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Abstract. This article studies the existence and nonexistence of global so-
lutions to the initial boundary value problems for semilinear wave and heat

equation, and for Cauchy problem of nonlinear Schrödinger equation. This

is done under three possible initial energy levels, except the NLS as it does
not have comparison principle. The most important feature in this article is a

new hypothesis on the nonlinear source terms which can include at least eight

important and popular power-type nonlinearities as special cases. This article
also finds some kinds of divisions for the initial data to guarantee the global

existence or finite time blowup of the solution of the above three problems.
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1. Introduction

We consider the following three problems: the initial boundary value problem of
semilinear hyperbolic equation

utt −∆u = f(u), x ∈ Ω, t > 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0; (1.3)

the initial boundary value problem of semilinear parabolic equation

ut −∆u = f(u), x ∈ Ω, t > 0, (1.4)

u(x, 0) = u0(x), x ∈ Ω, (1.5)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0; (1.6)

and the Cauchy problem of semilinear Schrödinger

iut + ∆u = f(u), x ∈ Rn, t > 0, (1.7)

u(x, 0) = u0(x), x ∈ Rn, (1.8)

where Ω ⊂ Rn is a bounded domain. The motivation of this paper is try to extend
the nonlinear term to a more general case as follows:

(A1) (i) f ∈ C1, there exists a constant p > 1 such that

u
(
uf ′(u)− pf(u)

)
≥ 0, ∀u ∈ R;

(ii) there exist constants q > 1, ak > 0 and 1 ≤ k ≤ l such that

|u|q < |f(u)| ≤
l∑

k=1

ak|u|pk ,

1 < pl < pl−1 < · · · < p1 <
n+ 2
n− 2

for n ≥ 3;

1 < pl < pl−1 < · · · < p1 <∞ for n = 1, 2.

The three model equations considered in the present paper are all the important
well-known classical model equations. During these years, these model equations
attract so many attentions and it is impossible to mention all of them. Especially,
these established results for each of these three model equations seem to be “par-
titioned” into equivalence classes, as there are many different apparently unlinked
methods for each of these three equations. In particular, we mention the potential
well method introduced by Payne and Sattinger [20] and its applications on these
three model equations in the present paper.

1.1. Wave equations. Based on mountain pass theorem and the Nehari manifold,
Sattinger [24] firstly studied problem (1.1)-(1.3) with nonlinear source |u|p−2u by
introducing potential well method. Using the same method, Payne and Sattinger
[20] extended the results to the following semilinear hyperbolic equation

utt −∆u = f(u) (1.9)

with a general source f(u), where f(u) satisfies some assumptions, which will be dis-
cussed later. They studied a series of properties of energy functional and invariant
sets, and also proved the finite time blow up of solutions. Under the same assump-
tions on f(u) as in [20], Liu and Zhao [18] introduced a family of potential wells and
obtained global existence and blow up of solutions for the initial boundary value
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problem of (1.9) with sub-critical initial energy, i.e. E(0) < d. They also proved the
global existence of solutions with critical initial energy E(0) = d. After that, Liu
and Xu [17] extended the results to the initial boundary value problem of (1.9) with
combined nonlinear source terms of different sign

∑l
k=1 ak|u|pk−1u−

∑s
j=1 bj |u|qj−1,

which can not be included by the assumptions of f(u) in [20]. They obtained the
global and blow-up solutions with sub-critical initial energy and proved the global
existence of solution with critical initial energy. Subsequently, Xu [28] proved the
blow up of solutions for the initial boundary value problem of (1.9) with critical
initial energy and gave the sharp condition for global existence of solution. In [26],
Wang considered the finite time blow up of solution for nonlinear Klein-Gordon
equation with the same source f(u) as in [20] with arbitrary high initial energy, i.e.
E(0) > 0. Some others interesting results at positive initial energy can be found in
[21, 22].

1.2. Heat equations. For problem (1.4)-(1.6) with nonlinear source term |u|p−1u,
Ikehata and Suzuki [7] investigated the parabolic equation

ut −∆u = |u|p−1u. (1.10)

Depending on the initial datum u0, it was shown that the problem admit both
solutions which blow up in finite time and globally exist to converge to u ≡ 0 as
time tends to infinity with sub-critical initial energy, i.e. J(u0) < d. In [18], Liu
and Zhao extended these results to a general source f(u) in [20]

ut −∆u = f(u). (1.11)

By introducing a family of potential wells, they proved the finite time blow up of
solution and gave a sharp condition of global existence of solution with sub-critical
initial energy. Liu and Xu [17] considered problem (1.10) with combined nonlinear
source terms of different sign

∑l
k=1 ak|u|pk−1u−

∑s
j=1 bj |u|qj−1, they showed that

the global existence conclusions of wave equation with this nonlinearity also hold
for reaction-diffusion equation, and they proved the blow up of solution with sub-
critical initial energy, i.e. E(0) < d. Then Xu [28] continued to study problem
(1.11) with critical initial energy, i.e. J(u0) = d, he obtained the blow up of solution
with critical initial data and also gave the sharp condition of global existence of
solutions. Gazzola and Weth [11] investigated problem (1.10), they used comparison
principle and variational methods to obtain the global solution and finite time blow
up solutions in arbitrary high initial energy level, i.e. J(u0) > 0. Later, these works
attracted a lot of attentions [16, 4, 14].

1.3. NLS equations. In [12], Ginibre and Velo studied the nonlinear Schrödinger
equation

iut + ∆u = |u|p−1u,

u(0, x) = u0(x), x ∈ Rn,
(1.12)

they established the local well-posedness of this Cauchy problem in the energy space
H1
x(Rn). After that, Zakharov [31], Glassey [13], Ogawa and Tsutsumi [19] proved

that when p ≥ 1+ 4
n , the solution of problem (1.12) blows up in finite time for some

initial data, especially for negative energy. Weinstein [27] gave a crucial criterion in
terms of L2-mass of the initial data for p = 1 + 4

n . Zhang [32] investigated problem
(1.12) and gave the sharp sufficient condition of blowup and global solutions in R2
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and RN separately. Tao, Visan and Zhang [25] systematically studied the following
nonlinear Schrödinger equation with combined power-type nonlinearities

iut + ∆u = λ1|u|p1u+ λ2|u|p2u,
u(0, x) = u0(x),

(1.13)

they obtained local and global well-posedness, asymptotic behaviour (scattering),
and finite time blow up of solutions. More precisely, they proved these phenomena
under different conditions of parameters λ1, λ2, p1 and p2. We also recommend the
readers [3] and the references therein to get more conclusions about the nonlinear
Schrödinger equations.

As mentioned above, the established results not only extend the conclusions from
negative energy blow up to positive energy blow up, from sub-critical initial energy
to critical energy then to sup-critical energy, but also extend the nonlinear term
to more general form. By observing the nonlinearities considered in the literatures
we can list the following popular cases, which frequently appear in the physical or
mathematical models:

(i) a|u|p−1u, a > 0, p > 1;
(ii) a|u|p, a > 0, p > 1;

(iii) −a|u|p, a > 0, p > 1;
(iv)

∑l
k=1 ak|u|pk−1u, ak > 0, 1 ≤ k ≤ l, 1 < pl < pl−1 < · · · < p1;

(v)
∑l
k=1 ak|u|pk−1u−

∑m
j=1 bj |u|qj−1u, ak > 0, 1 ≤ k ≤ l, bj > 0, 1 ≤ j ≤ m,

1 < qm < qm−1 < · · · < q1 < pl < pl−1 < · · · < p1;
(vi) a|u|p−1u± b|u|p, a > 0, b > 0, p > 1;

(vii) ±a|u|p − b|u|p−1u, a > 0, b > 0, p > 1;
(viii)

∑l
k=1 ak|u|pk−1u ± a|u|p, ak > 0, 1 ≤ k ≤ l, a > 0, 1 < p ≤ pl < pl−1 <

· · · < p1;
(viiii) ±a|u|p −

∑m
j=1 bj |u|qj−lu, a > 0, bj > 0, 1 ≤ j ≤ m, 1 < qm < qm−1 <

· · · < q1 ≤ p;
(x)

∑l
k=1 ak|u|pk−1u± a|u|p −

∑m
j=1 bj |u|qj−1u, ak > 0, 1 ≤ k ≤ l, bj > 0, 1 ≤

j ≤ m, a > 0, 1 < qm < qm−1 < · · · < q1 ≤ p ≤ pl < pl−1 < · · · < p1 <
n+2
n−2

for n ≥ 3, 1 < qm < qm−1 < · · · < q1 ≤ p ≤ pl < pl−1 < · · · < p1 < ∞ for
n = 1, 2.

Clearly, a very general nonlinear term was introduced by the hypothesis (see [20,
18])

(A2) (i) f ∈ C1, f(0) = f ′(0) = 0;
(ii) (a) f(u) is monotonic and is convex for u > 0, concave for u < 0, or
(b) f(u) is convex for −∞ < u < +∞;
(iii) (p+ 1)F (u) ≤ uf(u), |uf(u)| ≤ r|F (u)|, where

2 < p+ 1 ≤ r < n+ 2
n− 2

for n ≥ 3.

We also found that only (i), (ii) and (iv) can be included in (A2). So it is the right
time to find a new assumptions system to define a much more general nonlinear
term to include all these possible and important nonlinearities listed as above from
(i) to (x). In the present paper, we introduce a new assumptions (A1) to take this
task.
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It is important to mention that the new assumptions (A1) further extend the
former assumptions (A2) such that the general source f(u) can include all nonlin-
earities listed above, which means that f(u) in the present paper is a more general
nonlinearity. And as far as we are concerned, this is the first work in the literature
that consider wave equation, heat equation and NLS equation at the same time in
a uniform frame.

In this article, for the wave equation, we introduce the potential well and some
manifolds, and then we give a series of their properties. Through these properties,
we not only prove the invariant property of these manifolds under the flow of (1.1)-
(1.3), but also get the threshold condition of the global existence and nonexistence of
solution under low initial energy level E(0) < d. At the critical energy level E(0) =
d, combining the scaling method we obtain the global existence results, furthermore,
by establishing a new invariant manifold, we obtain the global nonexistence of
solution. Considering the idea in references [30, 26], we obtain the finite time blow
up results at arbitrary positive initial energy level E(0) > 0. For the heat equation,
we found that the properties of these manifolds also hold, and by the usage of
the Galerkin method and concavity method, we prove the global existence and
nonexistence for problem (1.4)-(1.6) under low initial energy level E(0) < d. Then
we use the scaling method to extend the results about low initial energy to the
critical initial energy level. When we discuss the arbitrary positive initial energy
case E(0) > 0, inspired by the method in [29, 11], we construct the comparison
principle corresponding to the steady state equation to problem (1.4)-(1.6), then
we obtain both solution of problem (1.4)-(1.6) which blows up in finite time and
global solution which converge to u ≡ 0 as time tends to infinity. Through the
improved concavity argument in [15], we show the results of the finite time blow
up of solution without help of the comparison principle. Finally, for the nonlinear
Schrödinger equation, we reintroduce the potential well and prove the properties
of the corresponding invariant manifolds, then we prove the global existence and
nonexistence for problem (1.7)-(1.8) at only the low initial energy level E(0) < d
and leave other cases open as the failure of the comparison principle. The current
main results of this paper can be summarized by the following table.

Table 1. Main results. (
√

) indicates result obtained here, (?)
indicates open problem

E(0) < d E(0) = d E(0) > d

Hyperbolic Global existence
√ √

?
Finite time blow up

√ √ √

Parabolic Global existence
√ √ √

Finite time blow up
√ √ √

NLS Global existence
√

? ?
Finite time blow up

√
? ?

1.4. Open problems.
• For problem (1.1)-(1.3) (semilinear hyperbolic equation), the existence of

global solutions is still open at high energy level even for the classical non-
linear terms like up, |u|p and |u|p−1u.
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• For problem (1.7)-(1.8) (nonlinear Schrödinger equation), the question then
arises as to what happens for large energy data E(0) ≥ d. It is well-
known that such results will be obtained if one could get the a priori bound
(spacetime estimate) for all global Schwarz solutions u.

The outline of this article is as follows. In Section 2, we mainly consider the
global well-posedness of the semilinear hyperbolic equation with general source
term. Then in Section 3, we deal with the semilinear parabolic equation. In Section
4 the nonlinear Schrödinger equation is considered.

In this article ‖ · ‖p = ‖ · ‖Lp(Ω), ‖ · ‖ = ‖ · ‖L2(Ω), (u, v) =
∫

Ω
uvdx, and 〈·, ·〉

denotes the duality pairing between H−1(Ω) and H1
0 (Ω).

2. Semilinear hyperbolic equation

Before stating our results, we summarize here some definitions and auxiliary
lemmas for problem (1.1)-(1.3) and problem (1.4)-(1.6). Then we prove the exis-
tence and nonexistence of solutions of the initial boundary value problem of the
hyperbolic equation.

To deal with problem (1.1)-(1.3) and problem (1.4)-(1.6) let us introduced the
potential energy functional

J(u) =
1
2
‖∇u‖2 −

∫
Ω

F (u)dx, F (u) =
∫ u

0

f(s)ds,

the Nehari functional

I(u) = ‖∇u‖2 −
∫

Ω

uf(u)dx

and the depth of potential well mountain pass level

d = inf
u∈N

J(u),

where

N = {u ∈ H1
0 (Ω) : I(u) = 0, u 6= 0}.

From (A1) we can derive the following lemma, which provide a connection between
J(u) and I(u), further the depth of the potential well d.

Lemma 2.1. Suppose that f(u) satisfies (A1). Then it holds

uf(u) ≥ (p+ 1)F (u), u ∈ R. (2.1)

Proof. We divide the proof into the following two cases:
(i) If u ≥ 0, then (i) in (A1) yields

uf ′(u) ≥ pf(u)

and ∫ u

0

sf ′(s)ds ≥ p
∫ u

0

f(s)ds = pF (u), u ≥ 0,

which gives

uf(u)−
∫ u

0

f(s)ds ≥ pF (u)

and
(p+ 1)F (u) ≤ uf(u), u ≥ 0. (2.2)
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(ii) If u < 0, then from (i) in (A1) we obtain

uf ′(u) ≤ pf(u)

and ∫ u

0

sf ′(s)ds ≥ p
∫ u

0

f(s)ds = pF (u), u < 0,

which gives

uf(u)−
∫ u

0

f(s)ds ≥ pF (u)

and
uf(u) ≥ (p+ 1)F (u), u < 0. (2.3)

Inequality (2.1) follows from (2.2) and (2.3). �

Remark 2.2. We see that Lemma 2.1, i.e. (2.1), is essential in the proof of global
existence and nonexistence of solution for nonlinear evolution equation by using
potential well method since it reveals the relation between f(u) and F (u) and
connects J(u), I(u) and d, which are very important to prove all of the following
main results. In the previous work, (2.1) is often given as an additional independent
assumption. In the present paper, we do it in a different way by taking out (2.1)
from (A1), which helps us weaken the conditions on the nonlinearity f(u).

Next we construct the relation between ‖∇u‖ and I(u) by the following lemma.

Lemma 2.3. Suppose that f(u) satisfies (A1), u ∈ H1
0 (Ω). Then

(i) If 0 < ‖∇u‖ < r0, then I(u) > 0;
(ii) If I(u) < 0, then ‖∇u‖ > r0;
(iii) If I(u) = 0 but u 6= 0, then ‖∇u‖ ≥ r0,

where r0 is the unique real root of equation g(r) = 1,

g(r) =
l∑

k=1

akC
pk+1
k rpk−1, and Ck = sup

u∈H1
0 (Ω)\{0}

‖u‖pk+1

‖∇u‖
.

Proof. (i) If 0 < ‖∇u‖ < r0, we can write

g(‖∇u‖) =
l∑

k=1

akC
pk+1
k ‖∇u‖pk−1 <

l∑
k=1

akC
pk+1
k rpk−1

0 = 1. (2.4)

Hence from (ii) in (A1), Sobolev inequality and (2.4) we obtain∫
Ω

uf(u)dx ≤
l∑

k=1

ak

∫
Ω

|u|pk+1dx

=
l∑

k=1

ak‖u‖pk+1
pk+1

≤
l∑

k=1

akC
pk+1
k ‖∇u‖pk+1

= g(‖∇u‖)‖∇u‖2 < ‖∇u‖2,

which implies I(u) > 0.
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(ii) If I(u) < 0, then from the definition of I(u) and (ii) in (A1) we can write

‖∇u‖2 <
∫

Ω

uf(u)dx ≤ g(‖∇u‖)‖∇u‖2,

which gives g(‖∇u‖) > 1. Then

g(‖∇u‖) =
l∑

k=1

akC
pk+1
k ‖∇u‖pk−1 ≥

l∑
k=1

akC
pk+1
k rpk−1

0 ,

which implies ‖∇u‖ > r0.
(iii) If I(u) = 0 but u 6= 0, same as (ii) we deduce

‖∇u‖2 =
∫

Ω

uf(u)dx ≤ g(‖∇u‖)‖∇u‖2,

which gives g(‖∇u‖) ≥ 1. Then

g(‖∇u‖) =
l∑

k=1

akC
pk+1
k ‖∇u‖pk−1 >

l∑
k=1

akC
pk+1
k rpk−1

0 ,

which ensures ‖∇u‖ ≥ r0. �

Here we estimate the depth of potential well.

Lemma 2.4. Suppose that f(u) satisfies (A1). Then

d ≥ d0 =
p− 1

2(p+ 1)
r2
0, (2.5)

where r0 is defined in Lemma 2.3.

Proof. For all u ∈ N , by (iii) in Lemma 2.3 we know ‖∇u‖ ≥ r0, then by Lemma
2.1 and I(u) one gives

J(u) =
1
2
‖∇u‖2 −

∫
Ω

F (u)dx

≥ 1
2
‖∇u‖2 − 1

p+ 1

∫
Ω

uf(u)dx

=
(1

2
− 1
p+ 1

)
‖∇u‖2 +

1
p+ 1

I(u)

=
p− 1

2(p+ 1)
‖∇u‖2

≥ p− 1
2(p+ 1)

r2
0,

which gives (2.5). �

For the sake of proving the blow up of solution, we introduce a scaling to I(u).

Lemma 2.5. Suppose that f(u) satisfies (A1), u ∈ H1
0 (Ω) and I(u) < 0. Then

there exists a λ∗ ∈ (0, 1) such that I(λ∗u) = 0.

Proof. Set

ϕ(λ) :=
1
λ

∫
Ω

uf(λu)dx, λ > 0.
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Then

I(λu) =λ2‖∇u‖2 −
∫

Ω

λuf(λu)dx

=λ2
(
‖∇u‖2 − 1

λ

∫
Ω

uf(λu)dx
)

=λ2
(
‖∇u‖2 − ϕ(λ)

)
.

Applying I(u) < 0, we derive
∫

Ω
uf(u)dx > ‖∇u‖2, which combining with (ii) in

Lemma 2.3 gives
ϕ(1) > ‖∇u‖2 > r2

0.

On the other hand, by (ii) in (A1) we deduce

|ϕ(λ)| = 1
λ2

∫
Ω

|λuf(λu)|dx

≤ 1
λ2

∫
Ω

l∑
k=1

ak|λu|pk+1dx

=
l∑

k=1

akλ
pk−1‖u‖pk+1

pk+1,

then we obtain that ϕ(λ)→ 0 as λ→ 0. Hence there exists a λ∗ ∈ (0, 1) such that
ϕ(λ∗) = ‖∇u‖2 and I(λ∗u) = 0. �

In the following lemma, we give a more precise estimate on I(u).

Lemma 2.6. Suppose that f(u) satisfies (A1), u ∈ H1
0 (Ω) and I(u) < 0. Then

I(u) < (p+ 1)(J(u)− d). (2.6)

Proof. Lemma 2.5 implies that there exists a λ∗ ∈ (0, 1) such that I(λ∗u) = 0. Set

h(λ) := (p+ 1)J(λu)− I(λu), λ > 0.

Then by J(u) and I(u) we have

h(λ) =
p− 1

2
λ2‖∇u‖2 +

∫
Ω

(
λuf(λu)− (p+ 1)F (λu)

)
dx,

combining (i) in (A1) with (ii) in Lemma 2.3 we derive

h′(λ) = (p− 1)λ‖∇u‖2 +
∫

Ω

(
λu2f ′(λu) + uf(λu)− (p+ 1)uf(λu)

)
dx

= (p− 1)λ‖∇u‖2 +
1
λ

∫
Ω

λu (λuf ′(λu)− pf(λu)) dx

≥ (p− 1)λ‖∇u‖2

> (p− 1)λr2
0 > 0.

Hence h(λ) is strictly increasing for λ > 0, which gives h(1) > h(λ∗) for 1 > λ∗ > 0,
namely

(p+ 1)J(u)− I(u) > (p+ 1)J(λ∗u)− I(λ∗u) = (p+ 1)J(λ∗u) ≥ (p+ 1)d,

which gives (2.6) immediately. �



10 R. XU, Y. CHEN, Y. YANG, S. CHEN, J. SHEN, T.YU, Z. XU EJDE-2018/55

To deal with problem (1.1)-(1.3) let us introduce

WH = {u ∈ H1
0 (Ω) : I(u) > 0} ∪ {0}, VH = {u ∈ H1

0 (Ω) : I(u) < 0}.

Definition 2.7. The function u = u(x, t) is said to be a weak solution on Ω× [0, T )
for problem (1.1)-(1.3), if u ∈ L∞(0, T ;H1

0 (Ω)) and ut ∈ L∞(0, T ;L2(Ω)) satisfying

(ut, v) +
∫ t

0

(∇u∇v)dτ =
∫ t

0

(f(u), v)dτ + (u1, v),

∀v ∈ H1
0 (Ω), 0 ≤ t < T ;

(2.7)

u(x, 0) = u0(x) in H1
0 (Ω); ut(x, 0) = u1(x) in L2(Ω); (2.8)

E(t) =
1
2
‖ut‖2 +

1
2
‖∇u‖2 −

∫
Ω

F (u)dx = E(0), 0 ≤ t < T. (2.9)

For convenience of the reader, we use the following common assumption in Sub-
section 2.1-2.3.

(A3) Let f(u) satisfy (A1), u0(x) ∈ H1
0 (Ω) and u1(x) ∈ L2(Ω).

Next we state a local existence theorem that can be established by combining the
arguments of [10, Theorem 3.1] with slight modification.

Theorem 2.8 (Local existence). Let (A3) hold. Then there exist T > 0 and a
unique solution of problem (1.1)-(1.3) over [0, T ]. Moreover, if

T = sup{T > 0 : u = u(t) exists on [0, T ]} <∞,

then limt→T ‖u(t)‖q =∞ for all q ≥ 1 such that q > n(p− 2)/2.

2.1. Low initial energy. By using (2.9) and the similar arguments in [18] we can
attain Theorem 2.9 and Corollary 2.10.

Theorem 2.9 (Invariant sets). Suppose that E(0) < d. Then both sets WH and
VH are invariant along the flow of (1.1)-(1.3) respectively.

The following corollary can help us derive the negative energy blowup without
any cost after we have the supcritial energy blowup theory.

Corollary 2.10. Suppose that E(0) < 0 or E(0) = 0 and u0(x) 6= 0. Then all
weak solutions of problem(1.1)-(1.3) belong to VH .

The global existence and nonexistence results for problem (1.1)-(1.3) under low
initial energy E(0) < d are listed as below.

Theorem 2.11. Suppose that E(0) < d, u0(x) ∈ WH . Then there is a global
weak solution to problem (1.1)-(1.3) satisfying u ∈ L∞(0,∞;H1

0 (Ω)) with ut ∈
L∞(0,∞;L2(Ω)) and u ∈WH for 0 ≤ t <∞.

Proof. We choose {wj(x)}∞j=1 as a system of basis in H1
0 (Ω). Construct the follow-

ing approximate solutions um(x, t) of problem (1.1)-(1.3) as

um(x, t) =
m∑
j=1

gjm(t)wj(x), m = 1, 2 . . .

satisfying

(umtt, ws) + (∇um,∇ws) = (f(um), ws), s = 1, 2 . . .m, (2.10)
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um(x, 0) =
m∑
j=1

gjm(0)wj(x)→ u0(x) in H1
0 (Ω), (2.11)

umt(x, 0) =
m∑
j=1

g′jm(0)wj(x)→ u1(x) in L2(Ω). (2.12)

Multiplying (2.10) by g′sm(t) and summing over s = 1, 2, . . . ,m yields d
dtEm(t) = 0,

i.e.,
Em(t) = Em(0), (2.13)

where
Em(t) =

1
2
‖umt‖2 + J(um).

From E(0) < d, (2.11) and (2.12) we see that Em(0) < d for sufficiently large m.
Combining (2.13) we have

1
2
‖umt‖2 + J(um) < d, 0 ≤ t <∞ (2.14)

for sufficiently large m. By u0(x) ∈ WH and (2.11), we obtain um(0) ∈ WH for
sufficiently large m. Furthermore by (2.14) we prove (see [18]) um(t) ∈ WH for
0 ≤ t <∞ and sufficiently large m. From (2.14) we can obtain

1
2
‖umt‖2 +

p− 1
2(p+ 1)

‖∇um‖2 +
1

p+ 1
I(um) < d, 0 ≤ t <∞.

Together with um(t) ∈WH we obtain
1
2
‖umt‖2 +

p− 1
2(p+ 1)

‖∇um‖2 < d, 0 ≤ t <∞, (2.15)

‖∇um‖2 <
2(p+ 1)
p− 1

d, 0 ≤ t <∞, (2.16)

‖umt‖2 < 2d, 0 ≤ t <∞, (2.17)

‖f(um)‖r ≤
l∑

k=1

ak‖um‖pkqk ≤
l∑

k=1

akC
pk
∗ ‖∇um‖pk < C, 0 ≤ t <∞, (2.18)

where C∗ appearing in (2.18) is the best embedding constant and

r =
p1 + 1
p1

, qk = pk
p1 + 1
p1

≤ p1 + 1.

Denote w∗−−→ as the weakly star convergence. Then from (2.16)-(2.18) we can find a
χ and a convergent subsequence {uν} ⊂ {um} as ν →∞ satisfying the following:

uν
w∗−−→ u in L∞(0,∞;H1

0 (Ω)) and a.e. in Q = Ω× [0,∞);

uν → u in Lp1+1(Ω) strongly for t > 0;

uνt
w∗−−→ ut in L∞(0,∞;L2(Ω));

f(uν) w∗−−→ χ = f(u) in L∞(0,∞;Lr(Ω)).

Integrating (2.10) over τ ∈ [0, t] yields

(umt, ws) +
∫ t

0

(∇um,∇ws)dτ =
∫ t

0

(f(um), ws)dτ + (umt(0), ws) (2.19)
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for all 0 ≤ t <∞. Let m = ν →∞ in (2.19) we obtain

(ut, ws) +
∫ t

0

(∇u,∇ws)dτ =
∫ t

0

(f(u), ws)dτ + (u1, ws),

then

(ut, v) +
∫ t

0

(∇u,∇v)dτ =
∫ t

0

(f(u), v)dτ + (u1, v), v ∈ H1
0 (Ω), t > 0.

It follows easily from (2.11) and (2.12) that u(x, 0) = u0(x) in H1
0 (Ω), ut(x, 0) =

u1(x) in L2(Ω).
Next we show that u satisfies (2.9) for 0 ≤ t < ∞. First we prove that for the

above subsequence {uν} it holds

lim
ν→∞

∫
Ω

F (uν)dx =
∫

Ω

F (u)dx, t > 0. (2.20)

In fact we have∣∣∣∣∫
Ω

F (uν)dx−
∫

Ω

F (u)dx
∣∣∣∣ ≤∫

Ω

|F (uν)− F (u)|dx

=
∫

Ω

|f(ϕν)||uν − u|dx

≤‖f(ϕν)‖r‖uν − u‖p1+1,

where ϕν = u + θ(uv − u), 0 < θ < 1. From ‖uν − u‖p1+1 → 0 as ν → ∞ and
‖f(ϕν)‖r ≤ C we obtain (2.20). Thus from (2.13) we have

1
2
‖ut‖2 +

1
2
‖∇u‖2 = lim

ν→∞

(1
2
‖uνt‖2 +

1
2
‖∇uν‖2

)
= lim
ν→∞

(
Eν(0) +

∫
Ω

F (uν)dx
)

=E(0) +
∫

Ω

F (u)dx.

Hence u satisfies (2.9) for 0 ≤ t <∞. Finally by Corollary 2.10 we obtain u ∈WH

for 0 ≤ t <∞. �

Now we are in a position to state the global nonexistence result for the solution
of problem (1.1)-(1.3) under low initial energy E(0) < d.

Theorem 2.12 (Global nonexistence for E(0) < d). Suppose that E(0) < d and
u0(x) ∈ VH . Then problem (1.1)-(1.3) does not admit any global weak solution.

Proof. For each weak solution u ∈ L∞(0, T ;H1
0 (Ω)) with ut ∈ L∞(0, T ;L2(Ω))

defined on maximal time interval [0, T ) for problem (1.1)-(1.3). Our goal is to
prove T < ∞. Arguing by contradiction, we suppose that T = +∞. Then u ∈
L∞(0,∞;H1

0 (Ω)) and ut ∈ L∞(0,∞;L2(Ω)). Set

MH(t) := ‖u‖2, 0 ≤ t <∞, (2.21)

then

ṀH(t) = 2(ut, u), 0 ≤ t <∞, (2.22)

Ṁ2
H(t) ≤ 4‖ut‖2‖u‖2 = 4MH(t)‖ut‖2. (2.23)
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From (1.1) we have utt ∈ L∞(0,∞;H−1(Ω)). Hence from (2.22) and (1.1) we obtain

M̈H = 2‖ut‖2 + 2(utt, u) = 2‖ut‖2 − 2I(u), 0 ≤ t <∞ (2.24)

and

MH(t)M̈H(t)− p+ 3
4

Ṁ2
H(t)

≥MH(t)
(
2‖ut‖2 − 2I(u)− (p+ 3)‖ut‖2

)
= MH(t)

(
−(p+ 1)‖ut‖2 − 2I(u)

)
, 0 ≤ t <∞.

From the energy inequality (2.9) we know that

E(0) ≥ 1
2
‖ut‖2 + J(u), 0 ≤ t <∞,

which gives
−(p+ 1)‖ut‖2 ≥ 2(p+ 1) (J(u)− E(0))

and

MH(t)M̈H(t)− p+ 3
4

Ṁ2
H(t) ≥2MH(t) ((p+ 1)(J(u)− E(0))− I(u))

≥2MH(t) ((p+ 1)(J(u)− d)− I(u)) .

By Theorem 2.9 we have u ∈ VH and by (ii) in Lemma 2.3 it holds ‖∇u‖ > r0 for
0 ≤ t < ∞. Hence we have MH(t) > 0 and from (2.6) in Lemma 2.6 we attain
(p+ 1) (J(u)− d)− I(u) > 0, which gives

MH(t)M̈H(t)− p+ 3
4

Ṁ2
H(t) > 0, 0 ≤ t <∞. (2.25)

In addition, combining (2.24) and (2.6) we have

M̈H ≥ −2I(u)

> 2(p+ 1)(d− J(u))

> 2(p+ 1)(d− E(0))
:= C0 > 0, 0 ≤ t <∞

and
ṀH > C0t+ ṀH(0), 0 ≤ t <∞.

Finally, there exists a large enough t0 ≥ 0 which ensures ṀH(t0) > 0, together with
MH(t0) > 0 and (2.25) gives that there exists a T1 > 0 such that

lim
t→T1

MH(t) = +∞,

which contradicts T = +∞. �

From Theorem 2.12 and Theorem 2.13 a sharp condition for global well-posedness
of solution can be shown for problem (1.1)-(1.3) as below.

Theorem 2.13 (Sharp conditions). Suppose that E(0) < d. Then we have the
following alternatives:

(i) If I(u0) > 0, problem (1.1)-(1.3) possesses a global weak solution;
(ii) If I(u0) < 0, problem (1.1)-(1.3) has no global weak solution.
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2.2. Critical initial energy. The global existence result for problem (1.1)-(1.3)
under critical initial energy E(0) = d is listed as below.

Theorem 2.14. Suppose that E(0) = d, u0(x) ∈ WH . Then there is a global
weak solution to problem (1.1)-(1.3) satisfying u ∈ L∞(0,∞;H1

0 (Ω)) with ut ∈
L∞(0,∞;L2(Ω)) and u ∈WH for 0 ≤ t <∞.

Proof. We prove this theorem by the following two cases (i) and (ii).
(i) ‖∇u0‖ 6= 0. Let λm = 1 − 1

m and u0m = λmu0, m = 2, 3, . . . . Consider the
initial data

u(x, 0) = u0m(x), ut(x, 0) = u1(x) (2.26)

and corresponding problem (1.1)-(1.3). From I(u0) ≥ 0 and Lemma 2.5 we have
λ∗ = λ∗(u0) ≥ 1. Hence I(u0m) > 0,

J(u0m) ≥ 1
2
‖∇u0m‖2 −

1
p+ 1

∫
Ω

u0mf(u0m)dx

=
(1

2
− 1
p+ 1

)
‖∇u0m‖2 +

1
p+ 1

I(u0m) > 0

and J(u0m) = J(λmu0) < J(u0). Also

0 < Em(0) ≡ 1
2
‖u1‖2 + J(u0m) <

1
2
‖u1‖2 + J(u0) = E(0) = d.

So it follows from Theorem 2.11 that for each m problem (1.1), (2.26) and (1.3) ad-
mits a global weak solution um(t) ∈ L∞(0,∞;H1

0 (Ω)) with umt ∈ L∞(0,∞;L2(Ω))
and um(t) ∈WH for 0 ≤ t <∞ satisfying

(umt, v) +
∫ t

0

(∇um,∇v)dτ

=
∫ t

0

(f(um), v)dτ + (u1, v), ∀v ∈ H1
0 (Ω), 0 ≤ t <∞

(2.27)

1
2
‖umt‖2 + J(um) = Em(0) < d. (2.28)

The remainder of proof is similar to that of Theorem 2.11.
(ii) ‖∇u0‖ = 0. Note that ‖∇u0‖ = 0 implies J(u0) = 0 and 1

2‖u1‖2 = E(0) = d.
Let λm = 1− 1

m , u1m(x) = λmu1(x),m = 2, 3, . . . . Consider the initial data

u(x, 0) = u0(x), ut(x, 0) = u1m(x) (2.29)

and corresponding problem (1.1),(1.3). From ‖∇u0‖ = 0,

0 < Em(0) =
1
2
‖u1m‖2 + J(u0) =

1
2
‖λmu1‖2 < E(0) = d

and Theorem 2.11 it follows that for each m problem (1.1), (2.29) and (1.3) admits
a global weak solution um(t) ∈ L∞(0,∞;H1

0 (Ω)) with umt ∈ L∞(0,∞;L2(Ω)) and
um(t) ∈ WH for 0 ≤ t <∞ satisfying (2.27) and (2.28). The remainder of proof is
the same as that in the part (i) of proof of this theorem. �

Next we obtain the invariant set VH along the flow of problem (1.1)-(1.3) with
E(0) = d.

Theorem 2.15. Suppose that E(0) = d and (u0(x), u1(x)) ≥ 0. Then all solutions
of problem (1.1)-(1.3) belong to VH , provided u0(x) ∈ VH .
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Proof. Let u(x, t) be any weak solution of problem (1.1)-(1.3) with E(0) = d,
u0 ∈ VH , and (u0(x), u1(x)) ≥ 0, T be the maximum existence time of u(x, t). Let
us prove u(x, t) ∈ VH for 0 < t < T . Arguing by contradiction, we suppose that
there exists the first t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u) < 0 for 0 ≤ t < t0.
Then ‖∇u(t0)‖ ≥ r0 > 0 and ‖∇u‖ > r0 for 0 ≤ t < t0. By the definition of d we
obtain J(u(t0)) ≥ d. From Lemma 2.4 and

1
2
‖ut(t0)‖2 + J(u(t0)) = E(t0) ≤ E(0) = d,

we obtain J(u(t0)) = d and ‖ut(t0)‖2 = 0. Recall the auxiliary function MH(t)
defined as (2.21), then we have (2.22) with

ṀH(0 = 2(u0(x), u1(x)) > 0,

M̈H(t) = 2‖ut‖2 + 2〈utt, u〉 = 2‖ut‖2 − 2I(u) > 0, 0 ≤ t < t0.

Hence ṀH(t) is strictly increasing with respect to t ∈ [0, t0], which together with
ṀH(0) = 2(u0(x), u1(x)) ≥ 0 gives

ṀH(t0) = 2(ut, u) > 0.

This contradicts ‖ut(t0)‖2 = 0. So this completes this proof. �

Next we display a finite time blow up result at critical energy level E(0) = d.

Theorem 2.16 (Global nonexistence for E(0) = d). Suppose E(0) = d, u0(x) ∈ VH
and (u0(x), u1(x)) ≥ 0. Then problem (1.1)-(1.3) does not admit any global weak
solution.

Proof. Recall the auxiliary function MH(t) defined as (2.21) and the proof of The-
orem 2.11, we have

MH(t)M̈H(t)− p+ 3
4

Ṁ2
H(t) ≥2MH(t) ((p+ 1)(J(u)− E(0))− I(u))

=2MH(t) ((p+ 1)(J(u)− d)− I(u)) .

As in Theorem 2.11, from (2.6) in Lemma 2.6 we attain (p+1) (J(u)− d)−I(u) > 0.
Hence we obtain (2.25), by the concavity argument, we conclude the result. �

2.3. High initial energy. In discussing the global nonexistence result for problem
(1.1)-(1.3) at high energy level, we shall introduce some lemmas as follows.

Lemma 2.17. Let u be a solution of problem (1.1)-(1.3). If initial data u0(x) and
u1(x) satisfy

(u0(x), u1(x)) ≥ 0, (2.30)
then the mapping {t→ ‖u(t)‖2} is strictly monotonically increasing with respect to
t as long as u(x, t) ∈ VH .

Proof. Recalling (2.24), since u(t) ∈ VH , we attain that for any t ∈ [0, T ),

M̈H(t) = 2‖ut‖2 − 2I(u) > 0. (2.31)

Combining (2.30), we have ṀH(0) = (u0(x), u1(x)) ≥ 0. Then, by (2.31), we have

ṀH(t) > ṀH(0) ≥ 0,

which tells that the mapping {t → ‖u(t)‖2} is strictly monotonically increasing
with respect to t. �
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Attention is now turned to the invariance of the unstable set VH along the flow
of problem (1.1)-(1.3) at high energy level.

Lemma 2.18. Suppose that the initial data satisfy (2.30) and

‖u0‖2 > αE(0), (2.32)

where α = 2Cpoin

(
1 + 2

p−1

)
and Cpoin is the coefficient of the Poincaré inequality

Cpoin‖∇u‖2 ≥ ‖u‖2. Then the solution of problem (1.1)-(1.3) with E(0) > 0 belongs
to VH , provided that u0(x) ∈ VH .

Proof. To prove u(t) ∈ VH we argue by contradiction. By the continuity of I(u(t)),
we suppose that t0 ∈ (0, T ) is the first time such that I(u(t0)) = 0, and I(u(t)) < 0
for t ∈ [0, t0). Hence from Lemma 2.17, we obtain that MH(t) and ṀH(t) are
strictly increasing on the interval [0, t0). And then by (2.32), we have

MH(t) > ‖u0‖2 > αE(0), 0 ≤ t ≤ t0.

Moreover, from the continuity of u(t) in t, we obtain

MH(t0) > αE(0). (2.33)

On the other hand, from (2.9) and the definition of E(t) and I(u), we obtain

E(0) = E(t0)

≥ 1
2
‖∇u(t0)‖2 −

∫
Ω

F (u(t0))dx

≥ 1
2
‖∇u(t0)‖2 − 1

p+ 1

∫
Ω

u(t0)f(u(t0))dx

≥
(1

2
− 1
p+ 1

)
‖∇u(t0)‖2 +

1
p+ 1

I(u(t0)).

Then the fact I(u(t0)) = 0 directly gives

‖∇u(t0)‖2 ≤ 2
(
1 +

2
p− 1

)
E(0).

Combining this with Poincaré inequality, we have

MH(t0) ≤ Cpoin‖∇u(t0)‖2 ≤ 2Cpoin

(
1 +

2
p− 1

)
E(0) ≤ αE(0),

which contradicts (2.33). Hence this lemma is proved. �

Theorem 2.19 (Global nonexistence for E(0) > 0). Suppose E(0) > 0, u0(x) ∈
VH , (2.30) and (2.32) hold. Then problem (1.1)-(1.3) does not admit any global
weak solution.

Proof. Let u(x, t) be any weak solution of problem (1.1)-(1.3) with E(0) > 0,
u0 ∈ VH satisfying (2.30) and (2.32). Then from Lemma 2.18, we have u(t) ∈ VH .
Next let us prove that u(x, t) blows up in finite time. Arguing by contradiction, we
suppose that u(x, t) exists globally. Recall the auxiliary function M̈H(t) defined as
(2.24), where t ∈ [0, T0], T0 > 0. Obviously for any t ∈ [0, T0], we know MH(t) > 0.
By the continuity of MH(t), there exists a constant ρ > 0 independent of T0 such
that

MH(t) ≥ ρ, 0 ≤ t ≤ T0. (2.34)
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At the same time, (2.22) and (2.23) also hold for t ∈ [0, T0]. Again from (2.24) and
(2.23), we see

M̈H(t)MH(t)− p+ 3
4

Ṁ2
H(t) ≥MH(t)(M̈H(t)− (p+ 3)‖ut‖2)

=MH(t)(−2I(u)− (p+ 1)‖ut‖2).
(2.35)

Let

ξ(t) := −2I(u)− (p+ 1)‖ut‖2.

Combining the energy E(t), Lemma 2.1 and I(u), we obtain

E(t) ≥ 1
2
‖ut‖2 +

(1
2
− 1
p+ 1

)
‖∇u‖2 +

1
p+ 1

I(u(t)). (2.36)

Making a simple transformation of the inequality (2.36), we have

−2I(u) ≥ (p+ 1)‖ut‖2 + (p− 1)‖∇u(t)‖2 − 2(p+ 1)E(t). (2.37)

From (2.9) and (2.37), we have

ξ(t) ≥ (p− 1)‖∇u(t)‖2 − 2(p+ 1)E(0).

Let

ϑ(t) := (p− 1)‖∇u(t)‖2 − 2(p+ 1)E(0),

then from (2.32), Lemma 2.17 and Poincaré inequality, we obtain

2Cpoin

(
1 +

2
p− 1

)
E(0) < ‖u0‖2 < ‖u‖2 < Cpoin‖∇u‖2,

which says that ϑ(t) > 0. Then there exists a constant σ > 0 such that

ξ(t) > σ > 0.

Then

M̈H(t)MH(t)− p+ 3
4

Ṁ2
H(t) ≥ ρσ > 0, 0 ≤ t ≤ T0. (2.38)

Substituting ZH(t) :=
(
MH(t)

)− p−1
4 into (2.38) gives

ZH(t) ≤ −p− 1
4

ρσ
(
MH(t)

) p+7
p−1 , 0 ≤ t ≤ ∞,

which shows that limt→T∗ ZH(t) = 0, where T ∗ is independent of the choice of T0.
Then we choose T ∗ < T0, such that

lim
t→T∗

MH(t) = +∞.

This completes the proof. �
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3. Semilinear parabolic equation

This section states the existence and nonexistence of global solutions for problem
(1.4)-(1.6). We denote the invariant sets for the solution of problem (1.4)-(1.6) by

WP = {u ∈ H1
0 (Ω) : I(u) > 0} ∪ {0},

VP = {u ∈ H1
0 (Ω) : I(u) < 0},

where the definitions of J , I and d are the same as those in Section 2. To meet the
need for high initial energy, we add the following definition, the unbounded sets
separated by N

N+ = {u ∈ H1
0 (Ω) : I(u) > 0},

N− = {u ∈ H1
0 (Ω) : I(u) < 0} := VP .

We define the cone of nonnegative functions

K = {u ∈ H1
0 (Ω) : u ≥ 0 a.e. in Ω}.

For any u ∈ H1
0 (Ω), its positive part and its negative part are

u+ := max{u(x), 0}, u− := min{u(x), 0}.
First we claim that all the lemmas in Section 2 also hold in this section.

Definition 3.1 (Weak solution). Function u = u(x, t) is said to be a weak so-
lution on Ω × [0, T ) for problem (1.4)-(1.6), and u ∈ L∞(0, T ;H1

0 (Ω)) and ut ∈
L2(0, T ;L2(Ω)) satisfying

(ut, v) + (∇u,∇v) = (f(u), v), ∀v ∈ H1
0 (Ω), 0 ≤ t < T, (3.1)

u(x, 0) = u0(x) in H1
0 (Ω), (3.2)∫ t

0

‖uτ‖2dτ + J(u) = J(u0), 0 ≤ t < T. (3.3)

For later convenience, similarly as above Section 2, we use the following common
assumption in Subsection 3.1-3.2.

(A4) Let f(u) satisfy (A1), u0(x) ∈ H1
0 (Ω).

Next we show the local existence theorem of problem (1.4)-(1.6), whose proof is
similar to proof of [5, Theorem 1] with slight modifications.

Theorem 3.2. Let (A4) hold. Then there exists T ∈ [0,∞) such that problem
(1.4)-(1.6) possesses a unique solution u ∈ C0([0, T );H1

0 (Ω)) ∩ C1((0, T );L2(Ω))
which becomes a classical solution for t > 0.

3.1. Low initial energy. By using (3.3) and the similar arguments in [18] we can
obtain the following result.

Theorem 3.3 (Invariant sets). Suppose that J(u0) < d. Then both WP and VP
are invariant along the flow of (1.4)-(1.6) respectively.

The global existence result for problem (1.4)-(1.6) under low initial energy E(0) <
d is listed as below.

Theorem 3.4 (Global existence for J(u0) < d). Suppose that J(u0) < d and
u0(x) ∈ WP . Then there is a global weak solution to problem (1.4)-(1.6) satisfying
u ∈ L∞(0,∞;H1

0 (Ω)) with ut ∈ L2(0,∞;L2(Ω)) and u ∈WP for 0 ≤ t <∞.
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Proof. We choose {wj(x)}∞j=1 as a system of basis in H1
0 (Ω). Construct the follow-

ing approximate solutions um(x, t) of problem (1.4)-(1.6) as

um(x, t) =
m∑
j=1

gjm(t)wj(x), m = 1, 2 . . .

satisfying

(umt, ws) + (∇um,∇ws) = (f(um), ws), s = 1, 2 . . .m; (3.4)

um(x, 0) =
m∑
j=1

gjm(0)wj(x)→ u0(x) in H1
0 (Ω). (3.5)

Multiplying (3.4) by g′sm(t) and summing over s = 1, 2, . . . ,m gives

‖umt‖2 +
d
dt
J(um) = 0,

i.e., ∫ t

0

‖umτ‖2dτ + J(um) = J(um(0)), 0 ≤ t <∞. (3.6)

From J(u0) < d and (3.5) we obtain J(um0) < d and∫ t

0

‖umτ‖2dτ + J(um) < d, 0 ≤ t <∞ (3.7)

for sufficiently large m. By u0(x) ∈ WP and (3.5) we obtain um(0) ∈ WP for
sufficiently large m. Furthermore By (3.7) we can attain um(t) ∈WP for 0 ≤ t <∞
and sufficiently large m. From (3.7) and the definitions of J(u) and I(u) we obtain∫ t

0

‖umτ‖2dτ +
p− 1

2(p+ 1)
‖∇um‖2 +

1
p+ 1

I(um) < d,

which together with um(t) ∈WP gives∫ t

0

‖umτ‖2dτ +
p− 1

2(p+ 1)
‖∇um‖2 < d. (3.8)

From (3.8), (ii) in (A1) and Sobolev inequality we can get the following estimates

‖∇um‖2 <
2(p+ 1)
p− 1

d, 0 ≤ t <∞; (3.9)∫ t

0

‖umτ‖2dτ < d, 0 ≤ t <∞; (3.10)

‖f(um)‖r ≤
l∑

j=1

ak‖um‖pkqk ≤
l∑

j=1

akC
pk
∗ ‖∇um‖pk ≤ C, 0 ≤ t <∞; (3.11)

where C∗ is the embedding constant and

r =
p1 + 1
p1

, qk = pk
p1 + 1
p1

≤ p1 + 1.

Denote w−→ and w∗−−→ as the weakly convergence and weakly star convergence respec-
tively. From (3.9)-(3.11) we can find a χ and a convergent subsequence {uν} ⊂ {um}
as ν →∞ satisfying the following:

uν
w∗−−→ u in L∞(0,∞;H1

0 (Ω)) and a.e. in Q = Ω× [0,∞);



20 R. XU, Y. CHEN, Y. YANG, S. CHEN, J. SHEN, T.YU, Z. XU EJDE-2018/55

uν → u in Lp1+1(Ω) strongly for t > 0;

uνt
w−→ ut in L2(0,∞;L2(Ω)); f(uν) w∗−−→ χ = f(u) in L∞(0,∞;Lr(Ω)).

Integrating (3.4) over τ ∈ [0, t] yields

(um, ws) +
∫ t

0

(∇um,∇ws)dτ =
∫ t

0

(f(um), ws) dτ + (um(0), ws) . (3.12)

Let m = ν →∞ in (3.12) we obtain

(u,ws) +
∫ t

0

(∇u,∇ws)dτ =
∫ t

0

(f(u), ws)dτ + (u0, ws),

(u, v) +
∫ t

0

(∇u,∇v)dτ =
∫ t

0

(f(u), v)dτ + (u0, v), ∀v ∈ H1
0 (Ω), 0 ≤ t <∞.

By (3.5) we obtain u(x, 0) = u0(x) in H1
0 (Ω).

Now we turn to verify that u satisfies (3.3) for 0 ≤ t < ∞. In deed, as a
consequence of Theorem 2.11 we have (2.20). Hence from the convergence of uν ,
uνt, (3.6) and the definition of J(u), we obtain

1
2
‖∇u‖2 +

∫ t

0

‖uτ‖2dτ ≤ lim
ν→∞

inf
1
2
‖∇uν‖2 + lim

ν→∞
inf
∫ t

0

‖uντ‖2dτ

≤ lim
ν→∞

inf
(1

2
‖∇uν‖2 +

∫ t

0

‖uντ‖2dτ
)

≤ lim
ν→∞

(
J(uν(0)) +

∫
Ω

F (uν)dx
)

=J(u0) +
∫

Ω

F (u)dx,

from which we derive∫ t

0

‖uτ‖2dτ + J(u) ≤ J(u0), 0 ≤ t <∞.

Consequently, according to Theorem 3.3 we can ensure u ∈WP for 0 ≤ t <∞. �

Now we state the global nonexistence result for the solution of problem (1.4)-(1.6)
under low initial energy E(0) < d.

Theorem 3.5. Suppose that J(u0) < d and u0(x) ∈ VP . Then problem (1.4)-(1.6)
does not admit any global weak solution.

Proof. Let u ∈ L∞(0, T ;H1
0 (Ω)) be any weak solution defined on maximal time

interval [0, T ) with ut ∈ L2(0, T ;L2(Ω)) for problem (1.4)-(1.6). The key is to
prove T < ∞. Arguing by contradiction, we suppose that T = +∞, then u ∈
L∞(0,∞;H1

0 (Ω)) and ut ∈ L2(0,∞;L2(Ω)). Set

MP (t) :=
∫ t

0

‖u‖2dτ. (3.13)

Then

ṀP (t) = ‖u‖2, (3.14)

M̈P (t) = 2(ut, u) = −2I(u), 0 ≤ t <∞. (3.15)
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By (3.3), combining I(u) and J(u), one has∫ t

0

‖uτ‖2dτ +
p− 1

2(p+ 1)
‖∇u‖2 +

1
p+ 1

I(u) ≤
∫ t

0

‖uτ‖2dτ + J(u) ≤ J(u0),

hence

−2I(u) ≥ 2(p+ 1)
∫ t

0

‖uτ‖2dτ + (p− 1)‖∇u‖2 − 2(p+ 1)J(u0),

then

M̈P (t) ≥ 2(p+ 1)
∫ t

0

‖uτ‖2dτ + (p− 1)‖∇u‖2 − 2(p+ 1)J(u0)

= 2(p+ 1)
∫ t

0

‖uτ‖2dτ + (p− 1)λ1ṀP (t)− 2(p+ 1)J(u0),
(3.16)

denote by λ1 the related first eigenvalue for −∆ϕ = λϕ, x ∈ Ω, ϕ|∂Ω = 0. In
addition, from ∫ t

0

(uτ , u)dτ =
1
2

∫ t

0

d
dτ
‖u‖2dτ =

1
2
(
‖u‖2 − ‖u0‖2

)
,

we obtain (∫ t

0

(uτ , u)dτ
)2

=
1
4
(
‖u‖4 − 2‖u0‖2‖u‖2 + ‖u0‖4

)
=

1
4
(
Ṁ2
P (t)− 2‖u0‖2ṀP (t) + ‖u0‖4

)
.

(3.17)

Hence by (3.16) and (3.17) we know that

MP (t)M̈P (t)− p+ 1
2

Ṁ2
P (t)

≥ 2(p+ 1)
(∫ t

0

‖u‖2dτ
∫ t

0

‖uτ‖2dτ −
(∫ t

0

(uτ , u)dτ
)2)

+ (p− 1)λ1MP (t)ṀP (t)− (p+ 1)‖u0‖2ṀP (t)

− 2(p+ 1)J(u0)MP (t) +
p+ 1

2
‖u0‖4,

(3.18)

then by Schwartz inequality,∫ t

0

‖u‖2dτ
∫ t

0

‖uτ‖2dτ −
(∫ t

0

(uτ , u)dτ
)2

> 0,

combining this with (3.18) we obtain

MP (t)M̈P (t)− p+ 1
2

Ṁ2
P (t)

≥ (p− 1)λ1MP (t)ṀP (t)− (p+ 1)‖u0‖2ṀP (t)− 2(p+ 1)J(u0)MP (t).
(3.19)

From Theorem 3.3 we have u ∈ VP and I(u) < 0 for 0 ≤ t <∞. Thus from Lemma
2.6 one has

−2I(u) > 2(p+ 1)(d− J(u)), 0 ≤ t <∞ .
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By (3.15) and (3.3) we have

M̈P (t) =− 2I(u)

>2(p+ 1) (d− J(u))

≥2(p+ 1) (d− J(u0))
:=C1 > 0, 0 ≤ t <∞,

(3.20)

ṀP (t) ≥ C1t+ ṀP (0) = C1t+ ‖u0‖2 > C1t, 0 ≤ t <∞,

MP (t) >
C1

2
t2 +MP (0) =

C1

2
t2, 0 ≤ t <∞.

Therefore,
lim
t→∞

MP (t) = +∞, lim
t→∞

ṀP (t) = +∞.

Hence there exists a t0 ≥ 0 such that
1
2

(p− 1)λ1MP (t) > (p+ 1)‖u0‖2, t0 ≤ t <∞,

1
2

(p− 1)λ1ṀP (t) > 2(p+ 1)J(u0), t0 ≤ t <∞,

which combined with (3.19) give the inequality

MP (t)M̈P (t)− p+ 1
2

Ṁ2
P (t)

≥
(1

2
(p− 1)λ1MP (t)− (p+ 1)‖u0‖2

)
ṀP (t)

+
(1

2
(p− 1)λ1ṀP (t)− 2(p+ 1)J(u0)

)
MP (t) > 0, t0 ≤ t <∞.

Then there exists a T1 > 0 such that limt→T1 MP (t) = +∞, which contradicts
T = +∞. �

From Theorem 3.4 and Theorem 3.5 a sharp-like condition for global well posed-
ness of solution will be shown for problem (1.4)-(1.6) as follows:

Theorem 3.6 (Sharp conditions). Suppose that J(u0) < d. Then we have the
following alternatives:

(i) If I(u0) > 0, problem (1.4)- (1.6) possesses a global weak solution;
(ii) If I(u0) < 0, problem (1.4)- (1.6) has no global weak solution.

3.2. Critical initial energy. The global existence and nonexistence results for
problem (1.4)-(1.6) under critical initial energy E(0) = d are listed as follows.

Theorem 3.7. Suppose that J(u0) = d and u0(x) ∈ WP . Then problem (1.4)-
(1.6) possesses a global weak solution which satisfying u ∈ L∞(0,∞;H1

0 (Ω)) with
ut ∈ L2(0,∞;L2(Ω)) and u(t) ∈WP for 0 ≤ t <∞.

Proof. First J(u0) = d implies that ‖∇u‖ 6= 0. Pick a sequence {λm} such that
0 < λ < 1,m = 1, 2, ... and λm → 1 as m→∞. Let u0m = λmu0 and consider the
corresponding initial boundary value problem

ut −∆u = f(u), x ∈ Ω, t > 0,

u(x, 0) = u0m(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.
(3.21)
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From I(u0) ≥ 0 and Lemma 2.5, we have λ∗ = λ∗(u0) ∈ (0, 1). Thus, we obtain
I(u0m) = I(λmu0) > 0 and J(u0m) = J(λmu0) < J(u0) = d. The remainder proof
of global existence for the solution is similar to that in the proof of the low initial
case, i.e. Theorem 3.4. �

Theorem 3.8 (Global nonexistence for J(u0) = d). Suppose that J(u0) = d and
u0(x) ∈ VP . Then problem (1.4)-(1.6) does not admit any global weak solution.

Proof. Let u be a solution of (1.4)-(1.6) with J(u0) = d > 0 and I(u0) < 0, T
be the maximum existence time of u(t). We can deduce that T < ∞. From the
continuities of J(t) = J(u(t)) and I(t) = I(u(t)) with respect to t, we know that
there exists a sufficient small t1 > 0 with t1 < T such that J(u(t1)) > 0 and
I(u(t)) < 0 for t ∈ [0, t1]. Thus we have (ut, u) = −I(u) > 0 and ‖ut‖ > 0 for
t ∈ [0, t1]. From this and continuity of

∫ t
0
‖uτ‖2dτ , it follows that we can choose

such t1 that

0 < J(u(t1)) = d−
∫ t1

0

‖ut‖2dt = d1 < d. (3.22)

Testing (1.4) by ut and integrating with respect to t from t1 to t gives

J(u) +
∫ t

t1

‖ut‖2dt = J(u(t1)). (3.23)

Taking t = t1 as the initial time and by Theorem 3.3, we have u(t) ∈ VP , for t > t1.
Thus from Lemma 2.6 we obtain

−2I(u) > 2(p+ 1)(d− J(u(t1))), t1 < t <∞,

then (3.20) turns into

M̈P (t) = −2I(u)

> 2(p+ 1)(d− J(u))

≥ 2(p+ 1)(d− J(u(t1)))
:≡ C2 > 0, t1 < t <∞,

ṀP (t) ≥ C2t+ ṀP (t1) ≥ C2t, t1 < t <∞, (3.24)

MP (t) >
C2

2
t2 +MP (t1) >

C2

2
t2, t1 < t <∞. (3.25)

From (3.24) and (3.25) it follows that for sufficiently large t we have

1
2

(p− 1)λ1MP (t) > (p+ 1)‖u0‖2, t1 < t <∞,

1
2

(p− 1)λ1ṀP (t) > 2(p+ 1)d, t1 < t <∞.

Thus (3.19) yields

MP (t)M̈P (t)− p+ 1
2

Ṁ2
P (t) > 0.

The remainder proof of blow up for the solution is similar to that in the proof of
the low initial energy case, i.e. Theorem 3.5. �
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3.3. High initial energy. In fact, when the parameters of the equation are fixed,
whether u global exists or blows up in finite time is just determined by the initial
data u0(x). Following this consideration, let us introduce some sets, where T ∗(u0)
denotes the maximal existence time of the solution with initial datum u0(x) ∈
H1

0 (Ω),

BP = {u0(x) ∈ H1
0 (Ω) : the solution u(t) of (1.4) blows up in finite time},
GP = {u0(x) ∈ H1

0 (Ω) : T ∗(u0) =∞},
GP,0 = {u0(x) ∈ GP : u(t) 7→ 0 in H1

0 (Ω) as t→∞}.
Furthermore, we need to define the open sub-levels of J ,

J~ = {u ∈ H1
0 (Ω) : J(u) < ~}.

Hence,

N~ := N ∩ J~ ≡
{
u ∈ N

∣∣∣ ‖∇u‖2 < 2~(p+ 1)
p− 1

}
6= ∅ for all ~ > d.

The above alternative characterization of d shows that

dist(0,N ) = min
u∈N
‖∇u‖2 =

2d(p+ 1)
p− 1

> 0.

We now define

λ~ = inf{‖u‖2 : u ∈ N , J(u) < ~},
Λ~ = sup{‖u‖2 : u ∈ N , J(u) < ~}

for all ~ > d. Clearly we have the following monotonicity properties

~ 7→ λ~ is nonincreasing and
~ 7→ Λ~ is nondecreasing.

Firstly, let us discuss the stationary problem and comparison principle for problem
(1.4)-(1.6):

−∆u = f(u), in Ω,
u = 0, on ∂Ω.

(3.26)

Lemma 3.9 ([1, 2]). Suppose that u0(x) ∈ GP . Then the solution u(t) = S(t)u0(x)
of problem (1.4)-(1.6) converges to the solution of (3.26) as t → ∞. Here, S(t)
denotes the corresponding nonlinear semigroup associated to (1.4) which maps an
H1

0 (Ω) neighborhood of u0 continuously into C1
0 (Ω) for all t ∈ (0, T ∗(u0)), where

C1
0 (Ω) := {u ∈ C1(Ω) : u = 0 on ∂Ω} = C1(Ω) ∩H1

0 (Ω),

endowed with the standard norm ‖ · ‖C1 of C1(Ω).

Furthermore, if T ∗(u0) =∞, we denote by

ω(u0) := ∩t≥0{u(s) : s ≥ t}
the ω-limit set of u0(x) ∈ H1

0 (Ω).

Lemma 3.10 (Gronwall inequality). Let y(t) : R+ → R+ be a nonincreasing
function, and assume that there is a constant C > 0, such that∫ +∞

s

u(t)dt ≤ Cy(s), 0 ≤ t < +∞,
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then for all t ≥ 0, we have
y(t) ≤ y(0)e1− t

C .

We now prove the comparison principle.

Theorem 3.11. Let u0(x), v0(x) ∈ H1
0 (Ω)\{0} be such that u0(x) − v0(x) ∈ K.

Then (S(t)u0(x)− S(t)v0(x)) ∈ K for all t > 0. Moreover, if u0(x) 6= v0(x), then,
for t > 0 we obtain

S(t)u0(x)− S(t)v0(x) > 0 in Ω. (3.27)

Proof. Throughout this proof we put u(t) := S(t)u0(x) and v(t) := S(t)v0(x).
u, v ∈ C(Ω × [0, T ]) for all T < T := min{T ∗(u0), T ∗(v0)}. By subtracting the
two equations for u and v, we see that z := u− v satisfies

zt −∆z = H(t)z in Ω× (0, T ),

z(0) = u0(x)− v0(x) ≥ 0 in Ω,

z = 0 on ∂Ω× (0, T ).

(3.28)

Here H(t) := H(·, t) is given by

H(x, t) =
∫ 1

0

f(u(x, t) + sz(x, t))ds for x ∈ Ω, t ≥ 0,

where s ∈ (0, 1). Since u, v are continuous functions, for all T ∈ (0, T ) we have

MT := sup
Ω×(0,T )

H(x, t) <∞.

Taking this into account, if we multiply (3.28) by z− and integrating over Ω we
obtain

1
2

d
dt
‖z−(t)‖2 = −‖∇z−(t)‖2 +

∫
Ω

H(t)|z−(t)|2dx ≤MT ‖z−(t)‖2

for all t ∈ [0, T ]. By Lemma 3.10 and by the arbitrariness of T , this proves that
z−(t) ≡ 0. Since z(t) = S(t)u0(x) − S(t)v0(x) satisfies the equation zt − ∆z =
H(t)z ≥ 0 on [δ, T ) together with homogeneous Dirichlet boundary conditions, the
strong parabolic maximum principle for initial data in C1

0 (Ω) implies that z(t) > 0
in Ω for t ∈ (δ, T ). �

To deduce the following lemma, we denote the corresponding Gâteaux derivative
Ju(u){h} of J(u) with respect to u at u ∈ H1

0 (Ω) in the direction h ∈ H1
0 (Ω) as

follows
Ju(u){h} := lim

ε→0

1
ε

(J(u+ εh)− J(u)) .

If J has a continuous Gâteaux derivative on Ω, then J ∈ C1(Ω). The second
Gâteaux derivative at u is denoted by

Juu(u){h, h} := 2 lim
ε→0

1
ε2

(J(h+ εh)− J(u)) .

Further we show the Gâteaux of Taylor’s theorem which will be used later.

Lemma 3.12 ([9]). Suppose that the line segment between u ∈ U ⊂ H1
0 (Ω) and

u+ εh lies entirely within U ⊂ H1
0 (Ω). If F is Ck, then

F (u+ εh) = F (u) + εFu(u){h}+
ε2

2!
Fuu(u){h, h}+ . . .
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+
εk−1

(k − 1)!
Fuk−1(u){hk−1}+ o(εk−1).

Lemma 3.13. If u is a nontrivial solution of problem (3.26), then Ju(u){u} =
0, Juu(u){u, u} < 0 and the first eigenvalue of the eigenvalue problem

−∆ψ − fu(u)ψ = λψ, in Ω,
ψ = 0, on ∂Ω

(3.29)

is negative.

Proof. Let u(x, t) be a nontrivial solution of (3.26). So it is easy to check that
‖∇u‖2 =

∫
Ω
uf(u)dx, then

Ju(u){u} = lim
ε→0

1
ε

(J((1 + ε)u)− J(u))

= lim
ε→0

1
ε

(1
2

∫
Ω

(|∇(1 + ε)u|2 − |∇u|2)−
∫

Ω

(F ((1 + ε)u)− F (u))
)
,

recalling the definition of Gâteaux derivative and the integral mean value theorem,
we obtain

Fu(u){u} = lim
ε→0

1
ε

(
F ((1 + ε)u)− F (u)

)
= lim
ε→0

1
ε

(∫ (1+ε)u

0

f(s)ds−
∫ u

0

f(s)ds
)

= lim
ε→0

∫ (1+ε)u

u
f(s)ds
ε

= lim
ε→0

f(ξ)εu
ε

= f(u)u,

(3.30)

where u < ξ < (1 + ε)u, combining with (3.30) and the aid of Lemma 3.12 we can
continue to get

Ju(u){u} = lim
ε→0

1
ε

(1
2

∫
Ω

(|∇u|2 + 2ε|∇u|2 + ε2|∇u|2 − |∇u|2)

−
∫

Ω

(F (u) + εuf(u) + o(ε)− F (u))
)

≤ lim
ε→0

1
ε

(∫
Ω

ε|∇u|2 −
∫

Ω

εuf(u)
)

= ‖∇u‖2 −
∫

Ω

uf(u)dx = 0.

As before, and using the condition (i) in (H1) we can write

Juu(u){u, u}

= 2 lim
ε→0

J((1 + ε)u)− J(u)
ε2

= 2 lim
ε→0

1
2

(
‖∇(1 + ε)u‖2 − ‖∇u‖2

)
−
(∫

Ω
F ((1 + ε)u)dx−

∫
Ω
F (u)dx

)
ε2

= 2 lim
ε→0

1
ε2

(1
2

(‖∇u‖2 + 2ε‖∇u‖2 + ε2‖∇u‖2 − ‖∇u‖2)

−
∫

Ω

(
F ((1 + ε)u)− F (u)

)
dx
)
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= 2 lim
ε→0

1
ε2

(1
2

(2ε‖∇u‖2 + ε2‖∇u‖2)−
∫

Ω

(
F ((1 + ε)u)− F (u)

)
dx
)

= 2 lim
ε→0

1
ε2

(1
2

(2ε‖∇u‖2 + ε2‖∇u‖2)−
∫

Ω

εuf(u) +
1
2

(εu)2fu(u)dx
)

= lim
ε→0

1
ε2

(
ε2‖∇u‖2 −

∫
Ω

(εu)2fu(u)dx
)

= ‖∇u‖2 −
∫

Ω

u2fu(u)dx

≤ ‖∇u‖2 − p
∫

Ω

uf(u)dx < 0.

By a simple computation, we have the corresponding eigenvalue of problem (3.29)
as follows

‖∇u‖2 −
∫

Ω

fu(u)u2 = λ‖u‖2.

Thanks to Juu(u){u, u} < 0, then we assert that the eigenvalue λ is negative. �

Lemma 3.14. Suppose that u1, u2 ∈ H1
0 (Ω) \ {0} are solutions of (3.26) with

u1 ≤ u2. Then, either u1 < 0 < u2 or u1 ≡ u2.

Proof. Assume that u1 6= u2. By comparison principle, we have u1 < u2 in Ω.
Considering the following eigenvalue problem

−∆ψ − fu(u)ψ = λψ. (3.31)

From Lemma 3.13, we know the first eigenvalues λu1 and λu2 are negative, and its
corresponding positive first eigenfunctions ζ1 and ζ2 satisfying

Juu(u1){ζ1, ζ1} < 0,

Juu(u2){ζ2, ζ2} < 0.

Because of the continuity of Juu, taking J(u1 + δζ1) as a functional with a value of
u1 + δζ1, according to Lemma 3.12, we have

J(u1 + δζ1) = J(u1) +
δ2

2
Juu(u1){ζ1, ζ1}+ o(δ2) < J(u1) (3.32)

for sufficiently small δ > 0. Similarly, we also have

J(u2 − δζ2) < J(u2). (3.33)

Now we define a closed set

Q := {µ ∈ H1
0 (Ω) : u1 ≤ µ ≤ u2 a.e. in Ω}

and
mP := inf

µ∈Q
J(µ). (3.34)

Find a small δ > 0 satisfying u1 < u1 + δζ1 < u2 − δζ2 < u2, that is u1 + δζ1 ∈ Q
and u2 − δζ2 ∈ Q, thus (3.34) tells mP < min{J(u1 + δζ1), J(u2 − δζ2)}, further
(3.32) and (3.33) help get

mP < min{J(u1), J(u2)}. (3.35)
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Next we prove that the minimum mP is achieved by a function µ ∈ Q. Taking a
minimizing sequence {µn}n ⊂ Q for J |Q := J(µ)|µ∈Q. As u1 and u2 solve problem
(3.26), due to their existence and µn ∈ Q, we see

‖∇µn‖2 = 2J(µn) + 2
∫

Ω

F (µn)dx ≤ C,

where constant C does not depend on the choice of n. Selecting subsequences to
make µn ⇀ µ ∈ H1

0 (Ω) (weak convergence) and

µn → µ a.e. in Ω,
∫

Ω

F (µn)dx→
∫

Ω

F (µ)dx,

we can attain µ ∈ Q, and one infers from Fatou’s lemma that

J(µ) =
1
2
‖∇µ‖2 −

∫
Ω

F (µ)dx

≤ 1
2

lim inf
n→∞

‖∇µn‖2 − lim
n→∞

∫
Ω

F (µn)dx

= lim inf
n→∞

J(µn) = mP .

Hence we have
J(µ) = mP (3.36)

and µ is minimizer of J |Q. Also (3.35) tells µ 6≡ u1 and µ 6≡ u2, which combining
the comparison principle and µ ∈ Q gives for any fixed t = t0 that S(t0)u1 ≤
S(t0)µ ≤ S(t0)u2, i.e. u1 ≤ S(t0)µ ≤ u2, that is S(t)µ ∈ Q. According to the
definition of mP for any fixed t = t0, J(S(t)µ) ≥ mP . As t0 is chosen arbitrarily,
S(t)µ ∈ Q and

J(S(t)µ) ≥ mP (3.37)

hold for any t > 0. On the other hand, testing (1.4) by ut gives

d
dt
J(u(t)) = −‖ut‖2, (3.38)

which says that t 7→ J(S(t)µ) is strictly decreasing along nonconstant trajectory,
and from (3.38) we see that

J(S(t)µ) ≤ mP for t ≥ 0 (3.39)

as the initial datum is µ. In combination with the above conclusions (3.36)-(3.39),
one gets that

J(S(t)µ) = J(µ) = mP for all t ≥ 0,

which implies that S(t)µ = µ for all t ≥ 0. Hence, µ is a solution of stationary
problem (3.26) and by the comparison principle we have u1 < µ < u2 in Ω. For
sufficiently small |ε|, we have

(1 + ε)µ ∈ Q.
Hence, from the minimum property of µ we obtain

Jµµ(µ){µ, µ} = lim
ε→0

J((1 + ε)µ)− J(µ)
ε2

≥ 0,

which combined with Lemma 3.13 imply µ ≡ 0. �
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Before the following lemma, we define some sets

S± :=
{
u ∈ C1

0 (Ω) : ±u > 0 in Ω;±∂u
∂ν

< 0 on ∂Ω
}
, (3.40)

where ν is the exterior unit normal vector, and

Sn := {u ∈ C1
0 (Ω) : u(x) < 0 < u(y) for some points x, y ∈ Ω

}
, (3.41)

which are both open and disjoint in C1
0 (Ω).

Lemma 3.15. Let u1 ∈ GP \GP,0. It holds:
(i) if ω(u1) ⊂ S+ ∪ Sn, then u2 ∈ BP for every u2 ≥ u1, u1 6≡ u2;

(ii) if ω(u1) ⊂ S− ∪ Sn, then u2 ∈ BP for every u2 ≤ u1, u1 6≡ u2.

Proof. From the Hopf boundary lemma, every nontrivial solution of (3.26) lies
either in S+,S− or in Sn. We only prove (i); the proof of (ii) is similar. Let
u1 ∈ GP \GP,0, u2 ≥ u1, u1 6≡ u2. Denote

u(t) := S(t)u1, û(t) := S(t)u2.

From comparison principle and the definition of ω(u1), we attain û(t) > u(t), i.e.
u2 6∈ GP,0. Then we are going to prove that u2 ∈ BP , considering u2 6∈ GP,0, arguing
by contradiction, we suppose that u2 ∈ GP \GP,0 and distinguish the following two
cases:
Case 1: There are an ε > 0 and a time sequence tn → ∞ such that ‖û(x, tn) −
u(x, tn)‖C1 ≥ ε for all n;
Case 2: ‖û(x, t)− u(x, t)‖C1 → 0 as t→∞.

If Case 1 happens, from compactness of ω(u1) and ω(u2), there exist subse-
quences such that u(tn)→ u∗, û(tn)→ û∗ in C1

0 (Ω), where u∗ and û∗ are nontrivial
solutions of problem (3.26). By comparison principle, we have û∗ ≥ u∗, where the
solution u∗ is not negative by the assumption ω(u1) ⊂ S+ ∪ Sn of this lemma.
Further by Lemma 3.14, we have û∗ = u∗. But this is impossible, since

‖û∗ − u∗‖C1 = lim
n→∞

‖û(tn)− u(tn)‖C1 ≥ ε.

Then Case 1 does not hold.
We now suppose that Case 2 happens. For every υ ∈ ω(u1), let λυ be the first

eigenvalue of Dirichlet eigenvalue problem
−∆θ − fυ(υ)θ = λυθ in Ω,

θ = 0 on ∂Ω,
(3.42)

and let eυ denote the unique positive L∞ normalized eigenfunction corresponding
to λυ. By Lemma 3.13 and the compactness of ω(u1) in C1

0 (Ω), we have

λ0 := sup
υ∈ω(u1)

λυ < 0. (3.43)

Moreover, let χ ∈ C(Ω̄) denote the distance function to the boundary ∂Ω, that is,
χ(x) =dist(x, ∂Ω) for x ∈ Ω. Then, again by compactness, there are C1, C2 > 0
such that

C1χ(x) ≤ eυ(x) ≤ C2χ(x) for all υ ∈ ω(u1), x ∈ Ω. (3.44)

Let η(t) := η(x, t) = û(t)− u(t), then in aid of comparison principle and the spirits
of Theorem 3.11, η(x, t) > 0 for x ∈ Ω, t > 0, and η solves the problem

ηt = ∆η +H(t)η, (3.45)
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where H(t) =
∫ 1

0
fu(u(x, t) + sη(x, t))ds, for x ∈ Ω, t ≥ 0. Now fix τ > 0 such that

C2 ≤ C1e
|λ0|
2 τ , (3.46)

which will be used later.
We claim that

inf
υ∈ω(u1)

sup
t≤s≤t+τ

‖H(s)− fυ(υ)‖∞ → 0 as t→∞. (3.47)

Actually, arguing by contradiction we suppose that there exist some ε > 0 and a
sequence tn which converges to infinity, such that

inf
υ∈ω(u1)

sup
tn≤s≤tn+τ

‖H(s)− fυ(υ)‖∞ > ε for all n. (3.48)

From Lemma 3.9, there exist υ ∈ ω(u1) and a subsequence (still denote by tn) such
that

sup
tn≤s≤tn+τ

‖u(s)− υ‖∞ → 0 as n→∞.

In addition, when ‖η(t)‖C1 → 0 as t→∞ occurs (Case 2), we obtain

sup
tn≤s≤tn+τ

‖H(s)− fυ(υ)‖∞ → 0.

These contradict (3.48) and prove (3.47). We may therefore take T0 > 0 such that

inf
υ∈ω(u1)

sup
t≤s≤t+τ

‖H(s)− fυ(υ)‖∞ ≤
|λ0|
2

(3.49)

for t ≥ T0, which will be used in the estimate of (3.52) later.
Next, we claim that∫

Ω

η(t+ τ)χ(x)dx ≥
∫

Ω

η(t)χ(x)dx for t ≥ T0. (3.50)

Indeed, by (3.49) and compactness, for all t ≥ T0 it is easy to find υ ∈ ω(u1)
verifying

‖H(s)− fυ(υ)‖∞ ≤
|λ0|
2
, (3.51)

for all s ∈ [t, t + τ ]. Using (3.45), Green’s Formula, (3.42), (3.43) and (3.51), for
η(x, t), we have

d
ds

∫
Ω

η(x, s)eυdx =
∫

Ω

(∆η(x, s) +H(x, s)η(x, s)) eυdx

=
∫

Ω

η(x, s)(∆eυ +H(x, s)eυ)dx

=
∫

Ω

η(x, s)eυ(H(x, s)− fυ(υ)− λυ)dx

≥
∫

Ω

η(x, s)eυ(−|λ0|
2
− λυ)dx

≥ |λ0|
2

∫
Ω

η(x, s)eυdx

(3.52)

for s ∈ [t, t+ τ ]. Integrating (3.52) over [t, t+ τ ] gives

ln
∣∣ ∫

Ω

η(x, t+ τ)eυdx
∣∣− ln

∣∣ ∫
Ω

η(x, t)eυdx
∣∣ ≥ |λ0|

2
(t+ τ)− |λ0|

2
t;
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that is, ∫
Ω

η(x, t+ τ)eυdx ≥ e
|λ0|
2 τ

∫
Ω

η(x, t)eυdx.

Combining this with (3.44), one sees that

C2

∫
Ω

η(t+ τ)χ(x)dx ≥
∫

Ω

η(t+ τ)eυdx

≥ e
|λ0|
2 τ

∫
Ω

η(t)eυdx ≥ C1e
|λ0|
2 τ

∫
Ω

η(t)χ(x)dx.

From the relationship between C1 and C2 we required in (3.46) and above estimate,
we obtain (3.50), which easily indicate that∫

Ω

η(T0 + `τ)χ(x)dx ≥
∫

Ω

η(T0)χ(x)dx > 0, (3.53)

for the fixed T0 in (3.49) and every ` ∈ N. It is obvious that (3.53) contradict the
hypothesis that ‖η(t)‖C1 → 0 as t→∞. This completes the proof. �

Lemma 3.16. Let v ∈ H1
0 (Ω) be a nontrivial solution of (3.26), and u0(x) ∈

H1
0 (Ω), u0(x) 6≡ ±v.

(i) If v+ 6≡ 0 and u0(x) ≥ v, then u0(x) ∈ BP ;
(ii) If v− 6≡ 0 and u0(x) ≤ v, then u0(x) ∈ BP ;

(iii) If 0 ≤ u0(x) ≤ v, then u0(x) ∈ GP,0.

Proof. (i) Obviously, v is the nontrivial stationary solution of problem (1.4)-(1.6),
i.e. v ∈ GP \GP,0. If v+ 6≡ 0, considering (i) in Lemma 3.15, we have u0(x) ∈ BP .

(ii) Analogously, if v− 6≡ 0, considering (ii) in Lemma 3.15, we have u0(x) ∈ BP .
(iii) Since 0 ≤ u0(x) ≤ v by comparison we have u0(x) ∈ GP . Therefore, from

Lemma 3.9, we obtain S(t)u0(x) → v] in H1
0 (Ω) as t → ∞. Suppose v] is a

nontrivial solution of (3.26) by contradiction. By comparison principle, we also
know 0 ≤ v] ≤ v. Due to v] 6≡ 0 (nontrivial solution), combining 0 ≤ u0(x) ≤ v,
u0(x) 6≡ ±v with Lemma 3.14, we derive the following two cases

(a) v] < 0 < v, or
(b) v] ≡ v.

As u0(x) ≥ 0 and u0(x) 6≡ 0, case (a) is impossible. Due to the fact that S(t)u0 →
v], u0(x) ≤ v, we deduce v] 6≡ v that kills case (b). Thus v] is a trivial solution of
(3.26), i.e., ω(u0) = {0}, that is u0(x) ∈ GP,0. �

Theorem 3.17 (Global existence and nonexistence for J(u0) > 0). For every
positive M , there exist uP , vP ∈ N+ ∩ K ∩ C1

0 (Ω) satisfying the following two
conditions:

(i) J(uP ) ≥M, J(vP ) ≥M ;
(ii) uP ∈ GP,0, vP ∈ BP .

Proof. Let M > 0 and v denote a positive solution of problem (3.26). Assume that

Ω′ = {x ∈ Ω : v ∈ H1
0 (Ω), v > ε} ⊂ Ω

is an open subset for a sufficiently small ε > 0. Now, for any h > 0, choose a
positive function φh ∈ C1

0 (Ω′) and make a continuous zero extension to Ω\Ω′ such
that

‖∇φh‖ ≥ h and ‖φh‖∞ ≤ ε.
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For a fixed h > 0 we put %+ := v+ φh and %− := v− φh. Then %± ∈ K, and (ii) in
(A1) gives ∫

Ω′
%±f(%±)dx ≤

l∑
k=1

ak

∫
Ω′
|%±|pk+1dx

≤
l∑

k=1

ak
(
‖v‖pk+1

Lpk+1(Ω′)
+ ‖φh‖pk+1

Lpk+1(Ω′)

)
≤

l∑
k=1

ak
(
‖v‖pk+1

Lpk+1(Ω′)
+ εpk+1|Ω′|

)
,

where ak, pk are same in condition (ii) in (A1). From Lemma 2.1 and (ii) in (A1)
we have

J(%±) =
1
2
‖∇%±‖2 −

∫
Ω

F (%±)dx

=
1
2

(∫
Ω′
|∇%±|2dx+

∫
Ω\Ω′

|∇%±|2dx
)

−
(∫

Ω′
F (%±)dx+

∫
Ω\Ω′

F (%±)dx
)

≥1
2

∫
Ω′
|∇%±|2dx− 1

p+ 1

(∫
Ω′
%±f(%±)dx+

∫
Ω\Ω′

%±f(%±)dx
)
.

Obviously, consider that v is a positive solution of problem (3.26) and the contin-
uous zero extension property of φh ∈ C1

0 (Ω′), we know that
∫

Ω\Ω′ %±f(%±)dx =∫
Ω\Ω′ vf(v)dx is bounded in H1

0 (Ω) and independent of t. Therefore,

J(%±) ≥1
2
‖∇%±‖2L2(Ω′) −

1
p+ 1

∫
Ω′
%±f(%±)dx− C(ε)

p+ 1

≥1
2

(h− ‖∇v‖L2(Ω′))2 −
l∑

k=1

ak
p+ 1

(
‖v‖pk+1

Lpk+1(Ω′)
+ εpk+1|Ω′|

)
− C(ε)
p+ 1

,

where C(ε) =
∫

Ω\Ω′ %±f(%±)dx. Similarly, we can also deduce

I(%±) =‖∇%±‖2 −
∫

Ω

%±f(%±)dx

=
(∫

Ω′
|∇%±|2dx+

∫
Ω\Ω′

|∇%±|2dx
)

−
(∫

Ω′
%±f(%±)dx+

∫
Ω\Ω′

%±f(%±)dx
)

≥‖∇%±‖2L2(Ω′) −
∫

Ω′
%±f(%±)dx− C(ε)

≥
(
h− ‖∇v‖L2(Ω′)

)2 − l∑
k=1

ak

(
‖v‖pk+1

Lpk+1(Ω′)
+ εpk+1|Ω′|

)
− C(ε).

Hence, for h sufficiently large that both J(%±) ≥ M and I(%±) > 0 are satisfied,
therefore %± ∈ N+ automatically holds. For such a number h, take %− = uP and
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%+ = vP . Since 0 ≤ uP ≤ v we have uP ∈ GP,0 by Lemma 3.16 (iii). On the other
hand, by 0 ≤ v ≤ vP , we obtain vP ∈ BP by Lemma 3.16 (i). �

Next we show a crucial condition for vanishing or blow-up of solution at arbi-
trarily high energy level to problem (1.4)-(1.6) as follows.

Lemma 3.18. Suppose that u ∈ H1
0 (Ω), then

(i) For every u ∈ N+, we obtain J(u) > 0;
(ii) For all u ∈ N , we show that J(u) = maxλ≥0 J(λu);
(iii) For each ~ > 0, we assert that J~ ∩N+ is bounded set in H1

0 (Ω).

Proof. (i) For u ∈ N+, we have I(u) > 0, and make use of Lemma 2.1, we obtain

J(u) =
1
2
‖∇u‖2 −

∫
Ω

F (u)dx ≥ 1
p+ 1

I(u) +
p− 1
2p+ 2

‖∇u‖2 > 0.

(ii) For u ∈ N , we can get I(u) = 0. Hence, combined with Lemma 2.5, we have

d

dλ
J(λu) = I(λu) = 0,

which infers that λ = 1, and J(u) = maxλ≥0 J(λu) for u ∈ N .
(iii) Since J(u) < ~ and I(u) > 0, we obtain

~ > J(u) =
1
2
‖∇u‖2 −

∫
Ω

F (u)dx

≥ 1
p+ 1

I(u) +
p− 1
2p+ 2

‖∇u‖2

>
p− 1
2p+ 2

‖∇u‖2,

which yields ‖∇u‖2 < ~ 2p+2
p−1 . Then proof is complete. �

Theorem 3.19. Suppose that u0(x) ∈ N+ and ‖u0‖2 ≤ λJ(u0). Then u0(x) ∈ GP,0;
and assume that u0(x) ∈ N− and ‖u0‖2 ≥ ΛJ(u0), then u0(x) ∈ BP .

Proof. Let u(t) := S(t)u0(x) for t ∈ [0, T ∗(u0)). Recalling the definition of J and
I, testing (1.4) by u (respectively ut) and straightforward computations give us

d
dt
‖u‖2 = −2I(u), t ∈ [0, T ∗(u0)), (3.54)

d
dt
J(u) = −‖ut‖2, t ∈ [0, T ∗(u0)). (3.55)

Firstly, if u0(x) ∈ N+ satisfies ‖u0‖2 ≤ λJ(u0), we assert that u(t) ∈ N+ for any
t ∈ [0, T ∗(u0)). Assume by contradiction that there exists the first t1 ∈ (0, T ∗(u0))
such that u(t) ∈ N+ for 0 ≤ t < t1 and u(t1) ∈ N . with this, (3.54) and (3.55) one
deduces that

‖u(t1)‖2 < ‖u0‖2 ≤ λJ(u0), (3.56)

J(u(t1)) < J(u0). (3.57)

As u(t1) ∈ N and (3.57), the definition of λJ(u0) gives ‖u(t1)‖2 ≥ λJ(u0), which
contradicts (3.56), hence u(t) ∈ N+. Combining (3.56) and (iii) of Lemma 3.18,
JJ(u0) ∩ N+ is bounded in H1

0 (Ω) for t ∈ [0, T ∗(u0)) such that T ∗(u0) = ∞, i.e.
u0(x) ∈ GP .
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Further, for any w ∈ ω(u0), it follows from (3.54) and (3.55) that ‖w‖2 < λJ(u0)

and J(w) ≤ J(u0). And it was just proved above that ω(u0) ⊂ N+, which tell us
that

ω(u0) ∩N = ∅. (3.58)

As Lemma 3.9 ensures that the solution u(t) = S(t)u0(x) of problem (1.4)-(1.6)
trends to the so-called stationary solution of (3.26) as t→∞, and also N contains
the nontrivial solutions of problem (3.26) except zero, (3.58) directly gives that
ω(u0) = {0}, i.e. u0(x) ∈ GP,0.

Finally, if u0(x) ∈ N− satisfies ‖u0‖2 ≥ ΛJ(u0). A similar contradiction as before
indicates that u(t) ∈ N− for all t ∈ [0, T ∗(u0)). Now suppose the contrary T ∗(u0) =
∞. Thus for any w ∈ ω(u0) we derive that ‖w‖2 > ΛJ(u0) and J(w) ≤ J(u0) by
(3.54) and (3.55). By definition of ΛJ(u0), similar to the above, we can deduce that
ω(u0) ⊂ N− and ω(u0)∩N = ∅. As N contains the nontrivial solutions of problem
(3.26) and Lemma 3.9 tells that S(t)u0(x) converges to the solution of (3.26) as
t→∞, the fact ω(u0)∩N = ∅ gives ω(u0) = {0}. However, as dist(0,N−) > 0 and
ω(u0) ⊂ N−, it can be seen that 0 6∈ ω(u0). Consequently, we conclude ω(u0) = ∅.
This contradicts the assumption that u(t) is a global solution. So we assert that
T ∗(u0) <∞, this finishes the proof. �

Lemma 3.20. Let assumption (A4) hold. Suppose that J(u0) > 0 and the initial
datum satisfies

p− 1
2Cpoin(p+ 1)

‖u0‖2 > J(u0), (3.59)

where Cpoin is the coefficient of Poincaré inequality

Cpoin‖∇u‖2 ≥ ‖u‖2. (3.60)

Then the map t 7→ ‖u(t)‖2 is strictly increasing as long as u(t) ∈ VP .

Proof. We introduce the following auxiliary function

F (t) := ‖u(t)‖2. (3.61)

Then from Equation (1.4) it follows

F ′(t) = 2(ut, u) = −2I(u). (3.62)

Hence by u(t) ∈ VP we arrive at

F ′(t) > 0 for t ∈ [0, T ∗(u0)). (3.63)

Furthermore, from (3.59) and J(u0) > 0 it implies that

F (0) = ‖u0‖2 >
2Cpoin(p+ 1)

p− 1
J(u0) > 0. (3.64)

Therefore from (3.63) and (3.64) we can see that F (t) > F (0) > 0, which tells us
that the map t 7→ ‖u(t)‖2 is strictly increasing. �

Remark 3.21. As the condition (3.59) of Lemma 3.20 is over strong and beyond
what the conclusion of Lemma 3.20 needs, the condition of this lemma can be
weaken, but we keep it to make this lemma work for the following Lemma 3.22 and
Theorem 3.23, where (3.59) is necessary.

Next, we show the invariance of the unstable set VP under the flow of problem
(1.4)-(1.6) at arbitrarily positive initial energy level J(u0) > 0.
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Lemma 3.22 (Invariant set VP ). Let assumption (A4) hold and u(x, t) be a weak
solution of problem (1.4)-(1.6) with maximum existence time interval [0, T ), T ≤
+∞. Assume that the initial datum satisfies (3.59). Then all solutions of problem
(1.4)-(1.6) with J(u0) > 0 belong to VP , provided u0(x) ∈ VP .

Proof. We prove u(t) ∈ VP for t ∈ [0, T ). Arguing by contradiction we assume that
t0 ∈ (0, T ) is the first time such that I(u(t0)) = 0 and I(u(t)) < 0 for t ∈ [0, t0).
From Lemma 3.20 it follows that the map t 7→ ‖u(t)‖2 is strictly increasing on the
interval [0, t0), which together with (3.59) gives

‖u(t)‖2 > ‖u0‖2 >
2Cpoin(p+ 1)

p− 1
J(u0), t ∈ (0, t0). (3.65)

Further, from the continuity of u(t) in t, we obtain

‖u(t0)‖2 > ‖u0‖2 >
2Cpoin(p+ 1)

p− 1
J(u0). (3.66)

On the other hand, recalling the definition of J , (3.3) and Lemma 2.1, we see

J(u0) =J(u(t0)) +
∫ t0

0

‖uτ‖2dτ

≥1
2
‖∇u(t0)‖2 −

∫
Ω

F (u(t0))dx

≥1
2
‖∇u(t0)‖2 − 1

p+ 1

∫
Ω

u(t0)f(u(t0))dx

=
(1

2
− 1
p+ 1

)
‖∇u(t0)‖2 +

1
p+ 1

I(u(t0)),

which together with I(u(t0)) = 0 and Poincaré inequality shows that

J(u0) ≥ p− 1
2(p+ 1)

‖∇u(t0)‖2 ≥ p− 1
2Cpoin(p+ 1)

‖u(t0)‖2, (3.67)

which contradicts (3.66). So the proof is complete. �

Theorem 3.23 (Global nonexistence for J(u0) > 0). Let (A4) hold, and suppose
that J(u0) > 0 and u0(x) ∈ VP . Then problem (1.4)-(1.6) does not admit any global
weak solution provided that

‖u0‖2 >
2Cpoin(p+ 1)J(u0)

p− 1
, (3.68)

where Cpoin is the coefficient of the Poincaré inequality (3.60).

Proof. Arguing by contradiction we suppose that u(x, t) exists globally. Testing
(1.4) by u and from Lemma 2.1 we obtain

1
2

d
dt
‖u‖2 =

∫
Ω

uutdx

= −‖∇u‖2 +
∫

Ω

uf(u)dx

≥ −2J(u) +
p− 1
p+ 1

∫
Ω

uf(u)dx.

(3.69)

For the sake of clarity, the proof will be separated into two cases.
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Case I: J(u) ≥ 0 for t > 0. By considering (3.68), we take β such that

1 < β <
(p− 1)‖u0‖2

2Cpoin(p+ 1)J(u0)
. (3.70)

Combining with (3.69), (3.3) and Lemma 3.22, we see
1
2

d
dt
‖u‖2 ≥ −2J(u) +

p− 1
p+ 1

∫
Ω

uf(u)dx

= 2(β − 1)J(u)− 2βJ(u) +
p− 1
p+ 1

∫
Ω

uf(u)dx

≥ −2βJ(u0) + 2β
∫ t

0

‖uτ‖2dτ +
p− 1
p+ 1

∫
Ω

uf(u)dx

≥ −2βJ(u0) + 2β
∫ t

0

‖uτ‖2dτ − p− 1
p+ 1

I(u) +
p− 1
p+ 1

‖∇u‖2

> −2βJ(u0) + 2β
∫ t

0

‖uτ‖2dτ +
p− 1
p+ 1

‖∇u‖2.

(3.71)

An application of Poincaré inequality leads to
p− 1
p+ 1

‖∇u‖2 ≥ p− 1
Cpoin(p+ 1)

‖u‖2. (3.72)

Substituting (3.72) into (3.71) gives

d
dt
‖u‖2 > −4βJ(u0) + 4β

∫ t

0

‖uτ‖2dτ +
2(p− 1)

Cpoin(p+ 1)
‖u‖2, (3.73)

then
d
dt
‖u‖2 − 2(p− 1)

Cpoin(p+ 1)
‖u‖2 > −4βJ(u0),

which yields

‖u‖2 > ‖u0‖2e
2(p−1)

Cpoin(p+1) t +
2βCpoin(p+ 1)

p− 1
J(u0)

(
1− e

2(p−1)
Cpoin(p+1) t

)
. (3.74)

Substituting (3.74) into (3.73) and recalling the auxiliary function MP (t) in (3.13)
yields

M̈P (t) > 4β
∫ t

0

‖uτ‖2dτ +
( 2(p− 1)
Cpoin(p+ 1)

‖u0‖2 − 4βJ(u0)
)
e

2(p−1)
Cpoin(p+1) t. (3.75)

Now we take a small enough number ε > 0 and pick c > 0 large enough that

c >
1
4
ε−2‖u0‖4. (3.76)

We define a new auxiliary function

NP (t) := M2
P (t) + ε−1‖u0‖2MP (t) + c.

Hence,

ṄP (t) =
(
2MP (t) + ε−1‖u0‖2

)
ṀP (t), (3.77)

N̈P (t) =
(
2MP (t) + ε−1‖u0‖2

)
M̈P (t) + 2Ṁ2

P (t).

Set δ := 4c− ε−2‖u0‖4, then (3.76) indicates δ > 0. Hence we have

Ṅ2
P (t) =

(
4M2

P (t) + 4ε−1‖u0‖2MP (t) + ε−2‖u0‖4
)
Ṁ2
P (t)
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=
(
4M2

P (t) + 4ε−1‖u0‖2MP (t) + 4c− δ
)
Ṁ2
P (t)

= (4NP (t)− δ) Ṁ2
P (t),

which tells us that

4NP (t)Ṁ2
P (t) = Ṅ2

P (t) + δṀ2
P (t). (3.78)

By (3.69), Hölder and Young inequalities, we estimate the term Ṁ2
P (t) as follows

Ṁ2
P (t) =‖u‖4

=
(
‖u0‖2 + 2

∫ t

0

∫
Ω

u(τ)uτ (τ)dxdτ
)2

≤
(
‖u0‖2 + 2

(∫ t

0

‖u(τ)‖2dτ
)1/2(∫ t

0

‖uτ (τ)‖2dτ
)1/2)2

=‖u0‖4 + 4‖u0‖2
(∫ t

0

‖u(τ)‖2dτ
)1/2(∫ t

0

‖uτ (τ)‖2dτ
)1/2

+ 4MP (t)
∫ t

0

‖uτ (τ)‖2dτ

≤‖u0‖4 + 2ε‖u0‖2MP (t) + 2ε−1‖u0‖2
∫ t

0

‖uτ (τ)‖2dτ

+ 4MP (t)
∫ t

0

‖uτ (τ)‖2dτ.

(3.79)

Bearing in mind relation (3.78), we obtain

2NP (t)N̈P (t) = 2
((

2MP (t) + ε−1‖u0‖2
)
M̈P (t) + 2Ṁ2

P (t)
)
NP (t)

= 2
(
2MP (t) + ε−1‖u0‖2

)
M̈P (t)NP (t) + 4NP (t)Ṁ2

P (t)

= 2
(
2MP (t) + ε−1‖u0‖2

)
M̈P (t)NP (t) + Ṅ2

P (t) + δṀ2
P (t).

(3.80)

Now, from (3.78)-(3.80) and (3.75), we can write

2N̈P (t)NP (t)− (1 + β)Ṅ2
P (t)

= 2
(
2MP (t) + ε−1‖u0‖2

)
M̈P (t)NP (t) + δṀ2

P (t)− βṄ2
P (t)

= 2
(
2MP (t) + ε−1‖u0‖2

)
M̈P (t)NP (t) + δṀ2

P (t)− β(4NP (t)− δ)Ṁ2
P (t)

= 2
(
2MP (t) + ε−1‖u0‖2

)
M̈P (t)NP (t)− 4βNP (t)Ṁ2

P (t) + δ(1 + β)Ṁ2
P (t)

> I1I2 − I3I4,
where

I1 := 2NP (t)
(
2MP (t) + ε−1‖u0‖2

)
,

I2 := 4β
∫ t

0

‖uτ‖2dτ +
( 2(p− 1)
Cpoin(p+ 1)

‖u0‖2 − 4βJ(u0)
)
e

2(p−1)
Cpoin(p+1) t,

I3 := 4βNP (t),

I4 :=‖u0‖4 + 2ε‖u0‖2Mp(t) + 2ε−1‖u0‖2
∫ t

0

‖uτ (τ)‖2dτ

+ 4MP (t)
∫ t

0

‖uτ (τ)‖2dτ.
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Taking γ = 2(p−1)
Cpoin(p+1)‖u0‖2 − 4βJ(u0), then (3.70) ensures γ > 0. Choosing ε that

ε <
γe

2(p−1)
Cpoin(p+1) t

2β‖u0‖2
,

and with the facts that e
2(p−1)

Cpoin(p+1) t > 1 and NP (t) > 0, we obtain

2N̈P (t)NP (t)− (1 + β)Ṅ2
P (t)

>I1

(
4β
∫ t

0

‖uτ‖2dτ + γe
2(p−1)

Cpoin(p+1) t
)
− I3I4

>I1

(
4β
∫ t

0

‖uτ‖2dτ + 2βε‖u0‖2
)
− I3I4

=4βNP (t)
(

2MP (t) + ε−1‖u0‖2
)(

2
∫ t

0

‖uτ‖2dτ + ε‖u0‖2
)
− I3I4

=I3
( (

2MP (t) + ε−1‖u0‖2
) (

2
∫ t

0

‖uτ‖2dτ + ε‖u0‖2
)
− I4

)
= 0.

Therefore
N̈P (t)NP (t)− 1 + β

2
Ṅ2
P (t) > 0,

which implies that

N̈
− β−1

2
P (t) = − β − 1

2N
β+3
2

P (t)

(
N̈P (t)NP (t)− 1 + β

2
Ṅ2
P (t)

)
< 0.

Since NP (0) = c > 1
4ε
−2‖u0‖4 > 0 and ṄP (0) = ε−1‖u0‖4 > 0, therefore, we can

conclude that there exists some T <∞ such that

lim
t→T

N
− β−1

2
P (t) = 0;

that is,
lim
t→T

NP (t) = +∞.

Now, by considering the continuity of both NP (t) and MP (t) with respect to t, we
can conclude that

lim
t→T

MP (t) = +∞.

Obviously, it contradicts T = +∞.
Case II: J(u) < 0 for some t > 0. In this case, by considering (3.55) and the conti-
nuity of J(u) in t, considering J(u0) > 0, there exists t0 > 0 such that J(u(t0)) = 0
and J(u(t)) < 0 for t > t0. According to Lemma 3.22, we shall deduce u(t) ∈ VP .
Then similar to the proof of Theorem 3.5, we can attain the results of blowup.

Thus, by considering the above two cases, the desired assertion immediately
follows. �

Subsequently, according to Theorem 3.23, we will establish a criterion to guar-
antee the blowup of solutions in a finite time when the initial energy is arbitrarily
high.

Theorem 3.24. For every M > 0, there exists uM ∈ N− satisfies the following
conditions:



EJDE-2018/55 GLOBAL WELL-POSEDNESS 39

(i) J(uM ) ≥M ;
(ii) uM ∈ BP .

Proof. Let M > 0, and we take two disjoint open sets Ωi (i = 1, 2), which are
arbitrary subdomains of Ω. Moreover, choosing v ∈ H1

0 (Ω1) ⊂ H1
0 (Ω) be an arbi-

trary nonzero function. Then it is easy to check that ‖κv‖2 ≥ 2Cpoin(p+1)
p−1 M and

J(κv) ≤ 0 for sufficiently large κ > 0. Fix such a real number κ > 0 and select a
function ṽ ∈ H1

0 (Ω2) to ensure J(ṽ) = M − J(κv). Then uM := κv + ṽ verifies

J(uM ) =
1
2
‖∇κv‖2L2(Ω1) −

∫
Ω1

F (κv)dx+
1
2
‖∇ṽ‖2L2(Ω2) −

∫
Ω2

F (ṽ)dx

= J(κv)|κv∈H1
0 (Ω1) + J(ṽ)|ṽ∈H1

0 (Ω2) = M

and

‖∇uM‖2 ≥
1

Cpoin
‖uM‖2

=
1

Cpoin

(
‖κv‖2L2(Ω1) + ‖ṽ‖2L2(Ω2)

)
≥ 1
Cpoin

‖κv‖2L2(Ω1)

≥ 2(p+ 1)
p− 1

J(uM ).

(3.81)

On the other hand, by Lemma 2.1 and the definition of I(u), we have

2(p+ 1)
p− 1

J(uM ) =
2(p+ 1)
p− 1

(1
2
‖∇uM‖2 −

∫
Ω

F (uM )dx
)

≥ 2(p+ 1)
p− 1

(1
2
‖∇uM‖2 −

1
p+ 1

∫
Ω

uMf(uM )dx
)

≥ 2(p+ 1)
p− 1

(1
2
‖∇uM‖2 −

1
p+ 1

(
‖∇uM‖2 − I(uM )

) )
≥ ‖∇uM‖2 +

2
p− 1

I(uM ),

combining with (3.81) it is sufficiently to obtain I(uM ) < 0. Hence, uM ∈ N−∩BP
by Theorem 3.23. �

4. Nonlinear Schrödinger equation

The main aim of this section is to consider problem (1.7)-(1.8), where f(u)
satisfies the Common assumption

(A5)

f(u) = −
l∑

k=1

ak|u|pk−1u;

1 +
4
n
< pl < pl−1 < · · · < p1 <

n+ 2
n− 2

for n ≥ 3;

1 +
4
n
< pl < pl−1 < · · · < p1 <∞ for n = 1, 2.
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By introducing a new potential well WS and its corresponding outside set VS , we
attain some sharp conditions for global existence of the solution with the initial
data satisfying J(u0) < D.

In this section for problem (1.7)-(1.8), we define

H1 = H1(Rn), H = {u ∈ H1 : ‖u‖ = ‖u0‖},
Σ = {u ∈ H1 : |x|u ∈ L2(Rn)},

JS(u) =
1
2
‖∇u‖2 +

∫
Rn
F (u)dx, F (u) =

∫ u

0

f(s)ds,

J(u) =
1
2
‖∇u‖2 +

1
2
‖u‖2 +

∫
Rn
F (u)dx = JS(u) +

1
2
‖u‖2,

Q(t) = ‖|x|u‖2,
where ‖ · ‖p = ‖ · ‖Lp(Rn), ‖ · ‖ = ‖ · ‖2.

In addition we redefine the Nehari functional I(u), the potential well depth d
and the corresponding Nehari functional as follows

I(u) = ‖∇u‖2 + ‖u‖2 +
l∑

k=1

n(pk − 1)
2(pk + 1)

∫
Rn
uf(u)dx,

D = inf
u∈N

J(u), N = {u ∈ H1 : I(u) = 0, u 6= 0}.

The following Proposition 4.1-4.3 are well known. Although Proposition 4.2 and
Proposition 4.3 were widely used, it is not easy to find a literature to be cited.
Especially the arguments will be very different for different nonlinear terms, hence
in the present paper we give the proofs of these two propositions.

Proposition 4.1 (Local existence [3]). Let assumption (A5) hold, u0(x) ∈ H1.
Then problem (1.7)-(1.8) possesses a unique solution u ∈ C([0, T );H1) defined on
maximum time-interval [0, T ) such that either

(i) T = +∞, or
(ii) T <∞ and limt→T ‖u‖H1 = +∞.

Proposition 4.2 (Conservation law). Let assumption (A5) hold, u0(x) ∈ H1,
u ∈ C([0, T );H1) be a unique solution to problem (1.7)-(1.8), then

(a) ‖u‖ = ‖u0‖, t ∈ [0, T );
(b) JS(u) = JS(u0), t ∈ [0, T ).

Proof. (a)
d
dt

(∫
Rn
|u|2dx

)
=

d
dt

(∫
Rn
uūdx

)
=
∫

Rn
(uūt + ūut)dx

=
∫

Rn
(ūut + ūut)dx

= 2 Re
∫

Rn
ūutdx.

(4.1)

From (1.7) we have

ūut = i
(
ū∆u+

l∑
k=1

ak|u|pk−1uū
)
. (4.2)
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Substituting (4.2) into (4.1) we obtain

d
dt

(∫
Rn
|u|2dx

)
= 2 Re

∫
Rn
i
(
ū∆u+

l∑
k=1

ak|u|pk−1uū
)

dx

= −2 Im
∫

Rn

(
ū∆u+

l∑
k=1

ak|u|pk−1uū
)

dx

= −2 Im
∫

Rn

(
ū∆u+

l∑
k=1

ak|u|pk+1
)

dx

= −2 Im
∫

Rn
ū∆udx

= 2 Im
∫

Rn
∇ū∇udx

= 2 Im
∫

Rn
|∇u|2dx = 0.

(4.3)

(b)

d
dt

(JS(u)) =
d
dt

(1
2

∫
Rn
∇u∇ūdx+

∫
Rn
F (u)dx

)
=

d
dt

(1
2

∫
Rn
∇u∇ūdx−

∫
Rn

∫ u

0

l∑
k=1

ak|s|pk−1sdsdx
)

=
d
dt

(1
2

∫
Rn
∇u∇ūdx−

l∑
k=1

ak
pk + 1

∫
Rn
|u|pk+1dx

)
=

1
2

∫
Rn

(∇ut∇ū+∇u∇ūt)dx−
l∑

k=1

ak
pk + 1

d
dt

∫
Rn
|uū|

pk+1
2 dx

=
1
2

∫
Rn

(∇ut∇ū+∇u∇ūt)dx−
l∑

k=1

ak
2

∫
Rn
|uū|

pk−3
2 (uū)

∂(uū)
∂t

dx

=
1
2

∫
Rn

(∇ut∇ū+∇u∇ūt)dx−
l∑

k=1

ak
2

∫
Rn
|uū|

pk−3
2 |uū|(uūt + utū)dx

=
1
2

∫
Rn

(∇ut∇ū+∇u∇ūt)dx−
l∑

k=1

ak
2

∫
Rn
|uū|

pk−1
2 (uūt + utū)dx

=
1
2

∫
Rn

(∇u∇ūt +∇u∇ūt)dx−
l∑

k=1

ak
2

∫
Rn
|u|pk−1(uūt + uūt)dx

= Re
(∫

Rn
∇u∇ūtdx−

l∑
k=1

ak

∫
Rn
|u|pk−1uūtdx

)
= Re

(
−
∫

Rn
∆uūtdx−

l∑
k=1

ak

∫
Rn
|u|pk−1uūtdx

)
.

(4.4)
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Again from(1.7) we obtain

i|ut|2 =
(
−∆uūt −

l∑
k=1

ak|u|pk−1uūt

)
. (4.5)

Inserting (4.5) into (4.4) we can reach

d
dt

(JS(u)) = Re
∫

Rn
i|ut|2dx = 0. (4.6)

Thus we conclude the claims (a) and (b). �

Proposition 4.3. Suppose that u0(x) ∈ Σ, then the solution u(t) with initial data
u0(x) for problem (1.7)-(1.8) belongs to Σ and satisfies

Q′′(t) ≤ 8
(∫

Rn
|∇u|2dx−

l∑
k=1

n(pk − 1)
2(pk + 1)

∫
Rn
ak|u|pk+1dx

)
.

Proof. From the definition of Q(t), taking the first derivative of Q(t), we have

Q′(t) =
∫

Rn
|x|2(uūt + ūut)dx

=
∫

Rn
|x|2(ūut + uūt)dx

= 2Re
∫

Rn
|x|2ūutdx.

(4.7)

From (4.2), (4.7) becomes

Q′(t) = 2Re
∫

Rn
|x|2i

(
∆uū+

l∑
k=1

ak|u|pk−1uū
)

dx

= −2Im
∫

Rn
|x|2
(

∆uū+
l∑

k=1

ak|u|pk+1
)

dx

= −2Im
∫

Rn
|x|2(∆uū)dx

= 2Im
∫

Rn
|x|2(u∆ū)dx.

(4.8)

Furthermore, continuing to take the derivative of Q′(t) and using Green’s formula
we obtain

Q′′(t) = 2Im
∫

Rn
|x|2(ut∆ū+ u∆ūt)dx

= 2Im
∫

Rn

(
|x|2ut∆ū+ ∆(|x|2u)ūt

)
dx

= 2Im
∫

Rn

(
|x|2ut∆ū+ ūt

n∑
i=1

∂2

∂x2
i

(|x|2u)
)

dx

= 2Im
∫

Rn

(
|x|2ut∆ū+ ūt

n∑
i=1

∂

∂xi

(∂|x|2
∂xi

u+ |x|2 ∂u
∂xi

))
dx
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= 2Im
∫

Rn

(
|x|2ut∆ū+ ūt

n∑
i=1

∂

∂xi

(∂∑n
i=1 x

2
i

∂xi
u+ |x|2 ∂u

∂xi

))
dx

= 2Im
∫

Rn

(
|x|2ut∆ū+ ūt

n∑
i=1

∂

∂xi

(
2xiu+ |x|2 ∂u

∂xi

))
dx

= 2Im
∫

Rn

(
|x|2ut∆ū+ ūt

(
2nu+ 4

n∑
i=1

xi
∂u

∂xi
+ |x|2

n∑
i=1

∂2u

∂x2
i

))
dx

= 2Im
∫

Rn

(
|x|2ut∆ū+ |x|2ūt∆u+ ūt(2nu+ 4x∇u)

)
dx

= 2Im
∫

Rn

(
|x|2ut∆ū+ |x|2ut∆ū+ ūt(2nu+ 4x∇u)

)
dx

= 4Im
∫

Rn
ūt(nu+ 2x∇u)dx. (4.9)

Here, replacing ut by ūt in Eq.(1.7), we have

ūt = (−i)
(

∆ū+
l∑

k=1

ak|u|pk−1ū
)
, (4.10)

then (4.9) becomes

Q′′(t) = 4Im
∫

Rn
(−i)

(
∆ū+

l∑
k=1

ak|u|pk−1ū
)

(nu+ 2x∇u)dx

= −4Re
∫

Rn

(
∆ū(nu+ 2x∇u) +

l∑
k=1

ak|u|pk−1ū(nu+ 2x∇u)
)

dx

= −4(I1 + I2),

(4.11)

where

I1 := Re
∫
Rn

∆ū(nu+ 2x∇u)dx,

I2 := Re
∫
Rn

l∑
k=1

ak|u|pk−1ū(nu+ 2x∇u)dx.

Then we consider I1 and I2 separately. First, we calculate I1 by using Green’s
formula as follows

I1 = Re
∫

Rn
∆ū(nu+ 2x∇u)dx

= Re
∫

Rn

(
−n|∇u|2 − 2∇(x∇u)∇ū

)
dx

= Re
∫

Rn

(
− n|∇u|2 − 2

n∑
i=1

∂

∂xi

( n∑
j=1

xj
∂u

∂xj

) ∂ū
∂xi

)
dx

= Re
∫

Rn

(
− n|∇u|2 − 2

n∑
i=1

n∑
j=1

∂

∂xi

(
xj

∂u

∂xj

) ∂ū
∂xi

)
dx
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= Re
∫

Rn

(
− n|∇u|2 − 2

n∑
i=1

n∑
j=1

(∂xj
∂xi

∂u

∂xj
+ xj

∂2u

∂xi∂xj

) ∂ū
∂xi

)
dx

= −n
∫

Rn
|∇u|2dx− 2Re

∫
Rn

( n∑
i=1

∂u

∂xi

∂ū

∂xi
+

n∑
i=1

n∑
j=1

xj
∂2u

∂xixj

∂ū

∂xi

)
dx

= −n
∫

Rn
|∇u|2dx− 2

∫
Rn
|∇u|2dx

− Re
∫

Rn

n∑
i=1

n∑
j=1

xj

( ∂2u

∂xixj

∂ū

∂xi
+

∂2u

∂xixj

∂ū

∂xi

)
dx

= −n
∫

Rn
|∇u|2dx− 2

∫
Rn
|∇u|2dx

− Re
∫

Rn

n∑
i=1

n∑
j=1

xj

( ∂2u

∂xixj

∂ū

∂xi
+

∂2ū

∂xixj

∂u

∂xi

)
dx

= −n
∫

Rn
|∇u|2dx− 2

∫
Rn
|∇u|2dx− Re

∫
Rn

n∑
i=1

n∑
j=1

xj
∂

∂xj

( ∂u
∂xi

∂ū

∂xi

)
dx

= −n
∫

Rn
|∇u|2dx− 2

∫
Rn
|∇u|2dx− Re

∫
Rn
x∇(|∇u|2)dx

= −n
∫

Rn
|∇u|2dx− 2

∫
Rn
|∇u|2dx+ Re

∫
Rn
∇x(|∇u|2)dx

= −n
∫

Rn
|∇u|2dx− 2

∫
Rn
|∇u|2dx+ n

∫
Rn
|∇u|2dx

= −2
∫

Rn
|∇u|2dx. (4.12)

Similarly,

I2 = Re
∫

Rn

l∑
k=1

ak|u|pk−1ūnu+ 2x∇u
l∑

k=1

ak|u|pk−1ūdx

= nRe
∫

Rn

l∑
k=1

ak|u|pk+1dx+ Re
∫

Rn
2xū∇u

l∑
k=1

ak|u|pk−1dx

= nRe
∫

Rn

l∑
k=1

ak|u|pk+1dx+ Re
∫

Rn
x
(
ū∇u+ ū∇u

) l∑
k=1

ak|u|pk−1dx

= nRe
∫

Rn

l∑
k=1

ak|u|pk+1dx+ Re
∫

Rn
x (ū∇u+ u∇ū)

l∑
k=1

ak|u|pk−1dx

= nRe
∫

Rn

l∑
k=1

ak|u|pk+1dx+ Re
∫

Rn
x∇(uū)

l∑
k=1

ak|u|pk−1dx

= nRe
∫

Rn

l∑
k=1

ak|u|pk+1dx+ Re
∫

Rn
x∇|u|2

l∑
k=1

ak
(
|u|2
) pk−1

2 dx
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= nRe
∫

Rn

l∑
k=1

ak|u|pk+1dx+ Re
∫

Rn
x

l∑
k=1

ak

( (
|u|2
) pk−1

2 ∇|u|2
)

dx

= n

∫
Rn

l∑
k=1

ak|u|pk+1dx+ 2Re
l∑

k=1

ak
pk + 1

∫
Rn
x∇
(
|u|2
) pk+1

2 dx

= n

∫
Rn

l∑
k=1

ak|u|pk+1dx− 2Re
l∑

k=1

ak
pk + 1

∫
Rn
|u|pk+1∇xdx

= n

∫
Rn

l∑
k=1

ak|u|pk+1dx− 2Re
l∑

k=1

nak
pk + 1

∫
Rn
|u|pk+1dx

= n

∫
Rn

l∑
k=1

ak|u|pk+1dx−
l∑

k=1

2n
pk + 1

∫
Rn
ak|u|pk+1dx (4.13)

=
l∑

k=1

n(pk − 1)
pk + 1

∫
Rn
ak|u|pk+1dx. (4.14)

Combining (4.12) and (4.14), we have

Q′′(t) ≤ 8
(∫

Rn
|∇u|2dx−

l∑
k=1

n(pk − 1)
2(pk + 1)

∫
Rn
ak|u|pk+1dx

)
dx. (4.15)

�

Lemma 4.4. Let assumption (A5) hold. Assume that u ∈ H1 and 0 < ‖u‖H1 < r0,
then I(u) > 0, where

r0 =
( l∑
k=1

1
aakC

pk+1
∗

) 1
pk−1

, C∗ = sup
u∈H1,u 6=0

‖u‖p+1

‖u‖H1
, a =

l∑
k=1

n(pk − 1)
2(pk + 1)

.

Proof. Using 0 < ‖u‖H1 < r0, we obtain

0 <
l∑

k=1

‖u‖pk−1
H1 <

l∑
k=1

1
aakC

pk+1
∗

= rpk−1
0 .

Then

a

∫
Rn
|uf(u)|dx =a

∫
Rn

l∑
k=1

ak|u|pk+1dx

=a
l∑

k=1

ak‖u‖pk+1
pk+1

≤a
l∑

k=1

akC
pk+1
∗ ‖u‖pk+1

H1

=
l∑

k=1

aakC
pk+1
∗ ‖u‖pk−1

H1 ‖u‖2H1 < ‖u‖2H1 ,

thus, we claim that I(u) > 0. �
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Lemma 4.5. Let assumption (A5) hold. Assume that u ∈ H1 and I(u) < 0, then
‖u‖H1 > r0.

Proof. Obviously, I(u) < 0 implies ‖u‖ 6= 0. Hence from

‖u‖2H1 < a

∫
Rn
|uf(u)|dx

= a

l∑
k=1

ak‖u‖pk+1
H1

≤ a
l∑

k=1

akC
pk+1
∗ ‖u‖pk−1

H1 ‖u‖2H1 ,

we obtain ‖u‖H1 > r0. �

Lemma 4.6. Let assumption (A5) hold. Assume that u ∈ H1\{0} and I(u) = 0,
then ‖u‖H1 ≥ r0.

Proof. Utilizing Sobolev inequality and I(u) = 0, we obtain

‖u‖2H1 = a

∫
Rn
|uf(u)|dx

=
l∑

k=1

aak‖u‖pkpk

≤
l∑

k=1

aakC
pk+1
∗ ‖u‖pk−1

H1 ‖u‖2H1 ,

which together with u 6= 0, yields ‖u‖H1 ≥ r0. �

Lemma 4.7 (Depth of potential well). Let (A5) hold. Then

D ≥ D0 =
(1

2
−

l∑
k=1

2
n(pk − 1)

)( l∑
k=1

1
aakC

pk+1
∗

) 2
pk−1

. (4.16)

Proof. From u ∈ N we obtain ‖u‖H1 ≥ r0 and

J(u) =
1
2
‖u‖2H1 +

∫
Rn
F (u)dx

=
1
2
‖u‖2H1 −

∫
Rn

∫ u

0

l∑
k=1

ak|s|pk−1sdsdx

=
1
2
‖u‖2H1 −

l∑
k=1

ak
pk + 1

∫
Rn
|u|pk+1dx

=
1
2
‖u‖2H1 +

l∑
k=1

1
pk + 1

∫
Rn
uf(u)dx

=
1
2
‖u‖2H1 +

l∑
k=1

2
n(pk − 1)

(
I(u)− ‖u‖2H1

)
≥
(1

2
−

l∑
k=1

2
n(pk − 1)

)
r2
0,

(4.17)
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which gives (4.16). �

For problem (1.7)-(1.8), let us denote

WS = {u ∈ H1 : I(u) > 0},
VS = {u ∈ H1 : I(u) < 0}.

Theorem 4.8 (Invariant sets). Let (A5) hold, and J(u0) < D. Then the invariance
of both sets WS and VS are ensured along the flow of problem (1.7)-(1.8) respectively.

Proof. (i) Let u to be an any solution for problem (1.7)-(1.8) with u0 ∈WS and T be
the maximum existence time of u(t). Next we show that u(t) ∈ WS for 0 < t < T .
Arguing by contradiction, we assume that there exists a first t0 ∈ (0, T ) such that
u(t) ∈ WS for t ∈ [0, t0) and u(t0) ∈ ∂WS , i.e., I(u(t0)) = 0. From Proposition 4.2
(b) we know

J(u) = J(u0) < D, 0 ≤ t < T. (4.18)

By Proposition 4.2 (a), we obtain u(t0) 6= 0. From the definition of D we see
J(u(t0)) ≥ D, which contradicts (4.18).

(ii) By a similar argument above, we can guarantee that VS is invariant under
the flow of problem (1.7)-(1.8). �

Next, we give the proofs of the well-posedness of solution and show the sharp
conditions for global existence of the solution to problem (1.7)-(1.8).

Theorem 4.9 (Global existence). Let (A5) hold, and assume that J(u0) < D and
u0(x) ∈ WS. Then the solution u(t) of problem (1.7)-(1.8) globally exists and
u(t) ∈WS for 0 ≤ t <∞.

Proof. Notice that Proposition 4.1 shows that the unique solution u(t) defined
on maximum time-interval [0, T ) exists locally in C([0, T );H1) for problem (1.7)-
(1.8). It only remains to verify T = +∞. Having Theorem 4.8 in mind, we ensure
u(t) ∈WS for 0 ≤ t < T . First, (4.17) implies

D > J(u) =
1
2
‖u‖2H1 +

∫
Rn
F (u)dx

≥
(1

2
−

l∑
k=1

2
n(pk − 1)

)
‖u‖2H1 +

( l∑
k=1

2
n(pk − 1)

)
I(u), 0 ≤ t < T.

(4.19)

Since I(u) > 0, (4.19) yields

‖u‖2H1 <
(1

2
−

l∑
k=1

2
n(pk − 1)

)−1

D, 0 ≤ t < T,

then by Proposition 4.1 we have T = +∞. Furthermore, Theorem 4.8 ensures
u(t) ∈WS for 0 ≤ t < T . �

Corollary 4.10. Let assumption (A5) hold, ‖u0‖ ∈ H1, J(u0) < D and ‖u0‖H1 <
r0. Then problem (1.7)-(1.8) possesses a unique global solution u(t) ∈ C([0, T );H)
and

‖u‖2H1 <
(1

2
−

l∑
k=1

2
n(pk − 1)

)−1

J(u0), 0 ≤ t <∞. (4.20)
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Proof. Notice that ‖u0‖H1 < r0 gives ‖u0‖H1 = 0 or 0 < ‖u0‖H1 < r0. Hence we
shall complete this proof by dividing it into two cases:

(i) If ‖u0‖H1 = 0, then ‖u0‖ = 0. And we infer from ‖u‖ = ‖u0‖ that ‖u0‖H1 ≡ 0
for 0 ≤ t < T . Then Proposition 4.1 gives T = +∞.

(ii) If 0 < ‖u0‖H1 < r0, by Lemma 4.4 we have I(u0) > 0. While by Theorem 4.9
we know that problem (1.7) possesses a global unique solution u(t) ∈ C([0,∞);H)
and u(t) ∈ WS for 0 ≤ t < ∞. And (4.20) follows from Theorem 4.9 immediately.

�

Theorem 4.11 (Finite time blow up). Let (A5) hold, and assume that J(u0) < D
and u0(x) ∈

∑
∩VS. Then the solution u(t) to problem (1.7)-(1.8) blows up in

finite time. More precisely, for some T <∞

lim
t→T
‖u(t)‖H1 = +∞.

Proof. Since Proposition 4.1 shows that the unique solution u(t) defined on maxi-
mum time-interval [0, T ) exists locally in C([0, T );H1) for problem (1.7)-(1.8). Our
goal is to prove T < ∞. Arguing by contradiction, we suppose that T = +∞ and
define

Q(t) :=
∫

Rn
|x|2|u|2dx.

Then from Proposition 4.3 we have

Q′′(t) ≤ 8
(∫

Rn
|∇u|2dx−

l∑
k=1

n(pk − 1)
2(pk + 1)

∫
Rn
ak|u|pk+1dx

)
≤ 8I(u)− 8‖u‖2, 0 ≤ t <∞.

(4.21)

Theorem 4.8 ensures u(t) ∈ VS for 0 ≤ t <∞, which tells I(u) < 0 for 0 ≤ t <∞.
Hence from (4.21) we obtain

Q′′(t) < −8‖u‖2 = −8‖u0‖2 = −C0, 0 < t <∞,
Q′(t) < −C0t+Q′(0), 0 < t <∞,

where C0 > 0 is a constant. Thus for sufficiently large t we have Q′(t) < Q′(t0) < 0
for t > t0 and

Q(t) < Q′(t0)(t− t0) +Q(t0). (4.22)

And also for sufficiently large t we have Q(t) < 0, as Q(0) > 0 by I(u0) < 0, there
exists a T1 > 0 such that

lim
t→T1

Q(t) = 0. (4.23)

Note that

Re
∫

Rn
xū∇udx = −Re

∫
Rn
∇(xū)udx

= −Re
∫

Rn
(∇xū+ x∇ū)udx

= −Re
∫

Rn
(nūu+ xu∇ū)dx

= −n
∫

Rn
ūudx− Re

∫
Rn
xū∇udx,
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which implies −n
∫

Rn |u|
2dx = 2 Re

∫
Rn xū∇udx and apply the Cauchy-Schwarz

inequality, we obtain

‖u0‖2 = ‖u‖2 ≤ 2
n
‖∇u‖‖|x|u‖. (4.24)

From (4.23) and

‖u0‖2 = ‖u‖2 ≤ 2
n
‖∇u‖Q1/2(t),

we realize that lim supt→T1
‖∇u‖ = +∞, which contradicts T = +∞. By combining

T < +∞ and Proposition 4.1, we achieve

lim sup
t→T

‖u(t)‖H1 = +∞.

�

From Theorems 4.9 and 4.11, the following theorems have its own interest about
the global existence and finite time blow-up for the solution of problem (1.7)-(1.8)
as follows.

Theorem 4.12 (Sharp conditions I). Let (A5) hold and assume u0(x) ∈ Σ and
J(u0) < D. Then for problem (1.7)-(1.8) we have the following alternatives:

(i) If I(u0) > 0, the solution u(t) is a unique global solution in C([0,∞);H∩Σ);
(ii) If I(u0) < 0, the solution u(t) blows up in finite time.

Note that (4.16) gives

D ≥ D0 =
(1

2
−

l∑
k=1

2
n(pk − 1)

)( l∑
k=1

1
aakC

pk+1
∗

) 2
pk−1

=
(1

2
−

l∑
k=1

2
n(pk − 1)

)
r2
0.

Hence we have the following another sharp condition.

Theorem 4.13 (Sharp conditions II). Let (A5) hold and assume that u0(x) ∈ Σ
and J(u0) < D0. Then for problem (1.7)-(1.8) we have the following alternatives:

(i) If ‖u0‖H1 < r0, the solution u(t) is a unique global solution in C([0,∞);H∩
Σ);

(ii) If ‖u0‖H1 > r0, the solution u(t) blows up in finite time.

Proof. If ‖u0‖H1 < r0, Corollary 4.10 gives the existence of the unique global
solution u(t) ∈ C([0,∞);H ∩ Σ). If ‖u0‖H1 > r0, then by(1

2
−

l∑
k=1

2
n(pk − 1)

)
‖u0‖2H1 +

( l∑
k=1

2
n(pk − 1)

)
I(u0)

= J(u0) < D0 =
(1

2
−

l∑
k=1

2
n(pk − 1)

)
r2
0,

(4.25)

we obtain I(u0) < 0. Hence by Theorem 4.12, the solution of problem (1.7)-(1.8)
blows up in finite time. �

Noting that J(u0) < 1
2‖u0‖2H1 for u0 6= 0, we obtain the following corollary.
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Corollary 4.14. Let assumption (A5) hold. Assume that u0(x) ∈ H1 and

‖u0‖2H1 ≤
(1

2
−

l∑
k=1

2
n(pk − 1)

)( l∑
k=1

1
aakC

pk+1
∗

) 2
pk−1

. (4.26)

Then it possesses a global unique solution u(t) ∈ C([0,∞);H) for problem (1.7)-
(1.8).

Proof. If ‖u0‖H1 = 0, then from Theorem 4.9 we know that the unique global
solution u(t) ≡ 0. If ‖u0‖H1 6= 0, then (4.26) gives J(u0) < D0 and ‖u0‖H1 <
r0. Again by Theorem 4.13, problem (1.7)-(1.8) thus has a unique global solution
u(t) ∈ C([0,∞);H). �
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