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RESONANT (p, q)-EQUATIONS WITH ROBIN
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Abstract. We consider a nonlinear nonhomogeneous Robin problem that has
the sum of a p-Laplacian and a q-Laplacian (a (p, q)-equation). The reaction

term is a Caratheodory function which is resonant at ±∞ with respect to any

nonprincipal variational eigenvalue of the Robin p-Laplacian. Using variational
methods and Morse theory (critical groups), we show the existence of at least

three nontrivial smooth solutions.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2 boundary ∂Ω. In this paper we
study the following nonlinear nonhomogeneous elliptic equation

−∆pu(z)−∆qu(z) = f(z, u(z)) in Ω,
∂u

∂npq
+ β1(z)|u|p−2u+ β2(z)|u|q−2u = 0 on ∂Ω.

(1.1)

Here 1 < q < p < +∞, and for 1 < r < ∞ by ∆r we denote the r-Laplace
differential operator

∆ru = div(|Du|r−2Du) for all u ∈W 1,r(Ω).

The reaction term f(z, x) is a Caratheodory function (that is, for all x ∈ R
z → f(z, x) is measurable and for a.a. z ∈ Ω x → f(z, x) is continuous). We
assume that f(z, ·) exhibits (p− 1)-linear growth near ±∞ and interacts with the
non-principal part of the variational spectrum of the Robin p-Laplacian (resonant
problem). In the boundary condition ∂u

∂npq
denotes the conormal derivative of u

defined by extension of the map

C1(Ω) 3 u→
(
|Du|p−2 + |Du|q−2

)∂u
∂n

,

with n(·) being the outward unit normal on ∂Ω. This generalized normal derivative
is dictated by the nonlinear Green’s identity (see Gasinski-Papageorgiou [9, p.210]).
It is also used by Lieberman [14].
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In this article combining variational methods based on the critical point theory
and Morse theory (critical groups), we prove a multiplicity theorem, showing the
existence of at least three nontrivial smooth solutions. Note that the differential
operator u→ ∆pu+ ∆qu is nonhomogeneous.

Equations driven by the sum of a p-Laplacian and of a q-Laplacian are known as
(p, q)-equations and arise in problems of mathematical physics. We refer to Benci-
D’Avenia-Fortunato-Pisani [4] (quantum physics) and Cherfils-Ilyason [7] (plasma
physics). There have been existence and multiplicity results for such equations. We
mention the works of Aizicovici-Papageorgiou-Staicu [2], Benouhiba-Belyacine [5],
Bobkov-Tanaka [6], Cingolani-Degiovanni [8], Gasinski-Papageorgiou [10], Marano-
Mosconi-Papageorgiou [15], Marano-Papageorgiou [16], Mugnai-Papageorgiou [19],
Papageorgiou-Radulescu [20], [21], Papageorgiou-Winkert [25], Sun [27], Sun-Zhang-
Su [28], Tanaka [29], Yang-Yin [30] (Dirichlet problems) and Papageorgiou-Radu-
lescu [22] (Neumann and Robin problems). From the aforementioned papers reso-
nant problems are examined in Gasinski-Papageorgiou [10], Papageorgiou-Radulescu
[20] and Sun [27] and the resonance is with respect to the principal eigenvalue of
(−∆p, W

1,p
0 (Ω)).

2. Preliminary results and hypotheses

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉, we denote the
duality brackets for the pair (X,X∗).

Let ϕ ∈ C1(X,R). We say that ϕ satisfies the “Cerami condition” (the “C-
condition” for short), if the following property holds: “every sequence {un}n≥1 ⊆ X
such that {ϕ(un)}n∈N ⊆ R is bounded and (1 + ‖un‖)ϕ′(un)→ 0 in X∗ as n→∞,
admits a strongly convergent subsequence”.

This is a compactness type condition on the functional ϕ. It leads to a de-
formation lemma, from which one can derive the minimax theory for the critical
values of ϕ. Prominent in that theory, is the so-called “mountain pass theorem”
of Ambrosetti-Rabinowitz [3]. Here we state the result in a slightly more general
form (see Gasinski-Papageorgiou [9, p.648]).

Theorem 2.1. If ϕ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X, ρ > 0, ‖u1 −
u0‖ > ρ,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ‖u− u0‖ = ρ] = mρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) =
u1}, then c ≥ mρ and c is a critical value of ϕ (i.e., there exists u∗ ∈ X such that
ϕ′(u∗) = 0 and ϕ(u∗) = c in X∗).

For the analysis of problem (1.1) we will use the Sobolev spaces W 1,r(Ω) 1 <
r <∞. We know that this is a Banach space with norm

‖u‖ =
[
‖u‖rr + ‖Du‖rr

]1/r for all u ∈W 1,r(Ω).

The Banach space W 1,r(Ω) is uniformly convex, thus reflexive.
We will also use the subspace C1(Ω). We will exploit the fact that C1(Ω) is an

ordered Banach space with positive (order) cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}
This cone has a nonempty interior containing the set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}



EJDE-2018/01 RESONANT (p, q)-EQUATIONS 3

On ∂Ω we consider the (N−1)-dimensional Hausdorff (surface) measure σ(·). Using
this measure on ∂Ω, we can define in the usual way the boundary Lebesgue spaces
Lτ (∂Ω) 1 ≤ τ ≤ ∞.

From the theory of Sobolev spaces, we know that there exists a unique continuous
linear map γ0 : W 1,τ (Ω)→ Lτ (∂Ω), known as the “trace map” such that

γ0(u) = u|∂Ω for all u ∈W 1,τ (Ω) ∩ C(Ω).

The trace map assigns boundary values to any Sobolev function. We know that
γ0(·) is compact into Lθ(∂Ω) for all θ ∈ [1, (N−1)p

N−p ) if τ < N and into Lθ(∂Ω) for
all θ ∈ [1,+∞) if τ ≥ N . Moreover, we have

im γ0 = W
1
τ′ ,τ (∂Ω) (

1
τ

+
1
τ ′

= 1) and ker γ0 = W 1,τ
0 (Ω).

In what follows, for the sake of notational simplicity, we drop the use of the trace
map γ0. All restrictions of Sobolev functions on ∂Ω, are understood in the sense of
traces. For 1 < r <∞, let Ar : W 1,r(Ω)→W 1,r(Ω)∗ be defined by

〈Ar(u), h〉 =
∫

Ω

|Du|r−2(Du,Dh)RN dz for all u, h ∈W 1,r(Ω).

For this operator we have the following result (see Motreanu-Motreanu-Papageorgiou
[17, p.40]).

Proposition 2.2. The map Ar : W 1,r(Ω) → W 1,r(Ω)∗ is bounded (that is, maps
bounded sets to bounded sets), continuous, monotone (hence maximal monotone
too) and of type (S)+, that is

un
w→ u in W 1,r(Ω) and lim sup

n→∞
〈Ar(un), un − u〉 ≤ 0⇒ un → u in W 1,r(Ω).

Let f0 : Ω×X → R be a Caratheodory function such that

|f0(z, x)| ≤ α0(z)[1 + |x|τ−1] for a.a. z ∈ Ω, all x ∈ R,

with α0 ∈ L∞(Ω)+ = {α ∈ L∞(Ω) : α(z) ≥ 0 for a.a. z ∈ Ω} and τ ∈ (1, p∗] where

p∗ =

{
Np
N−p if p < N

+∞ if N ≤ p

(the critical Sobolev exponent for p). Also, let k0 ∈ C0,η(∂Ω × R) with η ∈ (0, 1)
and

0 ≤ k0(z, x) ≤ c1(|x|q + |x|p) for all (z, x) ∈ ∂Ω× R,
with c1 > 0, 1 < q < p. We set

F0(z, x) =
∫ x

0

f0(z, s)ds and K0(z, x) =
∫ x

0

k0(z, s)ds

and consider the C1-functional ϕ0 : W 1,p(Ω)→ R defined by

ϕ0(u) =
1
p
‖Du‖pp+

1
q
‖Du‖qq+

∫
∂Ω

K0(z, u)dσ−
∫

Ω

F0(z, u) dz for all u ∈W 1,p(Ω).

The next proposition is a special case of a more general result of Papageorgiou-
Radulescu [24].
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Proposition 2.3. If u0 ∈W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0, that is, there
exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ ρ0,

then u0 ∈ C1(Ω) and u0 is a local W 1,p(Ω)-minimizer of ϕ0, that is, there exists
ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p(Ω) with ‖h‖ ≤ ρ1.

As we already mentioned in the introduction, one of our tools, are critical groups.
So, let us recall their definition. Let X be a Banach space, ϕ ∈ C1(X,R) and c ∈ R.
We introduce the following sets:

Kϕ = {u ∈ X : ϕ′(u) = 0}, Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c},

ϕc = {u ∈ X : ϕ(u) ≤ c}.

Suppose that (Y1, Y2) is a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0.
By Hk(Y1, Y2) we denote the kth-relative singular homology group with integer
coefficients for the pair (Y1, Y2). Let u ∈ Kc

ϕ be isolated. The critical groups of ϕ
at u are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U\{u}) for all k ∈ N0,

where U is an isolating neighborhood of u, that is, Kϕ∩ϕc∩U = {u}. The excision
property of singular homology, implies that the above definition of critical groups
is independent of the particular choice of the isolating neighborhood U .

Suppose that ϕ satisfies the C-condition and assume that inf ϕ(Kϕ) > −∞. Let
c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ∈ N0.

This definition is independent of the choice of the level c < inf ϕ(Kϕ). Indeed, let
c′ < c < inf ϕ(Kϕ). From Motreanu-Motreanu-Papageorgiou [17, Corollary 5.3.5,
p.115], we have that: if ϕc

′
is a strong deformation retract of ϕc, then

Hk(X,ϕc) = Hk(X,ϕc
′
) for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [17, Corollary 6.15, p.145 of]).
The next result is a useful tool for computing the critical groups at infinity. It

extends an earlier analogous result for Hilbert spaces of Liang-Su [13].

Proposition 2.4. If X is a Banach space, (t, u) → ht(u) belongs in C1([0, 1] ×
X,R), maps bounded sets to bounded sets, the maps u→ (ht)′(u) and t→ ∂tht(u)
are both locally Lipschitz, h0, h1 satisfy the C-condition

|∂tht(u)| ≤ c2(‖u‖q + ‖u‖p) for all u ∈ X,
with c2 > 0, 1 < q < p <∞ and there exist θ0 ∈ R and δ0 > 0 such that

ht(u) ≤ θ0 ⇒ (1 + ‖u‖)‖(ht)′(u)‖∗ ≥ δ0[‖u‖q + ‖u‖p] for all t ∈ [0, 1],

then Ck(h0,∞) = Ck(h1,∞) for all k ∈ N0.

Proof. Since h ∈ C1([0, 1]×X,R), it admits a pseudogradient vector field v̂t(u) (see
Gasinski-Papageorgiou [9, Theorem 5.1.19, p.616]). In fact from the construction
of the pseudogradient vector field, we have

v̂t(u) = (∂tht(u), vt(u)),
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with vt(·) being a pseudogradient vector field corresponding to the function ht(·).
Therefore, for all t ∈ [0, 1] and all u ∈ X\Kht , we have

‖(ht)′(u)‖2∗ ≤ 〈(ht)′(u), vt(u)〉 and ‖vt(u)‖ ≤ 2‖(ht)′(u)‖∗ (2.1)

For t ∈ [0, 1] we consider the vector field gt : X\Kht → X defined by

gt(u) = − |∂tht(u)|
‖(ht)′(u)‖2∗

vt(u) for all u ∈ X\Kht . (2.2)

This is a locally Lipschitz vector field. Choose θ ≤ θ0 such that

hθ0 6= ∅ or hθ1 6= ∅
If no such θ ≤ θ0 can be found, it means that both h0, h1 are bounded below. Since
by hypothesis they satisfy the C-condition, we have

Ck(h0,∞) = Ck(h1,∞) = δk,0Z for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [17, Proposition 6.64, p.161]). Hence the
conclusion of the proposition holds.

To fix things, we assume that hθ0 6= ∅ (the reasoning is similar if hθ1 6= ∅). Let
u ∈ hθ0 and consider the abstract Cauchy problem

dξ

dt
= gt(ξ) on [0, 1], τ(0) = u. (2.3)

Since the vector field is locally Lipschitz, problem (2.3) admits a local flow (see
Gasinski-Papageorgiou [9, Theorem 5.1.21, p.618]). We denote this local flow by
ξ(t, u). For the sake of notational simplicity, in the next calculation we drop the
u-dependence in the expression of the local flow, since it does not play any role.
We have

d

dt
ht(ξ(t))

= 〈(ht)′(ξ(t)),
dξ

dt
〉+ ∂tht(ξ(t))

= 〈(ht)′(ξ(t)),−
|∂tht(ξ(t))|
‖(ht)′(ξ(t))‖∗

vt(ξ(t))〉+ ∂tht(ξ(t)) (see (2.2) and(2.3))

≤ −|∂tht(ξ(t))|+ ∂tht(ξ(t)) (see (2.1))
≤ 0.

Hence for t > 0 small, we have

ht(ξ(t)) ≤ h0(ξ(0)) = h0(u) ≤ θ ≤ θ0

(see (2.3) and recall that u ∈ hθ0), which implies

(1 + ‖ξ(t)‖)‖(ht)′(ξ(t))‖∗ ≥ δ0
[
‖ξ(t))‖q + ‖ξ(t)‖p

]
. (2.4)

Therefore,

‖gt(ξ(t))‖ ≤
|∂tht(ξ(t))|
‖(ht)′(ξ(t))‖2∗

‖vt(ξ(t))‖ (see (2.2))

≤ c2[‖ξ(t)‖q + ‖ξ(t)‖p]
‖(ht)′(ξ(t))‖2∗

2‖(ht)′(ξ(t))‖∗ (by hypothesis and (2.1))

≤ 2c2
δ0

(1 + ‖ξ(t)‖) (see (2.4))
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It follows that the local flow ξ(·, u) is in fact global on [0, 1] (see [9, theorem 5.1.22,
p.618]).

We go back in denoting the flow by ξ(t, u). For every t ∈ [0, 1], ξ(t, u) is an
homeomorphism. Hence ξ(1, ·) is a homeomorphism of hθ0 onto a subset D0 of hθ1.
Reversing the time (that is replacing t by 1− t) and using the corresponding global
flow ξ∗(t, v), we have that hθ1 is a homeomorphic to a subset D1 of hθ0. We set

η(t, u) = ξ∗(t, ξ(t, u)) for all (t, u) ∈ [0, 1]× hθ0.

We have that

η(0, ·) is homotopy equivalent to id|D0(·) and η(1, ·) = (ξ∗)1 ◦ ξ1. (2.5)

In a similar fashion, if we set

η∗(t, v) = ξ(t, ξ∗(t, v)) for all (t, v) ∈ [0, 1]× hθ1,

then we have that

η∗(0, ·) is homotopy equivalent to id|D1(·) and η∗(1, ·) = ξ1 ◦ (ξ∗)1. (2.6)

Recall that
{D0, h

θ
0} and {D1, h

θ
1} are homeomorphic pairs. (2.7)

Then from (2.5), (2.6), (2.7) it follows that: hθ0 and hθ1 are homotopy equivalent,
which implies that

Hk(X,hθ0) = Hk(X,hθ1) for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [17, Proposition 6.11, p.143]), which implies

Ck(h0,∞) = Ck(h1,∞) for all k ∈ N0

(choosing θ ∈ R even smaller if necessary). �

Next let us recall some basic facts concerning the spectrum of the Robin r-
Laplacian. So let β ∈ C0,α(∂Ω), 0 < α < 1, β(z) ≥ 0 for all z ∈ ∂Ω and consider
the nonlinear eigenvalue problem

−∆ru(z) = λ̂|u(z)|r−2u(z) in Ω,
∂u

∂nr
+ β(z)|u|r−2u = 0 on ∂Ω.

(2.8)

This eigenvalue problem was studied by Papagerogiou-Radulescu [23]. A number
λ̂ ∈ R is an eigenvalue of the negative Robin r-Laplacian, if problem (2.8) admits a
nontrivial solution û. The nontrivial solution û is an eigenfunction corresponding
to the eigenvalue λ̂. There is a smallest eigenvalue λ̂1(r) which has the following
properties:

• λ̂1(r) ≥ 0 and it is isolated (in fact if β = 0, then λ̂1(r) = 0, while if β 6= 0,
then λ̂1(r) > 0)
• λ̂1(r) is simple (this means that, if û, v̂ are eigenfunctions corresponding to
λ̂1(r), then û = cv̂ for some c ∈ R\{0}).
•

λ̂1(r) = inf
[‖Du‖rr +

∫
∂Ω
β(z)|u|r dσ

‖u‖rr
: u ∈W 1,r(Ω), u 6= 0

]
. (2.9)
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In (2.9) the infimum is attained on the corresponding one dimensional eigenspace.
From (2.9) it is easy to see that the elements of this eigenspace have fixed sign. By
û1(r) we denote the Lr-normalized (that is, ‖û1(r)‖r = 1) positive eigenfunction
corresponding to λ̂1(r). The nonlinear regularity theory and the nonlinear maxi-
mum principle (see for example, Gasinski-Papageorgiou [9, pp.737-738]) imply that
û1(r) ∈ D+. Since the spectrum σ̂(r) of (2.8) is closed and λ̂1(r) is isolated, then
the second eigenvalue λ̂2(r) is well defined by

λ̂2(r) = inf[λ̂ ∈ σ̂(r) : λ̂ > λ̂1(r)].

By ind(·) we denote the Z2-cohomological index of Fadell-Rabinowitz (see [8]).
Using ind(·) and the Ljusternik-Schnirelmann minimax scheme, we can define a
whole sequence {λ̂k(r)}k∈N of dinstict eigenvalues of (2.8), by setting

λ̂k(r) = inf[sup
u∈A
{‖Du‖rr +

∫
∂Ω

β(z)|u|r dσ} : A ⊆M symmetric, ind(A) ≥ k, k ∈ N]

with M = {u ∈ W 1,r(Ω) : ‖u‖r = 1}. Evidently M is a C1-Banach manifold. We
have λ̂k(r) → +∞ as k → +∞ and these eigenvalues are known as “variational
eigenvalues” of (2.8). If k = 1, 2, then λ̂k(r) are as defined earlier. We do not
know if this sequence exhausts σ̂(r). This is the case if r = 2 (linear eigenvalue
problem) and if N = 1 (ordinary differential equations). We mention that, if û is
an eigenfunction corresponding to the eigenvalue λ̂k(r), k ≥ 2, then û ∈ C1(Ω) (by
the nonlinear regularity theory) and it is nodal (that is, sign-changing),

Also, for the nonprincipal eigenvalues, the corresponding eigenspaces are only
cones and not linear subspaces of W 1,r(Ω) and the latter cannot be expressed
as a direct sum of these eigenspaces. For these reasons, when r 6= 2 (nonlinear
eigenvalue problem), it is difficult to deal with problems resonant with respect to
any nonprincipal eigenvalue.

As an easy consequence of the properties of the principal eigenvalue λ̂1(r), we
have the following result (see Mugnai-Papageorgiou [18, Lemma 4.11]).

Lemma 2.5. If θ ∈ L∞(Ω), θ(z) ≤ λ̂1(r) for a.a. z ∈ Ω and θ 6= λ̂1(r), then there
exists ĉ > 0 such that

‖Du‖rr +
∫
∂Ω

β(z)|u|r dσ −
∫

Ω

θ(z)|u|r dz ≥ ĉ‖u‖r

for all u ∈W 1,p(Ω).

For x ∈ R, let x± = max{±x, 0}. Then for u ∈W 1,r(Ω) we set u±(·) = u(·)±.
We know that

u± ∈W 1,r(Ω), u = u+ − u−, |u| = u+ + u−

Let us introduce our hypotheses on the data of (1.1).
(H1) f : Ω × R → R is a Caratheodory function such that f(z, 0) = 0, for a.a.

z ∈ Ω and
(i) for every ρ > 0, there exists αρ ∈ L∞(Ω)+ such that

|f(z, x)| ≤ αρ(z) for a.a. z ∈ Ω all |x| ≤ ρ;

(ii) there exists an integer m ≥ 2 such that

lim
x→±∞

f(z, x)
|x|p−2x

= λ̂m(p) uniformly for a.a. z ∈ Ω;
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(iii) if F (z, x) =
∫ x

0
f(z, s)ds, then

0 < c0 ≤ lim inf
x→±∞

f(z, x)x− pF (z, x)
|x|p−1

uniformly for a.a. z ∈ Ω;

(iv) there exists a function θ ∈ L∞(Ω)+ such that θ(z) ≤ λ̂1(q) for a.a.
z ∈ Ω, with strict inequality on a set of positive measure,

lim sup
x→0

qF (z, x)
|x|q

≤ θ(z) uniformly for a.a. z ∈ Ω

note that if β2 ≡ 0, then λ̂1(q) = 0).

Remark 2.6. Hypothesis (H1)(ii) implies that at ±∞ we have resonance with
respect to a nonprincipal variational eigenvalue. We can write that

f(z, x) = λ̂m(p)|x|p−2x+ f0(z, x) (2.10)

with a Caratheodory function f0(z, x) such that

lim
x→±∞

f0(z, x)
|x|p−2x

= 0 uniformly for a.a. z ∈ Ω. (2.11)

If we set F0(z, x) =
∫ x

0
f0(z, s)ds. Then

F (z, x) =
λ̂m(p)
p
|x|p + F0(z, x)

and we have

0 < c0 ≤ lim inf
x→±∞

f0(z, x)x− pF0(z, x)
|x|p−1

uniformly for a.a. z ∈ Ω; (2.12)

see hypothesis (H1)(iii).

Example 2.7. The following function satisfies hypotheses (H1). For the sake of
simplicity we drop the z-dependence

f(x) =

{
θ|x|q−2x if |x| ≤ 1
λ̂m(p)|x|p−2x+ |x|τ−2x+ ĉ if 1 < |x|

with 0 < θ < λ̂1(q), ĉ = θ − (λ̂m(p) + 1), 1 < q < p, p− 1 ≤ τ < p.

The hypotheses on the boundary coefficient β(·) are the following
(H2) β1 ∈ C0,α(∂Ω), β2 ∈ C0,η(∂Ω) with 0 < α, η < 1 and β1(z), β2(z) ≥ 0 for

all z ∈ ∂Ω.
(H3) For every ρ > 0 there exists ξ̂ρ > 0 such that

f(z, x)x+ ξ̂ρ(|x|ρ + |x|q) ≥ 0 for a.a. x ∈ Ω, |x| ≤ ρ.

Remark 2.8. Note that when β1 = β2 = 0 in (H2), we recover the Neumann
problem. Also note that the example given earlier satisfies (H3).

In what follows for τ ∈ (1,+∞), we introduce the C1-functional γτ : W 1,τ (Ω)→
R defined by

γτ (u) = ‖Du‖ττ +
∫
∂Ω

β(z)|u|τ dσ for all u ∈W 1,τ (Ω).
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Let ϕ : W 1,p(Ω)→ R be the energy functional for problem (1.1) defined by

ϕ(u) =
1
p
γp(u) +

1
q
γq(u)−

∫
Ω

F (z, u)dz for all u ∈W 1,p(Ω),

γp with β = β1 and γq with β = β2. Evidently ϕ ∈ C1(W 1,p(Ω)).

3. Solutions of constant sign

We introduce the following truncations-perturbations of the reaction term f(z, ·):

f̂+(z, x) =

{
0 if x ≤ 0
f(z, x) + xp−1 if 0 < x;

f̂−(z, x) =

{
f(z, x) + |x|p−2x if x < 0
0 if 0 ≤ x

(3.1)

Both are Caratheodory functions. We set

F̂+(z, x) =
∫ x

0

f̂+(z, s)ds and F̂−(z, x) =
∫ x

0

f̂−(z, s)ds

and consider the C1-functionals ϕ̂± : W 1,p(Ω)→ R defined by

ϕ̂±(u) =
1
p
γp(u) +

1
q
γq(u) +

1
p
‖u‖pp −

∫
Ω

F̂±(z, u)dz for all u ∈W 1,p(Ω.)

Proposition 3.1. If hypotheses (H1)(i)–(iii), (H2) hold then the functionals ϕ̂±
satisfy the C-condition.

Proof. We do the proof for the functional ϕ̂+ the proof for ϕ̂− being similar. So,
let {un}n≥1 ⊆W 1,p(Ω) be a sequence such that

|ϕ̂+(un)| ≤M1 for some M1 > 0, and all n ∈ N, (3.2)

(1 + ‖un‖)ϕ̂′+(un)→ 0 in W 1,p(Ω)∗ as n→∞. (3.3)

From (3.3) we have∣∣∣〈Ap(un), h〉+ 〈Aq(un), h〉+
∫
∂Ω

(β1(z)|un|p−2un + β2(z)|un|q−2un)h dσ

+
∫

Ω

|un|p−2unh dz −
∫

Ω

f̂+(z, un)h dz
∣∣∣

≤ εn‖h‖
1 + ‖un‖

for all h ∈W 1,p(Ω) with εn → 0+.

(3.4)

In (3.4) we choose h = −u−n ∈W 1,p(Ω). Then

‖Du−n ‖pp + ‖Du−n ‖qq + ‖u−n ‖pp ≤ εn for all n ∈ N

(see (3.1) and hypothesis (H2)) which implies

u−n → 0 in W 1,p(Ω) as n→∞. (3.5)

Claim 1: {u+
n }n∈N ⊆W 1,p(Ω) is bounded.
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We argue indirectly. So, suppose that Claim 1 is not true. Then by passing to a
subsequence if necessary, we may assume that ‖u+

n ‖ → ∞. We set yn = u+
n

‖u+
n ‖

n ∈ N.
Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N and so we may assume that

yn
w→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω). (3.6)

From (3.4) and (3.5), we have∣∣∣〈Ap(u+
n ), h〉+ 〈Aq(u+

n ), h〉+
∫
∂Ω

(
β1(z)(u+

n )p−1 + β2(z)(u+
n )q−1

)
h dσ

+
∫

Ω

(u+
n )p−1h dz −

∫
Ω

f̂+(z, u+
n )h dz

∣∣∣
≤ ε′n‖h‖ for all n ∈ N, with ε′n → 0+,

which implies∣∣∣〈Ap(yn) +
1

‖u+
n ‖p−q

Aq(yn), h〉+
∫
∂Ω

(
β1(z)yp−1

n +
1

‖u+
n ‖p−q

β2(z)yq−1
n

)
h dσ

+
∫

Ω

yp−1
n h dz −

∫
Ω

f̂+(z, u+
n )

‖u+
n ‖p−1

h dz
∣∣∣

≤ ε′n
‖h‖

‖u+
n ‖p−1

for all n ∈ N.

(3.7)
In (3.7) we choose h = yn− y ∈W 1,p(Ω), pass to the limit as n→∞ and use (3.6)
and the fact that q < p. Then

lim
n→∞

〈Ap(yn), yn − y〉 = 0

which implies

yn → y in W 1,p(Ω) as n→∞, (3.8)

thus ‖y‖ = 1 and y ≥ 0, see Proposition 2.2.
Hypotheses (H1)(i),(ii) imply that

|f(z, x)| ≤ c3(1 + |x|p−1) for a.a. z ∈ Ω, all x ∈ R and some c3 > 0,

which in turn implies{ f̂+(·, u+
n (·))

‖u+
n ‖p−1

}
n∈N
⊆ Lp

′
(Ω) is bounded (see (3.1)).

Therefore using hypothesis (H1)(ii) we have (at least for a subsequence) such that

f̂+(·, u+
n (·))

‖u+
n ‖p−1

w→ (λ̂m(p) + 1)yp−1 in Lp
′
(Ω) as n→∞ (3.9)

(see Aizicovici-Papageorgiou [1, proof of Proposition 30]).
If in (3.7) we pass to the limit as n → ∞ and use (3.8) and (3.9) and the facts

that q < p, y ≥ 0, then

〈Ap(y), h〉+
∫
∂Ω

β1(z)yp−1h dσ = λ̂m(p)
∫

Ω

yp−1h dz for all h ∈W 1,p(Ω) (see (3.1))
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which implies

−∆py(z) = λ̂m(p)|y(z)|p−2y(z) for a.a. z ∈ Ω,
∂y

∂ηp
+ β(z)yp−1 = 0 on ∂Ω

(3.10)

(see Papageorgiou-Radulescu [23]). Since m ≥ 2, from (3.10) we infer that y must
be nodal, which contradicts (3.8). This proves Claim 1.

From (3.5) and Claim 1, we have that {un}n≥1 ⊆ W 1,p(Ω) is bounded. So, we
may assume that

un
w→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω). (3.11)

In (3.4) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(3.11). Then we have

lim
n→∞

[〈Ap(un), un − u〉+ 〈Aq(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈Ap(un), un − u〉+ 〈Aq(u), un − u〉] ≤ 0,

(recall that Aq(·) is monotone), which implies

lim sup
n→∞

[〈Ap(un), un − u〉 ≤ 0 (see (3.11)),

⇒ un → u in W 1,p(Ω) (see Proposition 2.2).

This proves that the functional ϕ̂+ satisfies the C-condition. Similarly for the
functional ϕ̂−. �

Proposition 3.2. If hypotheses (H1)(i)–(iii), (H2) hold, then the energy functional
ϕ satisfies the C-condition.

Proof. Let {un}n≥1 ⊆W 1,p(Ω) be a sequence such that

|ϕ(un)| ≤M2 for some M2 > 0, and all n ∈ N, (3.12)

(1 + ‖un‖)ϕ′(un)→ 0 in W 1,p(Ω)∗ as n→∞. (3.13)

From (3.13) we have∣∣∣〈Ap(un), h〉+ 〈Aq(un), h〉+
∫
∂Ω

(β1(z)|un|p−2un + β2(z)|un|q−2un)h dσ

−
∫

Ω

f(z, un)hdz
∣∣∣

≤ εn‖h‖
1 + ‖un‖

for all h ∈W 1,p(Ω), with εn → 0+.

(3.14)

In (3.14) we choose h = un ∈W 1,p(Ω). Then

− γp(un)− γq(un) +
∫

Ω

f(z, un)un dz ≤ εn for all n ∈ N. (3.15)

Also from (3.12) we have

γp(un) +
p

q
γq(un)−

∫
Ω

pF (z, un) dz ≤ pM2 for all n ∈ N. (3.16)

Adding (3.15) and (3.16), we obtain(p
q
− 1
)
γq(un) +

∫
Ω

[f(z, un)un − pF (z, un)] dz ≤M3 (3.17)
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for some M3 > 0 and all n ∈ N,∫
Ω

[f(z, un)un − pF (z, un)] ≤M3 for all n ∈ N,

(recall that q < p and γq ≥ 0).
Claim 2: {un}n ≥ 1 ⊆W 1,p(Ω) is bounded,

We argue by contradiction. So, suppose that Claim 2 is not true. We may
assume that ‖un‖ → ∞. We set yn = un

‖un‖ n ∈ N. Then ‖yn‖ = 1 for all n ∈ N
and so we may assume that

yn
w→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω). (3.18)

From (3.14) we have∣∣∣〈Ap(yn) +
1

‖un‖p−2
Aq(yn), h〉

+
∫
∂Ω

(
β1(z)|yn|p−2yn +

β2(z)
‖un‖p−q

|yn|q−2yn

)
h dz −

∫
Ω

f(z, un)
‖un‖p−1

h dz
∣∣∣

≤ εn‖h‖
(1 + ‖un‖)‖un‖p−1

for all n ∈ N.

(3.19)

In (3.19) we choose h = yn − y ∈W 1,p(Ω), we pass to the limit as n→∞ and use
the fact that q < p. Then limn→∞〈Ap(yn), yn − y〉 = 0 which implies

yn → y in W 1,p(Ω) and so ‖y‖ = 1 (see Proposition 2.2) (3.20)

From (3.20) it follows that we can find D ⊆ Ω measurable with |D|N > 0 (here
| · |N denotes the Lebesgue measure on RN ) such that

|un(z)| → +∞ for all z ∈ D. (3.21)

Hypotheses (H1)(i), (iii) imply that we can find c4 > 0 such that

− c4 ≤ f(z, x)x− pF (z, x) for a.a. z ∈ Ω, all R. (3.22)

Then∫
Ω

[f(z, un)un − pF (z, un)]dz

=
∫

Ω\D
[f(z, un)un − pF (z, un)]dz +

∫
D

[f(z, un)un − pF (z, un)] dz

≥ −c4|Ω\D|N +
∫
D

[f(z, un)un − pF (z, un)] dz

(3.23)

for all n ∈ N (see (3.22)). From (3.21), hypothesis (H1)(iii) and Fatou’s lemma, we
have ∫

D

[f(z, un)un − pF (z, un)] dz → +∞,

which implies ∫
Ω

[f(z, un)un − pF (z, un)] dz → +∞ (see (3.23)). (3.24)

Comparing (3.17) and (3.24) we have a contradiction. This proves the claim 2.
Using the claim 2, we may assume that

un
w→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω). (3.25)
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In (3.14) we choose h = un − u ∈W 1,p(Ω), we pass to the limit as n→∞ and use
(3.25). Then

lim
n→∞

[〈Ap(un), un − u〉+ 〈Aq(un), un − u〉] = 0,

⇒ lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0, (using the monotonicity of Aq(·) and (3.25)),

⇒ un → u in W 1,p(Ω) (see Proposition 2.2),

Therefore ϕ satisfies the C-condition. �

Hypotheses (H1)(i), (ii) imply that

|f(z, x)| ≤ c5(1 + |x|p−1) for a.a. z ∈ Ω all x ∈ R, some c5 > 0 . (3.26)

Proposition 3.3. If hypotheses (H1)(iv), (3.26) and (H2) hold, then u = 0 is a
local minimizer of the functionals ϕ̂± and of ϕ.

Proof. We do the proof for the functional ϕ̂+, the proofs for ϕ̂− and ϕ being similar.
Hypothesis (H1)(iv) implies that given ε > 0, we can find δ = δ(ε) > 0 such that

F (z, x) ≤ 1
q

[θ(z) + ε]|x|q for a.a. z ∈ Ω, all |x| ≤ δ. (3.27)

On the other hand, given r > p > q, using (3.26) we see that we can find c6 =
c6(ε) > 0 such that

F (z, x) ≤ c6|x|r for a.a. z ∈ Ω, all |x| ≥ δ. (3.28)

Since θ ∈ L∞(Ω)+, from (3.27) and (3.28) it follows that

F (z, x) ≤ 1
q

[θ(z) + ε]|x|q + c6|x|r for a.a. z ∈ Ω, all x ∈ R. (3.29)

For u ∈W 1,p(Ω) we have

ϕ̂+(u) =
1
p
γp(u) +

1
q
γq(u) +

1
p
‖u−‖pp −

∫
Ω

F (z, u+) dz (see (3.1))

≥ 1
p
γp(u+) +

1
p

[
γp(u−) + ‖u−‖pp

]
+

1
q

[
γq(u+)−

∫
Ω

θ(z)(u+)q dz − ε‖u+‖q
]
− c7‖u‖r

for some c7 > 0 (see (3.29)). Using Lemma 2.5 and choosing ε > 0 small, we have

ϕ̂+(u) ≥ 1
p
‖u−‖p +

c8
q
‖u+‖q − c7‖u‖r

for some c8 > 0. If ‖u‖ ≤ 1, then ‖u+‖, ‖u−‖ ≤ 1 and so ‖u+‖q ≥ ‖u+‖p. Hence

ϕ̂+(u) ≥ 1
p
‖u−‖p +

c8
q
‖u+‖p − c7‖u‖r

≥ c9‖u‖p − c7‖u‖r for some c9 > 0.
(3.30)

Since r > p, if we choose ρ ∈ (0, 1) small, then from (3.30) we see that

ϕ̂+(u) ≥ 0 for all u ∈W 1,p(Ω) with ‖u‖ ≤ ρ,

which implies that u = 0 is a local minimizer of ϕ̂. Similar argument works for the
functionals ϕ̂− and ϕ. �



14 M. E. FILIPPAKIS, N. S. PAPAGEORGIOU EJDE-2018/01

Remark 3.4. We can avoid the use of (3.26) and instead assume that

|f(z, x)| ≤ c10(1 + |x|p
∗−1) for a.a. z ∈ Ω, all x ∈ R, some c10 > 0.

For u ∈ C1(Ω) with ‖u‖C1(Ω) ≤ δ, we have

ϕ̂+(u) ≥ 1
p
‖u−‖p +

c8
q
‖u+‖q (see (3.27) and Lemma 2.5)

By taking δ > 0 even smaller, we have

ϕ̂+(u) ≥ 1
p
‖u−‖p + c11‖u+‖p ≥ c12‖u‖p

which implies that u = 0 is a local C1(Ω)-minimizer of ϕ̂+, and that u = 0 is a
local W 1,p(Ω)-minimizer of ϕ̂+ (see Proposition 2.4).

Now we are ready to produce two constant sign solutions (one positive and the
other negative).

Proposition 3.5. If hypotheses (H1)–(H3) hold, then problem (1.1) has at least
two nontrivial constant sign smooth solutions

u0 ∈ D+ and v0 ∈ −D+.

Proof. Using (3.1) and the nonlinear regularity theory of Lieberman [14], we have

Kbϕ+ ⊆ C+ and Kbϕ− ⊆ −C+. (3.31)

So, we assume that both sets are finite or otherwise we already have two sequences
consisting of distinct positive and negative solutions which in fact belong in D+

and D− respectively (see the last part of this proof).
First, we prove the existence of a positive solution. Since Kbϕ+ is finite and u = 0

is a local minimizer of ϕ̂+ (see Proposition 3.3), we can find ρ ∈ (0, 1) small such
that

ϕ̂+(0) = 0 < inf[ϕ̂+(u) : ‖u‖ = ρ] = m̂+
ρ (3.32)

(see Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 29]). Also because
m ≥ 2 and q < p, we see that

ϕ̂+(tû1(p))→ −∞ as t→ +∞. (3.33)

Then (3.32), (3.33) and Proposition 3.1, permit the use of Theorem 2.1 (the
mountain pass theorem). So, we can find u0 ∈W 1,p(Ω) such that

u0 ∈ Kbϕ+ ⊆ C+ (see (3.31)) and m̂+
ρ ≤ ϕ̂+(u0),

which implies u0 ∈ C+\{0} (see (3.32)).
We have

−∆pu0(z) −∆qu0(z) = f(z, u0(z)) for a.a. z ∈ Ω,
∂u0

∂npq
+ β1(z)up−1

0 + β2(z)uq−1
0 = 0 on ∂Ω.

(3.34)

(see Papageorgiou-Radulescu [23]). Hypotheses (H1)(i),(iv) and (H3) imply that
given ρ > 0, we can find ξ̂ρ > 0 such that

f(z, x)x+ ξ̂ρ[|x|p + |x|q] ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ
Let ρ = ‖u0‖∞. Then from (3.34) we have

∆pu0(z) + ∆qu0(z) ≤ ξ̂ρ[u0(z)p−1 + u0(z)q−1] for a.a. z ∈ Ω,
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which implies u0 ∈ D+ (see Pucci-Serrin [26, Theorem 5.4.1, p.111 and Theorem
5.5.1, p.120]). Similarly, working this time with ϕ̂−, we produce a negative solution
v0 ∈ −D+. �

4. Three solutions theorem

In this section, using Morse Theory (critical groups), we produce a third non-
trivial smooth solution. For this purpose, using Proposition 2.4, we compute the
critical groups of ϕ and of ϕ̂± at infinity.

Proposition 4.1. If hypotheses (H1)(i),(ii),(iii), (H2) hold and Kϕ is finite, then
Cm(ϕ,∞) 6= 0.

Proof. Let λ ∈ (λ̂m(p), λ̂m+1(p)), λ /∈ σ̂(p) and consider the C1-functional ψ :
W 1,p(Ω)→ R defined by

ψ(u) =
1
p
γp(u)− λ

p
‖u‖pp for all u ∈W 1,p(Ω).

We consider the homotopy ht(u) defined by

ht(u) = (1− t)ϕ(u) + tψ(u) for all t ∈ (0, 1), all u ∈W 1,p(Ω).

Note that h0(·) = ϕ(·) and by Proposition 3.2 ϕ satisfies the C-condition. Also
h1(·) = ψ(·) and since λ /∈ σ̂(p), we see that ψ satisfies the C-condition.

Claim 3: There exist θ0 ∈ R and δ0 > 0 such that

ht(u) ≤ θ0 ⇒ (1 + ‖u‖)‖(ht)′(u)‖∗ ≥ δ0(‖u‖q + ‖u‖p) for all t ∈ (0, 1).

As before we argue by contradiction. Since (t, u)→ ht(u) maps bounded sets to
bounded sets, if Claim 3 is not true, we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆
W 1,p(Ω) such that

tn → t, ‖un‖ → +∞, htn(un)→ −∞, and

‖(htn)′(un)‖∗ <
‖un‖q + ‖un‖p

n(1 + ‖un‖)
for all n ∈ N.

(4.1)

Without loss of generality we assume that ‖un‖ ≥ 1 for all n ∈ N. From (4.1) we
have∣∣∣〈Ap(un) + (1− tn)Aq(un), h〉+

∫
∂Ω

(β1(z)|un|p−2un + (1− tn)β2(z)(un)p−2un)h dσ

+ (1− tn)
∫

Ω

f(z, un)h dz − tnλ
∫

Ω

|un|p−2unh dz
∣∣∣

≤ ‖un‖
q + ‖un‖p

n(1 + ‖un‖)

≤ 2
n
‖un‖p−1

(4.2)
for all n ∈ N (recall ‖un‖ ≥ 1 for all n ∈ N, q < p).

Let yn = un/‖un‖. Then ‖yn‖ = 1 for all n ∈ N and so we may assume that

yn
w→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω). (4.3)
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From (4.2) we have∣∣∣〈Ap(yn) +
1− tn
‖un‖p−q

Aq(yn), h〉

+
∫
∂Ω

(
β1(z)|yn|p−2yn +

(1− tn)β2(z)
‖un‖p−q

|yn|q−2yn

)
h dσ

− (1− tn)
∫

Ω

f(z, un)
‖un‖p−1

h dz − tnλ
∫

Ω

|yn|p−2ynh dz
∣∣∣

≤ 2
n

for all n ∈ N.

(4.4)

From (3.26) we have{f(·, un(·))
‖un‖p−1

}
n≥1
⊆ Lp

′
(Ω) is bounded. (4.5)

On account of (4.5) and by passing to a subsequence if necessary and using
hypothesis (H1)(ii) we have

f(·, un(·))
‖un‖p−1

w→ λ̂m(p)|y|p−2y in Lp
′
(Ω). (4.6)

If in (4.4) we choose h = yn−y ∈W 1,p(Ω), pass to the limit as n→∞ and use (4.1),
(4.3), (4.5) and the fact that q < p, we obtain that limn→∞〈Ap(yn), yn − y〉 = 0
which implies

yn → y in W 1,p(Ω), hence ‖y‖ = 1 (see Proposition 2.2). (4.7)

So, if in (4.4) we pass to the limit as n→∞ and use (4.1), (4.6), (4.7) and the fact
that q < p, then

〈Ap(y), h〉+
∫
∂Ω

β1(z)|y|p−2yh dσ =
∫

Ω

[(1− t)λ̂m(p) + tλ]|y|p−2yh dz

for all h ∈W 1,p(Ω), which implies

−∆py(z) = λt|y(z)|p−2y(z) for a.a. z ∈ Ω,
∂u

∂npq
+ β1(z)|y|p−2y = 0 on ∂Ω.

(4.8)

where λt = (1− t)λ̂m(p) + tλ.
If λ /∈ σ̂(p), then from (4.8) it follows that y = 0, which contradicts (4.7). So,

suppose that λt ∈ σ̂(p). Since y 6= 0 (see (4.7)), we can find D ⊆ Ω measurable
with |D|N > 0 such that

|un(z)| → +∞ for all z ∈ Ω. (4.9)

From (2.12) we see that we can find c13 > 0 and M > 0 such that

0 < c13 ≤
f0(z, x)x− pF0(z, x)

|x|p−1
for a.a. z ∈ Ω, all |x| ≥M. (4.10)

From (4.9), (4.10) and Fatou’s lemma, we have

0 < lim inf
n→∞

∫
Ω

f0(z, un)un − pF0(z, un)
|un|p−1

|yn|p−1 dz. (4.11)
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Note that on account of (4.1), we can find n0 ∈ N such that

γp(un) + (1− tn)
p

q
γq(un)− (1− tn)

∫
Ω

pF (z, un) dz − tnλ‖un‖pp ≤ 0 (4.12)

for all n ≥ n0.
Also, using (4.2) with h = un ∈W 1,p(Ω), we obtain

−γp(un)−(1−tn)γq(un)+(1−tn)
∫

Ω

f(z, un)un dz+tnλ‖un‖pp ≤
2
n
‖un‖p−1 (4.13)

for alln ∈ N. Adding (4.12) and (4.13) and recalling that q < p, we obtain

(1− tn)
∫

Ω

[f(z, un)un − pF (z, un)] dz ≤ 2
n
‖un‖p−1 for all n ≥ n0,

which implies

(1− tn)
∫

Ω

[f0(z, un)un − pF0(z, un)] dz ≤ 2
n
‖un‖p−1 for all n ≥ n0.

Evidently t < 1, otherwise from (4.8) y = 0 which contradicts (4.7). So∫
Ω

[f0(z, un)un − pF0(z, un)] dz ≤ 2c14

n
‖un‖p−1

for all n ≥ n0, some c14 > 0, which implies∫
Ω

f0(z, un)un − pF0(z, un)
|un|p−1

|yn|p−1 dz ≤ 2c14

n
,

lim sup
n→∞

∫
Ω

f0(z, un)un − pF0(z, un)
|un|p−1

|yn|p−1 dz ≤ 0,

which contradicts (4.11). This proves Claim 3.
On account of Claim 3, we can use Proposition 2.4 and have

Ck(ϕ,∞) = Ck(ψ,∞) for all k ∈ N0. (4.14)

Next for r > 0 we define the following two sets

Cr = {u ∈W 1,p(Ω) : γp(u) < λ‖u‖pp, ‖u‖ = r},
D = {u ∈W 1,p(Ω) : γp(u) ≥ λ‖u‖pp}.

The set ∂Br = {u ∈ W 1,p(Ω) : ‖u‖ = r} is a C1-Banach manifold hence it is
locally contractible (see Lee [12]). The set Cr is an open subset of ∂Br, hence it is
locally contractible too. Similarly the open set W 1,p(Ω)\D is locally contractible
too. Since λ ∈ (λ̂m(p), λ̂m+1(p))\σ̂(p), we have

indCr = ind(W 1,p(Ω)\D) = m.

So, using [8, Theorems 3.2 and 3.6], we have Cm(ψ, 0) 6= 0.
However, since Kψ = {0}, we have

Ck(ψ, 0) = Ck(ψ,∞) for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [17, Proposition 6.61, p.160], which implies
Cm(ψ,∞) 6= 0, ⇒ Cm(ϕ,∞) 6= 0 (see (4.14)). �

Next we compute the critical groups at infinity for the functionals ϕ̂±.

Proposition 4.2. If hypotheses (H1), (H2) hold, then Ck(ϕ̂±, 0) = 0 for all k ∈ N0.
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Proof. As before let λ ∈ (λ̂m(p), λ̂m+1(p))\σ̂(p) and let ψ̂+ : W 1,p(Ω) → R be the
C1-functional defined by

ψ̂+(u) =
1
p
γp(u) +

1
p
‖u−‖pp +

1
p

∫
∂Ω

β1(z)|u|p dσ − λ

p
‖u+‖pp for all u ∈W 1,p(Ω).

We consider the homotopy (h+)t(u) defined by

(h+)t(u) = (1− t)ϕ̂+(u) + tϕ̂+(u) for all t ∈ [0, 1], u ∈W 1,p(Ω).

We have (h+)0 = ϕ̂+ which satisfies the C-condition (see Proposition 3.1). Also
(h+)1 = ψ̂+ and since λ /∈ σ̂(p), ψ̂+ satisfies the C-condition.
Claim 4: There exist θ0 ∈ R and δ0 > 0 such that (h+)t(u) ≤ θ0 which implies

(1 + ‖u‖)‖((h+)t)′(u)‖∗ ≥ δ0[‖u‖q + ‖u‖p] for all t ∈ [0, 1].

As in previous occasions, we proceed by a contradiction argument. So, suppose
that Claim 4 is not true. Since (t, u) → (h+)t(u) maps bounded sets to bounded
sets, we can find two sequences {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p(Ω) such that

tn → t, ‖un‖ → ∞, (h+)tn(un)→ −∞ and

‖((h+)tn)′(un)‖∗ <
‖un‖q + ‖un‖p

n(1 + ‖un‖)
for all n ∈ N.

(4.15)

From inequality (4.15) we have∣∣∣〈Ap(un), h〉+ (1− tn)〈Aq(un), h〉

+
∫
∂Ω

(β1(z)|un|p−2un + (1− tn)β2(z)|un|q−2un)hdσ −
∫

Ω

(u−n )p−1h dz

− (1− tn)
∫

Ω

f(z, u+
n )h dz − tnλ

∫
Ω

(u+
n )p−1h dz

∣∣∣
≤ εn‖h‖

(1 + ‖un‖
for all h ∈W 1,p(Ω) with εn → 0+.

(4.16)

Choosing h = −u−n ∈W 1,p(Ω) in the above inequality, we have

γp(u−n ) + (1− tn)γq(u−n ) + ‖u−n ‖pp ≤ εn for all n ∈ N (4.17)

see (3.1), which implies u−n → 0 in W 1,p(Ω) (see hypothesis (H2) and recall γq ≥ 0).
From (4.15) we know that ‖un‖ → ∞. Hence (4.17) implies that

‖u+
n ‖ → +∞ as n→∞. (4.18)

Let yn = u+
n

‖u+
n ‖
, n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. We may assume that

yn
w→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω). (4.19)

From (4.16) and (4.17), we infer that∣∣∣〈Ap(yn), h〉+
1− tn
‖u+

p ‖p−q
〈Aq(yn), h〉

+
∫
∂Ω

(β1(z)|yn|p−2yn +
(1− tn)β2(z)
‖u+

n ‖p−q
|yn|q−2yn)h dz

− (1− tn)
∫

Ω

f(z, u+
n )

‖u+
n ‖p−1

h dz − tnλ
∫

Ω

yp−1
n h dz

∣∣∣
≤ ε′n‖h‖ for all h ∈W 1,p(Ω) with ε′n → 0+.

(4.20)
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In this inequality we choose h = yn− y ∈W 1,p(Ω), pass to the limit as n→∞ and
use (4.18), (4.19) and the fact that q < p. Then

lim
n→∞

〈Ap(yn), yn − y〉 = 0

which implies

yn → y in W 1,p(Ω), hence ‖y‖ = 1, y ≥ 0 (see Proposition 2.2) (4.21)

As before (see the proof of Proposition 4.1), hypothesis (H1)(ii) implies that

f(·, u+
n (·))

‖u+
n ‖p−1

w→ λ̂m(p)yp−1 in Lp
′
(Ω) as n→∞. (4.22)

So, if in (4.20) we pass to the limit as n→∞ and use (4.18), (4.21), (4.22) and the
fact that q < p, then

〈Ap(y), h〉+
∫
∂Ω

β(z)yp−1h dσ =
∫

Ω

[(1− t)λ̂m(p) + tλ]yp−1h dz

which implies
−∆py(z) = λty(z)p−1 for a.a. z ∈ Ω,

∂y

∂np
+ β(z)yp−1 = 0 on ∂Ω.

(4.23)

where λt = (1− t)λ̂m(p) + tλ.
If λt /∈ σ̂(p), then from (4.23) we have y = 0, contradicting (4.21).
If λt ∈ σ̂(p), then since λt ≥ λ̂m(p) and m ≥ 2, from (4.23) we infer that y must

be nodal, contradicting (4.41). This proves Claim 4. Using Claim 4 and Proposition
2.4 and we have

Ck(ϕ̂+,∞) = Ck(ψ̂+,∞) for all k ∈ N0. (4.24)
Now we introduce the homotopy

(ĥ+)t(u) = ψ̂+(u)− t
∫

Ω

u dz for all t ∈ [0, 1], and u ∈W 1,p(Ω).

Claim 5: ((ĥ+)t)′(u) 6= 0 for all t ∈ [0, 1], all u ∈W 1,p(Ω), u 6= 0.
Note that for t ∈ [0, 1] we have

((ĥ+)t)′ = ψ̂′+(u)− tη∗ in W 1,p(Ω)∗, (4.25)

with η∗ ∈ W 1,p(Ω)∗ such that 〈η∗, v〉 =
∫

Ω
v dz for all v ∈ W 1,p(Ω). Also K bψ+

=

{0}. Indeed, if u ∈ K bψ+
, then ψ̂′+(u) = 0 which implies

〈Ap(u), h〉 −
∫

Ω

(u−)p−1h dz +
∫
∂Ω

β1(z)|u|p−2uh dz = λ

∫
Ω

(u+)p−1h dz

for all h ∈W 1,p(Ω). Choosing h = −u− ∈W 1,p(Ω), we obtain

‖Du−‖pp + ‖u−‖pp ≤ 0

(see hypothesis (H2)), which implies u ≥ 0. Then we have

−∆pu(z) = λu(z)p−1 for a.a. z ∈ Ω,
∂u

∂np
+ β(z)up−1 = 0 on ∂Ω.
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which implies u = 0 since λ /∈ σ̂(p). Therefore K bψ+
= {0} and from this and (4.25),

Claim 5 follows.
The homotopy invariance property of singular homology groups implies that for

ρ > 0 small,

Hk((ĥ+)0(·)0 ∩Bρ, (ĥ+)0(·)0 ∩Bρ\{0})

= Hk((ĥ+)1(·)0 ∩Bρ, (ĥ+)1(·)0 ∩Bρ\{0}) for all k ∈ N0.
(4.26)

Using Claim 5 and Motreanu-Motreanu-Papageorgiou [17, Corollary 5.35, p.115
and Corollary 6.15, p.145], we have

Hk((ĥ+)1(·)0 ∩Bρ , (ĥ+)1(·)0 ∩Bρ\{0}) = 0 for all k ∈ N0. (4.27)

On the other hand from the definition of critical groups, we have

Hk((ĥ+)0(·)0 ∩Bρ, (ĥ+)0(·)0 ∩Bρ\{0}) = Ck(ψ̂+, 0) for all k ∈ N0. (4.28)

From (4.26), (4.27) and (4.28), we have

Ck(ψ̂+, 0) = 0 for all k ∈ N0. (4.29)

But recall that K bψ+
= {0}. Therefore

Ck(ψ̂+,∞) = Ck(ψ̂+, 0) for all k ∈ N0

which implies Cn(ψ̂+,∞) = 0 for all k ∈ N0 (see (4.29)); this in turn implies
Ck(ϕ̂+,∞) = 0 for all k ∈ N0 (see (4.24)). Similarly we show that Ck(ϕ̂−,∞) = 0
for all k ∈ N0. �

From the proof of Proposition we know that the positive solution u0 ∈ D+ (resp.
the negative solution v0 ∈ −D+) is a critical point of mountain pass type for the
functional ϕ̂+ (resp. The functional ϕ̂−). So, we have

C1(ϕ̂+, u0) 6= 0 and C1(ϕ̂−, v0) 6= 0, (4.30)

(see Motreanu-Motreanu-Papageorgiou [17, Corollary 6.81, p.168]). In general to
describe more precisely these critical groups, we need a Hilbert space setting and
C2-regularity of the functionals. Nevertheless, here using Propositions 4.1 and 4.2
and some tools from Algebraic Topology (Homological Algebra), we are able to
compute exactly the critical groups of the energy functional ϕ at u0 and at v0.
Note that since u0 ∈ D+, v0 ∈ −D+ and ϕ′|C+ = ϕ̂′+|C+ , ϕ′|−C+ = ϕ̂′−|−C+ , (see
(3.1)) we have u0, v0 ∈ Kϕ. We assume that Kbϕ+ = {0, u0}, Kbϕ− = {0, v0} or
otherwise we are done.

Proposition 4.3. If hypotheses (H1)–(H3) hold and u0 ∈ D+, v0 ∈ −D+ are the
two constant sign solutions of (1.1) produced in Propositon 3.5, then Ck(ϕ, u0) =
Ck(ϕ, v0) = δk,1Z for all k ∈ N0. Here δk,m denotes the Kronecker symbol defined
by

δk,m =

{
1 if k = m

0 if k 6= m.

Proof. We will do the proof for the pair {ϕ, u0}, the proof for the pair {ϕ, v0} being
similar.

Let η ≤ 0 < α < m̂+
ρ (see (3.32)). We consider the following triple of sets

ϕ̂η+ ⊆ ϕ̂α+ ⊆W 1,p(Ω).
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To this triple corresponds a long exact sequence of singular homology groups (see
Motreanu-Motreanu-Papageorgiou [17, Proposition 6.14, p.143]). So, we have

· · · → Hk(W 1,p(Ω), ϕ̂η+) i∗→ Hk(W 1,p(Ω), ϕ̂α+)
bθ∗→ Hk(ϕ̂α+, ϕ̂

η
+)→ · · · (4.31)

with i∗ being the homomorphism induced by the inclusion i : (W 1,p(Ω), ϕ̂η+) →
(W 1,p(Ω), ϕ̂α+) and θ̂∗ is the composed boundary homomorphism. From the rank
theorem we have

rankHk(W 1,p(Ω), ϕ̂α+) = rank ker θ̂∗ + rank im θ̂∗

= rank im i∗ + rank im θ̂∗ (since (4.31) is exact)
(4.32)

Since α ∈ (0, m̂+
ρ ) and Kbϕ+ = {0, u0}, we have

Hk(W 1,p(Ω)ϕ̂α+) = Ck(ϕ̂+, u0) for all k ∈ N0, (4.33)

(see Motreanu-Motreanu-Papageorgiou [17, Lemma 6.55, p.157]).
Similarly since η < 0 = ϕ̂+(0), we have

Hk(W 1,p(Ω), ϕ̂η+) = Ck(ϕ̂+,∞) for all k ∈ N0 (recall Kbϕ+ = {0, u0})

which implies Hk(W 1,p(Ω), ϕ̂η+) = 0 for all k ∈ N0 (see Proposition 4.2). This in
turn implies

im i∗ = {0} (see (4.31)). (4.34)
In a similar fashion, we see that Hk−1(ϕ̂α+, ϕ̂

η
+) = Ck−1(ϕ̂+, 0) for all k ∈ N0, which

implies

Hk−1(ϕ̂α+, ϕ̂
η
+) = δk−1,0Z = δk,1Z for all k ∈ N0 (see Proposition 3.5). (4.35)

We return to (4.32) and use (4.33), (4.34), (4.35). Then

rankCk(ϕ̂+, u0) ≤ 1. (4.36)

Note that on account of (4.35) only the tail of (4.31) is nontrivial (that is, the
terms for k ≥ 2 are all zero). So, from (4.36) and (4.30) it follows that

Ck(ϕ̂+, u0) = δk,1Z for all k ∈ N0. (4.37)

Next consider the homotopy h̃t(u) defined by

h̃t(u) = (1− t)ϕ(u) + tϕ̂t(u) for all t ∈ [0, 1], all u ∈W 1,p(Ω).

Suppose that we could find {tn}n∈N ⊆ [0, 1] and {un}n∈N ⊆W 1,p(Ω) such that

tn → t in [0, 1], un → u0 in W 1,p(Ω) and (h̃tn)(un) = 0 for all n ∈ N. (4.38)

From equality (4.38) we have

〈Ap(un), h〉+ 〈Aq(un), h〉+
∫
∂Ω

(β1(z)|un|p−2un + β2(z)|un|q−2un)h dσ

− tn
∫

Ω

(u−n )p−1h dz

= (1− tn)
∫

Ω

f(z, un)h dz + tn

∫
Ω

f(z, u+
n )h dz for all h ∈W 1,p(Ω),

which implies

−∆pun(z)−∆qun(z) = (1− tn)f(z, un(z)) + tn[f(z, u+
n (z)) + u−n (z)]

for a.a. z ∈ Ω,
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∂u

∂npq
+ β1(z)|un|p−2un + β2(z)|un|q−2un = 0 on ∂Ω.

From Papageorgiou-Radulescu [24], we know that we can find M4 > 0 such that

‖un‖∞ ≤M4 for all n ∈ N.

Then the nonlinear regularity theory of Lieberman [14] implies that we can find
α ∈ (0, 1) and M5 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤M5 for all n ∈ N. (4.39)

The compact embedding of C1,α(Ω) onto C1(Ω) and (4.18) imply that un → u0 in
C1(Ω), thus

un ∈ D+ for all n ≥ n0 (recall that u0 ∈ D+).
But as we already pointed out ϕ′|C+ = ϕ̂′+|C+ (see (3.1)) implies that {un}n≥n0

are distinct positive solutions of (1.1), a contradiction (recall Kbϕ+ = {0, u0}). So
(4.38) can not occur and from the homotopy invariance of critical groups (see for
example Gasinski-Papageorgiou [11, Theorem 5.125, p.836]), we have

Ck(ϕ, u0) = Ck(ϕ̂+, u0) for all k ∈ N0,

⇒ Ck(ϕ, u0) = δk,1Z for all k ∈ N0 (see (4.37)).

Similarly, using this time the functional ϕ̂−, we show that

Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

�

Now we can produce a third nontrivial smooth solution for problem (1.1) and
formulate our “three solutions theorem”.

Theorem 4.4. If hypotheses (H1)–(H3) hold, then problem (1.1) admits at least
three nontrivial smooth solutions

u0 ∈ D+, v0 ∈ −D+, y0 ∈ C1(Ω).

Proof. From Proposition 3.5, we already have two constant sign solutions

u0 ∈ D+, v0 ∈ −D+.

From Proposition 4.3 we know that

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0. (4.40)

Also, from Proposition 3.3, we know that u = 0 is a local minimizer of ϕ. Hence

Ck(ϕ, 0) = δk,0Z for all k ∈ N0. (4.41)

From Proposition 4.1, we have that Cm(ϕ,∞) 6= 0 (m ≥ 2). So, we can find y0 ∈ Kϕ

such that Cm(ϕ, y0) 6= 0 and y0 /∈ {0, u0, v0} (see Motreanu-Motreanu-Papageorgiou
[17, Proposition 6.89, p.172]). Then y0 is a third nontrivial solution of (1.1) and
the nonlinear regularity theory of Lieberman [14] implies that y0 ∈ C1(Ω). �
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