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ABSTRACT 

 

In this thesis I investigate a specific highly mismatched alloy, BxGa1-xAs, over the 

full composition range using first principles DFT simulations with HSE06 hybrid 

functionals in VASP. I find that at low boron percentages the direct band gap decreases 

slightly, then increases towards the large minimum direct gap of BAs as more boron is 

added. My results show that the effect of isolated boron atoms on the band gap is small 

(<5%) at concentrations below 13%. I estimate that BGaAs transitions from direct to 

indirect band gap at around 17% boron content. I calculate the electron effective 

masses in the direct band gap region and investigate the effect of B-B pairs in nearest-

neighbor group III sites on band gap, conduction band dispersion, and total free energy. I 

find that the lattice constant of BGaAs follows Vegard’s law and estimate that the boron 

concentration required to lattice match BGaAs to silicon is outside the direct gap 

regime. I then introduce TFETs as one possible application for highly mismatched alloys. 

Using the UCSD TFET model which I extended to include Kane’s non-parabolic 

dispersion relation I find the optimal combination of material and device properties that 

maximize 𝐼60. For low drain voltages (𝑉𝑑 = 0.1 V), the maximum 𝐼60 = 39 μA/μm 

occurs at moderate effective masses for both electrons and holes, while at larger drain 

voltages (𝑉𝑑 = 0.2, 0.5 V) the 𝐼60 continues to increase up to at least 1.3 𝑚0, which 

makes highly mismatched alloys good candidates for TFET applications due to their 

increased effective masses.
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I. INTRODUCTION 

In this thesis I investigate semiconductor materials and devices using 

computational modeling and simulation. The focus of my research is highly mismatched 

alloys (HMAs), which is a class of semiconductor alloys that is composed of elements 

with radically different atomic radii and electronegativity. HMAs promise to open up 

new avenues in device design due to the level of control they give over a range of 

material properties, such as lattice constant, band gap, and effective mass, which would 

not be possible with conventional semiconductor alloys. 

The first part of this work is centered on investigating the material properties of 

boron gallium arsenide (BGaAs) alloy with first principles calculations using the Vienna 

Ab initio Simulation Package (VASP).1,2 Due to the difference in size and 

electronegativity between boron (B) and gallium (Ga), BGaAs is expected to show 

characteristics similar to other highly mismatched alloys like gallium nitride arsenide 

(GaNAs) and germanium-tin (GeSn), such as the band gap and lattice constant exhibiting 

a highly non-linear dependence on alloy composition. Though GaAs is a well-understood 

material that has seen widespread use in various device applications, the experimental 

and theoretical data available on boron arsenide (BAs) and BGaAs is still scarce and the 

results are often conflicting. I investigate the effect of B concentration on the lattice 

constant and the electronic structure over the full alloy composition range, from the 

highly dilute regime all the way to pure BAs and examine the effect of B-B distance on 

the band gap and effective mass. The method I chose for the calculations, HSE06 hybrid 

functionals,3–5 is one of the leading ab initio techniques that has been shown to 
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approximate the band gap better than the methods used in other existing first principles 

studies of BGaAs.6 

In the second part, to examine the possible benefits of the broad control of 

electronic properties that semiconductor alloying promises, I simulate current-voltage 

characteristics of a double-gate tunnel field-effect transistor (DG TFET) that is built 

using hypothetical materials that allow an arbitrary combination of electron and hole 

effective masses and band offsets. I use a model and the corresponding MATLAB code 

that was developed by Taur et al.7,8 and modify the simulation to account for non-

parabolic electronic bands using Kane’s dispersion relation.9,10 To compare device 

performance, I adopt the I60 as a figure of merit,11 which is defined as the drain current at 

which the subthreshold swing (SS) crosses 60 mV/decade, the thermodynamic limit of 

conventional MOSFETs. I find the combination of device and material parameters that 

yields the highest I60 and examine the overall trends that lead to increased device 

performance. I hope that the results and discussion presented in this work will help guide 

further research in semiconductor alloying and TFET device design. 
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II. BACKGROUND 

In this chapter I give a brief overview of the current state of the art regarding the 

chosen topics of my research. I also describe the motivations that led me to investigate 

highly mismatched alloys and BGaAs in particular. I give justification to my choices of 

methods and software for the ab initio calculations and finally I present a brief 

introduction into the topic of TFETs. 

A. Highly Mismatched Alloys 

Most metal and ceramic alloys are designed to improve the mechanical properties 

of the material, while in case of semiconductors alloying is commonly done to tune 

electronic or optical properties, such as band gap or refractive index, or to change the 

lattice parameter of the crystal for strain engineering. 

 The electronic properties of conventional semiconductor alloys, which are made 

up of isoelectronic elements with relatively similar atomic radii and electronegativity, can 

often be predicted to a high accuracy using the virtual crystal approximation (VCA),12 

which is a model based on linear interpolation between the properties of the pure 

compounds that make up the alloy. For alloys with a slightly larger difference in atomic 

radii or electronegativity, the experimentally measured band gaps often do not match the 

values predicted by VCA and the introduction of a quadratic bowing parameter is 

necessary.13,14 In the case of highly mismatched alloys (HMA), the difference in the 

properties of the elements are so large that VCA can no longer adequately describe the 

alloy even with the use of the bowing parameter. The dramatic changes in electronic 

structure in many HMAs has been successfully explained by the band anticrossing (BAC) 
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model, which attributes the changes in band structure to the interaction between the 

extended states of the conduction band and the highly localized states of strongly 

electronegative impurity atoms.15 BAC has been shown to be in good agreement with 

experimental data for a wide range of semiconductor alloys,16,17 but appears to be less 

useful in describing alloys that consist of elements with small electronegativity, such as 

boron.18 

 For most conventional semiconductor alloys the lattice parameter has a linear 

dependence on the alloy composition, a relationship called Vegard’s Law.19 The law only 

applies to random semiconductor alloys with no phase separation, made of materials with 

the same crystal structure. Deviations from this linear relationship are common for 

HMAs,20,21 but also have been reported for some conventional alloys.22 Such deviations 

can be described by the introduction of a quadratic bowing parameter, similar to the one 

used in VCA to describe the band gap. Precise description of the relationship between 

lattice constant and material composition is important since the composition of an alloy is 

commonly estimated using the lattice parameter measured by X-ray diffraction (XRD). 

Controlling lattice constant is important for dislocation-free growth of epitaxial layers of 

different materials. When a material is grown on a substrate with a slightly different 

lattice parameter, the crystal structure will deform as the material stretches of compresses 

to match the lattice constant of the substrate. This deformation induces strain in the 

material. For a small lattice mismatch, growth can proceed up to a certain thickness, at 

which point the accumulated strain causes the material to relax, resulting in dislocations. 

These dislocations can severely degrade device performance by reducing mobility 

through scattering or introducing trap states that facilitate non-radiative recombination. 
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The strain caused by the lattice mismatch imposes an upper limit on the epitaxial layer 

thickness. Controlling the lattice parameter by alloying can push or eliminate this 

constraint and expand the possibilities of device design. 

The strain arising from the lattice mismatch between layers of semiconducting 

materials can also be exploited to tune certain material properties. Strain introduces a 

shift in the energy levels of the band structure which is used in band gap engineering. 

Optical properties of the material, such as the refractive index may also change under 

strain, which can be useful for waveguides and lasers. By controlling the lattice 

parameter of the substrate through alloying, the strain induced on the adjacent epitaxial 

layer can be adjusted to yield the desired change in band gap or refractive index for a 

particular device application. 

B. BGaAs 

Group III-V semiconductor alloys have been the subject of extensive research for 

decades. Among them, GaNAs received considerable attention in recent years. Due to the 

small size and high electronegativity of nitrogen, it is classified as a highly mismatched 

alloy. Nitrogen alloying of GaAs reduces the band gap drastically even at very low N 

percentages23,24 and a large increase in electron effective mass have also been observed in 

N-containing III-V compounds,25 behaviors that are consistent with other HMAs. GaNAs 

has been suggested as a promising material for multi-junction solar cell applications due 

to its variable direct band gap and high absorption coefficient.26 However, higher N 

concentrations of have been difficult to achieve due to phase separation27 that occurs 

between wurtzite GaN and zincblende GaAs, though significant improvements have been 

made in recent years using low temperature molecular beam epitaxy.26 Boron, on the 
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other hand, has a higher predicted solubility limit in GaAs than that of nitrogen,28 which 

suggests that a wider alloy composition range should be achievable. Compared to N, the 

electronegativity of B is much smaller, which implies that BGaAs alloys would have a 

strongly covalent character, while nitrides are highly ionic in nature. Thus, alloying GaAs 

with boron has been suggested as an alternative to nitrogen for band gap engineering and 

controlling lattice constant. 

GaAs is a well understood material that has been used extensively in recent 

decades in microwave circuits used for mobile communications, infrared LEDs and 

lasers, solar cells, and electro-optic modulators. It forms a zincblende crystal structure 

with an equilibrium lattice constant of 5.65 Å29 and has a direct band gap of 

1.42 eV30 which makes it ideal for optical applications due to the effective absorption and 

emission of photons. Its low electron effective mass of 0.063 m0
30 contributes to a high 

electron mobility, which is necessary for the high-speed integrated circuits operating at 

microwave frequencies. The current record efficiency of 29.1% for single junction solar 

cell is held by a GaAs device created by Alta Devices.31 

BAs, on the other hand, is one of the least investigated compounds among the III-

V family of semiconductors, partly due to the difficulties involved in synthesizing high 

quality single crystals.32,33 BAs started to receive more attention after prediction of 

exceptionally high thermal conductivity,34 which has also been verified by 

experiment.33,35–37 Just like GaAs, BAs forms a zincblende crystal structure with an 

experimentally measured lattice constant of 4.777 Å,38,39 but the existence of a B12As2 

subarsenide phase has also been confirmed when grown under B-rich conditions or at 

high temperatures.38,40,41 There are conflicting reports on the band structure of BAs. 
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Among the few experimental studies, earlier reports measure an energy gap of 

1.46 eV,39,42,43 though they disagree on whether BAs is a direct42 or indirect43 gap 

material. A more recent study found the experimental gap to be 1.77 eV.44 A wide range 

of energy gaps have been reported from theoretical calculations, though most seem to 

indicate the band gap is indirect, which agrees with more recent experimental results.43 

The difference in atomic radii between B and Ga implies that BGaAs would 

behave as a highly mismatched alloy, meaning its electronic properties would not be well 

described by a linear interpolation between GaAs and BAs, even with the introduction of 

a quadratic bowing parameter. However, theoretical and experimental studies paint a 

conflicting picture, much like in the case of BAs. Some reports are claiming an 

increase18,28,45–47 of band gap with B percentage, while several others suggest the 

opposite.39,48–50 There are reports of decreasing band gap in the dilute regime and then an 

increase as more boron is added, but there is a disagreement in the B concentrations that 

give the smallest band gap.51,52 Multiple experimental results show that B causes only a 

slight change in band gap18,46,51 and thus behaves as a conventional alloy, unlike GaNAs. 

The classification of BGaAs as a HMA has been questioned by theoretical calculations as 

well.28,48 It has been suggested, as a result of a theoretical study using a tight binding 

model, that isolated B atoms have a very small effect on the electronic structure, while B-

B pairs and clusters cause a considerable decrease in band gap and a strong increase in 

electron effective mass.48 Overall, most existing investigations are restricted to single-

digit B percentages, with only one first principles study examining the full composition 

range,52 which makes it difficult to draw general conclusions on the effect of B on the 

band structure. 
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C. Density Functional Theory 

The theory of semiconductors is built on the foundation of quantum mechanics. 

At the center of it is the Schrödinger equation, which describes a quantum mechanical 

system in terms of energy eigenvalues and the corresponding eigenfunctions called the 

wavefunctions, and the Hamiltonian operator, which is the sum of the kinetic and 

potential energy operators. The time-independent Schrödinger equation for a single 

particle in a potential 𝑉 is 

 [
−ℏ2𝛻2

2𝑚
+ 𝑉(𝒓)] 𝛹(𝒓) = 𝐸𝛹(𝒓) (1) 

where 𝐸 is the energy, 𝛹(𝑟) is the wavefunction, and the term in brackets is the 

Hamiltonian. In semiconductor physics we’re interested in systems of many electrons, as 

in a crystal, and thus need to consider the many-body Schrödinger equation, 

 [∑ (
−ℏ2𝛻𝑖

2

2𝑚
+ 𝑉(𝒓𝑖))

𝑁

1

+ ∑ 𝑈

𝑖<𝑗

(𝒓𝑖, 𝒓𝑗)] 𝛹(𝒓1, … 𝒓𝑁) = 𝐸𝛹(𝒓1, … 𝒓𝑁) (2) 

where other than replacing the Hamiltonian with a sum over the 𝑁 electrons in the system 

we also have to introduce a new potential term 𝑈(𝑟𝑖, 𝑟𝑗) to describe the interaction 

between the electrons. In practice, the solution of the many-body Schrödinger equation in 

this exact form becomes computationally prohibitive for even a relatively small system, 

so there is a need to simplify the problem by introducing some approximations. 

Density functional theory (DFT) is the most widely used approach to finding 

approximate solutions to the many-body Schrödinger equation. At its foundation are the 

theorems of Hohenberg and Kohn,53 first published in 1964, which state that the ground-

state energy 𝐸 is a unique functional of the electron density, and that the electron density 
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that yields the minimum ground-state energy is the true ground-state electron density. In 

this context a functional is a mapping between a function and a number, a common 

example of which is the definite integral 

 𝐹[𝑓] = ∫ 𝑓
𝑥1

𝑥0

(𝑥)𝑑𝑥 (3) 

where we can say that 𝐹 is a functional of the function 𝑓, just like we say that 𝑓 is a 

function of variable 𝑥. 

 We know that the electron density can be obtained directly from the 

wavefunctions as 

 𝑛(𝒓) = 2 ∑ 𝛹𝑖
*

𝑖

(𝒓)𝛹𝑖(𝒓) (4) 

where the factor 2 is a result of the fact that two electrons of opposite spins can occupy an 

orbital. Thus, the ground state energy, in light of the Hohenberg-Kohn theorems, can be 

written as 

 𝐸 = 𝐸[𝛹] = 𝐸𝑇[𝛹] + 𝐸𝑈[𝛹] + 𝐸𝑉[𝛹] (5) 

where 𝐸𝑇, 𝐸𝑈, and 𝐸𝑉 are functionals corresponding to the kinetic energy, the potential 

energy due to the interactions between electrons, and the potential energy due to the 

external potential, i.e. due to interaction between the electrons and the stationary ion 

cores. 

 Among these functionals, the external potential term is straightforward to 

calculate as 

 𝐸𝑉[𝑛] = ∫ 𝑑3 𝑟𝑛(𝒓)𝑉(𝒓) (6) 

where we wrote 𝐸𝑉 in terms of the charge density, but we could have written it in terms 

of the wavefunction using Eq. 4. The kinetic energy term can be written as 
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 𝐸𝑇 =
ℏ2

2𝑚
∑ ∫ 𝑑3

𝑖

𝑟𝛹𝑖
*𝛻2𝛹 (7) 

but the situation is not this simple for the remaining electron-electron interaction term. 

One can approximate 𝐸𝑈with the Coulomb-potential as 

 𝐸𝑈 ≈
𝑒2

2
∫ 𝑑3 𝑟′ ∫ 𝑑3 𝑟

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
 (8) 

but this neglects any contribution arising from quantum mechanical effects, such as the 

electron-electron repulsion due to the Pauli exclusion principle. To mitigate this, all 

effects that cannot be described with the Coulomb interaction are lumped together into a 

term called the exchange-correlation functional 𝐸𝑋𝐶. The specific treatment of this 

exchange-correlation functional has been one of the central areas of research within the 

topic of DFT, and various computational methods differ mainly on the approximation 

employed to describe this 𝐸𝑋𝐶 term. 

Just expressing the problem in terms of density functionals is not enough, we have 

to minimize the energy to get the charge density corresponding to the system, which is 

still a prohibitively expensive computational task for a multi-electron interacting system. 

The Kohn-Sham (KS) equations,54 published a year after the Hohenberg-Kohn theorem, 

reduce the problem to an iterative process of solving a set of single-electron Schrödinger 

equations that correspond to a fictitious system with orbitals which ultimately reproduce 

the same electron density as the original many-body system. The Kohn-Sham equations 

can be written as 

 [
−ℏ2𝛻2

2𝑚
+ 𝑉(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓)] 𝛹𝑖(𝒓) = 𝐸𝑖𝛹𝑖(𝒓) (9) 
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where the potential term 𝑉 is the same external potential as in equations 1 and 2. 𝑉𝐻 is the 

Hartree potential that describes the Coulomb interaction between the electron and the 

total charge density 

 𝑉𝐻(𝒓) = 𝑒2 ∫ 𝑑3 𝑟′
𝑛(𝒓′)

|𝒓 − 𝒓′|
 (10) 

Since the electron in question also contributes to the total charge density, the Hartree 

potential includes a non-physical self-interaction term. This is corrected by the exchange-

correlation potential 𝑉𝑋𝐶, which is defined as the functional derivative of 𝐸𝑋𝐶, and it also 

includes all other quantum mechanical effects discussed earlier. 

The iterative process starts with a trial electron density, from which the Kohn-

Sham equations are solved, yielding the wave functions of the fictitious non-interacting 

system, the Kohn-Sham orbitals. From these KS orbitals the electron density is calculated 

and compared to the original electron density. If the calculated electron density is 

different from the original, then the original electron density is somehow modified and 

the calculation is repeated until convergence, i.e. until the difference in electron density is 

below a certain threshold. This process is called the self-consistency cycle. Details such 

as the methods used for solving the Kohn-Sham equations and updating the charge 

density differ for the various implementations of DFT. 

Over the decades since its initial formulation, DFT has become a widely used tool 

in quantum chemistry and solid-state physics. So much so, that Walther Kohn was 

awarded the Nobel prize in chemistry for his contributions to the development of DFT.55 

Since the first publications of Hohenberg, Kohn, and Sham, various approaches have 

been developed to improve the accuracy and computational efficiency of the calculations. 
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The most successful methods are often different for quantum chemistry and solid-state 

physics applications. 

A diverse selection of functionals approximating the 𝐸𝑋𝐶 term are available. The 

least computationally expensive is the local density approximation (LDA), which uses the 

exchange-correlation energy of a homogeneous electron gas of the same density obtained 

using Quantum Monte-Carlo simulations. A more advanced functional is the generalized 

gradient approximation (GGA), which also considers the local gradient of the electron 

density. Perhaps the most commonly used GGA method in solid-state physics is the 

Perdew-Burke-Ernzerhof (PBE) functional.56 The LDA and GGA functionals have been 

used extensively in both physics and chemistry, but they are not without issues. For 

example in solids both are known to severely underestimate the band gap.57 

Hybrid functionals use a mixture of the Fock exchange,58 which is the basis of the 

Hartree-Fock59 (HF) method used extensively in quantum chemistry, together with 

exchange and correlation terms from other functionals. The B3LYP functional, a mixture 

of the Fock58 and Becke60 (B) exchange functionals with the Lee, Yang, and Parr61 (LYP) 

and LDA correlation functionals, is perhaps the most common hybrid functional used in 

chemistry. The PBE0 functional62 uses a mixture of PBE and the Hartree-Fock 

functionals for exact exchange and PBE functionals for correlation. It is often used in 

solid-state physics and can predict band gaps with good accuracy, but at the expense of 

high computational cost.6 Another approach is to use the HF exchange more strongly at 

short range, and rely on the less computationally expensive PBE exchange potential for 

calculating long-range effects. This is implemented in the HSE06 hybrid functional,3 

after Heyd, Scuseria, and Ernzerhof4,5, which has been found to be the most accurate 
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among the three for semiconductor applications, while also being the most 

computationally efficient.6 Another notable set of functionals are called Meta-GGA,63,64 

which rely on several parameters fitted to experimental data. Some Meta-GGA 

functionals also include the Hartree-Fock exact exchange and thus can be considered 

hybrid functionals. Comparisons between Meta-GGA and HSE06 found that for 

semiconductors the HSE06 functional can better approximate experimental band gaps.65 

When it comes to the basis function representation of the Kohn-Sham orbitals, 

linearized augmented plane waves (LAPW) and linear muffin-tin orbitals (LMTO) have 

been widely used in solid-state physics,66 while Gaussian type orbitals67 (GTO) are some 

of the most common methods used in quantum chemistry. 

The computational cost of DFT calculations can be significantly reduced by the 

use of pseudopotentials. Electron orbitals close to the atom cores oscillate on short length 

scales, and to represent these orbitals in a plane-wave basis set we need very high energy 

plane waves, which is computationally expensive.68 The solution is to use a 

pseudopotential instead of the rapidly oscillating electron density near the cores, which is 

called the frozen core method. Pseudopotentials are designed to give a smooth charge 

density near the core but approximate the physical properties of the real core electrons at 

a distance. Examples of commonly-used pseudopotentials include ultrasoft 

pseudopotentials69 (USPP) and the projector augmented-wave method70 (PAW). 

D. VASP 

The Vienna Ab initio Simulation Package1,2 (VASP) is a computer software 

capable of a wide range of materials modeling calculations. It implements various DFT 

methods discussed in section 2.C, including LDA, GGA, Meta-GGA, and Hartree-Fock 
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hybrid functionals. It can calculate electronic band structures, phonon dispersion, 

frequency dependent dielectric tensors, and many more. It represents orbitals, charge 

density, and local potential using plane-wave basis sets, and ships with USPP and PAW 

pseudopotentials. 

Based on the total number of publications, it is by far the most widely used DFT 

simulation package. Currently it also offers the best computational performance 

compared to its competitors. Large-scale collaborations such as the Materials Genome 

Initiative71 have multiple projects that build heavily on VASP, such as the Materials 

Project72 or the AFLOW consortium73. 

 A great number of software packages are available that can interact with VASP 

input and output files. Programs such as VESTA74 can be used to view and edit crystal 

structures or visualize 3D charge densities. Libraries such as pymatgen75, which is one of 

the key software components used in the Materials Project, allow programmatic 

processing of VASP data from structural analysis to plotting band diagrams. 

E. Tunnel Field-Effect Transistors 

Arguably the most important building block of modern integrated circuits is the 

metal-oxide-semiconductor field-effect transistor (MOSFET). With the widespread use of 

battery-powered electronics in recent decades, there is a growing need for chips that 

combine high performance with low power consumption. A major roadblock for 

developing low-power MOSFET devices is the thermal limit of the subthreshold swing 

(SS). The SS measures the change in gate voltage needed for a 10-fold increase in drain 

current in the sub-threshold region. The SS of a MOSFET can be calculated as 
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 𝑆𝑆 = (1 +
𝐶𝐷

𝐶𝑜𝑥
)

𝑘𝑇

𝑞
𝑙𝑛10 (11) 

where 𝐶𝐷 is the surface depletion layer capacitance and 𝐶𝑜𝑥 is the oxide capacitance. 

Thus, the minimum SS in MOSFETs is given by (𝑘𝑇 𝑞⁄ )𝑙𝑛10 which has a value of 

approximately 60 mV/decade at room temperature. 

Several novel device structures have been proposed to overcome the 

60 mV/decade limitation of conventional MOSFETs. Among them, tunnel field-effect 

transistors (TFETs) are one of the most promising candidates. In a TFET device band-to-

band tunneling is used as the fundamental switching mechanism, which results in 

extremely low OFF currents (IOFF) and small SS. The device was first suggested by 

Chang and Esaki76 in 1977. Since then several devices with SS below 60 mV/decade 

have been made in laboratories around the world,77 but TFET technology is still in the 

experimental phase and far from commercial use. 

The biggest challenge in TFET design has been to achieve high ON current (ION) 

while maintaining low IOFF and SS below 60 mV/decade over a drain current range 

spanning at least four orders of magnitude.78 Various TFET device structures have been 

proposed, including single-gate (SG), double-gate (DG) and gate-all-around (GAA) 

designs.79 A wide range of materials are considered for TFET applications, from pure 

silicon80 and SiGe81, through various group III-V alloys,82,83 to carbon nanotubes84 and 

graphene nanoribbons.85 
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III. FIRST PRINCIPLES CALCULATIONS OF BGaAs ALLOYS 

The first part of my research focuses on investigating the material properties of 

BGaAs with ab initio simulations using VASP. In this chapter I outline the research 

method, present the results, and discuss their implications. 

A. Method 

First, I introduce the supercell method used for ab initio simulations of imperfect 

crystals, such as random alloys. I discuss the tradeoff between using larger supercells to 

simulate dilute alloy compositions and to better approximate the randomness of real 

alloys at the cost of increased computational time, versus using smaller supercells for a 

faster turnaround. I then give an overview of the VASP calculation workflow and 

describe the ionic relaxation and the band structure calculation steps in detail. I explain 

how I used convergence testing to optimize certain VASP parameters and describe the 

methods I used to analyze the simulation results. 

1. Ab Initio Models of BGaAs Alloys 

VASP takes advantage of periodic boundary conditions to simulate an infinite 

crystal with only a smaller volume of the system explicitly defined. The dimensions of 

this volume, along with the positions, velocities, and species of the contained atoms is 

given in the POSCAR input file. In the case of pure materials, this explicitly defined 

volume can be the primitive cell, consisting of the smallest number of atoms needed to 

represent the crystal. When we want to simulate alloys, such as BGaAs, we must define a 

larger volume with more atoms, since the random arrangement of atoms in real alloys 

lack the translational symmetry of perfect crystals. Due to the use of periodic boundary 
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conditions, the simulated crystal is still an infinite repetition of the defined volume, and 

thus has a translational symmetry that is not present in real alloys, but we can mitigate the 

effects of this periodicity by defining a larger volume, and thus increasing the period of 

repetition. However, because of the rapidly increasing computational cost corresponding 

to the number of electrons and ion cores contained in the defined volume, we must 

balance the tradeoff between speed, available composition range, and accurate modeling 

of the randomness of alloys found in Nature. 

The goal of my research is to investigate the band structure of BGaAs alloys over 

the full composition range using ab initio methods. Since existing experimental results on 

BGaAs are of low B percentages, I designed the simulations to treat this dilute regime 

with increased detail. Other than looking at the effect of overall B concentration on the 

band structure and lattice constant, I examined the role of B-B distance in the narrowing 

of the band gap, which was suggested by earlier theoretical work on BGaAs.48 During my 

research I ran VASP simulations of systems of various sizes. The relatively quick 

turnaround time of calculations involving a smaller number of atoms allowed me to 

validate the initial results and iteratively improve my methods. Calculations on larger 

systems made it possible to investigate a wider range of compositions and particular 

arrangements of atoms, and to better approximate the randomness of real alloys. 

a. Supercells. In a crystal lattice, the cell with the smallest volume corresponding 

to a single lattice point is defined as the primitive cell. Cells corresponding to the same 

crystal lattice that contain more than one lattice point, but still have discrete translational 

symmetry, are called supercells. The simplest examples of supercells are simply 

repetitions of a unit cell along one or more primitive lattice vector. The unit cell being 
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repeated can be the primitive cell containing a single lattice point, or a conventional unit 

cell, containing 4 lattice points in case of the face-centered cubic (FCC) lattice. Note, that 

the FCC conventional unit cell is technically a supercell by itself. 

If we want to generate isometric supercells for a crystal lattice, we can take a unit 

cell containing 𝑛𝑢𝑛𝑖𝑡 lattice points and repeat it along each crystal direction 𝑟 times. 

Using this method, we can create supercells where the total number of atoms is given by 

 𝑛𝑠𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙 = 𝑛𝑢𝑛𝑖𝑡 × 𝑟3 × 𝑛𝑏𝑎𝑠𝑖𝑠 (12) 

where 𝑛𝑏𝑎𝑠𝑖𝑠 is the number of atoms corresponding to each lattice point. The first few 

supercells that result from this method are summarized in Table 1. In this work I used 

isometric zincblende supercells that consist of 16, 54, 64, and 128 atoms. 

 

Table 1. Properties of Supercells. The table shows the properties of the first few 

possible supercells created from isometric repetition of FCC and zincblende primitive 

and conventional unit cells. 

Unit cell Latt. points 

per unit cell 

(𝑛𝑢𝑛𝑖𝑡) 

Repetitions 

(𝑟) 

Unit cells 

(𝑟3) 

Atoms 

(FCC) 

(𝑛𝑠𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙) 

Atoms 

(zincblende) 

(𝑛𝑠𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙) 

primitive 1 1 1 1 2 

primitive 1 2 8 8 16 

primitive 1 3 27 27 54 

primitive 1 4 64 64 128 

conventional 4 1 1 4 8 

conventional 4 2 8 32 64 

 

It is possible to create supercells where the number of unit cell repetitions are 

different along the crystal directions. For such supercells the repetition distance, due to 

periodic boundary conditions, of any imperfection introduced into the lattice will also be 
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different depending on the crystal direction. There are circumstances when such 

asymmetry is acceptable or even desired, for example when simulating surfaces. In this 

work I investigate properties of the bulk material and thus I chose to only use supercells 

with equal repetitions along each crystal direction. 

b. Full composition range calculations using small supercells. I use 16-atom 

supercells to simulate BxGa1-xAs alloys through the full composition range from pure 

GaAs (x=0) to BAs (x=1). The primary benefit of using a small supercell is the increased 

speed of the calculation, which allows for a quick turnaround time between successive 

iterations. 16-atom supercell calculations can finish in a matter of hours, as opposed to 

days or weeks, which is why I used a 16-atom BGaAs supercell with a single B atom, as 

shown in Figure 1, to develop the initial version of the calculation workflow and for all 

convergence testing. 

 

Figure 1. BGaAs Supercell with 16 Atoms. The largest atoms (in blue) are gallium, 

the medium-sized atoms (in green) are arsenic, and the smallest atom (in red) is boron. 

The supercell was created by repeating the zincblende primitive cell twice in each 

crystal direction, then replacing one Ga atom with B. Supercells of the same size were 

used to model the full composition range. 

 

There are also drawbacks to using small supercells. The most obvious issue is the 

limited number of possible alloy compositions. In case of BGaAs we can only have 9 

discrete data points for boron percentage, including pure GaAs (0%) and pure BAs 
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(100%). Another problem arises from the translational symmetry introduce by VASP’s 

use of periodic boundary conditions. The solutions will reflect this additional periodicity 

and thus the resulting band structures may not be a good approximation of experimental 

data. The problem is not limited to just small supercells, but as the supercell size, and 

thus the repetition period increases, the effect of this additional symmetry on the ground-

state electron wavefunctions diminishes. 

c. Dilute alloy calculations using large supercells. The smallest non-zero B 

concentration that can be simulated with a 16-atom supercell is 12.5%, which 

corresponds to a single B atom. Since most of the existing data on BGaAs is of single 

digit B percentage or less,18,39,45–47,49–51 it was important to include the dilute regime in 

the calculations so that direct comparison can be made to experimental results. To 

simulate alloys with low B content, I increased the supercell size to 54, 64, and 128 

atoms. Each of these supercells contain a single B atom, corresponding to BGaAs alloys 

with B concentrations of 3.7%, 3.1%, and 1.6%, respectively. The 54- and 128-atom 

supercells use the zincblende primitive cell repeated 3 and 4 times, respectively, along 

each primitive lattice vector direction. The 64-atom supercell is made from the 

conventional unit cell repeated twice along the x, y, and z directions. Ball-and stick 

models of these dilute alloy supercells are shown in Figure 2. 
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(a) 

 

(b) 

 

(c) 

 

Figure 2. BGaAs Supercells with 54, 64, and 128 Atoms. The largest atoms (in blue) 

are gallium, the medium-sized atoms (in green) are arsenic, and the smallest atoms (in 

red) are boron. Supercells (a) and (c) were created by repeating the zincblende 

primitive cell 3 and 4 times, respectively, in each crystal direction. Supercell (b) was 

created by repeating the zincblende conventional unit cell twice in each crystal 

direction. Finally, one Ga atom was replaced with B. 

 

d. Effect of B-B nearest neighbor distance. Existing theoretical research on 

BGaAs suggests that the formation of B-B pairs and clusters may have a strong effect on 

the band structure, causing a narrowing of the band gap and a strong increase in electron 

effective mass.48 To investigate this claim I created 54-atom supercells with 2 B atoms 

(x=0.074) in three different configurations, as shown in Figure 3. In structure (a) the two 

B atoms are at nearest-neighbor group III sites, separated by only a single As atom, 

giving a smallest B-B distance of 3.82 Å. The structures (b) and (c) have the same 

nearest-neighbor B-B distance, 6.86 Å, the difference is that for structure (b) each B atom 

has 3 neighboring B atoms at the same shortest distance, while in structure (c) the atoms 

are shifted so that each B atom has only 2 neighboring B at the minimum distance of 

6.86 Å, while the distance to the third B atom is 9.69 Å.  
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(a) 

 

(b) 

 

(c) 

 

Figure 3. 54-Atom BGaAs Supercells with 2 B Atoms in Different Arrangements. 

The largest atoms (in blue) are gallium, the medium-sized atoms (in green) are arsenic, 

and the smallest atoma (in red) are boron. Supercell (a) shows two B atoms in nearest-

neighbor (NN) group III sites, while supercells (b) and (c) the B atoms are farther from 

each other. 

 

e. Random alloys. To approximate the random arrangement of atoms in real 

alloys, I created 64-atom supercells where the B atoms are substituted into group III sites 

in a random manner. The B concentrations of these random alloys are chosen to match 

the 9 possible B percentages of the 16-atom supercells. This allows direct comparison 

between the results and thus I can investigate the effect of the additional periodicity 

caused by the infinite repetition of the supercell on the band structure of the material. 

To further emulate the randomness of alloys found in Nature, we can simulate 

multiple random configurations of atoms that all correspond to the same overall 

composition and then average the results. With this, the computational effort scales 

linearly with the number of configurations, as opposed to a roughly quadratic scaling that 

would result from increasing the supercell size. In this work I present results of 

simulations of two sets of 64-atom random alloy supercells. 
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2. VASP workflow 

The calculation of electronic band structure using VASP is a multi-step process. 

Figure 4 shows a summary of all calculation steps. Before the electron energy levels can 

be determined, the simulated material undergoes ionic relaxation to determine the exact 

positions of the ion cores. This ionic relaxation is itself broken up into separate steps 

according to which degrees of freedom are allowed to change: ion core position, cell 

shape, and cell volume. The relaxation steps are first performed using the PBE method,56 

which gives very limited accuracy but converges quickly, and then continue using HSE06 

hybrid functionals4,5,65 that yield highly accurate results but are orders of magnitude 

slower.6 Once the relaxation is finished we proceed to the band structure calculation, still 

using HSE06 for high accuracy, and post-processing steps such as band unfolding with 

the BandUP code.86,87 The band structure calculation steps are repeated multiple times to 

increase convergence. 
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Figure 4. VASP Simulation Workflow. Orange and red rectangles represent VASP 

jobs, green rectangles are BandUP tasks. 

 

VASP does not provide any functionality out of the box to automate this process. 

Each step requires at least 4 input files, which are often copied over from previous jobs. 

Some of these files need to be modified or renamed between successive steps. Doing this 

by hand is a tedious and error-prone process, especially if we want to carry out multiple 

simulations of materials with varying compositions. 

To automate this process, I created a workflow script that handles the copying, 

renaming, and modification of the input and output files. Since the bulk of the work 
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consists of basic filesystem manipulations, I chose to implement the workflow as a bash 

script, relying on common Linux shell tools such as awk and sed for editing of input files 

between steps. Bash, or the Bourne Again SHell, is the default shell in most Linux 

distributions and MacOS, and since VASP offers no graphical user interface, basic 

knowledge of the Linux command line is essential for anyone using VASP. By writing 

the workflow as a bash script and using common Linux command line tools, I hope that I 

created a tool that is relatively easy to learn, use, and maintain. 

a. Electronic minimization and ionic relaxation. The core concept behind DFT 

calculations in VASP is the electronic self-consistency loop, an implementation of the 

iterative minimization process developed by Kohn and Sham,54 as described in section 

2.3. VASP offers several minimization algorithms, including the blocked Davidson,88,89 

RMM-DIIS,90,91 and a damped velocity friction algorithm92–94 highly optimized for 

Hartree-Fock calculations. In the workflow I use RMM-DIIS for all PBE calculations and 

the damped velocity friction algorithm for all HSE06 steps, following the 

recommendations of the VASP manual. At the end of each electronic minimization step 

the total free energy of the system and the band structure energy is calculated, and the 

values are compared to the energies from the previous step. If the difference for both is 

less than a given threshold value, then the orbitals are considered converged and the 

iteration stops. This energy difference threshold is the EDIFF parameter, with a default 

value of 10−4𝑒𝑉, and it essentially gives the number of significant figures for the total 

free energy. For all calculation steps I set EDIFF to 10−8𝑒𝑉 for increased convergence. 

The minimization also stops if the total number of steps reach a certain limit, in which 

case the result cannot be considered converged and the workflow should not proceed to 
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the next step. The solution might be as simple as increasing the step limit, or some other 

parameter needs to be adjusted to improve convergence speed. 

For pure materials the ionic positions exactly match the coordinates defined by 

the crystal lattice. But any imperfection in the crystal will cause the atoms to slightly shift 

from their lattice sites, and the exact positions of the ion cores need to be determined, in a 

process called ionic relaxation, before we can proceed to calculating the band structure. 

To do this, we start with some initial atomic positions, e.g. the coordinates of the perfect 

lattice sites, then perform electronic minimization. When the electronic self-consistency 

cycle is finished VASP calculates the forces and the stress tensor, and updates the atomic 

positions corresponding to a predicted new energy minimum. The system then undergoes 

electronic minimization with the new ion coordinates, and the cycle repeats until the 

difference in total free energy between ionic relaxation steps is smaller, than the value 

given in the EDIFFG parameter, which is 10 times the value of EDIFF by default. Since 

convergence is not guaranteed, the loop also quits if the number of iteration steps reaches 

a set limit, like in the case of the electronic self-consistency loop. Troubleshooting ionic 

relaxation convergence issues can involve switching to a different relaxation algorithm. 

The most commonly used algorithms for ionic relaxation of solids are 

RMM-DIIS90,91 and conjugate-gradient.95 The RMM-DIIS method often leads to faster 

convergence, but it may fail if the initial coordinates are far from the energy minimum. 

The conjugate-gradient algorithm is slower, but more robust. Early versions of my VASP 

workflow used the RMM-DIIS algorithm for ionic relaxation, but after several 

calculations involving larger systems failed to converge, I switched over to the conjugate-

gradient algorithm. 
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 VASP allows for simultaneous relaxation of cell volume, cell shape, and 

individual ion positions, but in practice this can lead to calculations that fail to converge. 

For easier troubleshooting, I decided to split the ionic relaxation part of the workflow into 

three separate jobs. In the first calculation the atom positions are allowed to change, but 

the cell dimensions are held fixed. In the second step the cell shape is relaxed, but the 

overall cell volume and the fractional coordinates of the individual ions are held constant. 

In the final step the cell volume is allowed to change, ultimately determining the relaxed 

lattice constant. The PBE position pre-relaxation failed to converge for some random 

alloys with high B content because the GaAs lattice constant used for the initial 

dimensions of the supercell was too large. For those failed jobs I modified the pre-

relaxation order so that volume relaxation is performed first, giving a better initial 

estimate for the lattice constant, but I preserved the original order, as seen in Figure 4, for 

the final HSE06 relaxation steps. 

b. Band structure calculation and unfolding. Once the supercell dimensions and 

ion core positions for the fully relaxed material is determined, the next step is the band 

structure calculation. To determine the ground-state charge density and accurate forces 

and stress tensor, and thus calculate the relaxed atomic coordinates, VASP needs to 

sample the Brillouin zone with an evenly spaced k-point grid. However, when looking at 

the band structure of the material, we’re usually interested in energy eigenvalues for k-

points lying along specific symmetry lines. Thus, the charge density is first calculated 

using an even k-point grid in a self-consistent calculation, where the charge density is 

modified in each electrical minimization step using the updated wavefunctions. Once the 

ground-state charge density and the converged orbitals are determined, a continuation job 
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is started to calculate the energy eigenvalues at k-points along the symmetry lines of 

interest, where the previously calculated orbitals and charge density are loaded, but not 

allowed to change throughout the job (non-self-consistent calculation). The process is 

slightly different with hybrid functionals. In the current version of VASP, non-self-

consistent calculations are not possible with HSE06. The suggested workaround is to run 

a self-consistent job to determine the band structure but set the weight of the k-points 

corresponding to the symmetry lines to zero, leaving the weights of the evenly spaced 

mesh untouched. This will cause VASP to only use the evenly spaced k-point mesh, with 

non-zero weights, for the electronic minimization process, but still calculate the energy 

eigenvalues corresponding to the k-points along the symmetry lines.  

A major side effect of using supercells larger than the primitive cell is that the 

energy bands in the resulting electronic structure fold over across the symmetry points 

separating the Brillouin zones of the supercell.  This results in a band diagram that 

include bands that are not real, as shown in Figure 5. Band folding also makes it 

impossible to locate the k-point corresponding to the conduction band minimum, and thus 

classify a material as direct or indirect gap. To create a band diagram that resembles that 

of a primitive cell, the calculation results need to undergo a procedure known as band 

unfolding. 
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Figure 5. GaAs Band Structure Before and After Unfolding. The band diagram was 

calculated using a 16-atom supercell. The original, folded bands are visible in (a), 

while (b) shows the result of BandUP unfolding. 

 

VASP does not provide any band unfolding functionality, but there are a few 

software packages available that can perform this operation and are compatible with 

VASP, such as BandUP,86,87 vasp_unfold,96 fold2Bloch-VASP,97,98 or GPAW.99,100 I 

decided to use BandUP to unfold the band structures because it is relatively well-

documented and it appears to be continuously maintained. Once the ionic relaxation is 

complete, the workflow runs one last electronic structure relaxation with an even k-point 

mesh, then it invokes BandUP to generate the k-point coordinates along the high-

symmetry lines, which will become the horizontal axis of the band diagram. These k-

point coordinates then are added, with zero weights, to the original evenly spaced k-point 

mesh, and the band structure calculation is then performed by VASP, whereby the energy 

eigenvalues along the specified k-points are determined. When the job completes, the 
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workflow calls BandUP one more time to generate an unfolded band structure from the 

VASP calculation results. These steps are repeated multiple times to improve the 

convergence of the wavefunctions, resulting in sharper lines in the band diagram and 

more accurate determination of band gap and effective mass. 

c. Computational details. The simulations were run on the Texas State University 

LEAP High Performance Computing (HPC) Cluster. The LEAP cluster features 

computing nodes with 28 CPU cores each. Since the computational complexity scales 

with the number of atoms in the simulation, the number of CPUs used in parallel was 

increased for larger supercells. Rigorous investigation of optimal CPU count per job was 

out of the scope of this work, but as a simple rule of thumb, the number of nodes per job 

was chosen so that there is at least one CPU core per atom in the supercell. This means 

that most 16-, 54-, 64-, and 128-atom supercell calculations used 1, 2, 3, and 5 nodes, that 

is 28, 56, 84, and 140 CPUs, respectively. Occasionally some jobs would fail with errors 

due to insufficient memory and restarting the jobs, even with increased dedicated 

memory allocation, did not resolve the issue. After some troubleshooting, I found that the 

simplest solution was to increase the number of computing nodes for those failing jobs, 

so some results presented in this work were simulated using a larger number of CPUs. In 

certain other cases, such as the second set of 64-atom random alloys, the number of 

computing nodes per job was increased with hopes to expedite the calculation, but the 

improvement in computation speed was smaller than expected. A rigorous test of 

optimum job parameters on the LEAP cluster could be useful for future ab-initio studies 

using VASP at Texas State University. 
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3. Convergence Testing 

Various parameters of the VASP calculation can be adjusted to make the results 

more accurate at the expense of increased execution time. Finding the optimum 

parameters is always a tradeoff between accuracy and speed. The process of exploring 

this tradeoff and finding parameters that give good accuracy while keeping the execution 

times reasonable is called convergence testing. During this process a sample job is 

executed multiple times while varying only a single parameter value, and the change in 

calculation results such as lattice constant, band gap, and effective mass is compared to 

the change in execution time 

 One of the parameters I varied during convergence testing is the density of the k-

point mesh used by VASP to sample the Brillouin zone. This is defined in the KPOINTS 

input file and determines the k-point coordinates in reciprocal space at which the 

wavefunctions are calculated during the electronic minimization process. An evenly 

spaced k-point grid is needed for all calculation steps leading up to the band structure 

calculation, at which point more k-points are added along the symmetry lines of the 

Brillouin zone, which will become the horizontal axis of the 𝐸-𝑘 diagram. The evenly 

spaced mesh is defined by the number of divisions in the Brillouin zone along each 

reciprocal lattice vector. VASP uses the symmetry of the lattice to reduce the number of 

k-points where the wavefunction needs to be calculated. For a perfect zincblende crystal 

(e.g. pure GaAs) with a 3 × 3 × 3 mesh only four out of the 27 k-points will be evaluated 

after symmetry reduction. For less symmetric supercells, such as some 64-atom random 

alloys, the same k-point grid is still reduced to 14 unique k-points. To test the 

convergence of the number of k-point divisions, I ran a series of calculations using a 16-
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atom BGaAs supercell containing a single boron atom (B1Ga7As8) with the k-point grid 

density varying from 3 × 3 × 3 to 21 × 21 × 21. 

 Increasing the k-point mesh density causes the computation time to grow 

exponentially, as illustrated by Figure 6. The run time of the final HSE06 ionic position 

relaxation, the most time-consuming step in the workflow, increases by about one order 

of magnitude when the number of k-point divisions is increased by two. This shows the 

importance of finding a good compromise between the increased accuracy that comes 

with denser k-point sampling of the Brillouin zone, and the exponentially growing 

computation time. For jobs above 7 × 7 × 7 k-point grid density only PBE results are 

available, since the HSE06 part of those calculations did not finish due to various VASP 

errors, mostly related to insufficient memory. 

 

 

Figure 6. Effect of K-Point Mesh Density on Computation Time. Convergence 

testing results from repeated calculations with increasing k-point mesh density using a 

16-atom BGaAs supercell containing a single boron atom (B1Ga7As8). Computation 

times for both PBE pre-relaxation and final HSE06 are shown. 
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 Figure 7 shows the convergence of the relaxed lattice constant with increasing k-

point mesh density, for both the (a) PBE pre-relaxation and (b) final HSE06 volume 

relaxation steps. The lattice constant is increasing as the k-point mesh gets denser, but the 

overall change in the tested range is below 0.02% for the PBE pre-relaxation process and 

below 0.004% for the final HSE06 relaxation. Thus, lattice constant convergence by itself 

doesn’t justify increasing the k-point density above 3 × 3 × 3. 

(a) (b) 

  

Figure 7. K-Point Convergence of Lattice Constant. Convergence testing results from 

repeated calculations with increasing k-point mesh density using a 16-atom BGaAs 

supercell containing a single boron atom (B1Ga7As8). Increasing the density of the k-

point mesh causes the fully relaxed lattice constant to increase, for both PBE pre-

relaxation (a) and final HSE06 relaxation (b). However, the overall change in lattice 

constant is very small. 

 

The convergence of the band gap with increasing k-point grid density is show in 

Figure 8. The relative change is larger than in the case of lattice constant. Increasing the 

number of divisions along each direction from three to five causes a 16 meV reduction in 

the band gap energy, which is a 1.5% change. Further increasing the density to  7 × 7 × 7 

only decreases the band gap by about 2 meV, or 0.2%.  
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Figure 8. K-Point Convergence of Band Gap. Convergence testing results from 

repeated calculations with increasing k-point mesh density using a 16-atom BGaAs 

supercell containing a single boron atom (B1Ga7As8). 

 

All convergence testing was done with a 16-atom supercell due to its relatively 

fast turnaround time, but I can use the results to estimate the level of convergence of the 

calculations involving larger supercells with a simple back-of-the-envelope calculation. 

As the cell volume increases in real space, the size of the Brillouin zone in reciprocal 

space decreases proportionally. This means that the same number of k-point divisions 

generate a finer mesh for a larger supercell, and thus lead to better sampling of the 

Brillouin zone. For 54-, 64-, and 128-atom supercells the factor by which the volume is 

increased relative to a 16-atom supercell is 3.375, 4, and 8, respectively. Taking the cube 

root gives the factor along a single axis, yielding 1.5, 1.59, and 2. Thus, using a 

3 × 3 × 3 mesh for the larger supercells would yield a k-point density that is roughly 

equivalent of a 16-atom supercell with 4.5, 4.76, and 6 k-point divisions along each 

direction, for the 54-, 64-, and 128-atom supercells, respectively. So, while for 16-atom 

supercells using a 3 × 3 × 3 may result in a 15-20 meV convergence error, this reduces 
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to the order of 2-3 meV for the larger supercells. assuming they follow a similar k-point 

convergence trend as seen in Figure 9. 

 

Figure 9. Estimation of Convergence Error for Large Supercells. Taking the k-

point convergence testing results a 16-atom supercell (blue triangles) I can roughly 

estimate the convergence error of 54-, 64-, and 128-atom supercells (orange circles). 

 

The entire workflow finished in a day or two for most 16-atom supercells, but the 

calculations slowed down significantly for larger supercells, even with increasing the 

number of CPU cores used in parallel. Most 54- and 64-atom supercells finished within a 

few weeks, while the 128-atom supercell simulation ran for several months total. As seen 

in Figure 6, increasing the number of k-point divisions from three to five comes with a 

roughly tenfold increase in computation time, which would make the larger supercell 

simulations prohibitively expensive. Thus, I decided to use a 3 × 3 × 3 k-point mesh for 

all calculations. 

Another parameter I was interested in is the energy cutoff of the planewave basis 

set (ENCUT parameter in the INCAR file). The default value for this parameter varies for 

each element, and it can be found in the corresponding pseudopotential file (POTCAR) as 
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the value for the ENMAX parameter. The VASP manual warns to increase the default 

value by 30% if we are performing volume relaxation due to errors introduced by Pulay 

stesses.101 I wanted to see the effect of this error on the equilibrium lattice constant, so for 

the same 16-atom B1Ga7As8 supercell I also varied the ENCUT parameter from 150% to 

250% of the default value, in steps of 25%. 

 

Figure 10. Effect of ENCUT Parameter Value on Computation Time. Convergence 

testing results from repeated calculations with increasing planewave energy cutoff 

(ENCUT parameter) using a 16-atom BGaAs supercell containing a single boron atom 

(B1Ga7As8). The horizontal axis shows the factor of increase from the default value 

(ENMAX parameter in the pseudopotential file). The total computation time required 

for the ionic position relaxation step, both during PBE pre-relaxation and final HSE06 

relaxation, shows a moderate increase.  

 

A larger planewave energy cutoff results in a moderately increased execution 

time, as shown in Figure 10. However, it can be seen from Figure 11 that neither the 

lattice constant nor the band gap seems to converge with increasing ENCUT value. Thus, 

I decided to use a planewave cutoff energy of 475 eV, that is 50% larger than the 

ENMAX value given in the pseudopotential file for boron, which was the largest value 

out of the three elements.  
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(a) (b) 

  
Figure 11. ENCUT Convergence of Lattice Constant and Band Gap. Convergence 

testing results from repeated calculations with increasing planewave energy cutoff 

(ENCUT parameter) using a 16-atom BGaAs supercell containing a single boron atom 

(B1Ga7As8). The horizontal axis shows the factor of increase from the default value 

(ENMAX parameter in the pseudopotential file). Neither the (a) lattice constant nor the 

(b) band gap shows convergence with increasing ENCUT. 

 

4. Analysis of VASP results 

When the band structure calculation is complete, I extracted notable features from 

the unfolded band diagrams for comparison between supercells of different compositions. 

I located the valence band maximum (VBM) and conduction band minimum (CBM) and 

calculated the band gap energy. I extracted and tabulated the energy gap not just at the 

CBM, but along the Γ, L, and X symmetry points and examined the trends with regards to 

material composition. I also calculated electron effective masses in the direct band gap 

region by means of quadratic interpolation through the CBM at Γ and the lowest CB 

energy eigenvalue at the neighboring k-points in the direction towards the L, X, and K 

symmetry point, followed by taking the geometric mean of the three effective mass 

values. 

Other than looking at the electronic properties of the material, I also analyzed the 

fully relaxed crystal structure. I examine the dependence of lattice constant on B content 

and the effect of B-B pairs on bond length. When simulating alloys with the same B 
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percentage, but different arrangement of atoms, I compare the total free energy of the 

structures to determine which configuration is more likely to form during crystal growth.  

 I did most of the analysis using the Python programming language, with libraries 

such as numpy102 and pandas103 to help with calculation and tabulation of results. The 

pymatgen75 library helped with extracting information from VASP output files, while 

matplotlib104 was used for plotting the results. For structural analysis and ball-and-stick 

models I used the VESTA software.74 

B. Results and discussion 

In this section I present the results of VASP simulations of BGaAs. All results 

discussed in sections 1 to 5 are from supercells of sizes 54, 64, and 128 atoms. For 

simplicity’s sake I will refer to these supercell sizes collectively as large supercells. 

Results of simulations of 16-atom supercells, which I will refer to as small supercells, are 

discussed separately in section 6. 

1. Band gap over the full composition range 

Figure 12 shows the simulated band structures of pure GaAs and BAs using 64-

atom supercells. The calculations yielded a direct band gap of 1.40 eV for pure GaAs, 

which is slightly under the experimental value of 1.42 eV.30 In the case of pure BAs, the 

band diagram shows an indirect band gap of 1.84 eV near the X symmetry point, which is 

above earlier experimental reports of 1.46 eV,39,43 but is in better agreement with a more 

recent measurement of 1.77 eV.44 The minimum direct band gap is 4.12 eV. Comparing 

with existing theoretical data, these are larger than values obtained using local density 

approximation (LDA)28,105–109 and GGA107,109–112 methods, but those are known to 
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underestimate the band gap.113 My result falls within the range of band gaps from 

previous calculations using GW28,105,106 and is in good agreement with recent studies 

involving hybrid functionals.44,114–117 

 

Figure 12. Band Structures of Pure GaAs and BAs. E-k diagrams of pure (a) GaAs 

and (b) BAs showing a direct band gap of 1.40 eV for GaAs and an indirect band gap 

of 1.84 eV near the X symmetry point for BAs. Both diagrams are from simulation 

results using 64-atom supercells. 

 

Band gaps at the Γ, L, and X symmetry points of BGaAs alloys from large 

supercell simulations excluding 54-atom supercells with B atoms at nearest-neighbor 

group III sites are shown in Figure 13. The simulations indicate that in the dilute regime 

B does not have a large effect on the direct band gap. The band gap first decreases 

slightly to 1.34 eV at 7.4% B concentration, then starts to increase towards the 4.12 eV 

minimum direct gap of BAs. The actual lowest band gap result in the entire range is 1.30 

eV at 12.5% B content, but the second random alloy with the same concentration yielded 

1.40 eV, which gives a rough average of 1.35 eV. Similar trends of first decreasing, then 
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at higher concentrations increasing band gaps have been reported from both theory52 and 

experiment,51 but the B content corresponding to the band gap minimum differ from my 

result (30% and 2.5%, respectively). The L gap decreases in a roughly linear fashion up 

to 25% B concentration. To estimate the transition of BGaAs from direct to indirect gap I 

used simple quadratic fits on the L and Γ band gaps, as shown with the dashed and dash-

dotted lines. I predict that the shift from direct to indirect band gap happens at around 

17% B content. The conduction band (CB) minimum is in the L-valley for only the 25% 

B concentration random alloy, then shifts towards X as the L gap starts to increase at 

higher percentages. 

 

Figure 13. BGaAs Band Gaps Over the Full Composition Range. The figure shows 

band gaps at the Γ, L, and X symmetry points versus B concentration. All data points at 

or below 7.4% are from supercells of various sizes with isolated B atoms, while points 

at 12.5% and above are from 64-atom random alloy supercells. Using quadratic fits, 

shown with dashed and dash-dotted lines, I estimate the direct-indirect gap transition at 

around 17%. 
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2. Dilute regime 

Figure 14 shows the effect of B on the band gaps at the Γ, L, and X symmetry 

points from all large supercell simulations in the dilute regime. The narrowest band gap 

observed among supercells with isolated B atoms is 1.33 eV, corresponding to a 3.7% B 

content. This means that the effect of lone B atoms on the direct band gap is small (within 

5%) for B concentrations under 13%. The narrowing is larger for alloys with B-B pairs in 

nearest-neighbor (NN) group III sites. The 54-atom supercell with 2 B atoms in NN 

configuration have a direct gap of 1.23 eV as opposed to 1.34 eV for the two other 

supercells of the same size and composition. This means the presence of B-B pairs almost 

triples the narrowing of the band gap (12%) as opposed to the isolated B atoms (4.3%). 

The 54-atom supercell with a continuous line of B atoms, corresponding to an 11% B 

concentration, exhibit a direct gap of 1.06 eV, which is a 24% decrease from pure GaAs. 

This confirms earlier theoretical results that B-B pairs reduce the band gap more than 

isolated B atoms.48 
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Figure 14. Band Gaps of Dilute BGaAs Alloys at High-Symmetry Points. The 

points at 7.4% are from 54-atom supercells with two B atoms, the marked points 

correspond to B-B pairs at nearest-neighbor group III sites (NN). The points at 11%, 

with the Γ-point marked with an arrow, correspond to a 54-atom supercell with 3 B 

atoms in NN sites forming a continuous line. Isolated B atoms do not have a significant 

effect on the band gap, while B-B pairs in NN sites cause a significant narrowing. 

 

The total free energy of the 54-atom supercell with 2 B atoms at NN sites is  

-272.56 eV while the other two systems with the same composition but isolated atoms 

equally yielded -272.82 eV, so placing the B atoms at NN sites increased the total energy 

by 260 meV, or 4.8 meV per atom. This implies that B-B pairs are energetically 

unfavorable to evenly distributed B atoms, though the difference in energy is small. 

The increased free energy can be explained with the stretching of bonds around 

B-B pairs at NN sites. Measuring all 4 bond lengths for both B atoms in the fully-relaxed 

supercells I found that the average B-As bond length in the structure with B-B pairs is 

2.19 Å, as opposed to 2.17 Å for the supercells with isolated B atoms, which is an 

average stretching of 1.2%. In the NN configuration the longest bonds are along the B-

As-B triangle with lengths of 2.24 Å, while the shortest bonds are in the direction 
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perpendicular to the plane defined by the B-As-B atoms, with a length of 2.15 Å. This is 

a 4.1% difference, while for the two supercells with isolated B atoms the difference 

between the longest and shortest bonds is 0.36% and 0.22%, respectively. 

3. Electron effective mass 

I extracted the electron effective masses from the band structures of BGaAs alloys 

in the direct band gap regime, as shown in Figure 15. The simulations yield an me* of 

0.068 m0 for GaAs, which is in excellent agreement with the known experimental 

value.118 The electron effective mass increases in a roughly linear fashion to 0.123 m0 at 

12.5% B concentration. B-B pairs in NN sites do not seem to have a strong influence on 

effective mass. Among the three 52-atom supercells with 2 B atoms, the one with NN B-

B pairs is in the middle with 0.094 m0, while the two structures with isolated B atoms 

yield a CB dispersion of 0.095 m0 and 0.088 m0. Thus I cannot confirm the strong change 

in electron effective mass that was reported by Lindsey et al.48  

 

Figure 15. BGaAs Electron Effective Mass in the Direct Band Gap Region. The 

electron effective mass shows a roughly linear relationship with B concentration. B-B 

pairs don’t seem to have a drastic effect on electron effective mass. 
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4. Lattice constant 

Figure 16 shows the geometric mean lattice constant versus B concentration. The 

fully-relaxed lattice parameters for pure GaAs is 5.667 Å, a slight overestimate of the 

known value of 5.653 Å,30 while for pure BAs it is 4.771 Å, which is very close to the 

4.777 Å38–40 reported experimentally. The lattice parameter varies linearly with B 

content, which means BGaAs does not deviate from Vegard’s Law, contrary to earlier 

reports.20,52 I calculated that the B percentage that would be required to match BGaAs to 

the silicon lattice constant of 5.431 Å30 is 26.3%. This is above the 17% limit predicted 

for the direct-indirect gap transition, so it does not appear possible to achieve a Si lattice 

matched direct semiconductor by only adding B to GaAs. 

 

Figure 16. BGaAs Lattice Constant Versus B Concentration. The lattice constant 

shows perfect agreement with Vegard’s Law, shown by the orange dashed line. 

 

5. Band unfolding artifacts 

All electronic properties presented in this work have been extracted from effective 

band structures unfolded using the BandUP code.86,87 In an unfolded band diagram, the 
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energy eigenvalues are represented with the spectral weight. When unfolding the band 

structure of a supercell made of a perfect crystal, such as the GaAs and BAs shown in 

Figure 12, the spectral weight is an integer number corresponding to the degeneracy of 

the energy level. Once imperfections are added to the crystal supercell, breaking 

symmetry, the spectral weight is no longer integer, and it can be interpreted as the 

amount of primitive cell Bloch character of an eigenstate.87 In practice this means that 

faint images of the folded bands remain in the effective band structure, and every L and 

X energy level also shows up at Γ with a smaller spectral weight. Most of the time these 

shadow bands are faint enough that the effective band diagram can be cleaned up by 

simply discarding energy eigenvalues that have spectral weights below a certain 

threshold. In this work I filtered out spectral weights under 0.07. In some cases, the 

shadow bands have spectral weights comparable to the real bands, which can make it 

difficult to determine the exact location of the conduction band minima. 

Figure 17 shows energy eigenvalues at the Γ, L, and X symmetry points extracted 

from unfolded effective band structures of the two sets of 64-atom random alloys used in 

this work. The area of the markers is proportional to the spectral weights. I filtered out 

eigenvalues with weights below 0.07, but the corresponding markers would be so small 

that they would not be visible on the plot either way. The separation of results into two 

sets is arbitrary but plotting them separately means that only one supercell result is 

plotted at each percentage value, which makes the interpretation of the figure easier. The 

only supercells where the determination of the conduction band minimum is not obvious 

is at 25% B concentration, in both sets of random alloys, shown at the bottom with 

overlapping markers of similar size. 
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(a) (b) 

  

Figure 17. Conduction Band Energy Eigenvalues of Random Alloys. The energy 

levels, shown at the Γ, L, and X Symmetry Points, are measured relative to the valence 

band maximum, so the bottom markers represent the band gaps. The area of each marker 

corresponds to the spectral weight of the eigenvalue. The dashed line shows the 

minimum direct band gap as predicted by the virtual crystal approximation (VCA) 

without bowing. The separation of results into sets (a) and (b) is arbitrary and is only 

done to increase the clarity of the plots. 

 

The effective band structure of the two random alloys with 25% B content is 

shown in Figure 18. A mirroring of both the valence and conduction bands is visible 

between the L and Γ symmetry points for alloy (a), while for alloy (b) the reflection of 

the valence band is fainter. I repeated the unfolding procedure at an increased resolution 

of 1 meV and found that the lowest CB energy levels at L and Γ are exactly equal. For 

alloy (a) the spectral weight of the lowest CB eigenvalue is about 30% larger in L, but for 

alloy (b) it is about 2% larger in Γ. I compared the eigenstates at neighboring k-points 

along the L-Γ line equidistant from the symmetry points and found that the energy levels 

are exactly equal, and the corresponding spectral weights are always larger for k-points 
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closer to L. It is very unlikely that a real band would have the exact same energy levels 

up to 4 significant figures and a perfectly matching dispersion at both L and Γ, so I 

classify the Γ portion as an unfolding artifact, a shadow of the real band at L. I used the 

same procedure to decide the CB level at L for one of the random alloys with 12.5% B 

concentration, seen in Figure 17 (a) as the second data point from the bottom. 

 
Figure 18. Unfolding Artifacts in Effective Band Structures of B8Ga24As32 

Supercells. The two plots show two different random arrangements of atoms with the 

same overall B concentration. The area of the dots corresponds to the spectral weights 

of the energy levels. Both structures show unfolding artifacts in the conduction band 

between the L and Γ symmetry points, while in structure (a) the reflection is also 

strongly visible in the valence band. The mirroring of the conduction bands seen here 

corresponds to the bottom data points in Figure 17 at 25% B concentration where two 

markers overlap. 

 

 Figure 19 shows band gaps at the Γ, L, and X symmetry points in the full 

composition range, excluding 54-atom supercells with B atoms at NN sites. In plot (a) the 

supercells with 25% B content, and ambiguous CMB k-point location, are classified as 

direct band gap, while plot (b) shows them classified as indirect band gap. If I interpret 
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the supercells in question as indirect band gap, then the Γ and L gaps align in a more 

continuous, linear fashion. 

(a) (b) 

  

Figure 19. Classifying Ambiguous Conduction Band Minima. The figures show band 

gaps at the Γ, L, and X symmetry points versus B concentration if the CBM of the 25% 

random alloys is classified as (a) located at Γ or (b) located at L. Placing the CBM in L 

results in more even trends over the full composition range. 

 

6. Small supercell calculations 

 I discuss the 16-atom supercell calculations separately because the results 

disagree with the 64-atom random alloys. Figure 20 shows the band gaps at the Γ, L, and 

X symmetry points versus B concentration for 16-atom supercell simulations. For BAs 

the direct band gap is 1.85 eV, which is in perfect agreement with the 1.84 eV result seen 

with the 64-atom supercell. For GaAs, however, the band gap shrinks to 1.37 eV from the 

1.40 eV obtained using the larger supercell, which is a worse underestimation of the 

known 1.44 eV gap. The differences grow more significant for mixed alloys. There is a 

large narrowing of the band gap, even at relatively low B concentrations. At 12.5% B 

content, which is one B atom in the 16-atom supercell, the band gap shrinks to 1.08 eV, 

which is more, than a 20% decrease from the GaAs small-supercell direct band gap. In 

comparison, the band gaps for the two large random alloys with the same B concentration 
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were 1.30 eV, which is a 7% narrowing, and 1.40 eV which exactly matches the large-

supercell GaAs band gap. For the 16-atom supercells the narrowing continues at higher B 

percentages, all the way down to a 0.65 eV indirect (X) band gap found at 62.5% B 

concentration. There are no clear observable trends in the band gaps at Γ, L, and X, 

unlike with the 64-atom random alloys. Unfolding artifacts with reflected bands were 

seen through the entire composition range, which also makes the interpretation of the 

results difficult.  

 

Figure 20. Band Gaps of 16-Atom BGaAs Supercells at High-Symmetry Points. 

The figure shows band gaps at the Γ, L, and X symmetry points versus B concentration 

for small supercells. There is a significant narrowing of the band gap as B content 

approaches 50%, unlike the 64-atom random alloys. 

 

The effect of B concentration on lattice constant also shows a deviation from 

Vegard’s Law, as seen in Figure 21. The lattice parameters of pure GaAs and BAs are 

5.667 Å and 4.771 Å, respectively, which is in perfect agreement with the 64-atom 

supercells. But at varying B concentrations, compared to the linear relationship seen for 

all large-supercell calculations, the lattice constant shows a noticeable negative bowing 
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with a quadratic bowing parameter value of −0.11 Å. I extracted the bowing parameter 

value using least-squares fitting to the equation  

 𝑎B𝑥Ga1−𝑥As = 𝑥𝑎BAs + (1 − 𝑥)𝑎GaAs − 𝑐𝑥(1 − 𝑥) (13) 

where 𝑎 indicates the lattice constant, 𝑥 is the fractional B content, and 𝑐 is the quadratic 

bowing parameter.  

 

Figure 21. Lattice Constant of 16-Atom BGaAs Supercells. The lattice constant 

deviates from Vegard’s law, shown with orange dash-dotted line. The extracted 

bowing parameter from a quadratic fit (green dashed line) is 𝑐 = −0.11 Å. 

 

 Other than the supercell size and the arrangement of atoms, all VASP settings 

were identical for small and large supercell calculations. As I already discussed in the 

chapter on convergence testing, the effective k-point sampling of the Brillouin zone does 

get finer as the supercell size increases, even if the number of k-point divisions per axis 

stays the same, due to the inverse relationship between the volumes in real and reciprocal 

space. However, as seen in Figures 7 and 8, the effect of k-point mesh density on band 

gap and lattice constant is too small to explain the difference between the results obtained 
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with small and large supercells. Also, increasing k-point mesh density during 

convergence testing caused a narrowing of the band gap, which is contrary to the 

increased band gap seen in large-supercell results that correspond to a finer k-point 

sampling. 

 The most likely explanation for the significant differences seen with small 

supercells is the artificial periodicity introduced by the use of periodic boundary 

conditions. The wavefunctions calculated by VASP are solutions of a boundary value 

problem that is effectively and infinite repetition of the supercell. Any imperfection 

introduced to the supercell will be repeated with a period that is proportional to the 

supercell size. This introduces an additional translational symmetry into the system which 

distorts the solutions. The effect diminishes as supercell volume increases, provided that 

the arrangement of atoms in the supercells are sufficiently random. Since the larger 

supercells provide a better representation of the randomness of real alloys, and with the 

two sets of random alloys showing good agreement in band gap and lattice constant, I 

consider the results of the 16-atom supercells to be unrealistic, and conclude that the 

results from larger supercells are likely a better approximation of the properties of real 

BGaAs alloys. 

C. Future Work 

 The calculations presented in this work ignore spin-orbit interaction. A follow-up 

study could explore the effect of spin-orbit coupling on the band gap, valence band 

dispersion, and the location of the split-off band relative to the valence band maximum, 

as well as the variation with B content. Examining band-decomposed partial charge 

densities could shed light on the localization of the states introduced by B atoms in dilute 
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alloys and may help explain the band gap narrowing caused by B-B pairs in nearest-

neighbor group III sites. Future work may also include simulating optical properties, such 

as absorption coefficient, index of refraction, and electron transition rates. Considering 

the high thermal conductivity of pure BAs, the effect of B concentration on thermal 

conductivity could be investigated with phonon simulations. The probability of phase 

separation in BGaAs could be examined by comparing energetics of random alloys with 

mixed B-Ga distribution in group III sites to supercells with BAs-GaAs clusters. 

Additional work may include simulation of point defects, such as vacancies, split 

interstitials, and antisite substitution.  

D. Summary 

I calculated band structures of BxGa1-xAs in the full composition range using 

HSE06 hybrid functionals. I found that as B concentration increases, the direct band gap 

first narrows slightly, then increases towards the large direct gap of BAs. The effect of B 

on the band gap is less than 7% for B concentrations under 13%. I estimate that BGaAs 

transitions from direct to indirect gap at around 17% B content. I found that B-B pairs in 

nearest neighbor group III sites cause a narrowing of the band gap that is 3-4 times larger 

than isolated B atoms with the same composition, but do not have a significant effect on 

the electron effective mass. My results show that the lattice constant of BGaAs does not 

deviate from Vegard’s law and I estimate that the B concentration required to lattice 

match BGaAs to Si is 26.3%, at which point BGaAs is an indirect gap material. I found 

that results from small-supercell calculations show good agreement with large supercells 

for pure GaAs and BAs but significantly differ for mixed alloys, where I observed a large 

reduction in band gap and deviation from Vegard’s law. I discussed that the difference 
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cannot be explained by too coarse k-point sampling and is likely caused by the distorting 

effect of the artificial periodicity introduced by the infinite repetition of the supercell, 

which diminishes as supercell size increases. Since large-supercell random alloys are a 

better representation of the randomness of real alloys, and since I have two sets of 

random alloys showing good agreement, I dismiss the small-supercell results as 

unrealistic and consider the large-supercell random alloys as the better approximation of 

real BGaAs alloys. I discussed band unfolding artifacts and showed that even though 

shadow bands can complicate the interpretation of unfolded effective band structures, the 

exact location of the conduction band minima can be determined with confidence by 

comparing the spectral weights and band dispersion at increased energy resolution. 

  



 

54 

IV. OPTIMUM TFET PERFORMANCE WITH HIGHLY MISMATCHED 

ALLOYS 

HMAs can allow unprecedented control over material properties such as band gap 

or effective mass. In the second part of this thesis, to explore some of the new 

possibilities in device design opened up by such materials, I investigate the effect of 

various material and device parameters on the performance of a double-gate tunnel field-

effect transistor (DG TFET) using computer simulations based on the UCSD TFET 

model.119 In this chapter I first give a summary of the derivations of the original model 

and discuss my modifications, then I present the parameters that yield optimum device 

performance and discuss the theoretical reasons behind the trends observed in the results. 

A. Method 

1. TFET model 

My simulations are based on the UCSD TFET model,119 which is a semi-analytic 

model of tunneling in DG TFET devices, originally developed by Taur et al.,7,8 and 

which was also verified by numerical simulations.120,121 I further extended the model to 

include Kane’s non-parabolic dispersion relation.9,10 The UCSD model has been revised 

by its authors several times,120–123 so I present a unified and detailed description below. A 

DG TFET device with the corresponding band structure is shown in Figure 22, where I 

also marked the variables used in this section. 



 

55 

 

Figure 22. Schematic and Band Diagram of a DG TFET Device. Solid lines show 

the valence and conduction bands when the device is ON, the dash-dotted line is the 

channel conduction band in the OFF state.  

 

First, to accurately calculate the curvature of the bands near the tunneling region, 

the 2D Poisson equation for a DG TFET of channel length 𝐿𝑔 is solved analytically for 

the channel potential, written as a series of eigenfunctions 

 

𝜓(𝑥, 𝑦) = 𝑉𝑔 − Δ𝜑 

− ∑ [
𝑏𝑛 sinh[𝜋 (𝐿 − 𝑥) 𝜆𝑛⁄ ] + 𝑐𝑛 sinh(𝜋𝑥 𝜆𝑛⁄ )

sinh(𝜋𝐿 𝜆𝑛⁄ )
sin (

𝑛𝜋

2
+

𝜋𝑦

𝜆𝑛
)]

∞

𝑛=1

 
(14) 

where Δ𝜑 is the net gate work function and 𝜆𝑛 are the discrete eigenvalues, and the long-

channel potential is represented by the constant term 𝑉𝑔 − Δ𝜑. The coefficients 𝑏𝑛 and 𝑐𝑛 
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are determined by source and drain boundary conditions,124 while the eigenvalues depend 

on the material’s dielectric constant and the film’s thickness. 

 In case of a symmetric DG TFET, only the odd-order eigenfunctions remain. The 

eigenvalues 𝜆𝑛 are found using 

 tan (
𝜋𝑡𝑖

𝜆𝑛
) tan (

𝜋𝑡𝑠

2𝜆𝑛
) =

𝜀𝑖

𝜀𝑠
 (15) 

with 𝑡𝑖 and 𝜀𝑖 as the thickness and dielectric constant of the insulator, and 𝑡𝑠 and 𝜀𝑠 are 

the same for the semiconductor. If 𝜀𝑖 = 𝜀𝑠, Eq. 14 yields 𝜆𝑛 = (𝑡𝑠 + 2𝑡𝑖)/ 𝑛, with the 

first eigenvalue, 𝜆 = 𝑡𝑠 + 2𝑡𝑖 defined as the scale length. Note that 𝜆 is the distance 

separating the two gates. 

The conduction band of the channel is found from Eq. 13, taking 𝑛 = 1 and  

𝜀𝑖 = 𝜀𝑠 as 

 

𝑉(𝑥) = 𝑉0

sinh[𝜋 (𝐿 − 𝑥) 𝜆⁄ ]

sinh(𝜋𝐿 𝜆⁄ )
+ 𝑉1 − 𝑉0 − Δ

+ (𝑉0 + Δ − 𝑉2 − 𝑉1)
sinh(𝜋𝑥 𝜆⁄ )

sinh(𝜋𝐿 𝜆⁄ )
 

(16) 

where the constant term 𝑉𝑔 − Δ𝜑 in Eq. 13 was replaced by 𝑉1 − 𝑉0 − Δ and the 

coefficient values 𝑏1 = 𝑉0 and 𝑐1 = 𝑉0 + Δ − 𝑉2 − 𝑉1 were substituted in to satisfy the 

boundary conditions. 𝑉1 is the effective band gap between the valence band of the source 

and the conduction band of the channel in the off state. Δ is the potential variation in the 

source due to band bending and 𝑉0 is the gate control of the conduction band in the 

channel. Thus, the first boundary condition is 𝑉(0) = 𝑉1 − Δ. The second boundary 

condition is 𝑉(𝐿) = −𝑉2, which also defines the level of the conduction band of the 

drain. 𝑉2 is expressed as 
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 𝑉2 = 𝑞𝑉𝑑𝑠 + 𝑑1 + 𝑑2 (17) 

where 𝑑1 and 𝑑2 are the degeneracies in the source and drain, respectively. 

The original UCSD model used half-order Fermi-Dirac integrals to solve for the 

degeneracies assuming a parabolic dispersion relation. I accounted for the non-parabolic 

nature of the energy bands using a simplified form10 of Kane’s non-parabolic 

approximation9 

 𝐸(𝑘)[1 + 𝛼𝐸(𝑘)] =
ℏ2𝑘2

2𝑚∗
 (18) 

where 𝛼 is the non-parabolicity factor. Note that for 𝛼 = 0, the expression reduces to the 

traditional parabolic dispersion relation. Using this, the density of states is 

 𝑔(𝐸) =
𝑚∗(1 + 2𝛼𝐸)√2𝑚∗𝐸(1 + 𝛼𝐸)

𝜋2ℏ3
 (19) 

Assuming full ionizations of the dopants I find the degeneracies by setting 

 

𝑁𝑑 = 𝑛 = ∫ 𝑔𝑐(𝐸)𝑓(𝐸, 𝑑2) 𝑑𝐸
∞

𝐸𝑐

 

𝑁𝑎 = 𝑝 = ∫ 𝑔𝑣(𝐸)[1 − 𝑓(𝐸, 𝑑1)] 𝑑𝐸
𝐸𝑣

−∞

 

(20) 

and solving numerically for 𝑑1 and 𝑑2. 

Assuming the depletion approximation and a uniform dielectric constant across 

the heterojunction 

 

1

𝑞
|
𝑑𝑉

𝑑𝑥
|

𝑥=0
= (

𝜋

𝑞𝜆
)

𝑉0 cosh(𝜋𝐿 𝜆⁄ ) + 𝑉2 − 𝑉0 + 𝑉1 − Δ

sinh(𝜋𝐿 𝜆⁄ )
 

=
2Δ

𝑞𝑊𝑑
= √

2𝑁𝑎Δ

𝜀𝑠
 

(21) 

where the depletion width is given as 
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 𝑊𝑑 = √2𝜀𝑠Δ/(𝑞2𝑁𝑎)  (22) 

 The gate voltage 𝑉𝑔𝑠 is defined to be zero just when the channel conduction band 

lines up with the source valence band. At this point 𝑉0 = 𝑉1 − Δ. When 𝑉𝑑𝑠 > 𝑉𝑔𝑠, mobile 

charge in the channel is negligible (saturation conditions), so Δ can be simply calculated 

from 

 𝑞𝑉𝑔𝑠 = 𝑉0 − (𝑉1 − Δ) (23) 

However, when 𝑉𝑑𝑠 < 𝑉𝑔𝑠, the TFET is biased in the linear region, and the Fermi level of 

the drain is close to or above the conduction band. This causes an inversion charge that 

has a de-biasing effect8,125,126 and degrades 𝑉𝑔𝑠 by the potential difference across the 

insulator, 𝑄𝑖𝑛𝑣/𝐶𝑜𝑥. By solving the Poisson equation for a DG MOSFET127 the inversion 

charge is obtained as 

 𝑄𝑖𝑛𝑣 =
4𝑘𝑇𝜀𝑠

𝑞𝑡𝑠
𝛽 tan 𝛽 (24) 

with 𝛽 solved numerically from 

 

𝑞(𝑉𝑔𝑠 − 𝑉𝑑𝑠 − 𝑑1)

2𝑘𝑇
− ln [

2

𝑡𝑠

√
2𝜀𝑠𝑘𝑇

𝑞2𝑁𝑐
]

= ln 𝛽 − ln(cos 𝛽) +
2𝜀𝑠𝑡𝑖

𝜀𝑖𝑡𝑠
𝛽 tan 𝛽  

(25) 

where 𝑁𝑐 is the conduction band effective density of states. Once 𝑄𝑖𝑛𝑣 is calculated, the 

gate bias is modified as 𝑉𝑔𝑠 − 𝑄𝑖𝑛𝑣/𝐶𝑜𝑥. 

 Expressing Δ from Eq. 22 and substituting into Eq. 20 yields 

 (
𝜋

𝑞𝜆
)

𝑉0 cosh(𝜋𝐿 𝜆⁄ ) + 𝑉2 − 𝑞𝑉𝑔𝑠

sinh(𝜋𝐿 𝜆⁄ )
= √

2𝑁𝑎(𝑞𝑉𝑔𝑠 − 𝑉1 − 𝑉0)

𝜀𝑠
 (26) 
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which is solved for 𝑉0. With that, Δ and 𝑊𝑑 are obtained from equations 21 and 22. 

 Thus, the valence band of the source can be expressed as 

 𝑈(𝑥) = −
𝑞2𝑁𝑎

2𝜀𝑠

(𝑥 + 𝑊𝑑)2 (27) 

The potential function for the depletion region in the drain is neglected here because it 

has a negligible effect on the tunneling current. 

 The band-to-band tunneling probability is calculated using WKB integrals. For a 

particular energy level −𝐸, where 0 < 𝐸 < Δ, we have a hole tunneling from the valence 

band of the source to the conduction band of the channel. A hole or an electron with a 

total energy 𝐸 may have some kinetic energy component 𝐸⊥ in the direction 

perpendicular to the junction. We call this transverse kinetic energy component 𝐸⊥𝑣 in 

the valence band of the source and 𝐸⊥𝑐 in the conduction band of the channel. The 

tunneling probability is then calculated as the product of two separate tunneling events, a 

hole-like process on the source (VB) side followed by an electron-like process on the 

channel (CB) side 

 𝑇(𝐸, 𝐸⊥𝑣) = exp {−2 [∫ 𝑘𝑖𝑠(𝐸, 𝐸⊥𝑣)𝑑𝑥
0

𝑙1

+ ∫ 𝑘𝑖𝑔(𝐸, 𝐸⊥𝑐)𝑑𝑥
𝑙2

0

]} (28) 

where 𝑘𝑖𝑠 and 𝑘𝑖𝑔 are the tunneling wave vectors in the source and the channel, 

respectively. Both integrals are evaluated numerically. The integration endpoints, which 

are the physical (𝑥) coordinates of the start and end points of the tunneling event, are 

solved from 𝑈(𝑙1) = −𝐸 + 𝐸⊥𝑣 and 𝑉(𝑙2) = −𝐸 − 𝐸⊥𝑐. 

 To calculate the imaginary wave vectors, Kane’s non-parabolic dispersion relation 

is used (Eq. 5), with the appropriate energy term for the barrier height. In the source, the 

potential barrier for the hole is determined by 𝑈(𝑥), calculated in Eq. 26, as  
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𝑘𝑖𝑠(𝐸, 𝐸⊥𝑣) =

√2𝑚𝑣
∗

ℏ
√ℰ𝑠(1 + 𝛼𝑣ℰ𝑠) 

                ℰ𝑠 = −𝑈(𝑥) − (𝐸 − 𝐸⊥𝑣) 

(29) 

While on the other side of the junction, the barrier height is given by 𝑉(𝑥), found in Eq. 3 

as 

 
𝑘𝑖𝑔(𝐸, 𝐸⊥𝑐) =

√2𝑚𝑐
∗

ℏ
√ℰ𝑔(1 + 𝛼𝑐ℰ𝑔) 

                ℰ𝑔 = −𝑉(𝑥) + 𝐸 + 𝐸⊥𝑐 

(30) 

For both cases the energy of the particle with respect to the tunneling barrier height is 

reduced by the transverse kinetic energy component, since 𝐸⊥ does not contribute to the 

tunneling. 

 The transverse kinetic energy component in the conduction band, 𝐸⊥𝑐, is related 

to 𝐸⊥𝑣 in the valence band by conservation of momentum 

 𝑚𝑐
∗𝐸⊥𝑐(1 + 𝛼𝑐𝐸⊥𝑐) = 𝑚𝑣

∗ 𝐸⊥𝑣(1 + 𝛼𝑣𝐸⊥𝑣) (31) 

where 𝑚𝑐
∗ and 𝑚𝑣

∗  are electron and hole effective masses and 𝛼𝑐 and 𝛼𝑣 are the non-

parabolicity factors in the conduction and in the valence band, respectively. 

 Finally, the tunneling current is given by the Landauer equation128  

 𝐼𝑑𝑠 =
𝑞𝑚𝑣

∗

2𝜋2ℏ3
∫ (𝑓𝑠 − 𝑓𝑑) [∫ 𝑇(𝐸, 𝐸⊥𝑣)𝑑𝐸⊥𝑣

𝐸⊥𝑚𝑎𝑥

0

] 𝑑𝐸
𝑉2

0

 (32) 

with 𝑇(𝐸, 𝐸⊥𝑣) as the tunneling probability calculated with Eq. 26, and 𝑓𝑠 and 𝑓𝑑 are the 

source and the drain occupancies, respectively. The inner integration is done with respect 

to the transverse kinetic energy in the valence band, 𝐸⊥𝑣, and Eq. 29 is used to calculate 

𝐸⊥𝑐 for the second WKB integral. The upper limit of the inner integral, 𝐸⊥𝑚𝑎𝑥, is either 
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the total kinetic energy in the valence band, 𝐸⊥𝑣 ≤ 𝐸, or in the conduction band, 𝐸⊥𝑐 ≤

𝑉2 − 𝐸, whichever is smaller. 

 To account for non-parabolic bands, I had to modify all parts of the calculation 

that are directly derived from the dispersion relation. This includes determining the 

degeneracies 𝑑1 and 𝑑2 (Equations 17-19), calculating the imaginary wave vectors 𝑘𝑖𝑠 

and 𝑘𝑖𝑔 (Equations 28-30), and the WKB integrals used to calculate the tunneling 

probability (Eq. 27). In the original model, the first WKB integral, corresponding to the 

source side of the junction, was carried out analytically, while the channel side was done 

using numerical integration. After modifying the model with Kane’s dispersion relation, 

both WKB integrals are evaluated numerically. 

2. Computational details 

 The simulation is implemented as a MATLAB program, originally created by 

Taur et al.119, which I modified as described in the previous section.  

Once the tunneling current is calculated, I compute the subthreshold swing (SS). 

The SS is defined as 

 𝑆𝑆 = log(10) |𝐼𝑑𝑠 (
d𝐼𝑑𝑠

d𝑉𝑔𝑠
)

−1

| (33) 

Since the result of the simulation is a numerical array, the post-processing code must 

evaluate the derivative numerically. In the program I evaluate the SS as 

 𝑆𝑆 =
Δ𝑉𝑑𝑠

Δ log10(𝐼𝑑𝑠)
 (34) 
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where Δ means taking the difference of neighboring elements in the array. If we replace 

the Δ signs with differentials, then Eq. 34 is mathematically equivalent to the definition 

given in Eq. 33. 

At this point the calculated SS is a numerical array, with each element 

corresponding to the mid-point values of the original array containing the gate voltage 

range. To find the exact gate voltage (𝑉60) at which the SS crosses 60 mV/decade, I 

convert it into a continuous function and interpolate using MATLAB’s pchip function, 

which is an abbreviation for Piecewise Cubic Hermite Interpolating Polynomial. Then, to 

find the 𝐼60, which is the current that corresponds to this gate voltage in the I-V curve, I 

use pchip again to turn the drain current into a continuous function of gate voltage and 

interpolate at 𝑉60. Finally, I calculate the gate voltage swing needed to reduce the drain 

current by four orders of magnitude, directly below the 𝐼60 point, which I call 𝑉4. To do 

this, I divide 𝐼60 by 10000 and interpolate the reverse V-I curve with pchip to find the 

gate voltage at this point, then calculate 𝑉4 as the difference between this voltage 

corresponding to 𝐼60/10000 and 𝑉60. 

 For all calculations, the following values were held constant: the thickness of the 

semiconductor and the insulator (𝑡𝑠 = 5 nm, 𝑡𝑖 = 2 nm), the doping density of the drain 

(𝑁𝑑 = 3 × 1019cm−3), and the dielectric constants for the semiconductor and the 

insulator (𝜀𝑠 = 16𝜀0, 𝜀𝑖 = 14.6𝜀0). The varied parameter ranges are shown in Table 2. 

The ranges have been extended in certain cases, as will be discussed later.  
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Table 2. DG TFET Simulation Parameters. 

Name Symbol # of 

Points 

Values Units 

Electron effective mass 𝑚𝑐
∗ 40 from 0.01 to 1 (log scale) 𝑚0 

Hole effective mass 𝑚𝑣
∗  40 from 0.01 to 1 (log scale) 𝑚0 

Channel length 𝐿𝑔 6 10, 12, 15, 20, 40, 60 nm 

Source doping density 𝑁𝑎 7 3 × 1017, 1 × 1018, 2 × 1018, 
4 × 1018, 1 × 1019, 3 × 1019, 

1 × 1020 

cm−3 

Effective band gap 𝑉1 50 from 0.01 to 1 (log scale) eV 

Conduction band 

non-parabolicity factor 
𝛼𝑐 13 from 0 to 3 (linear scale) eV−1 

Valence band 

non-parabolicity factor 
𝛼𝑣 13 from 0 to 3 (linear scale) eV−1 

 

B. Results and discussion 

For all the plots shown in this section, any parameter value not otherwise 

specified corresponds to the value, within the ranges described in Table 2, that yields the 

maximum 𝐼60 for the given drain voltage 𝑉𝑑. These values are summarized in Table 3. 

Except for section 2 of this chapter, which is discussing band non-parabolicity, all figures 

and tables show results obtained with fully parabolic bands (𝛼𝑐 = 𝛼𝑣 = 0). All 𝐼60 values 

in contour plots are displayed in units of 𝜇𝐴/𝜇𝑚 throughout the entire chapter. 

Table 3. DG TFET Optimum I60 Parameters. 

𝑉𝑑 𝑚𝑣
∗  𝑚𝑐

∗ 𝑁𝑎 𝐿𝑔 𝑉1 𝐼60 

0.1 V 0.49 𝑚0 0.31 𝑚0 4 × 1018 cm−3 40 nm 0.01 V 39 μA/μm 

0.2 V  𝑚0  𝑚0 2 × 1018 cm−3 40 nm 0.01 V 130 μA/μm 

0.5 V  𝑚0  𝑚0 3 × 1017 cm−3 40 nm 0.01 V 270 μA/μm 

 

1. Effective mass 

Figure 23 shows the 𝐼60 versus electron and hole effective mass at different drain 

biases. At 𝑉𝑑 = 0.1V the maximum 𝐼60 is 39 μA/μm, located at 𝑚𝑐
∗ = 0.31𝑚0 and  
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𝑚𝑣
∗ = 0.49𝑚0. At higher drain voltages, the maximum 𝐼60 shifts to effective masses of 

𝑚𝑐
∗ = 𝑚𝑣

∗ = 𝑚0 and its value increases to 130 μA/μm and 270 μA/μm for 𝑉𝑑 values of 

0.2V and 0.5V, respectively. 

 

Figure 23. I60 Versus Electron and Hole Effective Mass. The three figures show 

different drain voltages: (a) 𝑉𝑑 = 0.1 V, (b) 𝑉𝑑 = 0.2 V, (c) 𝑉𝑑 = 0.5 V 

 

 Since at higher drain voltages the 𝐼60 reached its maximum value at the highest 

simulated electron and hole effective masses, I increased the range of 𝑚𝑣
∗  and 𝑚𝑐

∗ to find 

the actual peak 𝐼60. Figure 24 shows 𝐼60 for drain voltages of 0.2 V and 0.5 V in an 

extended effective mass range. For 𝑉𝑑 = 0.2 V the 𝐼60 reaches a maximum at  

𝑚𝑐
∗ = 𝑚0 and 𝑚𝑣

∗ = 1.3𝑚0, but its value doesn’t increase appreciably above the 

130 μA/μm seen at 𝑚𝑐
∗ = 𝑚𝑣

∗ = 𝑚0 and starts to decrease for larger effective masses. 

For 𝑉𝑑 = 0.5 V the 𝐼60 keeps rising as the electron and hole effective masses get heavier. 

Overall, the results show that for higher drain voltages heavier electron and hole effective 

masses lead to increased 𝐼60.  
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Figure 24. I60 at Higher Drain Voltage and Large Electron and Hole Effective 

Mass. Plot (a) shows 𝑉𝑑 = 0.2 V while plot (b) 𝑉𝑑 = 0.5 V 

  

Electron and hole effective masses have a direct effect on the drain and source 

degeneracy through Equations 18 and 19. Since the degeneracies are used to determine 𝑉2 

through Eq, 16, which is used as one of the boundary conditions for solving the 

conduction band of the channel in Eq. 15, they have a strong effect on the overall shape 

of the bands in the channel. They also indirectly effect the band bending (Δ), calculated 

with Eq. 23. The optimal electron effective mass is a result of a tradeoff between band 

overlap and the potential barrier height, both determined by the amount of band bending. 

Figure 25 shows the calculated band structure of a DG TFET with low, optimum, and 

high electron effective mass. At too low 𝑚𝑐
∗ the amount of band bending increases in both 

the source and the channel, which allows for a larger overlap between the bands, allowing 

tunneling in a wider energy range, as seen from the increased thickness of the differential 

tunneling current peak shown with magenta dash-dotted line. However, the larger band 

bending also increases the height of the potential barrier in the forbidden region, which 

reduces tunneling thus and ultimately causes sub-optimal current. When the electron 

effective mass is too high, the band bending is reduced in both the source and the channel 
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and thus both the potential barrier height and the band overlap decreases, resulting in a 

tall but narrow differential tunneling current peak. The overall tunneling current is given 

by the area under the peak, which is maximum in the middle diagram. 

 

Figure 25. Effect of Electron Effective Mass on DG TFET Band Structure. The 

plots show (a) too low (0.094 𝑚0), (b) optimal (0.30 𝑚0), and (c) too high (m0) 

electron effective mass (𝑚𝑐
∗). All plots show 𝑉𝑑 = 0.1 V. The Fermi levels in the 

source and the drain are shown with blue dashed lines while the differential tunneling 

currents (𝑑𝐼) are shown with magenta dash-dotted lines. 

 

Figure 26 shows the calculated band structure of a DG TFET with low, optimum, and 

high hole effective mass. The optimum tunneling current is once again determined by the 

amount of band bending, and the resulting opposing effects of band overlap and potential 

barrier height. The shifting of the Fermi level into the valence band in the source for low 

𝑚𝑣
∗  also reduces the number of electrons available for tunneling. An additional effect is 

that 𝑚𝑣
∗  is also a prefactor for the overall tunneling current in the Landauer equation (Eq. 

32), which also helps explain the reduced tunneling at lower hole effective mass. 
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Figure 26. Effect of Hole Effective Mass on DG TFET Band Structure. The plots 

show (a) too low (0.24 𝑚0), (b) optimal (0.49 𝑚0), and (c) too high (m0) hole 

effective mass (𝑚𝑣
∗ ). All plots show 𝑉𝑑 = 0.1 V. The Fermi levels in the source and the 

drain are shown with blue dashed lines while the differential tunneling currents (𝑑𝐼) 

are shown with magenta dash-dotted lines. 

 

2. Non-parabolic bands 

The effect of non-parabolic bands on the 𝐼60 is very small, as shown in Figure 27. 

Across all parameter combinations, the highest 𝐼60 was always found at fully parabolic 

valence band (𝛼𝑣 = 0 eV−1) and the maximum conduction band non-parabolicity factor 

in the simulated range (𝛼𝑐 = 3 eV−1). However, the difference in 𝐼60 compared to fully 

parabolic bands is around 10% or less. 

 

 

Figure 27. I60 Versus Non-Parabolicity Factors. The three figures show different 

drain voltages: (a) 𝑉𝑑 = 0.1 V, (b) 𝑉𝑑 = 0.2 V, (c) 𝑉𝑑 = 0.5 V  
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Non-parabolicity has a very limited effect on the tunneling current mainly 

because the energy range where the majority of the tunneling happens is also very small, 

as shown in Figure 28. The typical energies involved in the tunneling are below 0.05 eV 

where the effect of non-parabolicity on the band dispersion is almost negligible. 

 

Figure 28. Effect of Band Non-Parabolicity on Tunneling. The figure shows the 𝐸-𝑘 

relationship (with 𝐸 as the horizontal axis) for parabolic (𝛼 = 0 eV−1) and non-

parabolic bands (𝛼 = 3 eV−1) together with the differential tunneling current versus 

energy. The plot shows that at the typical energies involved in the tunneling 

(𝐸 < 0.03 eV) the effect of non-parabolicity is negligible.  

 

3. Channel length and source doping density 

Figure 29 shows the 𝐼60 versus channel length and doping density at different 

drain biases. Independently of any other parameters, the 𝐼60 always decreases as 𝐿 gets 

smaller, than 20 nm, but it’s relatively constant for longer channel lengths. At 𝑉𝑑 = 0.1 V 

the optimal source doping density is 4 × 1018 cm−3, but it shifts towards smaller 

concentrations at higher drain voltages. 
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Figure 29. I60 Versus Source Doping Density and Channel Length. The three 

figures show different drain voltages: (a) 𝑉𝑑 = 0.1 V, (b) 𝑉𝑑 = 0.2 V, (c) 𝑉𝑑 = 0.5 V 

 

 Figure 30 shows the variation of optimum doping density with electron and hole 

effective mass. Varying 𝑚𝑐
∗ doesn’t affect the location of the maximum 𝐼60, but changing 

𝑚𝑣
∗  causes the optimum 𝑁𝑎 to shift, with lighter hole effective mass values corresponding 

to smaller doping density. 

 

Figure 30. I60 Versus Source Doping Density and Electron and Hole Effective 

Mass. Plot (a) shows that electron effective mass does not affect the optimum doping 

density while plot (b) shows that the ideal value for 𝑁𝑎 decreases for lighter hole mass. 

Both plots show 𝑉𝑑 = 0.1 V but the overall trends are the same at higher drain 

voltages. The white part in plot (b) indicates that 𝐼60 does not exist for that parameter 

combination, i.e. the SS is always above 60 mV/decade. 
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 The ideal source doping density is mainly determined by the depletion width 

(𝑊𝑑), which is inversely proportional to 𝑁𝑎, as seen in Eq. 21, and the source degeneracy 

(𝑑1) , calculated in Eq. 19, which determines the number of electrons available for 

tunneling. Figure 31 shows the calculated band structure of a DG TFET with low, 

optimum, and high doping. At too low 𝑁𝑎 the depletion width increases, thus the carrier 

must tunnel through a longer forbidden region, which reduces tunneling probability. 

When the doping density is too high, 𝑊𝑑 is reduced and the Fermi level shifts deep into 

the source valence band, which causes a large band bending in the source side of the 

channel. This shrinks the width of the forbidden region, which should allow for increased 

tunneling. However, the increased degeneracy in the source, caused by the low Fermi 

level, reduces the number of electrons available for tunneling at the band edge, which 

ultimately causes the tunneling current to diminish. The increased band bending in the 

channel increases the band overlap, and thus the energy range available for tunneling, but 

it also increases the height of the potential barrier. The optimum 𝑁𝑎 is determined by the 

delicate balance of these opposing effects. 

 

Figure 31. Effect of Source Doping Density on DG TFET Band Structure. The 

plots show (a) too low (1 × 1018 cm−3), (b) optimal (4 × 1018 cm−3), and (c) too 

high (3 × 1019 cm−3) source doping densities (𝑁𝑎). All plots show 𝑉𝑑 = 0.1 V. The 

Fermi levels in the source and the drain are shown with blue dashed lines while the 

differential tunneling currents (𝑑𝐼) are shown with magenta dash-dotted lines. 
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 Short channel length decreases 𝐼60 by increasing the OFF current in the device, as 

shown in Figure 32. At 𝐿 values at or below 15 nm, which is about twice the value of the 

scale length (𝜆), the width of the forbidden region between the valence band of the source 

and the bending conduction band on the drain side of the channel is short enough for 

carriers to tunnel through even when the device is turned off. Even though the ON current 

is mostly unaffected by a short channel length, the increased OFF current means that the 

TFET can no longer produce a SS below the 60 mV/decade limit at higher gate voltage 

levels. Short-channel effects of TFET devices have been investigated in more detail by 

the original authors of the UCSD TFET model.8  

 

Figure 32. Short-Channel Effects. The plots show band structures and differential 

tunneling currents (magenta dash-dotted lines) with the device in the OFF (left) and 

ON (middle) state. The corresponding 𝐼-𝑉 curves are shown on the right. 

 

4. Effective band gap 

The overlap between the valence band of the source and the conduction band of 

the channel is most significantly affected by 𝑉1, i.e. the effective band gap. A near-broken 

band gap (𝑉1 → 0) results in the biggest overlap and thus the highest tunneling current. 

As shown in Figure 33 the lowest value of 𝑉1 = 0.01 V yielded the best 𝐼60, and this 
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trend is independent of other device parameters. This means that a heterojunction TFETs 

with a small 𝑉1 are expected to perform significantly better than homojunction devices. 

 

 

Figure 33. I60 Versus Effective Band Gap. The horizontal axis is 𝑉1 in all plots, while 

the vertical axis is (a) source doping density, (b) electron effective mass, (c) channel 

length, and (d) hole effective mass. The best 𝐼60 always corresponds to the smallest 

effective band gap. All plots show 𝑉𝑑 = 0.1 V but the overall trends are the same at 

higher drain voltages. The white part in plot (c) indicates that 𝐼60 does not exist for that 

parameter combination, i.e. the SS is always above 60 mV/decade. 

 

5. I60 and V4 

I find that the highest 𝐼60 values generally correspond to a small 𝑉4 value, as 

shown in Figure 34, meaning a low subthreshold swing is maintained in the practical 
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current range of the device. This reinforces that the 𝐼60 is a good figure of merit for TFET 

devices, better than the often used 𝐼ON/𝐼OFF ratio, which can be misleading when the 

chosen ON and OFF current lies outside the range of low SS. Together with the 𝐼60, 

which indicates the maximum practical drain current of the device (effectively 𝐼ON), the 

𝑉4 shows the operating gate voltage range of the device and it indicates the steepness of 

the 𝐼-𝑉 curve throughout this range. The average subthreshold swing in the operating 

range can be easily calculated by dividing the 𝑉4 by 4 decades. For the maximum 𝐼60 at 

𝑉𝑑 = 0.1 V, the resulting 𝑉4 is 55 mV, which means the average SS in this range is 14 

mV/decade. 
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Figure 34. I60 and V4 Comparison. The plots show (a) 𝐼60 and (b) 𝑉4 versus electron 

and hole effective mass, and (c) 𝐼60 and (d) 𝑉4 versus channel length and source doping 

density. All plots show 𝑉𝑑 = 0.1 V but the overall trends are the same at higher drain 

voltages. The white part in plot (d) indicates that 𝑉4 does not exist for that parameter 

combination, i.e. the SS does not stay below 60 mV/decade over a current range of 

four decades. 

 

C. Future Work 

 The TFET simulations in this thesis were run with several parameters held 

constant. A possible follow-up study could investigate the effect of varying drain doping 

density and the dielectric constants and thicknesses of the semiconductor and the 

insulator. The simulations could be modified to incorporate more recent additions to the 

UCSD TFET model by Taur et al., such as using Franz’s two-band relation.7,123 Future 
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experimental work can be aimed at fabricating TFET devices using the optimum 

parameters presented in this work. My results show that large electron and hole effective 

masses are ideal for TFETs operating at higher drain voltages, which can drive future 

research into highly mismatched alloys with very flat band structures. 

D. Summary 

I used the UCSD TFET model, which I extended to use Kane’s non-parabolic 

dispersion relation, to simulate 𝐼-𝑉 characteristics of a DG TFET device over a wide 

range of material and device properties. I extracted the SS from the 𝐼-𝑉 curves and 

identified the 𝐼60 and 𝑉4 points. I found the combination of parameters that yield the 

highest 𝐼60 at three different drain voltages. I discussed that for most parameters the 

optimum 𝐼60 is determined by the band overlap and potential barrier height due to band 

bending in the source and the channel, as well as the position of the Fermi levels which 

determine the number of electrons available for tunneling. I discussed the effect of the 

depletion width on the optimum source doping density, and the reduction of 𝐼60 due to 

increased OFF current caused by short channel length. I showed that a nearly broken 

effective band gap results in the best 𝐼60, and discussed 𝑉4 as the operating gate voltage 

range and a measure of the average SS.  
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V. SUMMARY 

In this thesis I investigated a specific highly mismatched alloy, BGaAs, using first 

principles DFT simulations with HSE06 hybrid functionals in VASP. I found excellent 

agreement with known values of band gap and lattice constant for the binary endpoints 

GaAs and BAs, as well as convergence to better than 1% with respect to number of 

simulation k-points and planewave energy cutoff. These validate my method and results 

for the intermediate alloys, which had not previously been studied in such detail. My 

results showed that the direct band gap in BGaAs first decreases at low B concentrations, 

then increases towards the large minimum direct band gap of BAs. I estimated that 

BGaAs transitions from direct to indirect band gap at around 17% B content. I showed 

that while B-B pairs at nearest-neighbor group III sites cause a narrowing of the band 

gap, this arrangement is somewhat unfavorable (+260 meV) and it does not significantly 

change electron effective mass. I found that the lattice constant of BGaAs closely follows 

Vegard’s law. My results showed a disagreement between large and small supercells, 

with the small supercells showing a significant narrowing of the band gap and deviation 

from Vegard’s law, which I attribute to the artificial periodicity introduced by the infinite 

repetition of the small supercell. It appears that large supercells are a better 

approximation of real BGaAs alloys and thus I dismissed the small-supercell results as 

unrealistic. This may also explain varying results in literature. Finally, I showed detailed 

examples of unfolding artifacts arising from the folding of the Brillouin zone and 

discussed methods of classifying the band gaps when the effective band structures appear 

to be ambiguous. 
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I then introduced TFETs as one possible application for highly mismatched alloys 

and sought to find the optimal combination of material and device properties to maximize 

𝐼60 in TFETs. For low drain voltages (𝑉𝑑 = 0.1 V), I found the maximum 

𝐼60 = 39 μA/μm occurs at moderate effective masses for both electrons and holes. For 

larger drain voltages (𝑉𝑑 = 0.2, 0.5 V), 𝐼60 continued to increase up to at least 1.3 𝑚0. 

Therefore, optimal TFET design depends strongly on circuit constraints such as drain 

voltage. Also, the increase in effective mass provided by highly mismatched alloys offers 

a significantly increased 𝐼60 over conventional group IV or group III-V semiconductors. 

Furthermore, in all cases, 𝐼60 was increased by reducing 𝑉1, i.e. the effective band gap or 

band offset from source conduction band to channel valence band, showing the necessity 

of a heterojunction that is nearly broken gap. Finally, I modified the UCSD TFET model 

to include Kane’s non-parabolic dispersion relation but found only a 10% increase in 𝐼60 

for non-parabolicity factors up to 𝛼 = 3 eV−1. 
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APPENDIX SECTION 

This section contains the MATLAB code used for the TFET simulations presented in this 

work. The code was published by Taur et al. as the UCSD TFET model119 and was 

modified to include Kane’s non-parabolic dispersion relation. Major modifications are 

highlighted with bold typeface. 

% ================================================= 

% Original code Copyright (C) 2015 All Rights Reserved by 

%  ECE Department, University of California, San Diego 

%  La Jolla, CA 92093. 

% Code modifications are Copyright (C) 2019 Mark Wistey & Istvan Gulyas 

%  All Rights Reserved, and are open sourced under the BSD 2-Clause License  

%  (FreeBSD/Simplified).  

% ------------------------------------------------- 

% Author    : Jianzhi Wu  

% Supervisor: Prof. Yuan Taur 

% Program   : A UCSD analytic TFET model 

% Date      : Nov-18-2015 

% Reference :  

% [1] An analytic model for heterojunction tunnel FETs with exponential barrier, Yuan 

Taur, Jianzhi Wu and Jie Min,  

% IEEE Trans. Electron Devices, vol. 62, pp. 1399-1404, May 2015. 

% [2] "Short channel effects in tunnel FETs" Jianzhi Wu, Jie Min and Yuan Taur,  

% IEEE Trans. Electron Devices, vol. 62, pp. 3019-3024, Sept. 2015. 

% [3] An analytic model for heterojunction and homojunction tunnel FETs with 3D density 

of states, 

% Jianzhi Wu, Jie Min, Jingwei Ji, and Yuan Taur, 73rd Device Research Conference, Ohio 

State Univ. June 2015.  

% [4] Analysis of source doping effect in tunnel FETs with staggered bandgap, 

% Jie Min, Jianzhi Wu and Yuan Taur, IEEE Electron Device Letters, vol. 36, pp. 1094-

1096, Oct. 2015.     

% ================================================= 

  

%% Define general parameters 

q = 1.6e-19;          % [C] electron charge 

h = 6.63e-34;         % [Js] Planck's constant 

hbar = h/2/pi;        % 

kB = 8.63e-5;           % [eV*K^-1] Boltzmann constant  

T = 300;                % [K] Temperature  

kT = kB*T;              % [eV] 

eps0 = 8.85e-14;        % [F/cm] 

eps_0 = 8.85e-12;       % [F/m] 

  

%% Define Device related parameters  

m0=9.1e-31;            % [kg] electron rest mass 

mc_r = 0.31;                    % relative electron eff. mass 

mv_r = 0.49;                    % relative hole eff. mass 

mv = mv_r * m0; 

mc = mc_r * m0;   % convert relative mass to absolute mass units 

  

T_multi = -2*sqrt(2*q)*1e-9/hbar;             % pre-factor for WKB integral    

i_coeff = (mv*q)./(2*(pi^2)*(hbar^3));        % pre-factor for current   

  

%% Material related parameters 

  

eps_s = 16*eps_0;                  % [F/m]   GeC 

eps_film = 16*eps0;                % [F/cm]   GeC 

t_film = 5e-7;                     % [cm] body thickness  

t_ox = 2e-7;                       % [cm] oxide thickness  

eps_ox = 14.6*eps0;                % [F/cm] oxide permittivity  
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Cox = eps_ox/t_ox;                 % [F/cm2] 

lambda = (t_film + 2*t_ox) * 1e7;  % [nm] Scale length  

  

%% Initialize key parameters  

  

VgAry = [-0.1:0.01:0.1, 0.15:0.05:0.5];  % [V] Gate bias 

  

L = 40;                           % [nm] channel length 

Na_cm = 4e18;                     % [/cm^3] source doping 

Na = Na_cm*1e6;                   % [/m^3] source doping 

Nd = 3e19*1e6;                    % [/m^3] drain doping 

V1 = 0.01;                        % [eV] staggered bandgap 

Vds = 0.1;                        % [V] drain bias 

alpha_v = 0;                      % [/eV] VB non-parabolicity factor 

alpha_c = 3;                      % [/eV] CB non-parabolicity factor 

  

%% Start 

  

Nc_film = 2.5094E19 * (mc/m0)^1.5*(T/300)^1.5;  % Eff Ec DOS assuming direct 

  

mv_np = mv_r; 

mc_np = mc_r; 

iAry = NaN(size(VgAry)); 

lim = 200; 

% Replaced degeneracy calculations with Kane's non-par. dispersion rel. 

d1 = -fzero(@(d1) numHoleNonParFF(0, d1, mv_np, alpha_v, T, lim) - Na_cm, 0); 

d2 = fzero(@(d2) numElecNonPar(0, d2, mc_np, alpha_c, T, lim) - Nd*1e-6, 0); 

V2 = Vds + d1 + d2;         % conduction band of drain 

Vm = V2;  % integral uplimit of E 

E_slices = 90; 

Etr_slices = 90; 

dE = abs(Vm-0)/E_slices; 

EAry = 0+dE/1000000:dE:Vm-dE/1000000; 

Integrand_iAry = zeros(size(EAry)); 

xlimAry2 = 0:L/1000:L; 

  

% Constant prefactors moved outside the loop 

debias_log = log(2/t_film*sqrt(2*eps_film*kT/q/Nc_film)); 

debias_pref = 2*eps_film.*t_ox/eps_ox/t_film; 

V0_a = (pi/(q*lambda*1e-9)); 

cosh_term = cosh(pi*L/lambda); 

sinh_term = sinh(pi*L/lambda); 

  

for idxVg=1:length(VgAry) 

    Vgs_ND = VgAry(idxVg);  % Non-debiased Vgs 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%% Debias model %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    myfunBeta = @(beta) log(beta)-log(cos(beta))+... 

        debias_pref.*beta.*tan(beta)-(Vgs_ND-Vds-d1)/2/kT+debias_log; 

    try 

        BETA = fzero(@(beta) myfunBeta(beta),[pi/1e12 pi/2-pi/1e12]); 

        Qinv = eps_film*4*kT*BETA/t_film*tan(BETA); 

        Vg = Vgs_ND-Qinv/Cox; 

    catch 

        Vg = Vgs_ND; 

    end 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%% end of Debias %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    V0_temp = fzero(@(V0) (V0_a.*(q*(V0*cosh_term+V2-Vg))/... 

        sinh_term-sqrt(max(0, 2*Na*(q*(Vg+V1-V0))/eps_s))), 0) ; 

    delta_temp = Vg - V0_temp + V1;  % [eV] band bending in source 

    if (delta_temp < 0) 

        delta = 0 ; 

        V0 = Vg + V1; 

    else 

        delta =  delta_temp; 

        V0 = V0_temp; 

    end 

    W = (eps_s/(q*Na))*sqrt(max(0, (2*Na*q*delta/eps_s))) ;  % [m] Source depletion width 

    U = zeros(1, 1001); 

    if W > 0 
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        x_U = -W:W/1000:0; 

        U = - q * Na / (2 * eps_s) * (x_U + W).^2;  % [eV] source VB 

    end 

    Vx_find2 = (V0.*sinh(pi.*(L-xlimAry2)./lambda)./sinh_term-V0+V1-delta... 

                -(V2-V0+V1-delta) ... 

 .*sinh(pi.*xlimAry2./lambda)./sinh_term); % [eV] with depletion              

    for idxE = 1:length(EAry)  %For each E from src VB to drain CB 

        E = EAry(idxE); 

        % Transverse KE conversion using Kane's non-par. disp. rel. 

        maxEtr = convertEtr(V2 - E, mc, mv, alpha_c, alpha_v); 

        Etrmax = min(E, maxEtr);       % integral upper limit of Etr 

        dEtr = Etrmax/Etr_slices; 

        EtrAry = 0:dEtr:Etrmax-dEtr/100000; 

        TEtr_Ary = zeros(size(EtrAry)); 

        for idxEtr = 1:length(EtrAry) 

            Etr=EtrAry(idxEtr); 

            Etr_c = convertEtr(Etr, mv, mc, alpha_v, alpha_c); 

            T_int_s = 0; 

            % Replaced analytic integral for U(x) with numeric int. 

            if W > 0 && E - Etr <= delta 

                find_l1 = U + E - Etr; 

                idxtemp_l1 = find(find_l1<0, 1, 'first'); 

                l1 = x_U(idxtemp_l1); 

                dx_s = abs(l1)/200; 

                xAry_s = (dx_s/10000):dx_s:(abs(l1)-dx_s/10000); 

                Ux_Ary = q * Na / (2 * eps_s) * xAry_s.^2;  % [eV] source VB 

                E_diff_s = Ux_Ary - E + Etr; 

                k_s_np = sqrt(max(mv .* E_diff_s .* (1 + alpha_v .* E_diff_s), 0)); 

                T_int_s = sum(k_s_np)*dx_s*1e9; 

            end 

            find_l2 = Vx_find2 + E + Etr_c;          % [eV] 

            idxtemp_l2 = find(find_l2<0, 1, 'first'); 

            l2 = xlimAry2(idxtemp_l2);  % End tunneling, start real space 

            dx_g = abs(l2-0)/200; 

            % Calculate channel CB profile V(x): 

            xAry_g = (dx_g/10000):dx_g:(l2-dx_g/10000);     % [nm] 

            Vx_Ary=(V0.*sinh(pi.*(L-xAry_g)./lambda)./sinh_term-V0+V1-delta... 

                -(V2-V0+V1-delta).*sinh(pi.*xAry_g./lambda)./sinh_term); % [eV] 

            E_diff_g = Vx_Ary + E + Etr_c; 

            % Updated WKB integral with Kane's non-par. disp. rel. 

            VarA_2_np = mc .* E_diff_g .* (1 + alpha_c .* E_diff_g); 

            VarA_np = sqrt(abs(VarA_2_np));    

            T_partEin_np = sum(VarA_np)*(dx_g);   

            T_partE_np = exp(T_multi .* ... 

                (T_partEin_np.*(E>=delta-V1-Etr_c) + ... 

                T_int_s.*(E<=delta+Etr))); 

            if (T_partE_np) 

                TEtr_Ary(idxEtr) = T_partE_np; 

            end 

        end                         

        T2D = sum(TEtr_Ary).*(q.*dEtr);   % [J] 

        % Defining Fermi Level  

        Efs = d1;        %[eV] Source Fermi Level 

        Efd = Vds + d1;  %[eV] Drain Fermi Level  

        % Define quasi-Fermi level for source 

        fs = 1/(1+exp((Efs-E)/kT)); 

        % Define quasi-Fermi level for drain 

        fd = 1/(1+exp((Efd-E)/kT)); 

        % Calculate each element of the integral with a given E 

        Integrand_iAry(idxE) = (fs-fd).*T2D; 

    end  %idxE 

    %calculate the integral 

    i = i_coeff.*sum(Integrand_iAry)*(dE*q); 

    iAry(idxVg) = i*5e-15;   % unit of A/um, with body thickness of 5 nm  

end  %Vgs 

 

%I_60 and V_4 calculation 

VgAry_diff = 1000 * diff(VgAry); 

VgAry_mid = VgAry(1:length(VgAry) - 1) + diff(VgAry) / 2;  

iOFF = min(iAry); 

current_diff = diff(log10(iAry)); 
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current_diff(current_diff < 0) = 0; 

SS = VgAry_diff ./ current_diff; 

[minSS, minidx] = min(SS); 

if minSS > 60 || isnan(minSS) || minidx >= length(SS) || minSS < 0 

    i60 = NaN; 

    V60 = NaN; 

    V4 = NaN; 

else 

    span = (minidx:length(SS)); 

    V60 = pchip(SS(span), VgAry_mid(span), 60); 

    i60 = pchip(VgAry,iAry,V60); 

    i60b4 = i60 / 1e4; 

    if i60b4 > iOFF 

        norepeat = iAry ~= iOFF; 

        V4ip = pchip(iAry(norepeat), VgAry(norepeat), i60b4); 

        V4 = V60 - V4ip; 

        if V4 < 0 

            V4 = NaN; 

        end 

    else 

        V4 = NaN; 

    end 

end 

  

semilogy(VgAry, iAry); 

xlabel('V_g'); 

ylabel('I_d'); 

  

fprintf('I_60: %f uA/um, V_4: %f V\n', i60 * 1e6, V4*1e3);  

 

% Calculate total number of electrons 

function n = numElecNonPar(Ec, Ef, me, alpha, T, lim) 

    k = 8.63e-5; % [eV/K] Boltzmann constant 

    Etop = Ec + lim * k * T; 

    E = linspace(Ec, Etop, 10000); 

    n = trapz(E, electronDensityNonPar(E, Ec, Ef, me, alpha, T)); 

end 

  

% Hole density calculation 

function n_E = electronDensityNonPar(E, Ec, Ef, me, alpha, T) 

    n_E = dosCNonPar(E, Ec, me, alpha) .* fermi(E, Ef, T); 

end 

  

% CB DOS calculation 

function g = dosCNonPar(E, Ec, me, alpha) 

    g = dosNonPar(E - Ec, me, alpha); 

end 

  

% Fermi distribution 

function f = fermi(E, Ef, T) 

    k = 8.63e-5; % [eV/K] Boltzmann constant 

    f = 1 ./ (1 + exp((E - Ef) ./ (k * T))); 

end 

  

% Calculate total number of holes 

function p = numHoleNonParFF(Ev, Ef, mh, alpha, T, lim) 

    k = 8.63e-5; % [eV/K] Boltzmann constant 

    Ebottom = Ev - lim * k * T; 

    E = linspace(Ebottom, Ev, 10000); 

    p = trapz(E, holeDensityNonParFF(E, Ev, Ef, mh, alpha, T)); 

end 

  

% Hole density calculation 

function p_E = holeDensityNonParFF(E, Ev, Ef, mh, alpha, T) 

    p_E = dosVNonPar(E, Ev, mh, alpha) .* fermiFlip(E, Ef, T); 

end 

  

% VB DOS calculation 

function g = dosVNonPar(E, Ev, mh, alpha) 

    g = dosNonPar(Ev - E, mh, alpha); 

end 
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% Equivalent to [1-f] but avoids floating point errors 

function ff = fermiFlip(E, Ef, T) 

    k = 8.63e-5; % [eV/K] Boltzmann constant 

    ff = 1 ./ (1 + exp((Ef - E) ./ (k * T))); 

end 

  

% Generic DOS calculation using Kane's non-parabolic dispersion relation 

function g = dosNonPar(E, mr, alpha) 

    h_bar = 1.054571800e-34; % [J*s] reduced Plack constant 

    m0 = 9.1e-31; % [kg] electron rest mass 

    q = 1.6e-19; % [C] electron charge 

    E_J = E * q; % convert [eV] to [J] 

    m = mr * m0; % convert relative mass to [kg] 

    g = real(m * (1 + 2 * alpha * E) ... 

        .* sqrt(2 * m * E_J .* (1 + alpha * E)) ... 

        / (pi^2 * h_bar^3)); 

    g(g<0) = 0; 

    g = g * q * 1e-6; % convert [1/J/m^3] to [1/eV/cm^3] 

end 

  

% Transverse kinetic energy conversion using conservation of momentum 

function toEtr = convertEtr(fromEtr, fromMass, toMass, fromAlpha, toAlpha) 

    if toAlpha == 0 

        toEtr = (fromMass / toMass) * fromEtr * (1 + fromAlpha * fromEtr); 

    else 

        toEtr = (-sqrt(toMass) + ... 

            sqrt(4 * fromAlpha * toAlpha * fromMass * fromEtr^2  ... 

                + 4 * toAlpha * fromMass * fromEtr + toMass)) / ... 

                (2 * toAlpha * sqrt(toMass)); 

  

    end 

end 

  



 

83 

REFERENCES 

1 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 

2 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). 

3 A. V Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 

224106 (2006). 

4 J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). 

5 J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006). 

6 A.J. Garza and G.E. Scuseria, J. Phys. Chem. Lett 7, (2016). 

7 J. Wu and Y. Taur, IEEE Trans. Electron Devices 63, 841 (2016). 

8 J. Wu, J. Min, and Y. Taur, IEEE Trans. Electron Devices 62, 3019 (2015). 

9 E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957). 

10 E.M. Conwell and M.O. Vassell, Phys. Rev. 166, 797 (1968). 

11 W.G. Vandenberghe, A.S. Verhulst, B. Sorée, W. Magnus, G. Groeseneken, Q. Smets, 

M. Heyns, and M. V Fischetti, Appl. Phys. Lett. 102, 013510 (2013). 

12 L. Nordheim, Ann. Phys. 401, 607 (1931). 

13 D. Richardson, J. Phys. C Solid State Phys. 4, L289 (1971). 

14 J.A. Van Vechten and T.K. Bergstresser, Phys. Rev. B 1, 3351 (1970). 

15 W. Shan, W. Walukiewicz, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. 

Olson, and S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999). 

16 J. Wu, W. Shan, and W. Walukiewicz, Semicond. Sci. Technol. 17, (2002). 

17 W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, E.E. Haller, I. Miotkowski, M.J. 

Seong, H. Alawadhi, and A.K. Ramdas, Phys. Rev. Lett. 85, 1552 (2000). 

 



 

84 

18 W. Shan, W. Walukiewicz, J. Wu, K.M. Yu, J.W. Ager, S.X. Li, E.E. Haller, J.F. 

Geisz, D.J. Friedman, and S.R. Kurtz, J. Appl. Phys. 93, 2696 (2003). 

19 L. Vegard, Zeitschrift Für Phys. 5, 17 (1921). 

20 S.T. Murphy, A. Chroneos, C. Jiang, U. Schwingenschlögl, and R.W. Grimes, Phys. 

Rev. B 82, 073201 (2010). 

21 C. Xu, C.L. Senaratne, R.J. Culbertson, J. Kouvetakis, and J. Menéndez, J. Appl. Phys 

122, 125702 (2017). 

22 Z.R. Wasilewski, M.M. Dion, D.J. Lockwood, P. Poole, R.W. Streater, and A.J. 

SpringThorpe, J. Appl. Phys. 81, 1683 (1997). 

23 M. Weyers, M. Sato, and H. Ando, Jpn. J. Appl. Phys. 31, L853 (1992). 

24 K. Uesugi, N. Morooka, and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999). 

25 C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. 

Shan, K.M. Yu, J.W. Ager, E.E. Haller, J.F. Geisz, and J.M. Olson, Appl. Phys. Lett. 76, 

2409 (2000). 

26 K.M. Yu, S. V. Novikov, R. Broesler, A.X. Levander, Z. Liliental-Weber, F. Luckert, 

R.W. Martin, O. Dubon, J. Wu, W. Walukiewicz, and C.T. Foxon, Phys. Status Solidi 

Curr. Top. Solid State Phys. 8, 2503 (2011). 

27 R. Kuroiwa, H. Asahi, K. Asami, S.-J. Kim, K. Iwata, and S. Gonda, Appl. Phys. Lett. 

73, 2630 (1998). 

28 G.L.W. Hart and A. Zunger, Phys. Rev. B 62, 13522 (2000). 

29 T.E. Schlesinger, in Encycl. Mater. Sci. Technol. (Elsevier, 2001), pp. 3431–3435. 

30 S.M. Sze and K.K. Ng, Physics of Semiconductor Devices: Third Edition (2006). 

 



 

85 

31 www.altadevices.com/solar-world-record-nasa-selects-alta-devices, Alta Devices, Inc. 

(2018). 

32 D.J. Stukel, Phys. Rev. B 1, 3458 (1970). 

33 F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. 

Zhou, T.-H. Liu, M. Goni, Z. Ding, J. Sun, G.A.G. Udalamatta Gamage, H. Sun, H. 

Ziyaee, S. Huyan, L. Deng, J. Zhou, A.J. Schmidt, S. Chen, C.-W. Chu, P.Y. Huang, D. 

Broido, L. Shi, G. Chen, and Z. Ren, Science (80-. ). 361, 582 (2018). 

34 L. Lindsay, D.A. Broido, and T.L. Reinecke, Phys. Rev. Lett. 111, 025901 (2013). 

35 S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P.Y. Huang, D.G. Cahill, and B. Lv, Science 

361, 579 (2018). 

36 J.S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Science (80-. ). 361, 575 (2018). 

37 C. Dames, Science (80-. ). 361, 549 (2018). 

38 J.A. Perri, S. La Placa, and B. Post, Acta Crystallogr. 11, 310 (1958). 

39 S.M. Ku, J. Electrochem. Soc. 113, 813 (1966). 

40 F. V Williams and R.A. Ruehrwein, J. Am. Chem. Soc. 82, 1330 (1960). 

41 J.W. Pomeroy, M. Kuball, H. Hubel, N.W.A. van Uden, D.J. Dunstan, R. Nagarajan, 

and J.H. Edgar, J. Appl. Phys. 96, 910 (2004). 

42 T.L. Chu and A.E. Hyslop, J. Electrochem. Soc. 121, 412 (1974). 

43 S. Wang, S.F. Swingle, H. Ye, F.R.F. Fan, A.H. Cowley, and A.J. Bard, J. Am. Chem. 

Soc. 134, 11056 (2012). 

44 J.L. Lyons, J.B. Varley, E.R. Glaser, J.A. Freitas, J.C. Culbertson, F. Tian, G.A. 

Gamage, H. Sun, H. Ziyaee, and Z. Ren, Appl. Phys. Lett. 113, 251902 (2018). 

 



 

86 

45 J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, R.C. Reedy, A.B. Swartzlander, 

B.M. Keyes, and A.G. Norman, Appl. Phys. Lett. 76, 1443 (2000). 

46 V. Gottschalch, G. Leibiger, and G. Benndorf, J. Cryst. Growth 248, 468 (2002). 

47 V.K. Gupta, M.W. Koch, N.J. Watkins, Y. Gao, and G.W. Wicks, J. Electron. Mater. 

29, 1387 (2000). 

48 A. Lindsay and E.P. O’Reilly, Phys. Status Solidi 5, 454 (2008). 

49 S. Ilahi, F. Saidi, R. Hamila, N. Yacoubi, H. Maaref, and L. Auvray, Phys. B Condens. 

Matter 421, 105 (2013). 

50 R. Hamila, F. Saidi, A. Fouzri, L. Auvray, Y. Monteil, and H. Maaref, J. Lumin. 129, 

1010 (2009). 

51 F. Saidi, F. Hassen, H. Maaref, H. Dumont, and Y. Monteil, Mater. Sci. Eng. C 26, 236 

(2006). 

52 M. Guemou, B. Bouhafs, A. Abdiche, R. Khenata, Y. Al Douri, and S. Bin Omran, 

Phys. B Condens. Matter 407, 1292 (2012). 

53 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 

54 W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965). 

55 www.nobelprize.org/prizes/chemistry/1998/kohn/facts/, Nobel Media AB (2019). 

56 J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 

57 P. Mori-Sánchez, A.J. Cohen, and W. Yang, (2008). 

58 V. Fock, Zeitschrift Für Phys. 62, 795 (1930). 

59 D.R. Hartree and W. Hartree, Proc. R. Soc. London. Ser. A - Math. Phys. Sci. 150, 9 

(1935). 

60 A.D. Becke, Phys. Rev. A 38, 3098 (1988). 



 

87 

61 C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988). 

62 J.P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996). 

63 J.P. Perdew, J. Tao, V.N. Staroverov, and G.E. Scuseria, J. Chem. Phys 120, 6898 

(2004). 

64 Y. Zhao, D.G. Truhlar, Y. Zhao, and · D G Truhlar, Theor Chem Acc. 120, 215 (2008). 

65 B.G. Janesko, T.M. Henderson, and G.E. Scuseria, Phys. Chem. Chem. Phys. 11, 443 

(2009). 

66 O.K. Andersen, Phys. Rev. B 12, 3060 (1975). 

67 S.F. Boys, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 200, 542 (1950). 

68 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 

69 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 

70 P.E. Blöchl, Phys. Rev. B 50, 17953 (1994). 

71 J.P. Holdren, J. Morrow, T. Kalil, R. Paris, C. Wadia, H. Kung, L. Locascio, L. Horton, 

J. Warren, M. Drosback, J. Christodoulou, M. Galvin, D. Hardy, L. Horton, W. Joost, B. 

Morreale, H. Partridg, and C. Ward, Materials Genome Initiative Strategic Plan (2014). 

72 A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. 

Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013). 

73 S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R. V Chepulskii, R.H. Taylor, 

S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, and D. 

Morgan, (2012). 

74 K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008). 

75 S. Ping Ong, W. Davidson Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. 

Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). 



 

88 

76 L.L. Chang and L. Esaki, Appl. Phys. Lett. 31, 687 (1977). 

77 H. Lu and A. Seabaugh, IEEE J. Electron Devices Soc. 2, 44 (2014). 

78 A.M. Ionescu and H. Riel, Nature 479, 329 (2011). 

79 A.S. Verhulst, B. Sorée, D. Leonelli, W.G. Vandenberghe, and G. Groeseneken, J. 

Appl. Phys. 107, 024518 (2010). 

80 K. Boucart, A.M. Ionescu, and W. Riess, IEEE Electron Device Lett. 30, 656 (2009). 

81 F. Mayer, C. Le Royer, J.F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. 

Previtali, and S. Deleonibus, Tech. Dig. - Int. Electron Devices Meet. IEDM 4, 1 (2008). 

82 H. Zhao, Y. Chen, Y. Wang, F. Zhou, F. Xue, and J. Lee, IEEE Trans. Electron 

Devices 58, 2990 (2011). 

83 L. Wang, E. Yu, Y. Taur, and P. Asbeck, IEEE Electron Device Lett. 31, 431 (2010). 

84 J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, Phys. Rev. Lett. 93, 196805 

(2004). 

85 G. Fiori and G. Iannaccone, IEEE Electron Device Lett. 30, 1096 (2009). 

86 P.V.C. Medeiros, S. Stafström, and J. Björk, Phys. Rev. B - Condens. Matter Mater. 

Phys. 89, (2014). 

87 P.V.C. Medeiros, S.S. Tsirkin, S. Stafström, and J. Björk, Phys. Rev. B - Condens. 

Matter Mater. Phys. 91, 1 (2015). 

88 B. Liu, Numer. Algorithms Chem. Algebr. Methods, Tech. Rep. LBL-8158, Lawrence 

Berkeley Lab. 49 (1978). 

89 E.R. Davidson, J. Comput. Phys. 17, 87 (1975). 

90 P. Pulay, Chem. Phys. Lett. 73, 393 (1980). 

91 D.M. Wood and A. Zunger, J. Phys. A. Math. Gen. 18, 1343 (1985). 



 

89 

92 I. Štich, R. Car, M. Parrinello, and S. Baroni, Phys. Rev. B 39, 4997 (1989). 

93 M.J. Gillan, J. Phys. Condens. Matter 1, 689 (1989). 

94 T.A. Arias, M.C. Payne, and J.D. Joannopoulos, Phys. Rev. Lett. 69, 1077 (1992). 

95 W.T. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, Numerical Recipes 

(Cambridge University Press, New York, 1986). 

96 M. Tomić, H.O. Jeschke, and R. Valentí, Phys. Rev. B 90, 195121 (2014). 

97 O. Rubel, A. Bokhanchuk, S.J. Ahmed, and E. Assmann, Phys. Rev. B 90, 115202 

(2014). 

98 V. Popescu and A. Zunger, Phys. Rev. Lett. 104, 236403 (2010). 

99 J.J. Mortensen, L.B. Hansen, and K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005). 

100 J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. 

Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen, H.H. Kristoffersen, M. Kuisma, A.H. 

Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P.G. Moses, J. Ojanen, T. 

Olsen, V. Petzold, N.A. Romero, J. Stausholm-Møller, M. Strange, G.A. Tritsaris, M. 

Vanin, M. Walter, B. Hammer, H. Häkkinen, G.K.H. Madsen, R.M. Nieminen, J.K. 

Nørskov, M. Puska, T.T. Rantala, J. Schiøtz, K.S. Thygesen, and K.W. Jacobsen, J. Phys. 

Condens. Matter 22, 253202 (2010). 

101 G.P. Francis and M.C. Payne, J. Phys. Condens. Matter 2, 4395 (1990). 

102 S. Van Der Walt, S.C. Colbert, and G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011). 

103 W. Mckinney, Data Structures for Statistical Computing in Python (2010). 

104 J.D. Hunter, Comput. Sci. Eng. 9, 99 (2007). 

105 M.P. Surh, S.G. Louie, and M.L. Cohen, Phys. Rev. B 43, 9126 (1991). 

106 K. Bushick, K. Mengle, N. Sanders, and E. Kioupakis, Appl. Phys. Lett. 114, (2019). 



 

90 

107 H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, and A. Tadjer, Phys. 

Status Solidi 241, 2881 (2004). 

108 R.M. Wentzcovitch and M.L. Cohen, J. Phys. C Solid State Phys. 19, 6791 (1986). 

109 N.N. Anua, R. Ahmed, A. Shaari, M.A. Saeed, B. Ul Haq, and S. Goumri-Said, 

Semicond. Sci. Technol. 28, 105015 (2013). 

110 A. Zaoui and F.E.H. Hassan, J. Phys. Condens. Matter 13, 253 (2001). 

111 S. Cui, W. Feng, H. Hu, Z. Feng, and Y. Wang, Comput. Mater. Sci. 44, 1386 (2009). 

112 A. Boudjemline, M.M. Islam, L. Louail, and B. Diawara, Phys. B Phys. Condens. 

Matter 406, 4272 (2011). 

113 M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys. Condens. Matter 20, 

064201 (2008). 

114 Y. Ge, W. Wan, X. Guo, and Y. Liu, The Direct and Indirect Optical Absorptions of 

Cubic BAs and BSb (2019). 

115 J. Buckeridge and D.O. Scanlon, Phys. Rev. Mater. 3, (2019). 

116 S. Chae, K. Mengle, J.T. Heron, and E. Kioupakis, Appl. Phys. Lett. 113, 212101 

(2018). 

117 I. Bravić and B. Monserrat, Finite Temperature Optoelectronic Properties of BAs 

from First Principles (2019). 

118 W. Nakwaski, Effective Masses of Electrons and Heavy Holes in GaAs, InAs, AlAs 

and Their Ternary Compounds (1995). 

119 W. Jianzhi and T. Yuan, A UCSD Analytic TFET Model (2015). 

120 J. Wu, J. Min, J. Ji, and Y. Taur, in 2015 73rd Annu. Device Res. Conf. (IEEE, 2015), 

pp. 249–250. 



 

91 

121 Y. Taur, Jianzhi Wu, and Jie Min, IEEE Trans. Electron Devices 62, 1399 (2015). 

122 J. Min, J. Wu, and Y. Taur, IEEE Electron Device Lett. 36, 1094 (2015). 

123 Y. Taur and J. Wu, IEEE Trans. Electron Devices 63, 869 (2016). 

124 X. Liang and Y. Taur, IEEE Trans. Electron Devices 51, 1385 (2004). 

125 P.M. Solomon, D.J. Frank, and S.O. Koswatta, in 69th Device Res. Conf. (IEEE, 

2011), pp. 197–198. 

126 B. Rajamohanan, D. Mohata, A. Ali, and S. Datta, Appl. Phys. Lett. 102, 092105 

(2013). 

127 Y. Taur, X. Liang, W. Wang, and H. Lu, IEEE Electron Device Lett. 25, 107 (2004). 

128 E.O. Kane, J. Appl. Phys. 32, 83 (1961). 

 


