
THE DESIGN AND IMPLEMENTATION OF A

DOWN-LINE LOADER

THESIS

Presented to the Graduate Council of
Southwest Texas State University

in Partial Fulfillment of
the Requirements

For the Degree of
MASTER OF SCIENCE

By

Donald Dee Druckenbrodt
San Marcos, Texas
December 1977

TABLE OF CONTENTS

PREFACE.. i
Chapter

I. PRELIMINARY CONCEPTS.........................
Introduction...............................
The Down-line Loader.......................
Overview...................................
The PDP-8/E................................

II. TELEPHONE LINE LOADERS.......................
TRIM Loader................................
TRIM Flowchart.............................
The Binary Loader..........................
RIMPRT Flowchart...........................
IMPORT Flowchart...........................
EXPORT Flowchart...........................

III. SYNCHRONOUS LINE LOADER......................
The Binary Loader..........................
SYNC Flowchart.............................

IV. CONCLUSIONS..................................

APPENDIX A: PROGRAM LISTINGS
APPENDIX B: PROCEDURES.....
BIBIOGRAPHY.................

ii

1
1
2
4
5
8

10
12
13
14
17
21
23
23
27
29

31
56
59

n

PREFACE

This thesis will discuss the design and implementation
of a down-line loader. My motivation in selecting this
topic has come from the desire to involve as many different
facets of computer science as possible in one project. It
has also provided the opportunity to investigate computer
communications and to investigate two vastly different
computer systems. But most important of all it has posed
many problems from the use of a wide range of hardware and
has required the use of varied programming techniques to
solve these problems.

In many instances computer hardware is not used to its
fullest potential or is acquired unnecessarily without first
surveying all possible alternatives. It is the goal of this
thesis to investigate a particular hardware related problem
and propose possible solutions. Each solution will be
described in detail and the advantages and disadvantages of
each will be discussed.

While researching and writing this thesis there were
many problems and setbacks encountered. I would like to
sincerely thank those who have helped me to overcome the
many obstacles to make this project possible. Their
contributions, large and small, are very much appreciated.

iii

I would especially like to thank my parents for their
encouragement and continuous support and my wife for her
endless patience and love.

D.D.D.

Southwest Texas State University
San Marcos, Texas
August, 1977

IV

CHAPTER I

PRELIMINARY CONCEPTS

INTRODUCTION

The problem we will investigate involves the loading
of a PDP-8/E which acts as a concentrator for a DEC-10
computer system. The PDP-8/E and DEC-10 are linked by a
direct synchronous line over a distance of approximately one
half mile. Acting as a concentrator, the operating system
of the PDP-8/E places sixteen independent devices in contact
with the Dec-10 over a single communications line. The
operating system of the PDP-8/E periodically requires
reloading due to system crashes or programming changes. Due
to hardware constraints this operating system is currently
being loaded by paper tape with an ASR-33 teletype which is
quite slow and inconvenient to use. The only other input
device available to the PDP-8/E is a card reader. Loading
by cards has been performed in the past but was found to be
inconvenient because the installation does not have a card
punch capability and periodic software changes will not
allow for a permanent card deck to be used. Acquisition of
additional input devices for loading purposes will be ruled
out due to cost.

1

2
The alternative methods of loading involve down-line

loading schemes which do not require additional hardware and
which provide excellent performance.

We intend then to discuss the design and
implementation of down-line loaders, each implementation
being limited to the use of existing hardware.

In the interest of notational simplification all
decimal constants in the following text will be
distinguished by the presence of a decimal point. All
constants appearing without decimal points are to be
considered octal constants.

THE DOWN-LINE LOADER

In general a loader is a program which accepts object
code, places it in memory and initiates execution. Here,
the loaders to be described are different in that they
obtain object code over a communication link from another
computer system. The phrase "down-line loader" implies that
a particular situation exists. First, that communication
exists between a larger host processor and a smaller target
processor which has been dedicated to a specific task or is
being used in a distributed data processing network.
Second, communication has been interrupted due to the
destruction of the operating system within the target
processor and that loading is to occur from the host
processor to the target processor which will reestablish the
operating system of the target processor and restore normal

3
communications between the two.

Down-line loading requires that the target processor
first be loaded by some means to reestablish communications.
This initial program loading or bootstrapping should enable
the target processor to communicate with the host processor
and receive and load object programs sent by the host
processor. Once the target processor's operating system has
been restored, normal operation can resume.

The down-line loading idea can also be applied in
other situations where any independent target processor may
not have a desirable program storaqe capability. In many
instances processors are used to monitor or control
mechanical devices under varying circumstances. In some
cases the infrequent need for loading software can not
justify the cost to acquire additional hardware for this
purpose. If communications could be established with a host
processor a loading procedure could be developed which would
allow the target processor to utilize the storage capability
of the host and in many cases decrease the time required to
access and load programs. Therefore, the target processor
would not require any auxiliary storage capability other
than that required for the initial program loader, which
could take the form of a hardware bootstrap loader or a
PROM. All other software such as assemblers, editors, or
utilities could reside with the host and be loaded only as
required.

4
OVERVIEW

In the following chapters two down-line loading
schemes will be discussed. The first involves establishing
communications between the two central processors over a
telephone line using the host's dial-up capability and a
standard telephone with an acoustic coupler. In normal use
the dial-up feature of the DEC-10 is used to provide
communication with a remote terminal device by telephone

J

which is dialed to establish contact with the DEC-10. The
telephone receiver is then placed in the acoustic coupler,
which is used to convert analog signals on the telephone
line to serial digital pulses. The terminal device, which
requires serial digital pulses, can be plugged into the
acoustic coupler's output and placed in contact with the
DEC-10. The host will output a requested object code file
over the telephone line to the target processor which is
connected to the coupler and programmed to receive, format,
and load the object code it receives.

The second scheme involves the use of the direct
synchronous line as a communications link between
processors. The DEC-10 uses the DS-10 synchronous line unit
to handle the transmission and reception of serial data overi
one full-duplex, synchronous communications line at speeds
of 600. to 20,000. bits per second. The DS-10 transfers
full data words between itself and the DEC-10 under program
control via the I/O bus. On the PDP-8/E end of the
synchronous line the DP8-E synchronous modem interface is

5
the counterpart of the DS-10 for the transmission and
reception of data. The DP8-E can also access memory in the
PDP-8/E directly without program control. For example, the
transmission of a message requires only the initialization
of the first address of the message and the number of
characters to be sent. When placed in transmit mode the
DP8-E automatically references the message directly from
memory to the synchronous line without program intervention.

The second scheme, is concerned primarily with the
transmission and the reception of data through the DS-10 and
the DP8-E .

THE PDP-8/E

Before we can discuss the details of the loading
schemes it will be necessary to describe some particular
features in the architecture of the PDP-8/E. The
organization of memory will be the primary concern.

The memory of the PDP-8/E is divided into 4K (4096.
byte) fields. A three bit register is used,to specify which
particular field is being accessed at the current time.
This allows up to eight fields or 32.K words of memory.
There are two special three bit registers used to specify
fields. The instruction field register determines the
memory field from which instructions are executed and the
memory field from which the operand of a directly addressed
instruction is taken. The data field register determines
the memory field from which an indirectly addressed operand

6
is taken.

Whenever it becomes necessary to change the
instruction or data fields, a field change instruction must
be executed to accomplish the change. To change the current
instruction field, we must execute an instruction field
change instruction (CIF). The current instruction field
remains in effect until a jump indirect instruction is
executed, at which time the program counter is set to the
specified operand within the new field. To change data
fields, we must execute a data field change instruction
(CDF). The current data field is changed immediately upon
execution of the CDF.

Each of the fields is divided into 32. logical pages,
each page containing 200 locations. The purpose behind the
page structure can be seen when examining the format of the
memory reference instructions (MRI). Memory reference
instructions are twelve bits in length as are all other
PDP-8/E instructions. The first three bits of an MRI are
used to specify the op code. The fourth bit is used to
indicate the use of direct or indirect addressing. The
fifth bit is used to indicate whether the operand is on the
current page or on page zero which are the only pages that
may be referenced directly; all others must be referenced
indirectly. The last seven bits are page address bits which
allow for a relative address from 0 to 177 on each page.
The paging scheme then allows for the referencing of 4K of
memory using a nine bit operand rather than a twelve bit

7
operand. Therefore without the paging scheme the word size
would be fifteen bits rather than twelve.

In addition to memory reference instructions there are
operate microinstructions which allow the programmer to
manipulate or test data stored in a twelve bit general
purpose register referred to as the accumulator and a one
bit register referred to as the link. The link is logically
attached to the beginning of the accumulator.

CHAPTER II

TELEPHONE LINE LOADERS

Our first loading scheme involves communication
between the two central processors over a telephone line at
a rate of 300. baud. Here, as described earlier, we
connect the PDP-8/E to the DEC-10 via a telephone link. We
will have the DEC-10 output data to the PDP-8/E as if the
PDP-8/E were a remote terminal programmed to receive,
format, and load data as required.

We establish contact with the DEC-10 by dialing in on
the telephone. Using the acoustic coupler and a terminal we
can login and reach monitor level. We then execute a
program on the DEC-10 which is used to access disk files
that contain PDP-8/E object code and to output these files
to the PDP-8/E. Upon execution, this program waits for an
ACK (positive acknowledgement) character from the PDP-8/E
before output of the desired object code begins. At this
point the terminal is disconnected from the coupler in order
to connect the PDP-8/E which is assumed to be in an unloaded
state. Therefore the loader to be used to accept object
code from the DEC-10 must itself be loaded into memory.
Fortunately, the PDP-8/E has an M18-E hardware bootstrap
loader which has a capacity of 32. twelve bit words. The

8

9
M18-E can load an initial memory address and instruction
field to be used, deposit 32. words sequentially into
memory, load a memory start address, and begin execution of
the loaded program. Due to the size restriction placed on
the loader by the M18-E, it is not possible to encode a 32.
word loader capable of acknowledging the DEC-10 and
receiving and loading binary-formatted object code with the
attendant checksumming and handshaking. It is possible,
however, to write a loader to send an ACK to the DEC-10 and
receive and load RIM (read in mode) formatted object code
without the checksumming and handshaking being done.

RIM format requires that each instruction in object
code be preceded by the address at which the instruction is
to be loaded. Binary format is similar to RIM format except
that only the initial address in a series of consecutive
instructions is specified. The binary loader must then
recognize new addresses or increment the current address
when loading binary-formatted files. RIM format allows for
a simpler loader because of the regular address/instruction
order. However, the additional addresses added to the code
being loaded will increase load time considerably. It is
desirable for the RIM format loader to load another larger
loader capable of loading binary formated files. We refer
to this first RIM format loader as a TRIM (telephone read in
mode) loader.

(

10
TRIM LOADER

The TRIM loader must satisfy the following
requirements. First it must send an ACK to the host to
initialize output. As input is received from the host, the
TRIM loader must distinguish between an address, an
instruction to be loaded, a data field change, or a
leader-trailer, and must take the necessary steps to see
that each instruction is loaded at the proper address and in
the correct data field. Leader-trailer codes are placed at
the beginning and the end of the object code produced by the
assembler and will be discarded if received by the TRIM
loader.

Each PDP-8/E address and instruction is twelve bits in
length. Data sent over the telephone line by the DEC-10 is
in groups of eight bits requiring each PDP-8/E address or
instruction to be sent in two parts, each containing two
identification bits and six data bits. A field change or a
leader-trailer requires only six bits and may be sent in one
part.

The two identification bits are used only in the first
half of the instruction or address that is sent. The first
two bits of a required second half are always off. Each
eight bit group has the following identification bit
representation.

I

11
TYPE ID BITS
Instruction 0 0
Address 0 1
Leader-trailer 1 0
Field change 1 1

As each first half is received it is identified. If
an address is identified the second half is received and the
full address is formed and placed in a location reserved for
the temporary storing of current addresses. If an
instruction is received the full instruction is formed after
receiving the second half and the instruction is loaded
indirectly on the current address. When a field change is
encountered a data field change instruction to field one is
always executed. Data field zero is initialized by the
M18-E. If size restrictions had not been placed on the TRIM
loader, the six data bits received with the field change
identification bits would be used to form a CDF instruction
so that a change to any specified field could be made. Any
leader-trailer that is received is ignored by the TRIM
loader.

The following is a flowchart of the TRIM loader. Note
that the algorithm has no logical end. All RIM object code
that is loaded overlays the TRIM loader to cause a transfer
to the start address of the loaded object code.

12
TRIM FLOWCHART

(TO) Send an ACK to the host
(Tl) If a character has been received from the host

THEN (T2) ELSE (Tl)
(T2) Place the character in the AC (accumulator)
(T3) Place the character in the low half

of the AC and the first ID bit in
the LINK (rotate the AC left 5 bits)

(T4) IF bit 0 is set THEN (T5) ELSE (T10)
(T5) IF the link is set THEN (T13) ELSE (T6)
(T6) Execute change to data field 1
(T7) GO TO (Tl)
(T10) IF LINK is set THEN (Til) ELSE (T13)
(Til) This character is a leader-trailer code so disregard
(T12) GO TO (Tl)
(T13) Place the second ID bit in theLINK (rotate AC left one bit)
(T14) IF a character has been received from the host THEN (T15) ELSE (T14)
(T15) Place the character in the high half of the AC
(T16) IF LINK is set THEN (T17) ELSE (T21)
(T17) TEMP = AC
(T20) GO TO (Tl)
(T21) LOC(TEMP) = AC
(T 2 2) GO TO (Tl)

13
THE BINARY LOADER

After the TRIM loader has been placed in the memory of
the PDP-8/E by the M18-E the PDP-8/E is able to load the
binary loader. The TRIM loader, although used here to load
the binary loader, could be used to load any RIM formatted
file without having to use the binary loader. Loading the
binary loader in order to load a binary-formatted file may
not be as fast as loading that same file in RIM format using
the TRIM loader. A relatively short file could be loaded
much faster in RIM format. The loading of a large file
however, would be much slower using RIM format due to the
time required to output and process the additional
addresses. This time exceeds the time required to load the
binary loader and then load the same file using binary
format. Also the possibility of extraneous characters being
placed in the transmission line, referred to as line noise,
is increased as load time increases and could result in an
improper load using the TRIM loader.

Earlier it was mentioned that the host processor would
execute a program to output desired object code to the
target processor. The TRIM loader by design will generally
load the binary loader. The host program, referred to as
RIMPRT must then access and output the binary loader in RIM
format when an ACK is received from the TRIM loader. For
convenience, all PDP-8/E object code is assumed to be in
binary format which will require RIMPRT to change
binary--formatted code to RIM format before output. This

14
requirement is easily implemented and does not increase load
time due to the slow transmission rate of the telephone
line. TRIM and RIMPRT are always used together to load RIM
formatted code.

RIMPRT FLOWCHART

(RO) Open channel for input
(Rl) Open channel for output
(R2) Strip off leader-trailer codes from

object code
(R3) Read next character
(R4) IF character is leader-trailer THEN (R22)

ELSE (R5)
(R5) IF character is field change THEN (R6) ELSE (RIO)
(R6) Output character to target
(R7) GO TO (R3)
(RIO) IF character is a address THEN (Rll)

ELSE (R13)
(Rll) Read second character and form current address
(R12) GO TO (R3)
(R13) Separate current address into two bytes
(R14) Output both address bytes
(R15) Output current character
(R16) Read second half of the instruction
(R17) Output second half
(R20) Increment current address
(R21) GO TO (R3)
(R22) END

15
The binary loader must be able to request and load any

binary formatted file that the host may have stored on disk.
To enable the user to request files in a convenient manner,
the binary loader should also include a device driver to
allow for user I/O with the host. The binary loader should
also perform error checking and have the ability to request
retransmission of data when errors are detected. If larger
programs are to be loaded, the binary loader should be as
small as possible.

Because of these constraints the binary loader, which
is referred to as IMPORT, has two modes of operation:
communications mode and load mode. Communications mode
provides a device driver that allows the user to use a
terminal device connected to the PDP-8/E to access the host
via the telephone link. Any character typed on the user's
console is accepted by IMPORT and sent to the host. The
host receives the character and generates an echo of that
character. IMPORT receives the character that has been
echoed and sends it to the user's console. During
communications mode the user has full use of the facilities
of the host processor.

At some point the user can request that a binary file
be loaded from the host. This is done by the execution of a
host program similar to RIMPRT. This program, called
EXPORt, can access binary-formatted object code and output
it in that form. When the particular object code file has
been determined, EXPORT sends a control character that

16
IMPORT will recognize as the beginning of a load sequence
and will enter load mode. When load mode has been initiated
IMPORT will not output to the user's console, but will
accept all data as object code to be loaded. Since error
checking is to be done, EXPORT sends data in blocks
containing a checksum and a word count in addition to the
object code. Should an error in transmission occur, IMPORT
requests EXPORT to retransmit the last block of data until
it is received correctly or until a predetermined error
count is exceeded. EXPORT sends data in the same manner as
RIMPRT, eight bits at a time. The first two bits are used
for identification, the last six bits for data. Since
object code is sent in blocks containing control
information, IMPORT always considers the first eight bits of
each block to be a checksum, the second eight bits to be a
word count, and the remainder to be object code to be
identified by their identification bits.

There may be cases that require object code to be
loaded into memory where IMPORT is currently executing. A
buffer area the size of a particularly vulnerable part of
IMPORT has been set aside in the upper portion of the second
4K field. Code that is to be loaded in the same memory
locations as IMPORT is placed in the corresponding relative
locations in this temporary buffer.

At the conclusion of each load EXPORT sends another
control character to terminate load mode, writes a load
summary, and places the user terminal back into

17
communication with the host. At this point the user may
load additional object code, use the facilities of the host,
or dump the temporary buffer overlaying IMPORT and begin
execution of the loaded code. To dump the temporary buffer
the user must type a control G, which IMPORT will recognize
from communications mode to cause a transfer of control to a
dump routine located near the buffer. This routine will
dump the buffer and print, a "load completed" message on the
user's console.

The following are flowcharts of IMPORT and EXPORT.

IMPORT FLOWCHART

(10) Initialize variables
(11) IF an interrupt occurs THEN (12)

ELSE (II)
(12) IF an interrupt from the host to user device

\ occurs THEN (17)
(13) IF an interrupt from the user's keyboard occurs

THEN (15)
(14) IF an interrupt from the user's printer occurs

THEN (115) ELSE (11)
(15) Read character from user keyboard and send to

the host
(16) GO TO (II)
(17) Read character from the host
(110) IF in load mode THEN (ILO)
(111) IF character is dump control character

THEN (IDO)
(112) IF load mode control character THEN (113)

ELSE (115)
(113) Set load mode

18

(114) GO TO (11)
(115) „ Write character to buffer
(116) IF output to user console is in progress

THEN (11) ELSE (15) \
(117)

1
Output a character from the buffer to the user printer

(120) GO TO (11)
(ILO) IF byte flag set THEN (IL26)
(IL1) IF word count has been received then (IL6)

ELSE (IL2)
(IL2) IF checksum has been received THEN (IL5)
(IL3) Initialize checksum
(IL4) GO TO (11)
(IL5) Initialize word count
(IL6) GO TO (11)
(IL7) IF the character is the first half of an

instruction THEN (IL10) ELSE (IL14)
(IL10) Move the character to low half of AC and store
(IL11) Increase checksum
(IL12) Set byte flag
(IL13) GO TO (11)
(IL14) IF the character is the first half of an

address THEN (IL15) ELSE (IL17)
(IL15) Set address flag
(IL16) GO TO (IL10)
(IL17) IF the character is a field change

THEN (IL20) ELSE (IL21)
(IL20) Set new data field
(IL21) GO TO (IL45)
(IL22) IF the character is a terminate load code

THEN (IL23) ELSE (IL25)

19

(IL23) Clear load mode
(IL24) GO TO (11)
(IL25) The character is trash so ignore
(IL26) GO TO (11)
(IL27) Turn off byte flag
(IL 3 0) Increase checksum
(IL31) Join bytes to form word
(IL32) IF address flag set THEN (IL33)

ELSE (IL36)
(IL33) Clear address flag
(IL34) Set CA (current address)
(IL35) GO TO (IL45)
(IL36) IF this data should be buffered THEN (IL37)

ELSE (IL41)
(IL37y Store the word in the buffer
(IL40) GO TO (IL44)
(IL41) Select the current data field
(IL42) LOC(CA) = WORD
(IL43) Restore original data field
(IL44) Increment current address
(IL45) Increment word count
(IL46) IF this is the last word THEN (IL47)

ELSE (11)
(IL47) IF checksum is correct THEN (IL50) ELSE (IL52)
(IL50) Send an ACK to the host
(IL51) GO TO (11)
(IL52) Send retransmit to the host
(IL53) Clear line

20
(IL54) IF line is clear THEN (II) ELSE (IL53)
(IDO) Dump the buffer
(IDl) Print "LOAD COMPLETE"
(ID2) GO TO the initial starting location of the loaded object code.

21
EXPORT FLOWCHART

(EO) Open channel for input
(El) Open channel for output
(E2) Strip off leader-trailer codes from

object code
(E3) Read next character and store
(E4) Read second half of address and store
(E5) Initialize checksum and word count
(E 6) Read next character
(E7) IF character is a leader-trailer THEN (E30)
(E10) IF character is an address THEN (Ell) ELSE (E16)
(Eil) Send current buffer
(E12) IF reply from target is an ACK THEN (E13)

ELSE (Ell)
(E13) Store address half
(E14) Read second half of address, form full address,

and store
(E15) Initialize checksum and word count
(E16) Strip off consecutive addresses and re-initialize if necessary'
(E17) GO TO (E6)
(E20) IF word count is equal to the buffer size

THEN (E21) ELSE (E25)
(E21) Send the current buffer
(E22) IF reply from target is ACK THEN (E23)

ELSE (E21)
(E 2 3) Store current address .
(E24) Re-initialize checksum and word count
(E25) Store character in buffer
(E26) Increment word count

22

(E27) GO TO (E6)
(E30) Output current buffer
(E31) Terminate load mode
(E32) Output load summary

CHAPTER III

SYNCHRONOUS LINE LOADER

Our second loading scheme involves the use of both the
telephone line communications link and a direct synchronous
line communications link. Because the M18-E has been
configured to receive telephone line communication, it is
again used to initially load a larger binary loader.
Therefore, the TRIM loader and RIMPRT are used in the same
manner as described earlier. In this case however, the,TRIM
loader is to load a binary loader which communicates with
the host processor via a synchronous communications line at

(a rate of 9600. baud. Due to the high speed data tranfer
this binary loader can load object code from the host 32.
times faster than IMPORT.

THE BINARY LOADER

The use of this high speed communication link has
caused this second binary loader, called SYNC, to be quite
different from IMPORT. Because of the data transfer speeds
involved, characters sent from the host are not processed as
they are received. The PDP-8/E is only able to receive data
over the synchronous line through the use of the DP8-E
synchronous modem interface. The DP8-E accesses the memORY

23

24
of the PDP-8/E directly by taking control of the CPU when a
character is to be sent or received over the synchronous
line. When transmitting or receiving a character, the DP8-E
references two particular memory locations that have been
initialized under program control. These two locations,
current address (CA) and word count (WC), are used as
registers. When transmitting, the CA register is used as a
pointer to the address of the next character to be
referenced and sent out on the line. When receiving, the CA
register is used as a pointer to the address of the next
location to be filled by an incoming character. In both
cases the CA register is first incremented by the M18-E and
then used as an address. Therefore the CA register must be
initialized to point to the first location before the
message buffer. Under program control the WC register is
set to the two's complement form of the number of characters
to be received or sent. As each character is transmitted on
the line, the WC register is incremented by one by the
DP8-E. When the WC.register becomes zero a flag is set by
the DP8-E that is detected by SYNC.

SYNC has been designed around the operation of the
DP8-E. Incoming blocks of data are received in their
entirety and then processed. The construction of data
blocks sent by the host must be modified due to the
requirement to initialize the WC register. SYNC receives
data blocks in two parts. The first part is called the
"header". Each header is of the same fixed length so that

25
the WC register can be initialized consisently. The CA
register is always set to the memory location one address
before the first location of the message buffer. Contained
within the header is a word count which is used to
reinitialize the WC register to enable SYNC to receive the
variable length block to follow, referred to as "text." Also
included in the header is the current data field, the
current load address, and a checksum for the header. After
receiving the header the WC register is reinitialized so
that the following text block can be recived. The text
block consists of the binary-formatted object code followed
by a checksum for the text block.

In an effort to decrease the size of this loader and
to make the loading of a single file faster and easier, the
communications mode used in IMPORT is not implemented in
SYNC. In the case when only a single file is to loaded and
the facilities of the host, other than loading functions,
are not to be used the communications mode becomes an
unnecesary step in the loading process. Currently
communications mode allows the user to execute EXPORT in
order to output a specified object file. By combining the
functions of RIMPRT and EXPORT into one program the object
file can be specified prior to loading and eliminate the
need to pause between the execution of RIMPRT and EXPORT.
Using SYNC we first make contact with the host by telephone
using the ascoustic coupler and a terminal. We then execute
the counterpart of the combined programs, RIMPRT and EXPORT.

26
This program, called LDSYNC, requests the user to specify
the object file to be loaded and then waits for an ACK from
the TRIM loader. At this point the terminal is disconnected
from the coupler and the PDP-8/E is plugged into the
coupler. The M18-E is started causing the TRIM loader to be
brought into memory, and the TRIM loader execution begins
with the RIMPRT portion of LDSYNC. Once SYNC is brought
into memory by the TRIM loader and begins execution, the
counterpart of EXPORT within LDSYNC is already waiting for a
load request from SYNC to begin output of the specified
object file.

LDSYNC will output the object file in two-part blocks
via the DS-10 synchronous line unit. Data is transferred
between LDSYNC and the DS-10 in 36. bit words via the I/O
bus. Since each character unit is eight bits in length,
four characters are contained in each word. The remaining
four bits per word are ignored by the DS-10. Therefore,
under program control LDSYNC must group four eight bit
characters into one word from the object file and output the
word to the DS-10. The DS-10 in turn receives the word from
LDSYNC, sends it out on the synchronous line, and signals
LDSYNC when it is ready for the next word. When messages
are received from the PDP-8/E, the same process occurs in
the reverse direction. LDSYNC continues to send two-part
blocks to SYNC until the entire file has been sent. Should
a transmission error occur during the loading of a
particular block, SYNC will detect the error through

27
checksumming and request LDSYNC to retransmit the last block
of data until it is received correctly or until an error
count is exceeded. The last instruction sent by LDSYNC
overlays a SYNC instruction and causes a tranfer to the
starting address of the loaded object file.

Under normal system operation the DS-10 is accessed
only by the DEC-10 monitor and is restricted from user
access. The DS-10 can only be accessed if changes are made
to the monitor code. Due to the complexity of the monitor
operating system and the expertise required to make specific
changes where needed, the synchronous loader has not been
implemented. The source listings for the algorithms
discussed have been written, though, and appear in the
appendix. Routines for the nost which involve I/O with the
DS-10 have been omitted.

The following is a flowchart of SYNC. A flowchart of
LDSYNC will not be given due to its close similarities to
RIMPRT and EXPORT.

SYNC FLOWCHART

(50) Send a load request to hoist
(51) Set header WC and CA
(52) Receive the header block
(53) Calculate the header checksum
(54) IF header is correct THEN (S6)

ELSE (S17)
(55) Send ACK to the host
(56) Receive the text block

(S7) Calculate the text checksum
(510) IF the text is correct THEN (SII) ELSE (S17)
(511) Set the current data field
(512) Set the current load address
(513) Form instructions from the adjacent

bytes and load into memory
(514) IF finished processing the buffer

THEN (S15) ELSE (S13)
(515) Send ACK to the host
(516) GO TO (SI)
(517) Send NAK to the host
(S20) GO TO (SI)

CHAPTER IV

CONCLUSIONS

In summary, we have discussed the design and
implementation of two down-line loading systems. The need
for these systems came from the requirement of a target
processor to be loaded by a more efficient means, without
acquiring additional hardware. The existing hardware
environment provided communication facilities to a host
processor and therefore the basic elements existed for the
development of a down-line loader.

Chapter I described the current operating environment
of the target processor. Here it was suggested that the use
of a down-line loader would provide the most acceptable
solution for the loading requirement of the target
processor. After the preliminary concepts of a down-line
loader were defined, the two individual implementations were
outlined. Chapter I concluded with a description of certain
features of the PDP-8/E which would be required later.

Chapter II dealt with the detailed explanation of the
first implementation of the loader using the telephone line
communication link. Also included was a description of the
use of the M18-E hardware bootstrap loader to resolve the
initial program load problem as well as a description of the

29

30
algorithms used to accomplish loading and the data transfer
between processors.

Chapter III illustrated the use of the TRIM loader to
load a larger binary loader. The binary loader described
here, however, was of a much different design due to the use
of the direct synchronous line communication link. The
elimination of a communications mode in the SYNC and the
combination of RIMPRT and EXPORT into one program to improve
the loading process was also detailed.

If further information is required regarding the
DEC-10, the PDP-8/E, or general information about loaders
the reader is referred to the sources listed in the
bibliography.

APPENDIX A
PROGRAM LISTINGS

31

32
(1) TRIM.PAL

TTYTLS=6656TTYKCC=6642
TTYKRS=6644TTYTSF=6651
TTYKRB=6646TTYKSF=6641
CDF1=6211
FIELD 0

*7740
START, TAD TMP /GET ACK

TTYTLS /SEND ACK
XO, TTYKCC /CLEAR FLAG AND AC
XI, TTYKSF JMP XI

/SKIP IN FLAG SET
TTYKRB /CLR AC, READ FIRST HALF
CLL RTL /ROTATE
RTL /5 BITS
RAL /LEFT.
SMA /SKIP MINUS AC
JMP X2 / POSS. FLD OR ADDR.
SNL
JMP X3

/SKIP NON-ZERO LINK
CDF1
JMP XO

/CHANGE TO DATA FIELD ONE
X2, SZL /SKIP ZERO LINK :DATA

JMP XO / ELSE LEADER TRAILER
X3, RAL /ROTATE ONE BIT LEFT

TTYKSF
JMP.-l

/SKIP IN FLAG SET
TTYKRS /READ SECOND HALF STATIC
SNL /SKIP IF NOT ADDRESSDCA I TMP /MOVE AC TO ADDRESS TMP
DCA TMP /MOVE AC TO TMP
JMP XO /GET NEXT WORDTMP,

$
25

(2) IMPORT.PAL

*0
FIELD 0
0
JMP I 2
SKPCH
HALT=7402
CTYKSF=6031 /DEFINE IOTSCTYTCF=6042
CTYKRB=6036CTYTLS=6046
CTYTSF=6041
TTYKSF=6641
TTYTCF=6652

START,

TTYKRB=6646
TTYTSF=6651TTYTLS=6656
CDF0=6201
CDF1=6211
CIF1=6212CIF0=6202
CLA

SELF,

TAD INI
DCA NC
TAD INI
DCA FS
DCA OUTFLG
IONJMP SELF

SKPCH, TTYKSF /LOCATE INTERRUPT
SKP
JMP TTYMD
CTYTSF
SKPJMP CTYOUT
CTYKSF

CTYMD,

SKP
JMP CTYMD
TTYTCF
JMP EXIT CTYKRB /SERVICE CTY

TTYMD,
TTYTLS
JMP EXIT
TTYKRB /SERVICE TTY
DCA I TAC
TAD LOAD /IS LOAD MODE SET?SZA CLA
JMP I LDMDD /YES, GO TO LOAD
TAD BELL /RECEIVED BELL?
TAD I TAC /TYPE 'G TO
SZA CLA /DUMP BUFFER

GDMP, JMP NDMP CIFl

34
JMP I DMP2 /JUMP TO DUMP

NDMP, TAD I TAC /ELSE
TAD I LTT SZA CLA JMP X

/IS IT LEADER TRAILER?

I ACDCA LOAD
JMP EXIT

/YES, SET LOAD MODE

X, TAD I TAC
DCA I FS

/NO, PUT CHAR IN BUFFER
ISZ FS
TAD FS
CIA

/INC FREE SPACE PTR.

TAD END
SZA CLA
JMP CLR

/COMPARE FS TO END

TAD CTRLS
TTYTLS
JMP EXIT

/IF FULL SEND CTRL-S

CLR, TAD OUTFLG
SNA
JMP OUTSET
JMP EXIT

OUTSET, CLA CMA
DCA OUTFLG

CTYOUT, CLA
TAD INI
CIA

/OUTPUT THE CTY BUFFER

TAD FS /ARE THERE CHAR'S
SZA CLA
JMP WRITE
CLA
DCA OUTFLG CTYTCF
JMP EXIT

/WAITING IN CTY BUFFER?

WRITE, TAD I NC CTYTLS
/OUTPUT CHAR

ISZ NC
CLA
TAD NC
CIA

/INC POINTER

TAD FS SZA
JMP EXIT
TAD INI
DCA NC

/DONE?

TAD INI
DCA FS

/INITIALIZE POINTERS
TAD CTRLQ
TTYTLS

/SEND CTRL-Q
EXIT, ION /TURN ON INTERRUPT

JMP I 0 /RETURN
TAC, ACLOAD, 0
LDMDD, LDMD

OUTFLG, 0
NC, BUFFER
FS, BUFFERINI, BUFFER
END, BUFEND-10
CTRLS, 23CTRLQ, 21
DMP2, DUMP
BELL, -7
LTT, LT
BUFFER, 0

*177BUFEND, 0

*200
LDMD, TAD BYTFLG

SZA CLA
JMP LOADWD
TAD WRDCNTSNA CLA
JMP LOADINI
TAD AC
AND (300SNA
JMP HALF
AND (200
SNA CLA
JMP ADDR
TAD ACAND (100
SZA CLA
JMP FLDCHG
TAD AC
AND (77SZA
JMP EXIT
DCA LOAD
JMP START

FLDCHG, TAD AC
AND (77
DCA CCDFJMP CHECK+1

ADDR, I ACDCA ADRFLGHALF, TAD AC
TAD SUMDCA SUM
TAD AC
AND (77
CLL RTL
RTL
RTL
DCA BYTE

/IS BYTFLG SET?
/HAS WRDCNT BEEN SET
/NO, THEN INITIALIZE
/ELSE
/IS IT DATA?

/IS IT ADDRESS?

/IS IT FIELD CHANGE?
/IS IT LEADER TRAILER?
/TERMINATE LOAD?

/TRASH! SO DISMISS
/GO INTO COMMUN. MODE

/SET CURRENT FIELD

/SET ADDRESS FLAG
/INCREASE CKSUM

/PUT AC IN HIGH BYTE

36
I AC
DCA BYTFLGJMP EXIT

LOADINI ,TAD CKSUMSNA CLA
JMP CKTAD AC
CIA
DCA WRDCNTJMP EXIT

CK, TAD AC
TAD (100DCA CKSUM
JMP EXIT

LOADWD, DCA BYTFLGTAD AC
TAD SUM
DCA SUM
TAD ACTAD BYTE
DCA BYTE
TAD ADRFLGSNA CLA
JMP DATA
TAD BYTE
DCA LC
DCA ADRFLG
JMP CHECK

DATA, TAD LC
AND (7400SZA CLA
JMP TEST
TAD CCDF
SNA CLA
JMP STORE

TEST, TAD CCDF
TAD CODE
DCA OP

OP, 0
TAD BYTE
DCA I LC
CDFOJMP NEXT

STORE, TAD LC
TAD (ZDUMP-1
DCA LC
TAD BYTE
CDF1DCA I LC
CDFO
TAD

I
(ZDUMP-1

NEXT,
CIA
TAD LCIAC
DCA LC

/TURN ON BYTE FLAG
/HAS CKSUM /BEEN ENTERED

/ENTER WORD COUNT

/MAKE CKSUM NON-ZERO /ENTER CHECK SUM
/TURN OFF BYTE FLAG
/INCREASE SUM

/JOIN BYTES TO
/FORM WORD
/IS ADDRESS FLAG SET?

/SET LOCATION
/COUNTER TO NEW ADDRESS
/CLEAR ADDRESS FLAG
/DOES DATA NEED
/TO BE BUFFERED

/SELECT DATA FIELD

/LOAD WORD
/RESTORE DATA FIELD 0

/DETERMINE
/BUFFER ADDRESS

/PUT IT IN BUFFER

/INCREMENT LC

37
CHECK, ISZ WRDCNT /INC AND CHECK

ISZ WRDCNT
JMP EXIT
CLA CLL

/WORD COUNT

TAD SUM /COMPARE CHECKSUM
AND (77
DCA SUM
TAD CKSUM
AND (77
CIA
TAD SUM
DCA SUM CIFl
JMP REPLY

/PLACE DIFFERENCE IN

BYTFLG, 0
CKSUM, 0
ADRFLG, 0
SUM, 0WRDCNT, 0
LC, 0
BYTE, 0
LT, -201
AC, 0
CODE, 6201
DMP, DUMP
CCDF, 0

FIELD 1
*7200ZDUMP, 0

/THIS ROUTINE CLEARS
/THE LINE WHEN NOISE
/IS DETECTED.*7600

REPLY, TAD I XSUM
SNA CLA
JMP ACK

/IS CKSUM RIGHT?
CLEAR, TAD NAKK /GET NAK

TTYTLS /SEND NAK
TTYKSF
JMP.-l

/READY ?
TTYKRB
CIA

/READ
TAD SYNC /HAS SYNC
SZA CLA /BEEN READ
JMP CLEAR+2 /NOJMP NR /YES, RETURN

SYNC, 26
NAKK, 25RET, EXIT
ACK, TAD ACKIT /GET ACK

TTYTLS /SEND ACKNR, CLA CLL

CDFO
DCA I XCKSUM
DCA I XWRDCT DCA I XSUM
CIFO
JMP I RETACKIT, 6

XCKSUM, CKSUM
XWRDCT, WRDCNT
XSUM, SUM
DUMP, CDF1

TAD I PTR
ISZ PTR
ISZ LOC CDFO
DCA I LOC
ISZ SIZE JMP DUMP
CDF1
CTYTLS

XX, TAD I DONE CTYTSF
JMP.-l
CTYTLS
ISZ DONE
CLA CLL
ISZ CNT
JMP XX
CDFO CIFO
JMP I DC72

PTR, ZDUMP
LOC, 0
CNT, -10
MSG, 314317

301
304
305304
215212

DONE, MSG
SIZE, -400
DC7 2,
$

200

/DATA FIELD 1
/CLEAR CKSUM
/ WRDCNT/ SUM
/INSTR. FIELD 0
/RETURN

/DATA FIELD 1
/THIS ROUTINE DUMPS
/THE BUFFER AT *7200
/TO PAGES 0 AND 200.
/DUMP INSTR.

/DATA FIELD 1
/PRINT MESSAGE TO
/CTY AFTER DUMP

/ L O A D E D <CR> <LF>

39
(3) RIMPRT.BLI

MODULE RIMPRT(STACK(300),TIMER=EXTERNAL(SIX12)) =
BEGIN
EXTERNAL OPEN,WRITE,WRITES,READ,FORCEOUT,LOOKUP, CLOSE,ENTER;
REQUIRE TTCALL.BLI;
BIND TTCHAN=1, ICHAN=2, ACK=6, NAK=#25,

MAXNAK=10 0, MAXTRASH=100;
MACHOP JRST=#254, CALLI=#047;
MACRO HALT=JRST(4)$, RESET=CALLI(0)$;
OWN OBUF[3],

IBUF[3],
MESSAGE[260],
FILESPECS[4],
REPLY,
NAKCNT,
TRASHCNT,
HIGH,
LOW,
HALF,
ADDR;

BIND CKSUM=MESSAGE[0], WRDCNT=MESSAGE[1];
REGISTER WORD;
BIND ERRTMN=0,

ERRTMT=1;

ROUTINE OUTN(NUM,BASE,REQD)=
BEGIN

OWN N ,B,RD,T;
ROUTINE -XN=

BEGIN LOCAL R;
IF .N EQL 0 THEN RETURN

(DECR I FROM (.RD-.T-l) TO 0 DO
WRITE(TTCHAN,"0"));R_.N MOD .B; N_.N/.B; T_.T+1; XN()
WRITE(TTCHAN,.R+"0")
END;

IF .NUM LSS 0 THEN W R I T E (T T C H A N ;
B_.BASE; RD_.REQD; T_0; N_ABS(.NUM); XN()
END;

40

LABEL LOOP,LOOP2;
! i! MAINLINE !!!
RESET;
IF NOT OPEN(ICHAN,#10 , SIXBIT 'DSK',IBUF<0,0>)
THEN (OUTS('???GCOULD NOT OPEN DEVICE');CRLF;HALT);
FILESPECS[0]_SIXBIT 'IMPORT';FILESPECS[1]_SIXBIT 'BIN';
FILESPECS[2]_FILESPECS[3]_0;
IF NOT LOOKUP(ICHAN,FILESPECS)

THEN (OUTS('???GLOOKUP FAILED');CRLF;HALT);
IF NOT OPEN(TTCHAN,#210,SIXBIT 'TTY', OBUF^IS)

THEN (OUTS('???GCOULD NOT OPEN TTY');CRLF;HALT);
WHILE (WORD_INCHRW) NEQ #33 DO VREG_0;
WHILE (WORD_READ(ICHAN) EQL #200) DO VREG_0;
WORD_READ(ICHAN);
LOOP: WHILE 1 DO

BEGIN
LOOP2: WHILE 1 DO

BEGIN
IF (HALF_READ(ICHAN)) EQL #200 THEN

LEAVE LOOP;
IF (.HALF AND #300) EQL #300 THEN

BEGIN
IF (.HALF AND #77) EQL 0 THEN

BEGIN
.HALF_0;
LEAVE LOOP2;
END;WRITE(TTCHAN,.HALF);

FORCEOUT(TTCHAN);
LEAVE LOOP2;
END;

IF (WORD_.HALF AND #300) EQL #100 THEN
BEGIN
ADDR_((.HALF AND #77)"6+READ(ICHAN));
LEAVE LOOP2
END;
HIGH_(((.ADDR)"(-6)) + #100) ;
LOW_(.ADDR AND #77);WRITE(TTCHAN,.HIGH);
WRITE(TTCHAN,.LOW);
WRITE(TTCHAN,.HALF);
HALF_READ(ICHAN);
WRITE(TTCHAN,.HALF);
FORCEOUT(TTCHAN);
ADDR .ADDR+1;

41
END;

END;
WHILE 1 DO VREG_0;
CLOSE(TTCHAN)END ELUDOM

42
(4) EXPORT.BLI

MODULE DC72(STACK(300),TIMER=EXTERNAL(SIX12))=
BEGIN
EXTERNAL OPEN,WRITE,WRITES,READ,FORCEOUT,LOOKUP,

ENTER,CLOSE;
REQUIRE TTCALL.BLI;
BIND TTCHAN=1, ICHAN=2, ACK=6, NAK=#25, MAXNAK=100, MAXTSH=100,

SYNC=#26;
MACHOP JRST=#254, CALLI=#047;
MACRO HALT=JRST(4)$, RESET=CALLI(0)$;
OWN OBUF[3],

IBUF[3],
MESSAGE[300],
FILESPECS [4] ,
REPLY,
NAKCNT,
TRASHCNT,
ACKCNT;

BIND CKSUM=MESSAGE[0], WRDCNT=MESSAGE[1];
REGISTER WORD,ADDR;
LABEL LOOP;
BIND ERRTMN=0,

ERRTMT=1;

ROUTINE OUTN(NUM,BASE,REQD)=
BEGIN OWN N ,B,RD,T;
ROUTINE XN=
BEGIN LOCAL R;
IF .N EQL 0 THEN RETURN
(DECR I FROM (.RD-.T-l) TO 0 DO

WRITE(TTCHAN,"0"));
R_.N MOD .B; N_.N/.B; T_.T+1; XN();
WRITE(TTCHAN,.R+"0")END;
IF .NUM LSS 0 THEN W R I T E (T T C H A N ;
B_.BASE; RD_.REQD; T_0; N_ABS(.NUM); XN()
END;

43
ROUTINE ERROR(ERR)=

BEGIN
WRITE(TTCHAN,#200);
CASE .ERR OF SET

WRITES(TTCHAN,PLIT(ASCIZ '???GTOO MANY NAK''S')<36,7>);
WRITES(TTCHAN,PLIT(ASCIZ '???GTOO MUCH NOISE')<36,7>); TES;

CLOSE(TTCHAN);
HALT
END;

ROUTINE SENDBUFF=BEGIN
LABEL SEND, CONFIRM;
CKSUM_.CKSUM AND #77;
SEND: WHILE 1 DO

BEGIN
CLRBFI;
INCR I FROM 0 TO .WRDCNT+1 DO WRITE(TTCHAN,.MESSAGE[.I]);
FORCEOUT(TTCHAN);
CONFIRM: WHILE 1 DO

BEGIN
IF (REPLY_INCHRW) EQL ACK THEN

BEGIN
ACKCNT_.ACKCNT+1;
LEAVE SEND;
END;

IF .REPLY EQL NAK THEN
BEGIN
WRITE(TTCHAN,SYNC); NAKCNT_.NAKCNT+1;
IF .NAKCNT GTR MAXNAK
THEN ERROR(ERRTMN);
LEAVE CONFIRM END

ELSEBEGIN
TRASHCNT_.TRASHCNT+1;
IF .TRASHCNT GTR MAXTSH
THEN ERROR(ERRTMT)
END;

END;END;
END;

!!! MAINLINE !!!

44
RESET;
IF NOT OPEN(ICHAN, #10,SIXBIT 'DSK',IBUF<0,0>)
THEN (OUTS(1???GCOULD NOT OPEN DEVICE');CRLF;HALT); FILESPECS[0]_SIXBIT 'DWNLIN';FILESPECS[1]_SIXBIT 'BIN';
FILESPECS[2]_FILESPECS[3]_0;
IF NOT LOOKUP(ICHAN,FILESPECS)

THEN (OUTS('???GLOOKUP FAILED');CRLF;HALT) ;IF NOT OPEN(TTCHAN,#210,SIXBIT 'TTY', OBUF''l8)
THEN (OUTS('???GCOULD NOT OPEN TTY');CRLF;HALT);

WRITE(TTCHAN,#201);
WHILE (WORD_READ(ICHAN)) EQL #200 DO .VREG_0;MESSAGE[2]_CKSUM_.WORD;
MESSAGE[3]_READ(ICHAN);
WRDCNT_2;
WHILE (WORD_READ(ICHAN)) NEQ #200 DO BEGIN •

IF (.WORD AND #700) EQL #100 THEN BEGIN
SENDBUFF();
MESSAGE[2]_CKSUM_.WORD;
CKSUM_.CKSUM+(MESSAGE[3]_READ(ICHAN));
WRDCNT_2;

LOOP: WHILE 1 DO
BEGIN

IF((WORD_READ(ICHAN))AND #700) NEQ #100
THEN LEAVE LOOP
ELSE BEGIN

MESSAGE[2]_CKSUM_.WORD;
CKSUM_.CKSUM+(MESSAGE[3]_READ(ICHAN)); WRDCNT_2;

END;
END;

END;
IF •.WRDCNT EQL #202 THEN BEGINSENDBUFF();

ADDR_((.MESSAGE[2])~6+.MESSAGE[3])
+((.WRDCNT-2)/2);

MESSAGE[2]_((.ADDR)~(-6));
MESSAGE[3]_(.ADDR AND #77);
CKSUM_.MESSAGE[2]+.MESSAGE[3];
WRDCNT_2;
END;

IF (.WORD AND #700) NEQ #300
THEN CKSUM_.CKSUM+.WORD;

WRDCNT_.WRDCNT+1;
MESSAGE[.WRDCNT+1]_.WORD;
END;

SENDBUFF();WRITE(TTCHAN,1);WRITE(TTCHAN,1);
WRITE(TTCHAN,#200);FORCEOUT(TTCHAN);
WRITES(TTCHAN,CRLFSTR) ;
WRITES(TTCHAN,PLIT ASCIZ 'NAK COUNT = ');

OUTN(.NAKCNT,10,1);

WRITES(TTCHANrCRLFSTR);
WRITES(TTCHAN,PLIT ASCIZ 'TRASH COUNT

OUTN(.TRASHCNT,10,1);WRITES(TTCHAN,CRLFSTR);
WRITES(TTCHAN,PLIT ASCIZ 'ACK COUNT =

OUTN(.ACKCNT,10,1);
WRITES(TTCHAN,CRLFSTR);
CLOSE(TTCHAN)
END ELUDOM

46
(5) SYNC.PAL

/ PDP-8/E SYNC. LOADER

NEG=CML CMA IAC
BSW=7002
SOH=201STX=202
ETX=003
REP=005
SYN=226MRK=37 6
IDLE=210

/ RECEIVE MESSAGE FORMAT
/ HEADER
/ SYN SYN SYN SYN SOH WC FLD ADR
/
/ TEXT
/ MSG MSG MSG LRC LRC MRK
/
/ TRANSMIT1 MESSAGE FORMAT
/ SYN SYN SYN SYN SOH MSG MRK

/PDP-8/E SYNC. LINE INTERFACE IOTS

SGTT=6405 /TRANSMIT GO
SGRR=6404 /RECEIVE GO
SSCD=640Q /SKIP IF CHARACTER DETECTEDSCSD=6406 /CLEAR SYNC. DETECT
SSRO=6402 /SKIP IF RECEIVE WORD COUNT /OVERFLOW
SCSI=6401 /CLEAR SYNC. INTERFACE
SRTA=6407 /READ TRANSFER ADDRESS REGISTER
SLCC=6412 /LOAD CONTROL
SSRG=6410 /SKIP IF RING FLAG
SSCA=6411 /SKIP IF CARRIER/AGC FLAG
SRS2=6414 /READ STATUS 2
SRS1=6415 /READ STATUS 1
SLFL=6413 /LOAD FIELD
SSBE=6416 /SKIP ON BUS ERRORSRCD=6417 /READ CHARACTER DETECTED (IF > o o li o

/MAINTENANCE INSTRUCTION (IF > o o II

SSTO=6403 /SKIP IF TRANSMIT WORD COUNT
> /OVERFLOWS

FIELD 1

47

*7200
TOP, CLA CLL / ** MAIN LINE **

TAD (REP /INITIALIZE LOAD
DCA LRM+5 /REQUEST BUFFER
TAD (1100 /SET FIELDSSLFL
JMS LDRQ /REQUEST LOAD

LOOP, JMS RVMS /RECEIVE MESSAGE
JMS MSGCHK /MESSAGE CHECK
JMP NAKSND /ERROR RETURN
JMS LDBF /LOAD BUFFER

ACKSND, CLA CLL
TAD ACK /GET ACK CODE
DCA LRM+5 /PUT IT IN MESSAGE
JMS LDRQ /SEND IT
JMP LOOP

NAKSND, CLA CLLTAD NAK /GET NAK CHARACTER
DCA LRM+5 /PUT IT IN MESSAGE
JMS LDRQ /SEND IT
JMP LOOP

ACK, 6
NAK, 225

LDRQ, 0 /THIS SUBROUTINE WILL
/SEND REPLY MESSAGES

SCSI
TAD (5400 /CLEAR SYNC. DETECT
SLCC /TERMINAL RDY, ENABLE,
CLA CLL /REQUEST
TAD (LRM-1 /POINT TO MESSAGEDCA TCA /SET CURRENT ADDRESSTAD (LRM-LRME /SET LENGTH OF MESSAGE
DCA TWC /SET WORD COUNT
SGTT /SEND MESSAGE
SSTO JMP .-1
JMP I LDRQ

/SKIP IF DONE

LRM, SYN;SYN;SYN;SYN ;SOH;0;MRKLRME,
*7630

0
RVMS, 0 /THIS SUBROUTINE WILL

CLA /RECEIVE MESSAGES
TAD (7400 -/SET TIMERDCA TIMEl
DCA TIME2

RSTART, CLA
SCSD /CLEAR SYNC. DETECT

AGAIN, CLA CLL CMA /GET -1
DCA RWC TAD (BUFF-1 /SET WORD COUNT

48
DCA RCA /SET CURRENT ADDRESS
SGRR /START RECEIVER

GSOH, SSRO /SKIP IF DONEJMP TSOH /TIME CHECKTAD BUFF /GET THE FIRST CHARACTER
TAD (-226 SNA /IS IT SYNC.?
JMP AGAIN /YES, READ ANOTHER
TAD (31
SZA CLA

/IS IT SOH ?
JMP RSTART
TAD HSIZE

/NO, RESTART
DCA RWC /SET WORD COUNT
SGRR /START RECEIVER

GHDR, SSRO /SKIP IF DONE
JMP THDR
CLA CLL

/TIME CHECK
TAD BUFF+1 /GET DATA LENGTH
DCA MSIZE TAD MSIZE
NEG

/STORE MESSAGE SIZE

DCA RWC /SET WORD COUNT
SGRR /READ DATA

GTXT, SSROJMP TTXT
JMP I RVMS

/SKIP IF DONE

TSOH, TAD (GSOH
JMP TMLP

THDR, TAD (GHDR
JMP TMLP

TTXT, TAD (GTXT
TMLP, DCA RET

ISZ TIME2
JMP I RET
ISZ TIMEl
JMP I RET

/RETURN ADDR.

JMP NAKSND /TOO LONG, SEND NAKTIMEl, 0
TIME2, 0
RET,
*7245

0
MSGCHK, 0

/THIS SUBROUTINE PROVIDES A
/LRC ON BUFFER CONTENTS AND
/COMPARES IT TO THE RECEIVED LRC

CLA CLL
TAD HSIZE
DCA SIZE TAD HBEG
DCA BEG
TAD BUFF+5
BSW
TAD BUFF+6
NEG
DCA LRC

/GET HEADER SIZE
/STORE
/GET HEADER BEGINNING
/GET UPPER HALF LRC
/SWAP HALVES
/GET LOWER HALF
/GET HEADER LRC

49
JMS CLCLRC
JMP NAKSND
CLA CLL
TAD MSIZE
DCA SIZE
TAD MBEG
DCA BEG
TAD SIZE+7
DCA MLRC
TAD I MLRC
BSW
ISZ MLRC
TAD I MLRC
NEG
DCA LRC
JMS CLCLRC
JMP NAKSND
JMP I MSGCHK

SIZE, 0
BEG, 0
HSIZE, -6
HBEG, BUFF
MSIZE, 0
MBEG, BUFF+7
LRC, 0
MLRC, 0

/CALCULATE LRC
/NAK THIS MESSAGE
/GET MESSAGE SIZE
/STORE
/GET MESSAGE BEGINNING /STORE
/POINT TO LRC
/GET MESSAGE LRC
/SWAP HALVES
/GET LOW BYTE LRC /NEGATE AND
/STORE
/CALCULATE LRC
/FRROR RETURN

CLCLRC
LRCLP,

*7400
BUFF,

*7600
LDBF,

0 /THIS SUBROUTINE CALCULATES
/LRC AND MAKES COMPARISON

TAD I BEG /GET CHARACTER
ISZ BEG /NEXT CHARACTER
ISZ SIZE /SKIP IF DONEJMP LRCLP
TAD LRC /ADD NEGATIVE RECEIVED LRC
SNA CLA /SKIP NON-ZERO AC
ISZ CLCLRC /INC FOR NORMAL RETURNJMP I CLCLRC
0 /RECEIVE MESSAGE BUFFER

0

CLA CLL

/THIS SUBROUTINE WILL LOAD
/BUFFER INTO THE PROPER
/MEMORY LOCATIONS

TAD
BSW

BUFF+3 /GET HIGH ADDR BYTE
/SWAP HALVES

TAD BUFF+4 /GET LOW ADDR BYTE
DCA ADR /STORE ADDR.
TAD BUFF+2 /GET CURRENT FIELDTAD CDFINS /MAKE INSTRUCTION

50
DCA LDF

LDF, 0TAD (BEG
/EXECUTE DATA FIELD CHANGE

DCA LBEG /POINT TO MESSAGE BEGINNINGLOAD, TAD LBEG /GET FIRST HALF
BSWISZ LBEG /SWAP HALVES
TAD LBEG /GET SECOND HALF
DCA I ADR /LOAD WORD
ISZ LBEG
ISZ ADR /INC POINTERS
ISZ MSIZE
ISZ MSIZE
JMP LOAD
JMP I LDBF

/SKIP IF DONE

ADR, 0
LBEG, 0
CDFINS, 6201

/*7720-7723 MAY CONTAIN
/FOUR TEST CHARACTERS

*7724
RWC, 0 /RECEIVE WORD COUNT
RCA, 0 / CURRENT ADDR.
*7727
TWC, 0 /TRANSMIT WORD COUNT
TCA, 0 / CURRENT ADDR.

51
(6) LDSYNC.BLI

MODULE DC72(STACK(300),TIMER=EXTERNAL(SIX12))=
BEGIN
EXTERNAL OPEN,WRITE,WRITES,READ,FORCEOUT,LOOKUP, CLOSE,ENTER;
REQUIRE TTCALL.BLI;
BIND TTCHAN=1, ICHAN=2, ACK=6, NAK=#25, MAXNAK=10 0, MAXTRASH=100;
MACHOP JRST=#254, CALLI=#047;
MACRO HALT=JRST(4)$, RESET=CALLI(0)$;
OWN OBUF[3] ,

IBUF[3],
MESSAGE[260],

FILESPECS[4],
REPLY,
NAKCNT,
TRASHCNT,
HIGH,
LOW,
HALF,
ADDR;

BIND CKSUM=MESSAGE[0], WRDCNT=MESSAGE[1];
REGISTER WORD;

ROUTINE OUTN(NUM,BASE,REQD)=BEGIN
OWN N ,B,RD,T;
ROUTINE XN=

BEGIN LOCAL R;
IF .N EQL 0 THEN RETURN

(DECR I FROM (.RD-.T-l) TO 0 DO WRITE(TTCHAN,"0"));
R_.N MOD .B; N_.N/.B; T_.T+1; XN()
WRITE(TTCHAN,.R+"0")
END ;

IF .NUM LSS 0 THEN W R I T E (T T C H A N ;
B_.BASE; RD_.REQD; T_0; N_ABS(.NUM); XN()
END;

52

LABEL LOOP,LOOP2;
!!! MAINLINE !!1
RESET;
IF NOT OPEN(ICHAN,#10,SIXBIT 'DSK',IBUF<0,0>)
THEN (OUTS('???GCOULD NOT OPEN DEVICE');CRLF;HALT)i
FILESPECS[0]_SIXBIT 'IMPORT';
FILESPECS[1]_SIXBIT 'BIN';
FILESPECS[2]_FILESPECS[3]_0;IF NOT LOOKUP(ICHAN,FILESPECS)

THEN (OUTS('???GLOOKUP FAILED');CRLF;HALT);
IF NOT OPEN(TTCHAN,#210,SIXBIT 'TTY', OBUF'lS)

THEN (OUTS('???GCOULD NOT OPEN TTY');CRLF;HALT);
WHILE (WORD_INCHRW) NEQ #33 DO VREG_0;
WHILE (WORD_READ(ICHAN) EQL #200) DO VREG_0;
WORD_READ(ICHAN);
LOOP: WHILE 1 DO

BEGIN
LOOP2: WHILE 1 DO

BEGIN
IF (HALF_READ(ICHAN)) EQL #200 THEN

LEAVE LOOP;
IF (.HALF AND #300) EQL #300 THEN

BEGIN
IF (.HALF AND #77) EQL 0 THEN

BEGIN
.HALF_0;
LEAVE LOOP2;
END;

WRITE(TTCHAN,.HALF);FORCEOUT(TTCHAN);
LEAVE LOOP2;
END;

IF (WORD_.HALF AND #300) EQL #100 THEN
BEGIN

ADDR_((.HALF AND #77)"6+READ(ICHAN));
LEAVE LOOP2
END;
HIGH_(((.ADDR)~(-6)) + #100) ;
LOW_(.ADDR AND #77);
WRITE(TTCHAN,.HIGH);
WRITE(TTCHAN,.LOW);
WRITE(TTCHAN,.HALF);
HALF_READ(ICHAN);
WRITE(TTCHAN,.HALF);
FORCEOUT(TTCHAN);
ADDR_.ADDR+1;
END;

END;

53
CLOSE(TTCHAN);
BEGIN

BIND TTCHAN=1,
MAXNAK=10 0, NAK=5,
MRK=#376;

ICHAN=2,
MAXTRASH=100,
REP=5,

ACK=#225,SYNC=#226,
IDLE=#210,

OWN OBUF[3],
IBUF[3],
MESSAGE[300],
FILESPECS [4] ,
REPLY,
NAKCNT,
LRC3,LRC4,
TRASHCNT,
ACKCNT;

BIND SOH=MESSAGE[0],
WRDCNT= MESSAGE[1],
FLD=MESSAGE[2],
ADR1=MESSAGE[3],
ADR2=MESSAGE[4],
LRC1=MESSAGE[5],
LRC2=MESSAGE[6];

REGISTER WORD,ADDR;
LABEL LOOP;

ROUTINE SENDBUFF=
IF .WRDCNT NEQ 0 THEN
BEGIN
WRDCNT_.WRDCNT+ 2 ;
LRC2_.LRC2 + .WRDCNT ;
LRC1_(((.LRC2)Ä(-6)) AND #77);
LRC2_(.LRC2 AND #77);
LRC3_(((.LRC4)Ä(-6)) AND #77);
LRC4_(.LRC4 AND #77);
END;
DS-10 I/O ROUTINES

ROUTINE STARTBUFF=
BEGIN
MESSAGE[3]_LRC2_(.WORD AND #77);LRC2 .LRC2 + (MESSAGE[4] READ(ICHAN));

54
WRDCNT_0;
LRC4_0;
END;

ROUTINE INTERRUPT=
BEGIN
SENDBUFFO ;
ADDR_((.MESSAGE[3])~6+
+.MESSAGE[4])+((.WRDCNT-2)/2);
MESSAGE [3]_((. ADDR) " (-6)) ;
MESSAGE[4]_(.ADDR AND #77); LRC2_.MESSAGE[3]+.MESSAGE[4];
LRC4_0;
WRDCNT_0;
END;

111 MAINLINE !!!
RESET;
IF NOT OPEN(ICHAN,#10,SIXBIT 'DSK',IBUF<0,0>)
THEN (OUTS('???GCOULD NOT OPEN INPUT DEVICE');

CRLF;HALT);
FILESPECS[0]_SIXBIT 'DWNLIN1;
FILESPECS[1]_SIXBIT 'BIN';

FILESPECS[2]_FILESPECS[3]_0;
IF NOT LOOKUP(ICHAN,FILESPECS)

THEN (OUTS(1???GLOOKUP FAILED');
CRLF;HALT) ;

WHILE (WORD_READ(ICHAN)) EQL #200 DO .VREG_0;
STARTBUFF();
WORD_0;
WHILE (WORD_.WORD+l) NEQ 4 DO READ(ICHAN);
SOH_#201;
FLD_0;
WHILE (WORD_READ(ICHAN)) NEQ #200 DO BEGIN

IF (.WORD AND #700) EQL #100 THEN BEGIN
SENDBUFFO ;
STARTBUFF();

LOOP: WHILE 1 DOBEGIN
IF((WORD_READ(ICHAN)) AND #700)

NEQ #100
THEN LEAVE LOOP
ELSE BEGIN

STARTBUFF(); END;
END;

END;
IF .WRDCNT EQL #144 THEN BEGIN

INTERRUPT() ;

IF (
END;

.WORD AND #700) EQL #300 THEN BEGIN
INTERRUPT() ;
FLD (.WORD AND #77);
LRC2 .LRC2 + .FLD;END

ELSE
BEGIN

END;

WRDCNT .WRDCNT+1;
LRC4 .LRC4 + .WORD;
MESSAGE[.WRDCNT+6] .WORD; END;

SENDBUFFO ;
END;
END ELUDOM

APPENDIX B
PROCEDURES

56

57
(1) TELEPHONE LINE LOADERS

(TO) PLUG IN THE ASCOUTIC COUPLER AND TURN IT ON
(Tl) Plug in the ADM-1 terminal and turn it on
(T2) Dial up the DEC-10
(T3) Place the telephone receiver in the coupler

and plug the ADM-1 into the coupler
(T4) LOGIN and type EX RIMPRT.BLI,IO.BLI
(T5) Unplug the ADM-1 from the coupler after execution begins
(T6) Plug PDP-8/E port 07 into the coupler using

the reverse EIA adapter
(T7) Halt the PDP-8/E and lift the SW switch up
(T10) Press the bootstrap loader button, press enable,

press the SW switch down and then lift it up
(Til) Panel lights will flash for approximately

40. seconds while IMPORT is being loaded.
(T12) After IMPORT has been loaded the word

"READY" will appear on the console
(T13) Type control C twice on the console and when

at monitor level type EX EXPORT.BLI,IO.BLI
(T14) After eight minutes a load summary will be

typed on the console
(T15) Type control G and the DC72 will initialize

58
(2) SYNCHRONOUS LINE LOADER

(SO) . Plug in the ascoutic coupler and turn it on
(SI) Plug in the ADM-1 terminal and turn it on
(S2) Dial up the DEC-10
(S3) Place the telephone receiver in the coupler

and plug the ADM-1 into the coupler
(S 4) LOGIN and type EX LDSYNC.BLI,10.BLI
(S5) Unplug the ADM-1 from the coupler after

execution begins
(S 6) Plug PDP-8/E port 07 into the coupler using

the reverse EIA adapter
(S7) Halt the PDP-8/E and lift the SW switch up
(S10) Press the bootstrao loader button, press enable,

press the SW switch down and then lift it up
(SII) After loading occurs the DC72 will initialize

\

BIBLIOGRAPHY

Digital Data Communication Message Protocol, Maynard
Massachusetts:Digital Equipment Corporation, 1974.

Donovan, John J. Systems Programming, New York:Mcgraw- Hill Book Company, 1972.
Eckhouse, Richard H., Jr., Minicomputer Systems; Organiza- tion and Programming, Englewood Cliffs, N.J.:Prentice-

Hall, Inc., 1975.
External Bus Optional Maintenance Manual, Maynard

Massachusetts:Digital Equipment Corporation, 1974.
Introduction to Programming, Maynard Massachusetts:

Digital Equipment Corporation, 1970.
Small computer Handbook, Maynard Massachusetts : Digital

Equipment Corporation, 1973
System Reference Manual, Maynard MassachusettssDigital

Equipment Corporation, 1975

