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RELATIONS BETWEEN THE SMALL FUNCTIONS AND THE
SOLUTIONS OF CERTAIN SECOND-ORDER DIFFERENTIAL
EQUATIONS

HUIFANG LIU, ZHIQIANG MAO

ABSTRACT. In this paper, we investigate the relations between the small func-
tions and the solutions, first, second derivatives, and differential polynomial of
the solutions to the differential equation

f” + AleP(z)f/ + A()(;‘Q(z>f —_ 07

where P(z) = anz™ + -+ - + ao, Q(z) = bpz™ + -+ - 4 b are polynomials with
degree n (n > 1), ai, b; (¢ = 0,1,...,n), anby, # 0 are complex constants,
Aj(z) #0 (j = 0,1) are entire functions with o(4;) < n.

1. MAIN RESULTS

In this paper, we use the standard notation of Nevanlinna’s value distribution
theory [7]. In addition, we use notations o(f), A(f), A(f) to denote the order
of growth, the exponent of convergence of the zero-sequence and the sequence of
distinct zeros of f(z) respectively. A meromorphic function g(z) is called a small
function of a meromorphic function f(z) if T'(r,g) = o(T(r, f)), as r — +o0.

Consider the differential equation

"+ AePE 4 AgeRE) =0, (1.1)

where P(z), Q(z) are polynomials with degree n (n > 1), A;(z) #0 (j =0,1) are
entire functions with o(A;) < deg P, 0(Ap) < deg Q. If deg P # deg @, then every
solution of has infinite order [5 p. 419]. If deg P = deg @, then equation
may have a solution of finite order. Indeed f(z) = z satisfies f + ze*f' —e*f = 0.
Kwon [8] studied the growth of solutions of equation with deg P = deg @, and
obtained the following result.

Theorem 1.1. Let A;j(z) # 0 (j = 0,1) be entire functions with o(A;) < n,
P(z) = apnz™ + -+ +ag, Q(z) = b2 + -+ 4+ by be polynomials with degree n
(n > 1), where a;, b; (i =0,1,...,n), ayb, # 0 are complex constants such that
arga, # argb, or a, = cb,(0 < ¢ < 1). Then every solution f # 0 of equation

(1.1) has infinite order.
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Chen and Shon [4] studied the differential equation
"+ Ae® f + Age?* f =0 (1.2)
and obtained

Theorem 1.2. Let Aj(z) # 0 (j = 0,1) be entire functions with o(A;) < 1, a,
b be complex constants such that ab # 0 and arga # argb or a = ¢b(0 < ¢ < 1).
If p(2) £ 0 is an entire function with finite order, then every solution f % 0 of

equation satisfies N(f — @) = Mf' — @) = Mf" — ¢) = oc.

Theorem 1.3. Let A;j(z),a,b satisfy the hypotheses of Theorem[1.3, do(z), d1(2),
ds(2) be polynomials not all equal to zero, p(z) Z 0 is an entire function of order
less than 1. If f # 0 is a solution of equation (1.2), then the differential polynomials

9(2) = dof" +dif +dof satisfy \N(g — ) = .

In this paper we go deeply into the study of the relations of the small functions
and solutions of the differential equation (1.1)) and obtain the following theorem.

Theorem 1.4. Let Aj(z) 2 0 (j = 0,1), P(2), Q(z) satisfy the hypotheses of
Theorem . If p(2) £ 0 is an entire function with finite order, then every solution
f Z 0 of equation satisfies \(f — ) = Mf' — @) = A(f" — ¢) = o00.
Theorem 1.5. Let A;j(z) # 0) (j = 0,1), P(z), Q(z) satisfy the hypotheses of
Theorem do(z), di(z), da(z) be polynomials that are not all equal to zero,
©(2) # 0 is an entire function of order that is less than n . If f # 0 is a solution
of equation (L.1)), then the differential polynomials g(z) = dof” +di f' +do f satisfy
Alg —¢) = 0.

2. AUXILIARY LEMMAS

Lemma 2.1 ([3]). Let f(2) be a transcendental meromorphic function with o(f) =
o < +oo. Then for any given € > 0, there is a set E C [0,27) that has linear
measure zero, such that if ¢ € [0,27)\ E, then there is a constant Ry = Ro(p) > 1,
such that for all z satisfying argz = ¢ and |z| > Ro, we have exp {—r°T¢} <
7(2)] < exp {r7+).

Lemma 2.2. Let P(z) = (a+i6)z" + ... (o, 0 are real, |a| +|5] # 0) be a
polynomial with degree n > 1, A(z) # 0 be a meromorphic function with o(A) < n.
Set g(z) = A(2)eP®), z = re??, §(P,0) = acosnf — Fsinnb, then for any given
e > 0, there is a set Hy C [0,27) that has linear measure zero, such that for any
0 €10,2m)\ (H1 U H2) and a sufficiently large r, we have

(i) If 6(P,0) > 0, then
exp {(1 - )8(P,0)r"} < |g(re”)| < exp {(1+€)d(P,0O)r" };
(ii) If 6(P,0) <0, then
exp {(1+¢)d(P,0)r"} < |g(re”)| < exp {(1 — £)d(P,0)r"},
where Hy = {6 € [0,27);6(P,0) = 0} is a finite set.
Proof. Rewrite g(z) as g(z) = wel®T=" where w(z) = A(z)el ) —(at+iB)z" g
a meromorphic function with o(w) = s < n. By lemma for any given

(0 < e < n—s), there is a set H; C [0,27) that has linear measure zero, such
that, if 0 € [0,27) \ Hi, then there exists a constant R = R(#) > 1, for all z
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satisfying arg z = 6 and |z| > R, we have exp {—r*7¢} < |w(z)| < exp {r**¢}. By
|e(atiB)z"| = eRe(O"“w)zn:eé(P’s)rn, when 6 € [0,27)\(Hy J H2) and |z| = r > R, we
have exp {—r*T¢ 4+ §(P,0)r"} < |g(2)] < exp {r*T¢ + §(P,0)r"}. So by the above
inequality and 0(P,0) > 0 or §(P,0) < 0, we complete the proof. O

Lemma 2.3 ([]). Let f(z) be an entire function with infinite order, d;(z) (j =
0,1,2) be polynomials that are not all equal to zero. Then

w(z) = dof" +dif' +dof
has infinite order.

Lemma 2.4. Let a;,b;(i = 0,1...n) be complex constants such that a,b, # 0
and arga, # argb, or a, = cbp(0 < ¢ < 1), P(2) = apz" + -+ + ag, Q(z) =
bnz™ + -+ by. We denote index sets by

A, = {0, P}
Ay ={0,P,Q,2P, P+ Q};
A3 ={0,P,Q,2P,P+ Q,2Q,3P,2P + Q, P + 2Q};
Ay = {0,P,Q,2P,P+Q,2Q,3P,2P + Q, P + 2Q,
3Q,4P,3P + Q,2P +2Q, P + 3Q).

Then

(i) IfH; (j € A1) and Hg are all meromorphic functions of orders that are less
than n, Hg # 0, setting ¥1(2) = Zjen, Hj(2)e?, then 1(2) + Hge®? # 0.

(ii) If H; (j € A2) and Hyg are all meromorphic functions of orders that
are less than n, Hag # 0, setting 12(z) = Sjer, Hj(2)e?, then a(z) +
H2Q€2Q ;é 0.

(i) If H;(j € A3) and Hsq are all meromorphic functions of orders that are less
than n, Hzg % 0, setting ¥3(2) = Sjen, Hj(2)e?, then ¢3(z)—|—H3Qe3Q Z0.

(iv) IfHj(j € A4) and Hug are all meromorphic functions of orders that are less
than n, Hyg # 0, setting ¥4(2) = Sjen, Hj(2)e?, then v4(2) + Hyge'@ # 0.

(v) The derived function of ¥;(z) (j = 1,...,4) keep the above properties of
(%), and also it can be expressed by ;(z). ¥;(z) may be different at
different places, but preserve the above properties. 1(2)2(2)( it denotes
the product of two ¥a(z), and two Y9(z) may be different.) is of properties
of ¥y4(2), we write a(2)2(2) = Y4(z). Similarly we have

V1(2)Y1(2) = th2(2), Y1 (2)v2(2) = ¥3(2), ¥1(2)¥s(2) = Ya(2).
(vi) let 1ap(2), 121 (2), ¥22(2) have the form of 1¥s(2) which is defined as in (ii),

©(z) # 0 is a meromorphic function with finite order and Hog # 0 are all
meromorphic functions of orders that are less than n. Then

/! /
fp((;)) Poa(2) + i((zz)) 21(2) + ha0(2) + Hage®@ # 0.

Proof. Properties (i)—(iv) are similar, and the properties of ¢;(z) (j =1,...,4) in
(v) are clear, so we only prove (ii) and (vi). For the proof of (ii). We consider two
cases:

Case 1: arga, # argb,. Then arg(a, +b,), arga,, argb, are three distinct
arguments. Set o(Hy) = 8 < n, by Lemma for any given (0 < € < min{%,nf
B}), there exists a set Ey C [0,2m) that has linear measure zero, such that if
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6 € [0,27)\ Eo, then there is a constant R = R(6) > 1, such that for all z satisfying
argz =6 and |z| = r > R, we have

|Ho(z)| < exp {TBJFE}. (2.1)

By lemma there exists a ray argz = 6 € [0,27) \ (Eyp U Ey U Es), where
E; C [0,27) has linear measure zero, Es = {6 € [0,27);6(P,0) = 0 or 6(Q,6) =0
or §(P+@Q,0) = 0} is a finite set, such that 6(P,0) < 0, §(P+Q,0) < 0, 6(Q,0) > 0,
and for the above given €, we have, when r is sufficiently large,

Haqe?@) > exp {(1 - )25(Q,0)r™}, (2.2
Hae®| < exp {(1+€)5(@, 6™}, (2)
|Hp el T <exp{(1—¢)6(P+Q,0)r"} <1, (2.4)
|Hype?P| < exp{(1 —€)26(P,0)r"} < 1, (2.5)
|Hpe”| < exp{(1 —¢)d(P,0)r"} < 1. (2.6)
If 15 (2) + Hage®@ = 0, then by (2.1)-(2.6), we have
exp {(1 - £)26(Q, 0™} < |Hage™?|
<exp {7} +exp {(1 +)5(Q,0)r"} +3
< 3exp {r" T} exp {(1 +)0(Q,0)r"}.

Because 2(1 —¢) — (1+¢) =1— 3= > 2, we have

exp {%5(@, 0)r"} < 3exp {7"5“}.

This is a contradiction to 8+ ¢ < n. Hence ¥2(z) + HQQ@QQ £ 0.

Case 2: a, = cb,(0 < ¢ < 1). Set 0(Hy) = 8 < n. By Lemmas [2.1] and 2.2 for
any given £(0 < ¢ < min{1¢,n — 3}), there exist set E; C [0,27)(j = 0,1,2) that
have linear measure zero, E; are defined as in the case (1) respectively. We take

the ray 6 € [0,27) \ (Eo U E1 U E3), such that §(Q,6) > 0, and when |z| = r is
sufficiently large, we have (2.1)-(2.3) and

|Hp e < exp {(1+)(1+c)(Q, 0)r"}, (2.7
|Hype?P'| < exp{(1+¢)2¢6(Q, 0)r"}, (2.8)
|Hpe!”| < exp {(1+¢)cd(Q,0)r"}. (2.9)

If 15 (2) + Hage®?@ = 0, then by (2.1)-(2.3), and [2.7)-(2.9), we have
exp {(1 — £)26(Q,0)r"} < [Fage™@|
<exp {rPTe} 4 2exp {(1 + &) (1 + ¢)8(Q, H)r"}
+exp{(14+¢)2cH(Q,0)r"} + exp{(1 +¢)cd(Q,0)r"}.

(2.10)
Because 0 < £ < min{%,n — B}, when r — 400, we have
exp {rfte}
— 2.11
exp {(1 —¢)26(Q, 6)r™} 0, (2.11)
exp{(1+¢)(1+¢)d(Q,0)r"} o, (2.12)

exp{(1—¢)26(Q,0)r"}
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exp {(1+¢€)28(Q,0)r"}
oxp (1= 2)26(0, 07} (2.13)

exp {(1 +€)ed(Q,0)r"}
exp (1= 2)20(0, 0y} (2.14)

By (2.10)-(2.14), we get a contradiction. Hence 15 (z) + Hage?? # 0.

Proof of (vi). By o(¢) < oo and [0, p. 89] we know, for any given £ > 0, there
exists a set E C [0,27) that has linear measure zero, if § € [0,27) \ E, then there
exists a constant R = R(6) > 1, such that for all z satisfying arg z = 6 and |z| > R,
we have

(k)
G| < et (= 1,2).
p(2)
So on the ray argz = 6 € [0,27) \ E, %Hj(z)ej (k =1,2,5 € Ag) keep the

properties of H;el which are defined as in (2.1), (2.3)-(2.6) or 2.1)), [2-3), @.7)-

(2.9). Using a similar reasoning to that in the proof of (ii), we can prove (vi). O

Lemma 2.5 ([2]). Suppose that Ay, ..., Ar_1,F #£ 0 are finite-order meromorphic
functions. If f is an infinite-order meromorphic solution of the equation

FO 4 Ay fE7D 4 Agf = F,
then f satisfies A\(f) = M(f) = o(f) = co.

3. PROOFS OF THEOREMS

Proof of Theorem [-{ Suppose that f(z) # 0 is a solution of (1.1). First of all we

prove that A(f —¢) = oo. Set go = f—, then 0(go) = o(f) = 00,A(g0) = A(f — ).

Substituting f = go + ¢,f" = g4 + ¢'.f" = g + ¢” into equation (1.1]), we have
gl 4+ AP P gl + AgeQ P gg = — (0" + A1ePE Q! 4 Ape@P) ). (3.1)

We remark that may have finite-order solution (For example when ¢(z) = z,
go = —z solves the equation ) But here we discuss only the case o(go) = oo.
By ©(z) being a finite-order entire function and Theorem we know ¢ +
APy + AgeQ®) p £ 0. Hence by lemma we have \(go) = o(go) = o0, i.e.
A(f =) =o0. N
Secondly we prove A(f' —¢) = c0. Set g1 = f' — ¢, then o(g1) = o(f') = o(f) =
00,A(91) = A(f" — ). Differentiating both sides of equation (L.1]), we get

f/// + AleP(z)f// + [(AleP(z))/ + Aer(z)]f/ + (AOeQ(z))/f =0. (3.2)
Substituting f = —m[f” + A3 #] into (3.2), we get
Q)Y A eQ)Y
" P(z) _ (AOe ) " P(z)\/ Q(z) _ ( 0¢ ) P(z)1 ¢ _
"+ [Are AR I+ [(Are™)" + Age Age@() A= 0.
(3.3)
Substituting f' = g1 + ¢, [ =¢1 + ¢, [ = g + ¢” into equation (3.3, we get
gy + higy + hogr = h, (3-4)
where hy = AP — (‘:‘4(;22(:))'7

(Age@™)Y P(2)

_ P(z)\/ Q(z) _
fo = (A1e )"+ Aoe AgeQ() 1€



6 H. LIU, Z. MAO EJDE-2007/108

/

A Al
—h =" — (—2 + Q" + [A1p + Al + P Ao — A—gAlga — Q' Arple” + Agpe?.

A
Now we prove h # 0. If h =0, then
1/ A/ / / A/ AI

By o(¢) < 00, 0(Aj) <n (j =0,1) and [6 p. 89], for any given 0 < ¢ < 11J:;C (cis
defined as in Theorem , there exists a set Ey C [0, 27) that has linear measure
zero, if 6 € [0,27) \ Ey, then there exists a constant R = R(#) > 1, such that for

all z satisfying argz = 6 and |z| > R, we have

(k)

()0 < o - g

w(;))lsd’“ @79 (k=1,2), (36)
Al (z) (A —libe s

G ST =00, (3.7)
J

Since P(z), Q(z) are polynomials with degree n, when |z| = r is sufficiently large,
we have

|P'(z)| <r™ and |Q'(z)| <™. (3.8)

So by (3.6])-(3.8)), there exists a positive constant M, such that for all z satisfying
argz =0 € [0,27) \ Ep, we have, when |z| = r is sufficiently large,

A() /90/ M
— + —ST, 3.9
R+ (39
/ A/ A/
|%+A—1+P'—A—2—Q’|STM. (3.10)

If arg a,, # argby,, then by lemma [2.2] there exists a ray argz = 6 € [0,27) \ (Eo U
FE1UEs), Ey C [0,27) having linear measure zero, Es = {0 € [0,27);5(P,0) =0 or
0(Q,0) = 0} being a finite set, such that 6(P,0) < 0,(Q,0) > 0, and for the above
given e, we have, when r is sufficiently large,

|Ape®?| > exp {(1 —€)d(Q, 0)r"}, (3.11)

|A1e”’| < exp{(1 —&)d(P,0)r"} < 1. (3.12)

So by (3.5)),(3.6) and (3.9)-(3.12)), we get
exp{(1—¢)§(Q,0)r"} < |Aer| < p2lole)=ite) L QM M
This is absurd.
If a, = ¢b,(0 < ¢ < 1), then by lemma there exists a ray argz = 0 €
[0,27) \ (Ep U Eq U Ey), where Ey, Fy1 and Fs are defined as the above, such that

0(Q,0) > 0, and for the above given ¢, when r is sufficiently large, we have (3.11))
and

|A1e”| < exp {(1+¢)es(Q, 0)r"}. (3.13)
So by , , — and , we get
exp {(1 —€)6(Q,0)r"} < |Ape?|
< p2e@=ite) Mg Mooy {1+ £)ed(Q, 0)r™}
< 3exp{(1+2¢)cd(Q,0)r"}.
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This is a contradiction to 0 < & < W From the above proof, we get h # 0. From

h # 0 and lemmawe get A(g1) = o(g1) = oo. Hence A(f' — ) = co.
Finally we prove that AMf" — ¢) = 00. Set go = f” — ¢, then O'(gg) =o(f") =
o(f) = 00, A(g2) = A(f” — ¢). Differentiating both sides of equation (3.2)), we get

f(4) + AlePf/// + [2(A1€P)/ + AOeQ]f// + [(AleP)// + 2(A0€Q)/]f, + (AOeQ)”f =0.

(3.14)
Substituting f = fﬁ[f” + Aref f'] into (3.14)), we get
QN
f(4)+A1€Pf/"+[2(A1€P)/+A06Q7 (AOE ) } !
Ape® (3.15)
—‘,—[(A Py A Q/_(AOeQ)HA Pypr _
1€ ) +2( 0€ ) Aer 1€ ]f =0.
By (3.3) and (3.15), we have
O+ Hyf" + Hyf" =0, (3.16)
where
Hy = Ager — £15) 1
3 1€ @2(2’)’ (3 7)
QN Qy/
APy 4 g0 A0 p (Ae?)
2(Are") + Ape e 2(2) [Ajef — S (3.18)
Q\!
o1(2) = (Arel) +2(AgeQ) — (‘ife " pe?, (3.19)
o€
Ape?Y
©o(2) = (A1ef) + Ape® — (A(;ieQ)AleP’ (3.20)

and ¢2(z) #Z 0 by Lemma (). Clearly, Hs, Ho, ¢1(2), p2(z) are meromorphic
functions with o(¢r) < n(k=1,2), o(H;) < n(j = 2,3).
Substituting f” = g2 + ¢,f"" = g5 + ¢',f M) = g5 + ¢ into (B.16),
95 + Hzgy + Hags = —(¢" + Hzp' + Hap).
If we can prove that —(¢” + Hs¢' + Hag) # 0, then by lemma we get A(g2) =

o(ga) = 0o. Hence A(f" —¢) = oco. Now we prove — (" + H3p' + Hap) # 0. Notice
that

(AreP) = (A’ + A PP, (AreP)! = (A + 24, P + AL (P')? + A P")e?

So by —, we have
©1(2) = Bre? 4+ 2(A) + AoQ')e?, (3.21)
©o(2) = Bae? + Ape?, (3.22)
Hs = @%(Z)HLL, (3.23)
Hy = L[Age%? + Hj), (3.24)

p2(2)
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where
H5 = [2A0(A/1 + A1P/) + AoBQ - 2A1(A6 + A()Q/)]6P+Q
+ 2By (A} + AL P) — A1 B1)e*t — [Al + 2A45Q" + Ao(Q')?

- A — 2(%2 Q) (A + A0Q)e®

BG4 2 (@) 4 Q) - BICR 1 @)

2 AO Ao 1 AO )

H4 = A1A06P+Q + AlBg(’,QP - 2(14/0 + A()Q/)(EQ - B1€P,

A

By =AY +241F' + Ay(P)> + 4P — “2 (A7 +240Q" + Ao(Q')* + 40Q"),

0

Ay

Ao

Clearly, B1, By are meromorphic functions with o(B;) < n (j = 1,2). By (3.22)-
(3.24), we see that

By = Al + A1P — A1 (52 + Q).

1 / 1 /! /
—(% + H3% + Ha) = —m{%m(z) + %H4 + Hs + Aje”@}.

As po(2), Hy, Hs have the form of 15(z) which is defined as in lemma [2.4] (ii), so
by lemma (i) and (vi), we get “-s(2) + £ Hy + Hs + AZe2Q £ 0, pa(2) £ 0.
Hence —(¢” + Hz¢' + Hap) £ 0. O

Proof of Theorem[1.5 First, we suppose d2 # 0. Suppose that f # 0 is a solution
of equation (L)), by Theorem[I.I]we have o (f) = co. Set w = da f”+d1 f'+do f— ¢,
then o(w) = o(g) = o(f) = oo by lemma [2.3]

To prove that A(g— @) = 0o, we need to prove only that A(w) = co. Substituting
"= —Aelf — Age? f into w, we get

w = (dl — dgAleP)f' + (do - dQAer)f - @. (325)

Differentiating both sides of equation (3.25), and replacing f” with f” = —Ae’ f'—
Age? f, we obtain

w' = [dQA%EQP — ((dgAl)/ -+ PldQAl + dlAl)ep — doneQ +dp + dlﬂfl (3 26)
+ [d2AgA1e” T — ((d2Ao) + Q'da Ao + d1Ag)e? + d]f — ¢ -

Set
o] = d1 — dQAleP, Qo = do — dQAer,
Bi = doAte*r — ((daAy) + P'daAy + diAy)er — doApe® + do + df,
Bo = daAgAePT@ — ((daAg) + Q'daAg + dle)eQ +dj.
Then we have

arf'+af=w+o
Bif' + Bof =w' + ¢
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Set
h=aifo — aofh
= [d1 — doAre")[d2AgA1e” 9 — ((d2Ao) + Q'd2Ag + d1 Ag)e? + di)]
— [do — doApe®)[deAZe* — ((do A1) + P'de Ay + dyAy)e”
— daAge® + do + d}].

(3.27)

Now check all terms of h. Since the term +d3A42Ape?’+? is eliminated, by (3.27)

we can write
h = 1)o(2) — d3A2e?, (3.28)
where 15(z) is defined as in lemm(ii). By d2 £ 0, Ag # 0 and lemma [2.4] (ii),
we see that h # 0. By and (3.26]), we obtain
= 1o — dyAge?)(w' + )
+ [d2AgA1eP TP — ((daAp) + Q'daAp + dy Ap)e® + dp)(w + )} (3.29)
::%{—Q%—fdp&ﬁQ)w/+fﬁmw4%¢dp&yhep+Q
+ [da Aoy’ — ((d2Ao) + Q'daAg + dy Ag)le® + 11},

where @1 is an entire function with o(®10) < n, 1)1 is defined as in lemma (i).

1
f=q - daAre”)(w' + ')
— [dQA%GQP — ((dgAl)/ + PldQAl + dlAl)eP - dngeQ + do + dlﬂ(w + (p)}

1
= E{(dl — dgAleP)w’ + <I>00w — (pdgA%@QP + (PdQAer + ’(/11},

(3.30)
where @ is an entire function with o(®gg) < n, 17 is defined as in 1emma (1).

Differentiating both sides of equation (3.29)), and by (3.28]), we get
1 .
f”:ﬁﬂ—@%§Q+wmﬂ+©mw+¢mw+wh (3.31)

where ®9; and ®g are entire functions with o(®21) < n, o(P99) < n, 3, ¥y are
defined as in lemma [2.4] (iii)-(iv). Substituting (3.28)-(3.31) into (L.I), we obtain
(—diASegQ +h3)w” + Poyw’ + Pogw + Yy
+ A1€P(Z)(’(/J2(Z) — d%AgezQ){—(do — dyAge®)w’ + row + pdy Ag Ay el TR
+ [da Ao’ — ((d2Ao) + Q'd2Ag + di Ag)le® + 91 }
+ Ape? P (Ya(2) — d3AF*?){(d1 — daAre” )’
+ Poow — pda ATe*” + pdy Age? + 11} =0,

namely

(—d3 A3 + 3w + ®yw’ + dow = F, (3.32)
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where ®; and ®g are entire functions with o(®;) < n, o(®y) < n, and
—F =y + (AreFyy — d2A; A2e(PH2Q)) (pdy Ag Ay e H0
+ [daAog’ — ((deAg) + Q'daAg + dy Ag)le® + 1))
+ (Age@ipy — d2A3e39) (—pdy A2e2T + pdy Age® + 1)
= by + AT Agihapdae® T2 + Ayiholda Aoy’ — (daAo) ¢ — Q'da Ao

— d1 Agplef 9 + Arel iy — d2AL A2 P2y — d2 A A2[dy Aoy’
— (daAo) ¢ — Q'da Ao — d1 Agiple” 39 — d5 AJ AT pe* @
— phada Ag AT TP 4 pd3 ATAGE? IR 4 hoipdy AGe*?
— pd3 AgerQ + ApeQuapy — dEAZPPpy.

Since every 1, in (3.33)) is equal to that in (3.28)), so the terms + A% Agihapdge?F+@
and £od3 A2 A3e?P+39 are eliminated. By lemma [2.4] (iv), we know that

Aripalda Aoy’ — (d2Ao)' — Q'da Ao — di Agple”™9,
APy,  —d3A; AZe Py,
—d3 A1 Aflda Ao’ — (d2Ao)'p — Q'da Ao — di Agple” 59,
Popda Ae*?,  Age®rtpy,  —d3AFe
having all forms of 4, by , we obtain

(3.33)

—F = —pd3 A3 + . (3.34)
By lemma [2.4] (iii)-(iv) and da # 0, ¢ # 0, Ag # 0 and o(¢) < n, we see that
F#0, —d3A3e3? 143 #0. (3.35)

By equation (3.32), lemma o(w) = oo and (3.35), we obtain A(w) = o(w) = oc.

Now suppose do = 0, d; #Z 0, dy # 0. Using a similar reasoning to that above,
we get AM(w) = o(w) = oc. Finally, if dy =0, d; #0,dy =0or dy =0, d; =0,
do # 0, then for w = d; f¥) — ¢ (j = 1 or 0), we can consider = ) — di;. Since

Mw) = X(d%) (d; being polynomials), using a similar reasoning as in Theorem

and o(w) - o0, we get A(w) = o(w) = oo. O
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