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Uniqueness of solutions to a system of differential
inclusions *

Chunpeng Wang & Jingxue Yin

Abstract

In this paper we study the uniqueness of solutions to the initial and
Dirichlet boundary-value problem of differential inclusions

= Fi(u; .
Au; + V- B; (u1,u2,...,un) € BT(tu)’ i=1,2,...,N,
5
where B; (s1, 82,...,5n~) is an n-dimensional vector continuously differ-

entiable on RY | and Fi(u;) = {w; : wi = Ai(w:)}, i = 1,2,..., N with
A;(s) continuously differentiable functions on R and Aj(s) > 0.

1 Introduction

This paper concerns with the system of differential inclusions

— F(w;
Auz—l-VBi (ul,ug,...,uN)Eaéi(tuz), (Z‘,t)GQT, i:1,2,...,N, (1.1)

where  is a bounded domain in R” with smooth boundary 99, Q7 = Qx (0,7,
—

with T' > 0, n and N are positive integers, B; (s1, S2, ..., Sy) is an n-dimensional
vector continuously differentiable on RY, and

Fz(ul) :{w’i uz:Al(w’L)}7 i:1727"'aN

with A;(s) continuously differentiable functions on R and A}(s) > 0. Note that
if A;(s) is strictly increasing, then F;(u;) is single-valued, and (1.1) becomes
equality. However, we are interested in the case when some or all A4;(s)’s are
only nondecreasing, and so the F;(u;)’s are interval-valued functions.

System (1.1) arises from mathematical models describing the nonlinear dif-
fusion phenomena which exist in nature extensively. An important classical case

—
of (1.1) is that with Biza and N = 1. In this case (1.1) can be changed to

ow

— = AA(w).

o (w)
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Brézis and Crandall [2] proved the uniqueness of bounded measurable solutions
for the Cauchy problem of the equation, where the nonlinear function A(s) is
assumed to be only non-decreasing. In other words, if A(s) is differentiable,
then

A'(s) > 0;

namely, the equation is permitted to be strongly degenerate. Thereafter some
authors tried to extend the uniqueness results to the equation with convection,
ie.,
O _ AA(w) + V- B (w).

ot
However, in most of those works, the nonlinear function A(s) is assumed to be
strictly increasing. In other words, the equation is weakly degenerate, see for
example [4, 3, 8, 9].

In this paper we study the uniqueness of solutions of the initial and Dirichlet
boundary-value problem of (1.1). The initial-boundary conditions are

u; =0, (z,t)€dNx[0,T], i=1,2,...,N, (1.2)
Fi(u;)(z,0) = {fi(z)}, z€Q, i=1,2,...,N. (1.3)

Definition Fori=1,2,..., N, let f;’s be bounded and measurable functions.
(u1,us2,...,un) is called a solution of the initial and Dirichlet boundary-value

problem (1.1)—(1.3), if the u;’s are bounded and measurable functions and there
exist bounded measurable functions w; € F;(u;) such that for arbitrary test
function ¢ in C*°(Qr) with value zero for = € 9 and for ¢t = T, the following
integral equalities hold

ulASO— Bi (u17u27"'7uN)'vs0+'wl‘E dz dt
+/ fi(z)p(z,0)dz =0, i=1,2,...,N.
Q

The main result of this paper is the following theorem.

Theorem 1 The initial and Dirichlet boundary-value problem (1.1)-(1.3) has
at most one solution.

The method of the proof is inspired by Brézis and Crandall [2]. Here what we
consider is not the Cauchy problem but the initial and Dirichlet boundary-value
problem, so we adopt the self-adjoint operators with homogeneous Dirichlet
boundary condition to prove the uniqueness instead of the self-adjoint operators
on the whole space. Moreover, the problem which we consider is a system of
differential inclusions with convection, so we must overcome some other technical
difficulties.
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2 Proof of the main theorem

We first introduce a family of operators. The L? theory for elliptic equations
(see, e.g., [5] ) implies that for each A > 0 and f € H~!(Q), the Dirichlet
problem
—Au+AIu=f, x€Q, (2.1)
u=0, x¢€dQ,
has a unique solution u € Hg (). For 0 < A < 1, we define the operator
Ty:H Q) — Hy(Q), fru,

where u is the unique solution to (2.1)—(2.2). It is easy to see that T) is self-
adjoint, namely, for arbitrary f,g € H=1(Q),

<f7 T)\g> = <gaT)\f>

holds, where (-,-) represents the dual product between H~1(Q) and H}(Q).
Specially, for f € L?(Q2) and g € H~1(Q), we have

<f7T>\g>:/QfT,\9d37~

In addition, for arbitrary f € L?(Q), the L? theory for elliptic equations also
implies Ty f € H?(Q) N H3 () and

1T fll20) < Coll fllz2()s (2.3)

here C is a constant depending only on n and 2, but independent of .

Proof of Theorem 1. Let (uy,us,...,uyn) and (i1, ds,...,uyx) be two solu-
tions to (1.1)—(1.3). For ¢ = 1,2,..., N, the bounded measurable functions in
F;(u;) and F;(4;) satisfying the definition are denoted by w; and w; correspond-
ingly. For i =1,2,..., N, we set

Vi = U — Ui, 2= Wi — Wy,

— — — R R R
HizBi (ul,ug, e ,’LLN)— Bz (ul,u2, e ,’LLN).

—
The definition of solutions implies that z;, v; and H; (i = 1,2,...,N) are
all bounded measurable functions, and for arbitrary test function ¢, namely,
w € C™(Qr) with ¢ =0 for z € 9 and for ¢t = T, the integral equalities

- Op .
viAgo—Hi'Vgo—l—ziW dedt=0, i=1,2,...,N (2.4)

hold. Let ¢ € C*°(]0,T]) with ¢(T') = 0 and k € C3°(£2). Then we see that
Tyk € H?(Q) N H} (). By an approximate process, we may choose ¥T\k as a
test function. Letting ¢ = ¢¥Thk in (2.4), we get

— 8¢
MpuiTsk — pvik = Hy -VTzk + =5 Tok ) dadt = 0.
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Using integration by parts and the self-adjointness of T, we get

8T)\Zl

// (A@kaAvl bk + GRTN (V- Hy) — bk )da:dt:O.

Owing to the arbitrariness of 1 and k, we see that

8T)\Zi
ot

in the sense of distribution. It follows that % € L*(Qr) and Tyz; € H2(Q)N
H}(Q). Let v € C>([0,T]) with ¥(T) = 0. By an approximate process, we
may choose 1T)z; as a test function. Letting ¢ = ¢Thz; in (2.4), we get

—
= \Nhv; —v; + T)\(V- Hi) (2.5)

Thz;
// <)\’¢"U¢T,\Zi — I/J’Uizi - ﬁi -VT\z; + %—fziT,\zi + I/JZ,La 8;2; ) dzdt = 0.
’ (2.6)
Combining (2.5) with (2.6), we see that
// v Thzi + Mpz; Thv; — 290,z + Yz, T (V- Z)
— Hi VThz; + zzT,\zz) dedt = 0.

Using integration by parts and the self-adjointness of T, for i =1,2,..., N, we
get

// (2)\¢viT,\zi — 29viz; — 20 Iz. YTz + 88_15

Let
gi)\(t) :/ zilhzidx, te€ [O,T], 1=1,2,...,N.
Q
Now we prove that g;A(t) converges to zero on [0,7] uniformly as A — 0 for
i=1,2,...,N.
First, we show that g;»(¢) is absolutely continuous. From (2.7), we get

8(Z7;T)\Zi)

// (2)\1/)’[17;1_’)\21' - 2’¢U¢Z¢ - 2’¢ ﬁi 'VT,\Zi — 1/) ot ) dx dt = 0.

From the arbitrariness of 1, we see that

ilxzi
gir(t) d zzT,\zzdac—/ Mdm
Q

dt ot

—
2)\/ v; Tz dx — 2/ v; zidr — 2/ H; VT\zdx, a.e.tel0,T].
Q Q Q

N
Since z;, v; and H; are all bounded measurable functions and (2.3) holds, we
get that g/, (t) € L*(0,T). Thus g;(¢) is absolutely continuous.
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Next, we show that g;x(0 4 0) = lim;_,o+ ¢;x(t) = 0. Let
1 s

Ye(t) = /t+00 ae(s —e)ds, a.(s) = -« (—) ,

9 3

where a(s) denotes the kernel of one-dimensional mollifier, namely, « is in the
space C§°(—00,400), @ > 0, suppa = [—1,1] and fil a(s)ds = 1. Thus 9. €
C>([0,T]) and ¥.(T") = 0 for sufficiently small ¢ > 0. Letting ¢ = ¢ in (2.7),
we get

—
// M\pev; Tz — 2002, — 200 Hy VThz; — o (t — €)z;Thz;) dedt = 0.

The dominated convergence theorem implies

2e
gix(04+0) = lim ae(t —e)gix(t)dt
e—0t 0
= lim // ae(t —e)ziThz; dx dt
e—0t T
= 2X lim / Yev; Thz; drdt — 2 lim / Yev;z; dx dt
e—0t Qr e—0t Qr

—
—2 lim // 1/)5 Hi 'VT)\Zi dxdt.
Qr

e—0t

Since z;, v; and I% are all bounded measurable functions and (2.3) holds, we
get that g;A(0 4+ 0) = 0.

Finally, we prove that g;»(t) converges to zero on [0, 7] uniformly as A — 0.
It follows easily from the above arguments that

t
4ix(0+0) + / RO
0

t t
= 2)\/ /viTAzi da:ds—2/ /vizi dx ds
0 Jao 0 JQ

t —
—2/ / Hi 'VT)\ZZ‘ drds.
0 JQ

N
Since w; and w; are bounded measurable and A; and B; are continuously dif-
ferentiable, there exist three positive constants My, M; and Ms such that for
1=1,2,..., N, the following estimates hold

gix(t)

1/2
N /

—
|zi] < Mo, |vi| < Milzif, | Hi|< Ms va

j=1
Noticing that z; and v; have the same sign for A(s) > 0, we get

= iz > 02
v; 2 = |villzi| > Mlvi.



6 A system of differential inclusions EJDE-2000/43

By Schwarz’s inequality and Young’s inequality, we get

s
|/ Hi -VT,\ZidJ}|
Q

— 1/2 1/2
< (/ | H; |2d:c> </ |VT>\zi|2da:>
Q Q
N 1/2 1/2
< M)y (/ v?dm) (/ |VT,\zi|2dac>
j=1 N/ ¢ Q
1 SN[, N2M;M3
< p R . .
S N, Z/ijd:c—i— 1 /Q(VTAZlVT)\Zz)d-T
j=1
1 K, NMyM3
= 2z + —— 122 [ (“T\ ATy
NM, Z/ijdm—f— 1 /Q( \2i AT\ z;)dx
Jj=1
1 & N2M; M}
- NM; Z/Qv?dm—f— #/ﬂ (_)‘(T/\Zi)2+ZiTAZi) dx
j=1
1 K[, NMyM}
= fdr + ———=gix(t).
= z\fMljzl/Q”J”ch 1 ()
Let
N
() = gin(D).
i=1
Therefore,
gx(t)
N ' . R
= 22(/\/ /viT)\zidedS—/ /vizid:cds—/ / H, 'VT,\zida:ds)
i=1 0 JQ 0 JQ 0 Ja
t 1 t ,
< 2 )\//U'Tz-dmds——//v.dmds
;( o Jo o My Jo Jo
N oot 2 2 gt
1 2 N MIMQ/
+NM1J_§:1/O /ij dx ds + I i gm(s)ds)
<

N T 2 2 gt
N=M; M.
2)\5 /o /§2|U¢T,\zi|dmds+%/o gr(s)ds.
i=1

Moreover, it follows that
ga(t) =0
by

gin(t) = /ziTAzidac
Q
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= /Q (=AT\ziTrzi + AT\zTrzi)dx
— /(VTAziVTAzi + Xz Thz)dx
> 0.
Hence by Gronwall’s inequality, we get
gr(t) < C1A,

where C; is a constant depending only on N, My, M;, Ms, Cy, T and the
measure of Q, but independent of A and t. So gx(t) converges to zero on [0, T
uniformly as A — 0. Noticing that g;»(t) > 0, we get that g;»(¢) converges to
zero on [0, T] uniformly as A — 0.

Now we prove

zi(z,t) =0, ae. (z,t)€Qr, i=1,2,...,N.

For any ¢ € C§°(Qr), we have

|// zipdxdt}2

2
= ’// (=AT\z; + ATxz;)p dx dt

2

'// (VTziV o + ApThz;) dx dt

< 2|Vl om IVTazillT2gqr) + 2220l 2 (@m I Tr2ilI 220
< Oy <// |VTyzi|? dx dt + /\// (Thz)? dx dt)
Qr T
< Oy // (=ATyz; + AT zi)Thz dx dt
T
= CQ // ZZ‘T)\ZZ‘ dz dt
< CQT Sljp gi)\(t) — 0, (/\ — 0),

t€[0,T]

where Cy = 2HV§0||2LQ(QT) + 2”‘»0H%2(QT) independent of A. Therefore,

// zipdrdt =0, Vo e Ci°(Qr).

It follows that

zi(z,t) =0, ae. (x,t) €Qr, i=1,2,...,N.
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Thus

wi(z,t) = w;(z,t), a.e. (z,t)€Qr, i=1,2,...,N,

which implies

ui(z,t) = 4;(z,t), ae (z,t) €Qr, i=1,2,...,N.

The proof is complete.
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