggested in [10] for semilinear wave equation. Further on, this method
has been applied to Klein-Gordon equation [16], double dispersive equation [7, 17],
more general classes of double dispersive nonlocal wave equations [2] and others.
According to the potential well method, the global existence or finite time blow up
of the solutions with subcritical initial energy is proved when the sign of the Nehari
functional I(0) is positive or negative, respectively.
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For the supercritical initial energy (E(0) > d) there are a few results for finite
time blow up of the solutions to (1.9)–(1.11) (see [5, 14, 15]) and (1.12)–(1.14) (see
[7]).

In this article we give, for the first time in the literature, necessary and sufficient
condition for finite time blow up of the solutions to (1.9)–(1.11) and (1.12)–(1.14)
with arbitrary positive initial energy, see Theorem 4.6 and Theorem 4.13. Although
the results in Theorem 4.6 and Theorem 4.13 are theoretical, they can be applied
to the numerical study of nonlinear dispersive equations. More precisely, one can
check whether the necessary and sufficient condition (4.13) is satisfied at some time
t = b > 0 by means of some reliable numerical approach.

Moreover, we find out very general sufficient condition on u0, u1 for which the
corresponding solution u(t, x) blows up for a finite time. We demonstrate that all
previous sufficient conditions in [1, 5, 6, 14, 15] for finite time blow up of u(t, x)
can be obtained as a consequence from this new sufficient condition.

The necessary and sufficient conditions (4.13) and (4.20) reveal the genesis of the
finite time blow up of the solutions to (1.9)–(1.11) and (1.12)–(1.14), respectively.
For example, when (4.13) is fulfilled at the initial time t = 0, we get the well known
in the applications sufficient condition for finite time blow up of the solutions to
Klein-Gordon equation [14, 15] (for the nonlinear wave equation see also [3]). Note,
that condition (4.13) at t = 0 is only sufficient and not necessary one. Our research
shows that any sufficient condition, prescribed at t = 0, ensures the satisfaction of
condition (4.13) at some later time t = b > 0.

This article is organized in the following way. In Section 2 necessary and sufficient
condition for finite time blow up of the solutions to (1.7) is proved. Easy checkable
sufficient condition for finite time blow up of the solutions to (1.7) is given in
Section 3. Section 4 deals with applications of the results from Section 2 and
Section 3 to Klein-Gordon and double dispersive equations with linear restoring
force.

2. Main results

We recall the definition for finite time blow up of a nonnegative smooth function.

Definition 2.1. The nonnegative function Ψ(t) ∈ C1([0, Tm)), 0 < Tm ≤ ∞, blows
up at Tm if

lim sup
t→Tm,t<Tm

Ψ(t) =∞. (2.1)

Below we formulate a simple property of functions that blow up.

Lemma 2.2. Suppose Ψ(t) ∈ C1([0, Tm)), 0 < Tm ≤ ∞, is a nonnegative function
and M is an arbitrary constant. If Ψ(t) blows up at Tm then there exists t0, t0 ∈
[0, Tm) such that Ψ(t0) ≥M and Ψ′(t0) > 0.

Proof. If Ψ(0) ≥ M and Ψ′(0) > 0, then Lemma 2.2 holds for t0 = 0. Otherwise,
from Definition 2.1 it follows that there exist t1, t3 ∈ (0, Tm), t3 > t1 such that
Ψ(t3) > Ψ(t1) > M . We denote by (t2, t3) ⊂ (t1, t3) the maximal interval where
Ψ(t) > Ψ(t1) for every t ∈ (t2, t3). From the mean value theorem there exists
t0 ∈ (t2, t3) such that

Ψ(t3)−Ψ(t2) = (t3 − t2)Ψ′(t0).

Since Ψ(t3) > Ψ(t2) and t3 > t2 we obtain that Ψ′(t0) > 0. From the choice of the
interval (t2, t3) it follows that Ψ(t0) ≥M . �
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The following theorem shows that blow up of the solutions to (1.7) under as-
sumption (1.8) does not occur at infinity, i.e. only finite time blow up is possible.

Theorem 2.3. Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative solution of the equa-
tion

Ψ′′(t)Ψ(t)− γΨ′2(t) = αΨ2(t)− βΨ(t) +H(t), t ∈ [0, Tm),

γ > 1, α > 0, β > 0,

where [0, Tm), 0 < Tm ≤ ∞ is the maximal existence time interval for Ψ(t) and
(1.8) holds. If Ψ(t) blows up at Tm then Tm <∞.

Proof. Suppose Ψ(t) blows at Tm. From Lemma 2.2 it follows that for M = β/α
there exist b ∈ [0, Tm) such that

Ψ(b) ≥ β/α and Ψ′(b) > 0. (2.2)

From equation (1.7) we have

Ψ′′(b) =
γΨ′2(b)

Ψ(b)
+ αΨ(b)− β +

H(b)

Ψ(b)
≥ γΨ′2(b)

Ψ(b)
> 0,

thus Ψ′(t) > Ψ′(b) > 0 for t ∈ [b, b+ ε) for some sufficiently small ε > 0.
We will show that Ψ′(t) > 0 for every t ∈ [b, Tm). If not, then there exists an

interval (b, t0), t0 ∈ (b, Tm), such that Ψ′(t) > 0 for t ∈ [b, t0) and Ψ′(t0) = 0.
Since Ψ(t) is a strictly monotone increasing function for t ∈ [b, t0] it follows that
Ψ(t) > Ψ(b) ≥ β/α for every t ∈ (b, t0]. Moreover, from (1.7) and (2.2) we have

Ψ′′(t) =
γΨ′2(t)

Ψ(t)
+ αΨ(t)− β +

H(t)

Ψ(t)
> αΨ(b)− β ≥ 0

for every t ∈ (b, t0]. Hence Ψ′(t) is a strictly increasing function for t ∈ (b, t0] and
we get the following impossible chain of inequalities

0 = Ψ′(t0) > Ψ′(b) > 0.

Thus Ψ′(t) > 0 for t ∈ [b, Tm) and consequently

Ψ(t) > Ψ(b) ≥ β/α > 0 for t ∈ (b, Tm). (2.3)

We define a function
z(t) = Ψ1−γ(t) for t ∈ [b, Tm),

that satisfies

z′(t) = (1− γ)Ψ−γ(t)Ψ′(t), z′′(t) = (1− γ)Ψ−1−γ [Ψ′′(t)Ψ(t)− γΨ′2(t)]. (2.4)

Function z(t) is a solution to the initial value problem

z′′(t) = −(γ − 1)
(
αz(t)− βz

γ
γ−1 (t) +H(t)z

γ+1
γ−1 (t)

)
for t ∈ [b, Tm)

z(b) > 0, z′(b) < 0.
(2.5)

To prove that Tm < ∞ we assume by contradiction that Tm = ∞. From (1.8),
(2.3) and (2.4) it follows that

z′′(t) = −(γ − 1)Ψ−γ(t)
(
αΨ(t)− β +

H(t)

Ψ(t)

)
≤ 0

for t ≥ b. Integrating z′′(t) ≤ 0 twice from b to t > b, we get

z′(t) ≤ z′(b), z(t) ≤ z′(b)(t− b) + z(b).
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Consequently, there exists T∗ > b such that z(T∗) = 0, or equivalently Ψ(T∗) =∞
for

T∗ ≤ b−
z(b)

z′(b)
= b+

Ψ(b)

(γ − 1)Ψ′(b)
<∞, (2.6)

which contradicts our assumption. Thus it follows that Tm <∞ and Theorem 2.3
is proved. �

The following theorem is one of the the main results in this article. We formulate
and prove necessary and sufficient condition for blow up of the solutions to (1.7) at
the right-end point of the existence time interval.

Theorem 2.4. Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative solution of the equa-
tion

Ψ′′(t)Ψ(t)− γΨ′2(t) = αΨ2(t)− βΨ(t) +H(t), t ∈ [0, Tm),

γ > 1, α > 0, β > 0,

where [0, Tm), 0 < Tm ≤ ∞ is the maximal existence time interval for Ψ(t), H(t) ∈
C([0,∞)), and H(t) ≥ 0 for t ∈ [0,∞). Then Ψ(t) blows up at Tm if and only if

there exists b ∈ [0, Tm) such that β ≤ αΨ(b) and Ψ′(b) > 0. (2.7)

Moreover,

Tm ≤ b+
Ψ(b)

(γ − 1)Ψ′(b)
<∞ . (2.8)

Proof. (Necessity) Suppose Ψ(t) blows up at Tm. Then condition (2.7) holds from
Lemma 2.2 for M = β/α and b = t0.

(Sufficiency) Suppose (2.7) holds. From the proof of Theorem 2.3 it follows that
Tm <∞. Moreover, Ψ(t) is a strictly increasing function for t ∈ [b, Tm).

If we assume that ψ(t) does not blow up at Tm, i.e. (2.1) fails, then

lim sup
t→Tm,t<Tm

Ψ(t) <∞.

From the monotonicity and boundedness of Ψ(t) for t ∈ [b, Tm) we get

lim
t→Tm

Ψ(t) = Ψ(Tm) <∞. (2.9)

As in the proof of Theorem 2.3 after the substitution z(t) = Ψ1−γ(t), t ∈ [b, Tm)
we get that z(t) satisfies problem (2.5). Integrating the equation in (2.5) from b to
t < Tm we get

z′(t) = z′(b)− (γ − 1)

∫ t

b

(
αz(s)− βz

γ
γ−1 (s) +H(s)z

γ+1
γ−1 (s)

)
ds

or equivalently, from (2.4),

Ψ′(t) = Ψγ(t)
[ Ψ′(b)

Ψγ(b)
+

∫ t

b

(
αΨ1−γ(s)− βΨ−γ(s) +H(s)Ψ−γ−1(s)

)
ds
]
. (2.10)

Thus from (2.3), (2.9) and (2.10) we have

lim
t→Tm

Ψ′(t) =Ψγ(Tm)
[ Ψ′(b)

Ψγ(b)
+

∫ Tm

b

(
αΨ1−γ(s)− βΨ−γ(s) +H(s)Ψ−γ−1(s)

)
ds
]

=Ψ′(Tm), 0 < Ψ′(Tm) <∞.
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According to the theory of the initial value problems for ordinary differential
equations, the problem

Ψ̃′′(t)Ψ̃(t)− γΨ̃′2(t) = αΨ̃2(t)− βΨ̃(t) +H(t) for t ≥ Tm,

Ψ̃(Tm) = Ψ(Tm), Ψ̃′(Tm) = Ψ′(Tm)

has a classical solution Ψ̃ in the interval [Tm, Tm + δ), where δ > 0 is a sufficiently
small number. Hence the function

Ψ̂(t) =

{
Ψ(t) for t ∈ [0, Tm),

Ψ̃(t) for t ∈ [Tm, Tm + δ),

Ψ̂(t) ∈ C2([0, Tm + δ)), Ψ̂(t) ≥ 0 and is a classical nonnegative solution of (1.7)
in the interval [0, Tm + δ) which contradicts the choice of Tm. Hence Ψ(t) blows
up at Tm and from (2.6) it follows that Tm satisfies (2.8). Thus Theorem 2.4 is
proved. �

3. Sufficient conditions for finite time blow up

In this section we give some easy checkable sufficient condition on the initial
data Ψ(0) and Ψ′(0) for finite time blow up of the solutions to (1.7). This result is
important for the applications of Theorem 2.4 to nonlinear dispersive equations.

Theorem 3.1. Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative solution of (1.7) in
the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞, H(t) ∈ C([0,∞)) and
H(t) ≥ 0 for t ∈ [0,∞). If

β <
2γ − 1

2

Ψ′2(0)

Ψ(0)
+
α(2γ − 1)

2(γ − 1)
Ψ(0)− α2γ−1Ψ2γ−1(0)

2(γ − 1)β2γ−2 , (3.1)

Ψ′(0) > 0, (3.2)

then Ψ(t) blows up at Tm <∞.

Proof. Firstly, we will show that Ψ′(t) > 0 for every t ∈ [0, Tm). If not, from (3.2)
there exist an interval [0, t0) such that Ψ′(t) > 0 for t ∈ [0, t0) and Ψ′(t0) = 0. From
(1.7) and (3.2) it follows that Ψ(0) > 0. Taking into account the monotonicity of
Ψ(t) in the interval [0, t0), we conclude that Ψ(t) > 0 for t ∈ [0, t0]. After the change
z(t) = Ψ1−γ(t) for t ∈ [0, t0] and using identities (2.4), we obtain the equation

z′′(t) = −(γ − 1)
(
αz(t)− βz

γ
γ−1 (t) +H(t)z

γ+1
γ−1 (t)

)
for t ∈ [0, t0]. (3.3)

Multiplying (3.3) by z′(t) and integrating from 0 to t ∈ (0, t0] we get

z′2(t) = −α(γ − 1)z2(t) +
2β(γ − 1)2

2γ − 1
z

2γ−1
γ−1 (t)

− 2(γ − 1)

∫ t

0

H(s)z′(s)z
γ+1
γ−1 (s) ds+ C̃.

(3.4)

From (2.4) we obtain

C̃ = z′2(0) + α(γ − 1)z2(0)− 2β(γ − 1)2

2γ − 1
z

2γ−1
γ−1 (0) =

2(γ − 1)2

2γ − 1
Ψ1−2γ(0)C,

where

C =
2γ − 1

2

Ψ′2(0)

Ψ(0)
+
α(2γ − 1)

2(γ − 1)
Ψ(0)− β. (3.5)
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From (3.1) we have C > 0.
By (2.4), equation (3.4) is equivalent to

Ψ′2(t) =− α

γ − 1
Ψ2(t) +

2β

2γ − 1
Ψ(t) +

2C

2γ − 1
Ψ1−2γ(0)Ψ2γ(t)

+ 2Ψ2γ(t)

∫ t

0

H(s)Ψ′(s)Ψ−2γ−1(s) ds.

Hence the inequality

Ψ′2(t) ≥
(
− α

γ − 1
Ψ(t) +

2β

2γ − 1
+

2C

2γ − 1
Ψ1−2γ(0)Ψ2γ−1(t)

)
Ψ(t)

= G(Ψ)Ψ(t)

holds, where

G(y) = − α

γ − 1
y +

2β

2γ − 1
+

2C

2γ − 1
Ψ1−2γ(0)y2γ−1.

From the identities

∂G

∂y
= − α

γ − 1
+ 2CΨ1−2γ(0)y2γ−2,

∂2G

∂y2
= 4(γ − 1)CΨ1−2γ(0)y2γ−3 > 0 for y > 0

it follows that G(y) has a minimum in [0,∞) at the point

y0 =
(αΨ2γ−1(0)

2(γ − 1)C

) 1
2γ−2

.

Simple computations give us

G(y0) =
2

2γ − 1

[
β − α

(αΨ2γ−1(0)

2(γ − 1)C

) 1
2γ−2

]
.

From (3.1) and (3.5) it follows that G(y0) > 0, hence

Ψ′2(t) ≥ G(Ψ)Ψ(t) ≥ G(y0)Ψ(t) > 0 for t ∈ [0, t0]. (3.6)

For t = t0 we obtain the following impossible chain of inequalities

0 = Ψ′2(t0) ≥ G(y0)Ψ(t0) > 0.

Thus Ψ′(t) > 0 and consequently Ψ(t) > 0 for every t ∈ [0, Tm). Moreover, from
(3.6) we get

Ψ′(t) ≥
√
G(y0)Ψ(t). (3.7)

Integrating (3.7) we obtain

Ψ(t) ≥
( t

2

√
G(y0) +

√
Ψ(0)

)2
.

For

t = b = max
(

2
(√

β/α−
√

Ψ(0)
)
G−1/2(y0), 0

)
we get that Ψ(b) ≥ β/α. Since Ψ′(b) > 0 condition (2.7) of Theorem 2.4 is satisfied.
Hence the function Ψ(t) blows up at Tm <∞. �
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Let us recall that sufficient conditions for finite time blow up of the solutions to
(1.6) are obtained in [6] and [1]. Note, that every solution Ψ(t) of equation (1.7) is
also a solution to inequality (1.6). Hence, the sufficient conditions for blow up of
the solutions to (1.7) are also sufficient ones for blow up of the solutions to (1.6).
This allows us to compare the result in [1, 6] with the result in the present paper.

Below we will show that the proofs of the results in [1, 6] follow from Theorem 3.1
and Theorem 2.4. In this way we get a unified approach for proving blow up of
solution to (1.6).

Theorem 3.2. Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative solution of (1.7) in
the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞, H(t) ∈ C([0,∞)) and
H(t) ≥ 0 for t ∈ [0,∞). If Ψ′(0) > 0 and one of the following conditions

(i) β < αΨ(0);
(ii) [6]

β <
2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0); (3.8)

(iii) [1]

β <
2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0) +

αΨ(0)

2(γ − 1)
(1−A2−2γ), A =

γ − 1

α

Ψ′2(0)

Ψ2(0)
+ 1

is satisfied, then Ψ(t) blows up at Tm <∞.

Proof. The proof of (i) follows directly from Theorem 2.4 for b = 0.
(ii) Case 1: If β < αΨ(0), then (ii) follows from Theorem 3.2(i).

Case 2: Suppose that

αΨ(0) ≤ β < 2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0) . (3.9)

Straightforward computations show that (3.1) also holds. Indeed, from (3.9) we get

β2γ−2
(2γ − 1

2

Ψ′2(0)

Ψ(0)
+
α(2γ − 1)

2(γ − 1)
Ψ(0)− β

)
> β2γ−2 αΨ(0)

2(γ − 1)

≥ α2γ−2Ψ2γ−2(0)
αΨ(0)

2(γ − 1)
=
α2γ−1Ψ2γ−1(0)

2(γ − 1)
,

which is equivalent to (3.1). Thus (ii) follows from Theorem 3.1
(iii) Case 1: If (3.8) holds, then (iii) follows from Theorem 3.2(ii).

Case 2: Suppose that

2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0) ≤ β < 2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0) +

αΨ(0)

2(γ − 1)
(1−A2−2γ) .

We will show that (3.1) is also fulfilled. Indeed, direct computations give us

β2γ−2
(2γ − 1

2

Ψ′2(0)

Ψ(0)
+
α(2γ − 1)

2(γ − 1)
Ψ(0)− β

)
> β2γ−2 αΨ(0)

2(γ − 1)
A2−2γ
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≥
(2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0)

)2γ−2 αΨ(0)

2(γ − 1)
A2−2γ

=
α2γ−1Ψ2γ−1(0)

2(γ − 1)

[
1 +

1

2(γ − 1)

(
1− 1

A

)]2γ−2
>
α2γ−1Ψ2γ−1(0)

2(γ − 1)
,

which is equivalent to (3.1). Thus (iii) follows from Theorem 3.1. �

4. Applications to nonlinear dispersive equation

In this section we consider the Cauchy problem for the Klein-Gordon equation
(1.9)–(1.11) and double dispersive equation with linear restoring force (1.12)-(1.14).
For functions depending on t and x we use the following short notation:

‖u‖ = ‖u(t, ·)‖L2(R), ‖u‖1 = ‖u(t, ·)‖H1(R),

(u, v) = (u(t, ·), v(t, ·)) =

∫
R
u(t, x)v(t, x) dx.

We recall the definition for blow up of the solutions to (1.9)-(1.11) and (1.12)-(1.14).

Definition 4.1. Suppose u(t, x) is a solution to (1.9)-(1.11) or (1.12)-(1.14) in the
maximal existence time interval [0, Tm), 0 < Tm ≤ ∞. Then u(t, x) blows up at
Tm if

lim sup
t→Tm, t<Tm

‖u‖1 =∞. (4.1)

4.1. Klein-Gordon equation. We use the following well known local existence
result for problem (1.9)-(1.11).

Theorem 4.2. Problem (1.9)-(1.11) admits a unique local solution u(t, x) that
belongs to C([0, Tm); H1(R))∩C1([0, Tm); L2(R))∩C2([0, Tm); H−1(R) on a maximal
existence time interval [0, Tm), Tm ≤ ∞. Moreover:

(i) If lim supt→Tm,t<Tm ‖u‖1 <∞, then Tm =∞;
(ii) For every t ∈ [0, Tm) the solution u(t, x) satisfies the conservation law

E(t) = E(0), where

E(t) := E(u(t, ·)) =
1

2

(
(ut, ut) + (u, u) + ‖ux‖2

)
−
∫
R

∫ u

0

f(y) dy dx. (4.2)

The following lemma gives an equivalent form of Definition 4.1 for blow up of
the solutions to (1.9)-(1.11) using the subquintic growth of the nonlinearity term
(1.15), (1.16) i.e. pl < 5. Let us underline, that the restriction on the growth of
the nonlinear term is essential for the result in Lemma 4.3 as well as in the further
statements.

Lemma 4.3. Suppose u(t, x) is the solution to (1.9)-(1.11) in the maximal existence
time interval [0, Tm), 0 < Tm ≤ ∞. Then the blow up of the H1 norm of u(t, x) is
equivalent to the blow up of the L2 norm of u(t, x) at Tm, i.e.
lim supt→Tm, t<Tm ‖u‖1 =∞ if and only if

lim sup
t→Tm,t<Tm

‖u‖ =∞. (4.3)
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Proof. (Necessity) Suppose (4.1) holds. From the definition of H1 norm it follows
that either lim supt→Tm,t<Tm ‖u‖ =∞, i.e. (4.3) is satisfied, or

lim sup
t→Tm,t<Tm

‖ux‖ =∞ (4.4)

and lim supt→Tm,t<Tm ‖u‖ <∞. Hence

‖u(t, ·)‖ ≤ C1 (4.5)

holds for every t ∈ [0, Tm) and some constant C1. From the Garliardo-Nirenberg
inequality we get

‖u‖Lp+1(R) ≤ Cp‖ux‖
p−1

2(p+1) ‖u‖
p+3

2(p+1) ≤ CpC
p+3

2(p+1)

1 ‖ux‖
p−1

2(p+1) (4.6)

for every p > 1 and some constant Cp depending only on p.
By Young’s inequality for every ε > 0 we have∫

R
|u(t, x)|p+1 dx ≤ ε‖ux‖2 +

5− p
4

(p− 1

4

) p−1
5−pC

4(p+1)
5−p

p C
2(p+3)
5−p

1 ε−
p−1
5−p . (4.7)

Applying (4.7) for p = pk < 5, k = 1, 2, . . . , l, and ε =
(
4
∑l
k=1

ak
pk+1

)−1
we obtain

from the conservation law (4.2) the estimate

E(0) =
1

2

(
(ut, ut) + (u, u) + ‖ux‖2

)
−

l∑
k=1

ak
pk + 1

∫
R
|u|pk+1 dx

+

s∑
j=1

bj
qj + 1

∫
R
|u|qj+1 dx ≥ 1

2
‖ux‖2 −

1

4
‖ux‖2 − C2,

where

C2 =

l∑
k=1

ak
pk + 1

5− pk
4

(pk − 1

4

) pk−1

5−pk C
4(pk+1)

5−pk
pk C

2(pk+3)

5−pk
1

(
4

l∑
k=1

ak
pk + 1

) pk−1

5−pk <∞.

Hence ‖ux‖2 ≤ 4(E(0) + C2) < ∞ for every t ∈ [0, Tm) which contradicts (4.4).
Thus lim supt→Tm,t<Tm ‖u‖ =∞.

(Sufficiency) Suppose (4.3) holds. Then from the inequality ‖u‖ ≤ ‖u‖1 it is obvious
that (4.1) is satisfied. The proof is complete. �

Later on we need the following auxiliary result.

Lemma 4.4. Suppose u(t, x) is the solution to (1.9)-(1.11) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞. Then the function Ψ(t) = (u, u)
satisfies the equation

Ψ′′(t)Ψ(t)− p1 + 3

4
Ψ′2(t) = (p1 − 1)Ψ2(t)− 2(p1 + 1)E(0)Ψ(t) +H(t), (4.8)

where

H(t) =(p1 + 3)
[
(ut, ut)(u, u)− (u, ut)

2
]

+
[
2(p1 + 1)B(t) + (p1 − 1)‖ux‖2)

]
(u, u) ≥ 0

(4.9)

and

B(t) =

l∑
k=2

ak(pk − p1)

(pk + 1)(p1 + 1)

∫
R
|u|pk+1 dx+

s∑
j=1

bj(p1 − qj)
(qj + 1)(p1 + 1)

∫
R
|u|qj+1 dx.

(4.10)
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Proof. By (1.9) and (4.2), we get the following identities for Ψ(t):

Ψ′(t) = 2(u, ut),

Ψ′′(t) = 2(ut, ut) + 2(u, utt) = 2(ut, ut)− 2‖u‖21 + 2

∫
R
uf(u) dx

= (p1 + 3)(ut, ut)− 2(p1 + 1)E(0) + (p1 − 1)(u, u)

+ (p1 − 1)‖ux‖2 + 2(p1 + 1)B(t),

where B(t) is given by (4.10). From (1.16) we have

B(t) ≥ 0 for t ∈ [0, Tm). (4.11)

Substituting Ψ′(t) and Ψ′′(t) in the left-hand side of (4.8), we get that Ψ(t) is a
solution to (4.8). Here H(t) is given in (4.9) and H(t) ≥ 0 from (4.11) and the
Cauchy - Schwarz inequality. Lemma 4.4 is proved. �

Theorem 4.5. Suppose u(t, x) is the solution to (1.9)-(1.11) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞ and E(0) > 0. If u(t, x) blows up at
Tm, then Tm <∞.

Proof. From Lemma 4.4 we get that the function Ψ(t) = (u, u) satisfies in [0, Tm)
equation (4.8). Hence, Ψ(t) is a solution to (1.7) for

α = p1 − 1, β = 2(p1 + 1)E(0) > 0, γ =
p1 + 3

4
> 1 (4.12)

and H(t) defined in (4.9). From Lemma 4.3 it follows that Ψ(t) = (u, u) blows at
Tm. Applying Theorem 2.3 we get that Tm < ∞. Thus the solution u(t, x) blows
up for a finite time Tm <∞. Theorem 4.5 is proved. �

Theorem 4.6. Suppose u(t, x) is the solution to (1.9)-(1.11) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞ and E(0) > 0. Then u(t, x) blows up
at Tm if and only if there exists b ∈ [0, Tm) such that

E(0) ≤ p1 − 1

2(p1 + 1)
(u(b, ·), u(b, ·)) and (u(b, ·), ut(b, ·)) > 0. (4.13)

Moreover,

Tm ≤ b+
2

(p1 − 1)

(u(b, ·), u(b, ·))
(u(b, ·), ut(b, ·))

<∞ .

Proof. (Necessity) Suppose u(t, x) blows up at Tm, i.e. (4.1) holds. By Lemma 4.3
it follows that lim supt→Tm,t<Tm ‖u‖ =∞, i.e. Ψ(t) = (u, u) blows up at Tm. Then
from Lemma 2.2 for M = 2(p1 + 1)E(0)/(p1 − 1) and b = t0 condition (4.13) is
satisfied.

(Sufficiency) Suppose (4.13) holds. We assume by contradiction that u(t, x) does
not blow up at Tm, i.e according to Definition 4.1 we have

lim sup
t→Tm,t<Tm

‖u(t, ·)‖1 <∞. (4.14)

From the local existence result in Theorem 4.2(i) it follows that Tm = ∞. Then
Ψ(t) = (u, u) satisfies (1.7) in [0,∞) for α, β, γ defined in (4.12). Note, that now
H(t), given in (4.9), is a nonnegative function for every t ≥ 0. Moreover, condition
(2.7) in Theorem 2.4 is fulfilled from (4.13). Applying Theorem 2.4 we get that
Ψ(t) = (u, u) blows up at Tm, which contradicts our assumption (4.14). The proof
is complete. �
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In the following theorems we give general sufficient conditions on the initial data
u0 and u1, which guarantee finite time blow up of the solutions to problem (1.9)-
(1.11).

Theorem 4.7. Suppose u(t, x) is the solution to (1.9)-(1.11) with E(0) > 0 defined
in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞. If (u0, u1) > 0 and

E(0) <
1

2

(u0, u1)2

(u0, u0)
+

1

2
(u0, u0)−

(p1 − 1

2

) p1−1
2
( (u0, u0)

p1 + 1

) p1+1
2 E

1−p1
2 (0),

then u(t, x) blows up at Tm <∞.

Theorem 4.8. Suppose u(t, x) is the solution to (1.9)-(1.11) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞ and E(0) > 0. If (u0, u1) > 0 and one
of the following conditions

(i) [14, 15]

E(0) <
p1 − 1

2(p1 + 1)
(u0, u0) ,

(ii) [6]

E(0) <
1

2

(u0, u1)2

(u0, u0)
+

p1 − 1

2(p1 + 1)
(u0, u0) ,

(iii) [1]

E(0) <
1

2

(u0, u1)2

(u0, u0)
+

p1 − 1

2(p1 + 1)
(u0, u0) +

(u0, u0)

p1 + 1

[
1−

(
1 +

(u0, u1)2

(u0, u0)2

) 1−p1
2
]

is satisfied, then u(t, x) blows up at Tm <∞.

Theorems 4.7 and 4.8 follow from Theorems 3.1 and 3.2, respectively, for α, β,
γ defined in (4.12) and Ψ(t) = (u, u), Ψ(0) = (u0, u0), Ψ′(0) = 2(u0, u1).

Remark 4.9. From Lemma 4.4, neglecting the nonnegative terms (p1 − 1)Ψ2(t)
and H(t) in (4.8), it follows that Ψ(t) = (u, u) satisfies (1.5) for γ = p1+3

4 > 1 and
β = 2(p1 + 1)E(0) > 0. By the idea of the proof of Theorem 3.1 one can get the
result in [5, 13], i.e. under the conditions:

(u0, u1) > 0, 0 < E(0) <
1

2

(u0, u1)2

(u0, u0)
(4.15)

the solution to (1.9)-(1.11) blows up for a finite time.

Remark 4.10. For the first time condition (i) in Theorem 4.8 was proposed in
[3] for proving blow up of the solution to semilinear wave equation with arbitrary
high initial energy. Let us emphasize that this sufficient condition coincides with
the necessary and sufficient one (4.13) formulated for b = 0. The other sufficient
conditions (ii), (iii) in Theorem 4.8 and (4.15) guarantee the validity of condition
(4.13) for some later time t = b. We can conclude that for any other sufficient
condition for finite time blow up, given at t = 0, the corresponding solution must
satisfy (4.13) for some t = b > 0.
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4.2. Double dispersive equation with linear restoring force. In the space
L2(R) ∩ Ḣ−1(R) we define the scalar product

〈u, v〉 = 〈u(t, ·), v(t, ·)〉 = (u, v) +
(

(−∆)−1/2u, (−∆)−1/2v
)
. (4.16)

Under the regularity conditions (1.14) problem (1.12)-(1.14) has a unique solution

u(t, x) ∈ C([0, Tm); H1(R)) ∩ C1([0, Tm); L2(R)) ∩ C2([0, Tm); H−1(R))

on a maximal existence time interval [0, Tm), Tm ≤ ∞, and if

lim sup
t→Tm,t<Tm

‖u‖1 <∞ then Tm =∞.

Moreover, for every t ∈ [0, Tm) the solution u(t, x) to (1.12)-(1.14) satisfies the
conservation law E(t) = E(0), where

E(t) := E(u(·, t)) =
1

2

(
〈ut, ut〉+ 〈u, u〉+ ‖ux‖2

)
−
∫
R

∫ u

0

f(y) dy dx. (4.17)

The results for double dispersive equation with linear restoring force (1.12)-
(1.14) are identical with the results for Klein-Gordon equation (1.9)-(1.10), proved
in Subsection 4.1. The main deference is that the standard scalar product (·, ·) has
to be replaced with the scalar product 〈·, ·〉 given in (4.16). In particular, Lemma 4.3
holds also for the solutions to (1.12)-(1.14). However, in addition to Lemma 4.3,
we need the following equivalence of the blow up of H1 norm of the solution u(t, x)
to (1.12)-(1.14) at Tm and the blow up of 〈u, u〉 at Tm.

Lemma 4.11. Suppose u(t, x) is the solution to (1.12)-(1.14) in the maximal exis-
tence time interval [0, Tm), 0 < Tm ≤ ∞. Then the blow up of H1 norm of u(t, x) at
Tm is equivalent to the blow up of 〈u(t, ·), u(t, ·)〉 at Tm, i.e. lim supt→Tm,t<Tm ‖u‖1 =
∞ if and only if

lim sup
t→Tm,t<Tm

〈u(t, ·), u(t, ·)〉 =∞. (4.18)

Proof. If lim supt→Tm ‖u‖1 = ∞ from Lemma 4.3 and definition (4.16) it follows
that 〈u(t, ·), u(t, ·)〉 blows up at Tm. Conversely, suppose that (4.18) holds but

lim sup
t→Tm

‖u‖1 <∞. (4.19)

From definition (4.16) we get lim supt→Tm
(
(−∆)−1/2u, (−∆)−1/2u

)
= ∞. By the

conservation law (4.17) it follows that at least one of the norms ‖u‖Lpk tends to
infinity for t→ Tm. Hence, from the embedding of H1 into Lpk , pk > 2 we get that
‖u‖1 blows up at Tm, which contradict (4.19). The proof is complete. �

For a function Ψ(t) = 〈u, u〉 the statements in Lemma 4.4, Theorem 4.5, Theo-
rem 4.6, and Theorem 4.7 are true for the solutions to problem (1.12)-(1.14) with
the formal change of notation (·, ·) by 〈·, ·〉. Below we only formulate the corre-
sponding results without proofs.

Theorem 4.12. Suppose u(t, x) is the solution to (1.12)-(1.14) defined in the max-
imal existence time interval [0, Tm), 0 < Tm ≤ ∞ and E(0) > 0. If u(t, x) blows
up at Tm then Tm <∞.
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Theorem 4.13. Suppose u(t, x) is the solution to (1.12)-(1.14) defined in the max-
imal existence time interval [0, Tm), 0 < Tm ≤ ∞ and E(0) > 0. Then u(t, x) blows
up at Tm if and only if there exists b ∈ [0, Tm) such that

E(0) ≤ p1 − 1

2(p1 + 1)
〈u(b, ·), u(b, ·)〉 and 〈u(b, ·), ut(b, ·)〉 > 0. (4.20)

Moreover,

Tm ≤ b+
2

(p1 − 1)

〈u(b, ·), u(b, ·)〉
〈u(b, ·), ut(b, ·)〉

<∞ .

Theorem 4.14. Suppose u(t, x) is the solution to (1.12)-(1.14) defined in the max-
imal existence time interval [0, Tm), 0 < Tm ≤ ∞ and E(0) > 0. If 〈u0, u1〉 > 0
and

E(0) <
1

2

〈u0, u1〉2

〈u0, u0〉
+

1

2
〈u0, u0〉 −

(p1 − 1

2

) p1−1
2
( 〈u0, u0〉
p1 + 1

) p1+1
2

E
1−p1

2 (0),

then u(t, x) blows up at Tm <∞.
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