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GEOMETRIC AND ALGEBRAIC CLASSIFICATION OF
QUADRATIC DIFFERENTIAL SYSTEMS WITH
INVARIANT HYPERBOLAS

REGILENE D. S. OLIVEIRA, ALEX C. REZENDE,
DANA SCHLOMIUK, NICOLAE VULPE

ABSTRACT. Let QSH be the whole class of non-degenerate planar quadratic
differential systems possessing at least one invariant hyperbola. We classify
this family of systems, modulo the action of the group of real affine transfor-
mations and time rescaling, according to their geometric properties encoded
in the configurations of invariant hyperbolas and invariant straight lines which
these systems possess. The classification is given both in terms of algebraic
geometric invariants and also in terms of affine invariant polynomials. It yields
a total of 205 distinct such configurations. We have 162 configurations for the
subclass QSH ;) of systems which possess three distinct real singularities at
infinity in P(C), and 43 configurations for the subclass QSH,—¢) of systems
which possess either exactly two distinct real singularities at infinity or the
line at infinity filled up with singularities. The algebraic classification, based
on the invariant polynomials, is also an algorithm which makes it possible to
verify for any given real quadratic differential system if it has invariant hy-
perbolas or not and to specify its configuration of invariant hyperbolas and
straight lines.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

We consider planar polynomial differential systems which are systems of the form

dx/dt:p(l‘,y), dy/dtZQ(xvy) (1'1)

where p(z,y), ¢(x,y) are polynomial in z, y with real coefficients (p, ¢ € R[z,y]) and
their associated vector fields

X = ple.y) 2+ glary) 2 (1.2)

Ox dy’
We call degree of such a system the number max(deg(p),deg(q)). In the case where
the polynomials p and ¢ are coprime we say that (1.1]) is non-degenerate.
A real quadratic differential system is a polynomial differential system of degree
2, i.e.

dx/dt:po +p1(a’7xay)+p2(éaxay) (d,x,y),

R ~ 1.3
dy/dtzqO+Q1(a7fC7y)+Q2(a»$»y) ( )

Il
=% =]

a? b

with max(deg(p), deg(q)) = 2 and
Po = a, pl(a‘7x7y) :C‘r+dy7 pQ(aaxay) :g$2+2hl'y+k'y2,
q0:b7 ql(daw7y) :€$+fy, Q2(5L>-737y) :laj2+2m33y—|—ny2

Here we denote by a = (a,b,¢,d,e, f,g,h,k,I,m,n) the 12-tuple of the coefficients
of system . Thus a quadratic system can be identified with a points & in R'2.

We denote the class of all quadratic differential systems with QS.

Planar polynomial differential systems occur very often in various branches of
applied mathematics, in modeling natural phenomena, for example, modeling the
time evolution of interacting species in biology and in chemical reactions and eco-
nomics [I4} B2], in astrophysics [6], in the equations of continuity describing the
interactions of ions, electrons and neutral species in plasma physics [21]. Polyno-
mial systems appear also in shock waves, in neural networks, etc. Such differential
systems have also theoretical importance. Several problems on polynomial differen-
tial systems, which were stated more than one hundred years ago, are still open: the
second part of Hilbert’s 16th problem stated by Hilbert in 1900 [I0], the problem
of algebraic integrability stated by Poincaré in 1891 [19], [20], the problem of the
center stated by Poincaré in 1885 [I8], and problems on integrability resulting from
the work of Darboux [§] published in 1878. With the exception of the problem of
the center, which was solved only for quadratic differential systems, all the other
problems mentioned above, are still unsolved even in the quadratic case.

Definition 1.1 (Darboux). An algebraic curve f(z,y) = 0 where f € Clx,y] is an
invariant curve of the planar polynomial system (|1.1]) if and only if there exists a
polynomial k(x,y) € Clz,y] such that

of of

— - = k .

p(z,y) 5 - +al@,y) 9y [ y)k(z,y)

Definition 1.2 (Darboux). We call algebraic solution of a planar polynomial sys-
tem an invariant algebraic curve over C which is irreducible.

One of our motivations in this article comes from integrability problems related
to the work of Darboux [§].
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Theorem 1.3 (Darboux). Suppose that a polynomial system has m invariant
algebraic curves fi(xz,y) = 0, i < m, with f; € Clz,y] and with m > n(n +1)/2
where n is the degree of the system. Then there exist complex numbers Ay, ..., Ay,
such that ff‘l .. fhm is a first integral of the system.

The condition in Darboux’s theorem is only sufficient for Darboux integrability
(integrability in terms of invariant algebraic curves) and it is not also necessary.
Thus the lower bound on the number of invariant curves sufficient for Darboux
integrability stated in the theorem of Darboux is larger than necessary. Darboux’s
theory has been improved by including for example the multiplicity of the curves
([13]). Also, the number of invariant algebraic curves needed was reduced but by
adding some conditions, in particular the condition that any two of the curves
be transversal. But a deeper understanding about Darboux integrability is still
lacking. Algebraic integrability, which intervenes in the open problem stated by
Poincaré in 1891 ([19] and [20]), and which means the existence of a rational first
integral for the system, is a particular case of Darboux integrability.

Theorem 1.4 (Jouanolou [I1]). Suppose that a polynomial system , defined by
polynomials p(x,y), q(x,y) € Clz,y], has m invariant algebraic curves f;(xz,y) =0,
i < m, with f; € Clz,y] and with m > n(n + 1)/2 + 2 where n is the degree
of the system. Then the system has a rational first integral h(z,y)/g(xz,y) where
h(z,y),9(z,y) € Clz,y].

To advance knowledge on algebraic or more generally Darboux integrability it
is necessary to have a large number of examples to analyze. In the literature,
scattered isolated examples were analyzed but a more systematic approach was
still needed. Schlomiuk and Vulpe initiated a systematic program to construct
such a data base for quadratic differential systems. Since the simplest case is of
systems with invariant straight lines, their first works involved only invariant lines
for quadratic systems (see [24] 26, 27, 29], [30]). In this work we study a class of
quadratic systems with invariant conics, namely the class QSH of non-degenerate
(i.e. p,q are relatively prime) quadratic differential systems having an invariant
hyperbola. Such systems could also have some invariant lines and in many cases
the presence of these invariant curves turns them into Darboux integrable systems.
We always assume here that the systems are non-degenerate because otherwise
doing a time rescaling, they can be reduced to linear or constant systems. Under
this assumption all the systems in QSH have a finite number of finite singular
points.

The irreducible affine conics over the field R are the hyperbolas, ellipses and
parabolas. One way to distinguish them is consider their points at infinity (see
[1]). The term hyperbola is used for a real irreducible affine conic which has two
real points at infinity. This distinguishes it from the other two irreducible real
conics: the parabola has just one real point at infinity at which the multiplicity of
intersection of the conic with the line at infinity is two, and the ellipse which has
two complex points at infinity.

In the theory of Darboux the invariant algebraic curves are considered (and
rightly so) over the complex field C. We may extend the notion of hyperbola
(parabola or ellipse) for conics over C. A hyperbola (respectively parabola or
ellipse) is an algebraic curve C in C?, C': f(x,y) = 0 with f € C[z,y], deg(f) =2
which is irreducible and which has two real points at infinity (respectively one real
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point at infinity with intersection multiplicity two, or two complex (non-real) points
at infinity).

Observation 1.5. We draw attention to the fact that if we have a curve C :
f(z,y) =0 over C it could happen that multiplying the equation by a number \ €
C* = C\{0}, the coefficients of the new equation become real. In this case, to the
equation f(z,y) = 0 we can associate two curves: one real {(z,y) € R2|\f(x,y) =
0} and one complex {(z,y) € C?|f(z,y) = 0}. In particular if f(x,y) € Rlx,y]
then we could talk about two curves, one in the real and the other in the complex
plane. If the coefficients of an algebraic curve C : f(x,y) = 0 cannot be made real
by multiplication with a constant, then clearly to the equation f(z,y) = 0 we can
associate just one curve, namely the complex curve {(x,y) € C?|f(z,y) = 0}.

In this paper we consider real polynomial differential equations. To each such a
system of equations there corresponds the complex system with the same coefficients
to which we can apply the theory of Darboux using complex invariant algebraic
curves. Some of these curves may turn out to be with real coefficients in which case
they also yield, as in the observation above, invariant algebraic curves in R? of the
real differential system. It is one way, but not the only way, in which the theory of
Darboux yields applications to real systems. It is by juggling both with complex
and real systems and their invariant complex or real algebraic curves that we get
a full understanding of the classification problem we consider here. In particular,
apart from the hyperbolas (in the real plane) we shall encounter conics in the
complex plane for which the coefficients cannot be made real by the multiplication
with a non-zero complex constant and whose points at infinity are real and of
course distinct, just like for the (real) hyperbolas in the real plane. We call these
conics complex hyperbolas. These curves shed light on our classification problem.
Indeed, just as polynomials g(z) € R[z] do not have always all their roots in R
but they factor into linear factors over C and full understanding of the roots with
their multiplicities only comes when we consider them as elements of C[z], the
complex invariant curves magnify our understanding of the family QSH and help
us in classifying QSH according to the configurations of invariant hyperbolas and
invariant lines.

Let us suppose that a polynomial differential system has an algebraic solution
f(z,y) = 0 where f(z,y) € C[z,y] is of degree n, f(x,y) = ag+ ajox +ap1y+---+
o™ + ap_112" 1y + -+ + agpy™ with @ = (ao,...,a0,) € CVN where N = (n +
1)(n 4 2)/2. We note that the equation Af(x,y) = 0 where A € C* = C\{0} yields
the same locus of complex points in the plane as the locus induced by f(z,y) = 0.
So, a curve of degree n defined by @ can be identified with a point [a] = [ag : a1 :

-t agp] in Pny—1(C). We say that a sequence of degree n curves f;(xz,y) = 0
converges to a curve f(z,y) = 0 if and only if the sequence of points [a;] = [aip :
@i10 - -+ : Gipn) converges to [a] = [ap : aio : -+ : apy] in the topology of Py_1(C).

On the class QS acts the group of real affine transformations and time rescaling
and because of this, modulo this group action quadratic systems ultimately depend
on five parameters. In particular, restricting this group action on QSH, modulo
this action the QSH is a union of 1-dimensional, 2-dimensional and 3-dimensional
families of systems as it can be seen from the normal forms obtained in [15] for this
family.

We observe that if we rescale the time ¢’ = At by a positive constant A the
geometry of the systems does not change. So for our purposes we can identify
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a system of degree n with a point in [ag, a1, - .., bon] in SY7H(R) with N =
(n+1)(n+2).

We compactify the space of all the polynomial differential systems of degree n
on SV with N = (n + 1)(n + 2) by multiplying the coefficients of each systems
with 1/(32(a2; 4 bZ))Y/2.

Definition 1.6. (1) We say that an invariant curve £ : f(x,y) =0, f € Clx, y| for
a polynomial system (S) of degree n has multiplicity m if there exists a sequence
of real polynomial systems (S) of degree n converging to (S) in the topology of
SN=1 N = (n+ 1)(n + 2), such that each (Sy) has m distinct invariant curves
»Cl,k : fl,k(xay) = Oa"'a‘cm,k : fm,k(xvy) = 0 over (Cv deg(f) = deg(fl,k) =T,
converging to £ as k — oo, in the topology of Pr_;(C), with R = (r +1)(r +2)/2
and this does not occur for m + 1.

(2) We say that the line at infinity Lo : Z = 0 of a polynomial system (S) of
degree n has multiplicity m if there exists a sequence of real polynomial systems
(Sk) of degree n converging to (S) in the topology of S¥ =1, N = (n+1)(n+2), such
that each (Si) has m — 1 distinct invariant lines £y @ fix(z,y) = 0,..., Lk ¢
fm—16(z,y) = 0 over C, converging to the line at infinity Lo, as k — oo, in the
topology of Py(C) and this does not occur for m.

Definition 1.7. (1) Suppose a planar polynomial system (S) has a finite number
of algebraic solutions £;, ¢ < k, with corresponding multiplicities n; and the line at
infinity Lo is not filled up with singularities and it has multiplicity n.,. We call
total multiplicity of these algebraic solutions, including the multiplicity no, of the
line at infinity Lo, the sum TMC(g) =n1 + -+ + ng + Noo-

(2) Suppose system (S) has a finite number of real distinct singularities si, ..., s,
finite or infinite, which are located on the algebraic solutions, and si,...,s; have
the corresponding multiplicities mq,...,m;. We call total multiplicity of the real

singularities on the invariant curves of (S) the sum TMS(g) = my + --- +m; and
TMS is the function defined by this expression.

An important ingredient in this work is the notion of configuration of algebraic
solution of a polynomial differential system. This notion appeared for the first time
in [24].

Definition 1.8. Consider a planar polynomial system which has a finite number
of algebraic solutions and a finite number of singular points, finite or infinite. By
configuration of algebraic solutions of this system we mean the set of algebraic
solutions over C of the system, each one of these curves endowed with its own
multiplicity and together with all the real singular points of this system located on
these curves, each one of these singularities endowed with its own multiplicity.

We may have two distinct systems which may be non-equivalent modulo the
action of the group but which may have “the same configuration” of invariant
hyperbolas and straight lines. We need to say when two configurations are “the
same” or equivalent.

Definition 1.9. Suppose we have two systems (S7),(S2) in QSH with a finite
number of singularities, finite or infinite, a finite set of invariant hyperbolas H; :
hi(z,y) = 0,1 =1,...,k, of (S1) (respectively H. : h}(z,y) =0,i=1,...,k, of
(S2)) and a finite set (which could also be empty) of invariant straight lines £; :
filw,y) = 0,5 =1,2,... K, of (S1) (vespectively L : fi(z,y) =0, j =1,2,... K,
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of (S3)). We say that the two configurations Cy,Cs of hyperbolas and lines of
these systems are equivalent if there is a one-to-one correspondence ¢ between the
hyperbolas of C; and C5 and a one-to-one correspondence ¢; between the lines of
C1 and C5 such that:

(i) the correspondences conserve the multiplicities of the hyperbolas and lines
(in case there are any) and also send a real invariant curve to a real invariant curve
and a complex invariant curve to a complex invariant curve;

(ii) for each hyperbola H : h(z,y) = 0 of C; (respectively each line £ : f(z,y) =
0) we have a one-to-one correspondence between the real singular points on H
(respectively on £) and the real singular points on ¢p(H) (respectively ¢;(L)) con-
serving their multiplicities, their location on branches of hyperbolas and their order
on these branches (respectively on the lines);

(iii) Furthermore, consider the total curves F : [[ H;(X,Y, X) [ F;(X,Y, 2)Z =
0 (respectively 7' : [[ H{(X,Y, X)[[ Fj(X,Y,Z)Z = 0 where H;(X,Y,X) = 0,
Fj(X,Y, X) = 0 (vespectively H;(X,Y, X) =0, F/(X,Y, X) = 0) are the projective
completions of H;, L; (respectively H;, L£). Then, there is a correspondence v
between the singularities of the curves F and F’ conserving their multiplicities as
singular points of the total curves.

In the family QSH we also have cases where we have an infinite number of
hyperbolas. Thus, according to the theorem of Jouanolou (Theorem , we have
a rational first integral. In this case the multiplicity of a hyperbola in the family
is either considered to be undefined or we may say that this multiplicity is infinite.
Such situations occur either when we have (7) a finite number of singularities, finite
or infinite, or (i7) an infinite number of singularities which could only be at infinity
(recall that the systems in QSH are non-degenerate). In both cases however we
show that we have a finite number of affine invariant straight lines with finite
multiplicities. In fact it was proved in [28] that all quadratic systems which have
the line at infinity filled up with singularities have affine invariant straight lines
of total multiplicity three. Furthermore, the multiplicities of singularities of the
systems are finite in the case (¢) and this is also true in case (i¢) if we only take
into consideration the affine lines. We therefore can talk about the configuration
of affine invariant lines associated to the system. Two such configurations of affine
invariant lines C1y,, Coy, associated to systems (S7), (S2) are said to be equivalent
if and only if there is a one-to-one correspondence ¢; between the lines of C;, and
C5, such that:

(i) the correspondence conserves the multiplicities of lines and also sends a
real invariant line to a real invariant line and a complex invariant line to a
complex invariant line;

(ii) for each line £ : f(x,y) = 0 we have a one-to-one correspondence between
the real singular points on £ and the real singular points on ¢;(£)) con-
serving their multiplicities and their order on the lines.

We use this to extend our previous definition further above to cover these cases.

Definition 1.10. Suppose we have two systems (S71), (S2) in QSH with a finite
number of finite singularities and an infinite number of invariant hyperbolas of
(S1) (respectively an infinite number of hyperbolas of (S3)). Suppose we have
a non-empty finite set of affine invariant straight lines £, : f;(z,y) = 0, j =
1,2,...k, of (S1) (vespectively L) : fi(z,y) = 0, j = 1,2,...k, of (S2)). We
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now consider only the two configurations Cr,, Coy, of invariant affine lines of (S7),
(S2) associated to the systems. We say that the two configurations Ciy, Cyy, are
equivalent with respect to the hyperbolas of the systems if and only if (i) they are
equivalent as configurations of invariant lines and in addition the following property
(ii) is satisfied: we take any hyperbola H : h(x,y) = 0 of (S1) and any hyperbola
H' : B (x,y) =0 of (S2). Then, we must have a one-to-one correspondence between
the real singular points of the system (S7) located on H and of real singular points of
the system (S2) located on H', conserving their multiplicities and their location and
order on branches. Furthermore, consider the curves F : [[h(z,y)[] fj(z,y) =0
and F' : [[h(x,y)[[ fj(2,y) = 0. Then we have a one-to-one correspondence
between the singularities of the curve F with those of the curve F’ conserving their
multiplicities as singular points of these curves.

It can be easily shown that the definition above is independent of the choice of
the two hyperbolas H : h(x,y) = 0 of (S1) and H' : b/ (x,y) = 0 of (S3).

In [I5] the authors provide necessary and sufficient conditions for a non-degenerate
quadratic differential system to have at least one invariant hyperbola and these con-
ditions are expressed in terms of the coefficients of the systems. In this paper we
denote by QSH(,~0) the family of non-degenerate quadratic systems in QSH pos-
sessing three distinct real singularities at infinity and by QSH,—¢) the systems in
QSH possessing either exactly two distinct real singularities at infinity or the line
at infinity filled up with singularities. We classify these families of systems, modulo
the action of the group of real affine transformations and time rescaling, according
to their geometric properties encoded in the configurations of invariant hyperbolas
and/or invariant straight lines which these systems possess.

As we want this classification to be intrinsic, independent of the normal form
given to the systems, we use here geometric invariants and invariant polynomials
for the classification. For example, it is clear that the configuration of algebraic
solutions of a system in QSH is an affine invariant. The classification is done ac-
cording to the configurations of invariant hyperbolas and straight lines encountered
in systems belonging to QSH. We put in the same equivalence class systems which
have equivalent configurations of invariant hyperbolas and/or lines. In particular
the notion of multiplicity in Definition [1.6|is invariant under the group action, i.e.
if a quadratic system S has an invariant curve £ = 0 of multiplicity m, then each
system S’ in the orbit of S under the group action has a corresponding invariant
line £ = 0 of the same multiplicity m. To distinguish configurations of algebraic
solutions we need some geometric invariants, and we also use invariant polynomials
both of which are introduced in our Section 2

Theorem 1.11. Consider the class QSH of all non-degenerate quadratic differen-
tial systems possessing an invariant hyperbola.

(A) This family is classified according to the configurations of invariant hyper-
bolas and of invariant straight lines of the systems, yielding 205 distinct such con-
figurations, 162 of which belong to the class QSH,~qy and 43 to QSH(,—g). This
geometric classification is described in Theorems [3.1] and [{-1]

(B) Using invariant polynomials, we obtain the bifurcation diagram in the space
R12 of the coefficients of the system in QS according to their configurations of in-
variant hyperbolas and invariant straight lines (this diagram is presented in part
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(B) of Theorems and . Moreover, this diagram gives an algorithm to com-
pute the configuration of a system with an invariant hyperbola for any quadratic
differential system, presented in any normal form.

The article is organized as follows: In Section [2] we define all the geometric
and algebraic invariants used in the paper and we introduce the basic auxiliary
results we need for the proof of our theorems. In Section 3 we consider the class
QSH;,~0) of all non-degenerate quadratic differential systems possessing three
distinct real singularities at infinity and we classify this family according to the
geometric configurations of invariant hyperbolas and invariant straight lines which
they possess. We also give their bifurcation diagram in the 12-dimensional space R'2
of their coefficients, in terms of invariant polynomials. In section 4 we consider the
class QSH(;,—) of all non-degenerate quadratic differential systems (1.3) possessing
an invariant hyperbola and either exactly two distinct real singularities at infinity
or the line at infinity filled up with singularities. We classify this family according
to the geometric configurations of invariant hyperbolas and invariant straight lines
which they possess. We also give their bifurcation diagram in the 12-dimensional
space R'2 of their coefficients, in terms of invariant polynomials. In section [5| we
give some concluding comments, stressing the fact that the bifurcation diagrams in
R!? give us an algorithm to compute the configuration of a system with an invariant
hyperbola for any system presented in any normal form.

2. BASIC CONCEPTS AND AUXILIARY RESULTS

In this section we define all the invariants we use in the Main Theorem and we
state some auxiliary results. A quadratic system possessing an invariant hyperbola
could also possess invariant lines. We classified the systems possessing an invariant
hyperbola in terms of their configurations of invariant hyperbolas and invariant
lines. Each one of these invariant curves has a multiplicity in the sense of Definition
[1.6] (see also in [7]). We encode this picture in the multiplicity divisor of invariant
hyperbolas and lines. We first recall the algebraic-geometric definition of an r-cycle
on an irreducible algebraic variety of dimension n.

Definition 2.1. Let V be an irreducible algebraic variety of dimension n over a
field K. A cycle of dimension r or r-cycle on V is a formal sum Xy ny W, where
W is a subvariety of V' of dimension r which is not contained in the singular locus
of V, ny € Z, and only a finite number of ny ’s are non-zero. We call degree of an
r-cycle the sum Yny . An (n — 1)-cycle is called a divisor.

Definition 2.2. Let V' be an irreducible algebraic variety over a field K. The
support of a cycle C on V is the set supp(C) = {W|nw # 0}. We denote by
Maz(C) the maximum value of the coefficients ny in C. For every m < Max(C)
let s(m) be the number of the coefficients ny in C' which are equal to m. We call
type of the cycle C the set of ordered couples (s(m), m) where 1 < m < Maz(C).

Clearly the degree and the type of an r-cycle are invariant under the action of
the group of real affine transformations and time rescaling.

For a non-degenerate polynomial differential systems (S) possessing a finite num-
ber of algebraic solutions f;(z,y) = 0, fi(z,y) € C, each with multiplicity n; and
a finite number of singularities at infinity, we define the algebraic solutions divisor
on the projective plane, ICD = 3,,,1n;C; + no Lo (also called the invariant curves
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divisor) where C; : F;(X,Y,Z) = 0 are the projective completions of f;(z,y) = 0,
n; is the multiplicity of the curve C; = 0 and n, is the multiplicity of the line at
infinity Lo : Z = 0. It is well known (see [2]) that the maximum number of invari-
ant straight lines, including the line at infinity, for polynomial systems of degree
n > 2 is 3n.

In the case we consider here, we have a particular instance of the divisor (CD
because the invariant curves will be invariant hyperbolas and invariant lines of a
quadratic differential system, in case these are in finite number. In case we have
an infinite number of hyperbolas we use only the invariant lines to construct the
divisor.

Another ingredient of the configuration of algebraic solutions are the real singu-
larities situated on these curves. We also need to use here the notion of multiplicity
divisor of real singularities of a system, located on the algebraic solutions of the
system.

Definition 2.3. (1) Suppose a real quadratic system has a finite number of invari-
ant hyperbolas H; : h;(z,y) =0i=1,...,k and a finite number of affine invariant
lines £, : fj(x,y) =0, =1,...,1. We denote the line at infinity Lo, : Z = 0. Let
us assume that on the line at infinity we have a finite number of singularities. The
divisor of invariant hyperbolas and invariant lines on the complex projective plane
of the system is the following:

ICD =niHi+ ...+ nHe +mai L1+ ...+ mpLly + Moo Loo,s

where n; (respectively m;) is the multiplicity of the hyperbola H; (respectively m;
of the line £;), and mq is the multiplicity of Lo,. We also mark the complex (non-
real) invariant hyperbolas (respectively lines) denoting them by HS (respectively
L£8). We define the total multiplicity TMH of invariant hyperbolas as the sum
>-;mi and the total multiplicity TML of invariant line as the sum ), m;. We
denote by IHD (respectively ILD) the invariant hyperbolas divisor (respectively
the invariant lines divisor) i.e. THD = niyHy + ... + nipHy (respectively ILD =
MooLloo +m1 L1+ ...+ mlﬁl).

(2) The zero-cycle on the real projective plane, of real singularities of a system
located on the configuration of invariant lines and invariant hyperbolas, is
given by:

MSoc =rUi +...+1U +v181 + ...+ 0,80,
where U; (respectively s;) are all the real infinite (respectively finite) such singu-
larities of the system and r; (respectively v;) are their corresponding multiplicities.

In the family QSH we have configurations which have an infinite number of
hyperbolas. These are of two kinds: those with a finite number of singular points at
infinity, and those with the line at infinity filled up with singularities. To distinguish
these two cases we define | Sing | to be the cardinality of the set of singular points
at infinity of the systems. In the first case we have |Sing. | = 2 or 3, and in the
second case | Sing, | is the continuum and we simply write | Sing | = co. Since in
both cases the systems admit a finite number of affine invariant straight lines we
can use them to distinguish the configurations.

Definition 2.4. (1) In case we have an infinite number of hyperbolas and just two
or three singular points at infinity but we have a finite number of invariant straight
lines we define ILD = m L1 + ...+ mpLy + Mmoo Loo (see Definition [2.3));
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(2) In case we have an infinite number of hyperbolas, the line at infinity is
filled up with singularities and we have a finite number of affine lines, we define
ILD =miLqy+...+mpLyg.

Attached to the divisors and the zero-cycle we defined, we have their types which
are clearly affine invariants. So although the cycles ICD and MSyp¢ are not them-
selves affine invariants, they are used in the classification because we can read on
them several specific invariants, such as for example their types, TMS, TMC, etc.

The above defined divisor (CD and zero-cycle MSpc contain several invariants
such as the number of invariant lines and their total multiplicity TML, the num-
ber of invariant hyperbolas (in case these are in finite number) and their total
multiplicity TMH, the number of complex invariant hyperbolas of a real system,
etc.

There are two compactifications which intervene in the classification of QSH
according to the configurations of the systems: the compactification in the Poincaré
disk and the compactification of its associated foliation with singularities on the
real projective plane P»(R). We also have the compactification of its associated
(complex) foliation with singularities on the complex projective plane. Each one of
these compactifications plays a role in the classification. In the compactified system
the line at infinity of the affine plane is an invariant line. The system may have
singular points located at infinity which are not points of intersection of invariant
curves, points also denoted by U,..

The real singular points at infinity (respectively the real finite singular points)
which are intersection point of two or more invariant algebraic curves are denoted

by (]]r (respectively by §T)7 where j € {h,l, hh,hl,11,1lh>°,...}. Here h (respectively
I, hh,hl, 1l 1Lh*°, .. .) means that the intersection of the infinite line with a hyperbola
(respectively with a line, or with two hyperbolas, or with a hyperbola and a line,
or with two lines, or with two lines and an infinite number of hyperbolas etc.). In
other words, whenever the symbol h* appears in the divisor MSyc it means that
the singularity lies on an infinite number of hyperbolas.

Suppose we have a finite number of real invariant hyperbolas and real invariant
straight lines of a system (S) and that they are given by equations f;(x,y) = 0,
i€ {1,2,...,k}, fi € Rlz,y]. Let us denote by F;(X,Y,Z) = 0 the projection
completion of the invariant curves f; = 0 in Py(R).

Definition 2.5. The total invariant curve of the system (S) in QSH, on P»(C), is
the curve 7(S) : [[ Fi(X,Y,Z2)Z = 0.

We use the above notion to define the basic curvilinear polygons determined by
the total curve T(S). Consider the Poincaré disk and remove from it the (real)
points of the total curve 7(5). We are left with a certain number of 2-dimensional
connected components.

Definition 2.6. We call basic polygon determined by 7 (S) the closure in the
Poincaré disk of anyone of these components associated to 7 (.9).

Although a basic polygon is a 2-dimensional object, we shall think of it as being
just its border.

The singular points of the system (S) situated on T'(S) are of two kinds: those
which are simple (or smooth) points of 7(S) and those which are multiple points

of T(S).
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Remark 2.7. To each singular point of the system we have its associated multi-
plicity as a singular point of the system. In addition, we also have the multiplicity
of these points as points on the total curve 7(S). Through a singular point of the
systems there may pass several of the curves F; = 0 and Z = 0. Also we may have
the case when this point is a singular point of one or even of several of the curves in
case we work with invariant curves with singularities. This leads to the multiplicity
of the point as point of the curve 7(S). The simple points of the curve T(S) are
those of multiplicity one. They are also the smooth points of this curve.

The real singular points of the system which are simple points of 7 (S) are useful
for defining some geometrical invariants, helpful in the geometrical classification,
besides those which can be read from the zero-cycle defined further above.

We now introduce the notion of minimal prozimity polygon of a singular point
of the total curve. This notion plays a major role in the geometrical classification
of the systems.

Definition 2.8. Suppose a system (S) has a finite number of singular points and
a finite number of invariant hyperbolas and straight lines. Let p be a real singular
point of a system lying on 7 (S) and in the Poincaré disk. Then p may belong to
several basic polygons. We call minimal proximity polygon of p a basic polygon
on which p is located and which has the minimum number of vertices, among the
basic polygons to which p belongs. In case we have more than one polygon with the
minimum number of vertices, we take all such polygons as being minimal proximity

polygons of p.

Remark 2.9. We observe that for systems in QSH we have a basic polygon located
in the finite plane only in one case (Config. H.36) and the polygon is a triangle.
All other polygons have at least one vertex at infinity.

For a configuration C, consider for each real singularity p of the system which
is a simple point of the curve 7(S), its minimal proximity basic polygons. We
construct some formal finite sums attached to the Poincaré disk, analogs of the
algebraic-geometric notion of divisor on the projective plane. For this we proceed
as follows:

We first list all real singularities of the systems on the Poincaré disk which are
simple points (ss-points) of the total curve. In case we have such points U;’s located
on the line at infinity, we start with those points which are at infinity. We obtain a
list Uq,...,U,, s1,..., Sk, where s;’s are finite points. Associate to U, ..., U, their
minimal proximity polygons Pi,...,Pn. In case some of them coincide we only
list once the polygons which are repeated. These minimal proximity polygons may
contain some finite points from the list sq, ..., sx. We remove all such points from
this list. Suppose we are left with the finite points s;,,...,s;, . For these points we
associate their corresponding minimal proximity polygons. We observe that for a
point s;, we may have two minimal proximity polygons in which case we consider
only the minimal proximity polygon which has the maximum number of singularities
s;, simple points of the total curve (ss -points). If the two polygons have the same
maximum number of simple ss-points then we take the two of them. We obtain a
list of polygons and we retain from this list only that polygon (or those polygons)
which have the maximal number of ss-points and add these polygons to the list
Pi1,...,Pm. We remove all the ss-points which appear in this list of polygons from
the list of points s;,,...,s;, and continue the same process until there are no points
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left from the sequence sy, ..., s; which have not being included or eliminated. We
thus end up with a list Py, ..., P; of proximity polygons which we denote by P(C).

Definition 2.10. We denote by PD the proximity “divisor” of the Poincaré disk
PD =viPy + -+ 0. Py

associated to the list P(C) of the minimal proximity polygons of a configuration,
where P; are the minimal proximity polygons from this list and v; are their corre-
sponding number of vertices.

We used the word divisor of the Poincaré disk in analogy with divisor on the
projective plane, also thinking of polygons as the borders of the 2-dimensional
polygons.

The next divisor considers the proximity polygons in PD but only the ones
attached to the finite singular points of the system which are simple points on the
total curve. So this time we start with all such points s1,..., s, and build up the
divisor like we did before. The result is called “the prozimity divisor of the real finite
singular points of the systems, simple points of the total curve” and we denote it
by PDf.

We also define a divisor on the Poincaré disk which encodes the way the minimal
proximity polygons intersect the line at infinity.

Definition 2.11. We denote by PD,, the “divisor” of the Poincaré disk encoding
the way the proximity polygons occurring in PD intersect the infinity and define it
as
PDy =Y npP,
P

where P is a proximity polygon occurring in PD and np is 3 if P has one of its
sides on the line at infinity, it is 2 if P has only two vertices on the line at infinity,
it is 1 if only one of its vertices lies on the line at infinity and it is 0 if P is finite.

Definition 2.12. For a proximity polygon P we introduce the multiplicity divisor

mpP = Zm(v) v,

where v is a vertex of P and m(v) is the multiplicity of the singular point v of the
system.

In case a configuration C' has an invariant hyperbola H and an invariant line L,
we define the following invariant I which helps us decide the type of their intersec-
tion.

Definition 2.13. Suppose we have an invariant line £ and an invariant hyperbola
‘H of a polynomial differential system (S). We define the invariant I attached to
the couple £, H as being: 0 if and only if £ intersects H in two complex non-real
points; 1 if and only if £ is tangent to H; 21 if and only if £ intersects H in two
real points and both these points lie on only one branch of the hyperbola; 22 if and
only if £ intersects H in two real points and these points lie on distinct branches
of the hyperbola. In case for a configuration C' we have several hyperbolas H,;, i €
{1,2,...,r} and an invariant line £, then I = {I(L, H1),I(L, H2),..., I(L, H.)}.

Definition 2.14. We define a function O (for “order”), O : QSH — {1,0,—1} as
follows: Suppose a system (S) in QSH has two singular points at infinity, one simple
U; and the other double Us. Suppose the system has only one invariant hyperbola
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and only two real finite singular points s; and so lying on a branch of the invariant
hyperbola connecting U; with Us such that s is double and s; is simple. We have
only two possibilities: either the segment of hyperbola connecting the two double
singularities Uy and sy contains s; in which case we write O(S) =1 or it does not
contain s; and then we write O(S) = 0. In case we have a configuration where this
specific situation does not occur we write O(S) = —1.

A few more definitions and results which play an important role in the proof of
the part (B) of the Main Theorem are needed. We do not prove these results here
but we indicate where they can be found.

Consider the differential operator £ = x- Ly —y- Ly constructed in [4] and acting
on R[a, z,y], where

0 0 1 0 0 0 1 0
L1 =2a00=—— 2b b —bo1
! @00 8(110 ta 8@20 * 2@01 8a11 * 0 b0 8b + T 8b 20 + 2 8b11’
0 0 1 0 0 0 1 0
Lo =000, =t a0 g T 510 gay, T2 gy TR g g

Using this operator and the affine invariant pg = Res, (pg(&,x,y),qg(&@,y))/y‘1

we construct the following polynomials
- 1 . :
ui(a,x,y)zﬁﬁ(z)(uo), 7’:17"'747

where £0(si0) = £(£0- (19)) and £ (110) = pio.
These polynomials are in fact comitants of systems (1.3) with respect to the
group GL(2,R) (see [4]). Their geometrical meaning is revealed in the next lemma.

Lemma 2.15 ([3, []). Assume that a quadratic system (S) with coefficients a be-
longs to the family . Then:

(i) Let \ be an integer such that A < 4. The total multiplicity of all finite
singularities of this system equals 4 — X if and only if for everyi € {0,1,..., A —1}
we have pi(a,z,y) = 0 in the ring Rlz,y] and pxr(a,z,y) # 0. In this case, the
factorization py(a,z,y) = Hf‘zl(uix —vy) £ 0 over C indicates the coordinates
[v; + u; 2 0] of those finite singularities of the system (S) which “have gone” to
infinity. Moreover, the number of distinct factors in this factorization is less than
or equal to three (the mazimum number of infinite singularities of a quadratic system
in the projective plane) and the multiplicity of each one of the factors u;x—v;y gives
us the number of the finite singularities of the system (S) which have coalesced with
the infinite singular point [v; : u; : 0].

(ii) System (S) is degenerate (i.e. ged(P, Q) # const) if and only if u;(a, z,y) =0
in R[z,y] for every i =0,1,2,3,4.

The following zero-cycle on the complex plane was introduced in [12] based on
previous work in [22].

Definition 2.16. We define Dc¢2(S) = ) .2 ns5 where n, is the intersection
multiplicity at s of the curves p(x,y) = 0, ¢(z,y) = 0, p, ¢ being the polynomials
defining the equations (1.1]) for system (S).

Proposition 2.17 ([33]). The form of the zero-cycle Dc2(S) for non-degenerate
quadratic systems (1.3)) is determined by the corresponding conditions indicated in
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Table 1, where we write p + q + ¢ + s¢ if two of the finite points, i.e. r¢ s°, are
complex but not real, and

D= [3((M37M3)(2)7 M2)(2) — (6popa — 3paps + p3, M4)(4)}/487

P = 120114 — 3pui s + pi,

R = 3u3 — 8popia,

S =R? — 164 2P, (2.1)
T = 1815 (313 — 8papra) + 2u0(2p3 — Opia piopus + 27pipna) — PR,

U = i3 — dpopa,
V= Hq.

TABLE 1. Number and multiplicity of the finite singular points of QS

No Zero—cycle Invariant No Zero—cycle Invariant
| De2(S) criteria 1 De2(S) criteria
Ho #0,D <0,
1 10 =0,D
p+q+r+s R>0S>0 ptag+r po =0,D<0,R#0
2 p+q+r°+s°© po #0,D >0 11| p+q¢°+7r° o =0,D>0,R#0
c c c e | #o#0,D<O,R<0
3|1 p°+g°+r°+s 0 Z0,D<0,S<0 12 2p+q #o =D =0,PR#0
4 ptqtr o #A0,D=0,T <0 |13 3p o=D=P=0,R+£0
5| 2ta+r | A0D=0T>0 14| pig TR T
o #0,D=T =0, c c po=R=0,P#0,
6 2p+2q PR > 0 15 P Ha U<o
c c po #0,D=T =0, o =R=0,P#0,
7 2p° + 2q PR <0 16 2p U=0
po #0,D =T =0, o =R =P =0,
8 fp+a P=or#0 |7 P U#0
po #0,D=T =0, mo =R=P=0,
9 p P=R=0 18 0 U=0,V#0

The next result is stated in [I5] and it gives us the necessary and sufficient
conditions for the existence of at least one invariant hyperbola for non-degenerate
systems and also their multiplicities. The invariant polynomials which ap-
pears in the statement of the next theorem and in the corresponding diagrams are
constructed in [I5] and we present them further below.

Theorem 2.18 ([15]). (A) The conditions v1 = 2 = 0 and either n > 0, M # 0
or Co = 0 are necessary for a quadratic system in the class QS to possess at least
one invariant hyperbola.

(B) Assume that for a system in the class QS the condition v; = v2 = 0 is
satisfied.

(B1) If n > 0 then the necessary and sufficient conditions for this system to
possess at least one invariant hyperbola are given in Diagram [, where we
can also find the number and multiplicity of such hyperbolas.

(B2) In the case n =0 and either M # 0 or Cy = 0 the corresponding necessary
and sufficient conditions for this system to possess at least one invariant
hyperbola are given in Diagram[3, where we can also find the number and
multiplicity of such hyperbolas.
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(C) The Diagrams |1 and @ actually contain the global bifurcation diagram in
the 12-dimensional space of parameters of the coefficients of the systems belonging
to family QS, which possess at least one invariant hyperbola. The corresponding
conditions are given in terms of invariant polynomials with respect to the group of
real affine transformations and time rescaling.

c
Remark 2.19. An invariant hyperbola is denoted by H if it is real and by H if
it is complex. In the case we have two such hyperbolas then it is necessary to
distinguish whether they have parallel or non-parallel asymptotes in which case we

denote them by H? (7—?”) if their asymptotes are parallel and by H if there exists at
least one pair of non-parallel asymptotes. We denote by Hy (k = 2,3) a hyperbola
with multiplicity k; by H5 a double hyperbola, which after perturbation splits into
two HP; and by HY a triple hyperbola which splits into two H? and one H.

B0 319 o Ry 20

B1#0 .
bz B0, 3190 6 4y=0, Ry £0
B2=0
2 B1#0 .
P 31H & BRa#0
040 Bi=0, 5194 & 15—0, Ry £0
B2 #0 . 01#0 = 1H, or
M(i: I>1 ¢ =0, R3#0 and either {51:0 oy
B2=0, 319 & 45=0, Ry £0
p1=0 B2 46240 = 1H, or
Bi#0, 3>1 4 75=0, R5#0 and either {32 :6:i() N 27{'
Be=0
i Bt 5540 = 17, or
Br=0 9 3> 16 75=0,R5#0 and either ¢ §,=0, 85 #0= 2H, or
g = 03=pFs=0=3H
Bo=0, 313 & 5=0,Rs £0 3=Ps
Bio#0
n>0 M(:: 317‘[@’\/7:0.72(;750
B10=0, 319 & 4,0, BsRs 40
B7#0 - ) o [04#0=1H, or
N0 2 £0 ——— 3>1& %=0, f10R;#0 and either {64:0 Y
Br=0 o ) . i 05#0 = 1H, or
L——= 3>1% =0, Rg#0 and either im0 = 2H
B1o#£0 ) B2 40240 = 1H, or
Be=0 ﬁ»ﬂ > 1< 47793 =0,R57#0 and either {i;; :52:0 oo
I~ C
Br#0 Y7 #0,710<0 = 2HP or
0=0
",’775(],"/10 >0 = QHP, or
By=0 B1o=0 R3#0
r2 ——d>1 @and cither ’77750,"/1(] =0= 1’Hg, or
C
P v7=0,710<0 = 1H+2HP, or
B7=0
T 320 47=0, Ry #0 N7 =0,710>0 = 1H+2HP
N=0 £270 F1H & fi=711=0,Rg#0
By=0 M2=0, Ro#0= 1H,

34>1 <« ;=0 and either {
or v3=0= 00

DiacgrAM 1. Existence of invariant hyperbolas: the case n > 0
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B1#0
By 40 J1H & R1#0
B1=0 5140 = 17,
‘ 31 =0, Rg#0: {_ '
0.£0 H & 74=0, Rs# {01=0$1%2
By=0 BBs #0 = 1H;
= J1H < f1=y14=0,R 0: '
1="714 107 {8738:0317{2
Ba£0 04 #0 = 1H;
M#£0 P20 31 e p=re=0, Rﬁo:{&io:ﬂ%
1V7é0 2
, A4 0R A0 S 1H;
0 ')=0: 116 f) .
Ba=0 , B Rt £0 et {716:°ts:0;‘17"201
1216 fe=0, :11111d elither Prz =6 =0, m7 <0= 23" or
C
=0 =0 Bz =76 =0, m7 >0=2H" or
Biz =716 =717 = 0= 1HE
B13#0
P87, J1H &0 =717 =0, R11 £0
N—0 Y10 =71 n#
=0 - -
Pr3=0, J 00 & Y9 =Y18=Y19=0
02:0
Joo & Ny=0
(M=0) 7

DiacraM 2. Existence of invariant hyperbolas: the case n =0

Following [15] we present here the invariant polynomials which according to
Diagrams [I] and [2] are responsible for the existence and the number of invariant
hyperbolas which systems could possess.

First we single out the following five polynomials, basic ingredients in construct-
ing invariant polynomials for systems :

Cl(a’axay) = ypl(may) - xqi(xuy)v (’L = 07 1a2)

Op; 0q; . (22)

DZ(&,x,y) = 8x + 8y3 (7’: 1’2)

As it was shown in [31] these polynomials of degree one in the coefficients of systems
(1.3) are GL-comitants of these systems. Let f, g € R[a,z,y] and

k
k o*f g
(k) — _1)h
(f,9) Z( 1) <h> drF—hayh drhdyk—h

h=0

The polynomial (f,g)*) € R[a,z,y] is called the transvectant of index k of (f,g)

(cf. [9,117)).

Theorem 2.20 (see ). Any GL-comitant of systems (1.3) can be constructed
from the elements (2.2)) by using the operations: +, —, X, and by applying the
differential operation (x,%)®*).

Remark 2.21. We point out that the elements (2.2)) generate the whole set of GL-
comitants and hence also the set of affine comitants as well as the set of T-comitants
and CT-comitants (see [24] for detailed definitions).
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We construct the following G L-comitants of the second degree with respect to
the coefficients of the initial systems

T, = (COaCI>(1)a T = (00,02)(1), T3 = (007D2)(1) ,
T, = (Ch, Cl)(2) . Ts = (Ch, Cz)(l) . T = (Ch, Cz)(Q) , (2.3)
I7 = (Cl,DQ)(l) , Tg= (02,02)(2) , Ty = (Oz,Dz)(l) .

Using these G L-comitants as well as the polynomials (2.2) we construct addi-
tional invariant polynomials. To be able to directly calculate the values of the
invariant polynomials we need, for every canonical system we define here a family
of T-comitants expressed through C; (¢ =0,1,2) and D; (j = 1,2):

A= (Cy, Ty — 2Ty + D2)® /144,
D= [200(T8 — 8Ty — 2D2) + C,(6T% — T — (Cy, Tx)™Y
1 6D,(C1Ds —T5) — 9chg] /36,
E= [D1(2T9 —T) — 3(Cy1, To) V) — Dy(3T% + Dng)} /72,
F= [6D§(D§ — ATy) + 4Dy Do (T + 6T%) + 48C (Da, To)Y) — 9D2T,

(2) 1)

+ 288D, E — 24(C5, D)™ +120(Ds, D)

— 360, (Do, )V + 8Dy (D, T5) Y } /144,

&)
I

{16131 (Da, Ts)" (3C1 Dy — 2Co Dy + 4T5) + 32C, (D3, To)) (3D, D,

— 5T + 9T%) + 2 (D2, Ty)'" (27C1 Ty — 180, D?

— 32D, Ty + 32 (Co, Ts)™ ) + 6 (Do, 1)V [8Co (Ts — 12T0)
—12C1(D1 D3 + T7) + D1(26C2 Dy + 32T5) + C2(9Ty + 96T3)]

+6(Dy, Ts)V [32C Ty — C1 (12T + 52D, D3) — 32C5D?)

+ 48Dy (Do, Ty)™M (2D3 — Ty) — 32D, Ti (Dy, T3)") + 9D3T, (T — 2T%)
— 16Dy (Co, Ty)™" (D? + 4T3) + 12D (Cy1, Ty)'? (C1 Dy — 205Dy

+ 6D, Dy Ty (Ts — TD3 — 42Ty) + 12D, (Cy, Ty) " (Tr + 2D, D)

+96D2 [Dl (C1,T5)Y + Dy (Co, Tﬁ)“)} — 16D, DyTs (2D2 + 3T)

— 4D} Dy (D3 + 3Ts + 6Ty) + 6D D3 (715 + 2T7) — 252D, DTy Ty } /(283%),
K = (Ty + 4Ty + 4D32)/72, H = (8Ty — T +2D3)/72, N =4K —4H.

These polynomials in addition to (2.2]) and (2.3]) will serve as bricks in constructing
affine invariant polynomials for systems (|L.3]).

Using the above bricks, the following 42 affine invariants A, ..., A4 are con-
structed from the minimal polynomial basis of affine invariants up to degree 12.
This fact was proved in [5].

A=A, Ay =(Cy,D)® /12,
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b= 00,0 0 = B8P
As = ( K)® >/2 A = (B, H)? /2,

A7 = [0y, E) ) V8, Ag = [ﬁ,ﬁ)@),pz)“)/&

Ag = [D, Do), Dz) ) D, )(1)/48, Ay = [ﬁ,[?)(z),D2)(1)/8’

Au = (F,K)' 2)/47 Ay = (F,H)? /4,

Ay = [ 1) 1) Do) j24, Ava = (B.Co)™ /36,
Ay = (B, F)® /1, Aye = [B, D)V, C2)" R) /16,

Avr = [D.D)®, Do), D)V 64, Ars = [D,F)?, D)™ /16,
Ay = [ﬁ,ﬁ)(2)7ﬁ)(2)/16 Ay = [02’13)(2) )16,

Agy = [D, D)@, K)P /16, Ay = 1152 [Cy, D)D) D2) D3)®, D)V py) ™,
Ags = [F )V, R)? /8, Ayy = [Co, D) ) Y32,
Ay = [D,D)® E)® /16, Ags = ( D)) <3>/36
Agr = [B, Do), 1) /24, Agg = [02, )5V, ) /16,

~

Agg = [D,F)D DY /96, sy = [Cy, D)@ D)( D) /288,
Ag = [D, D), KV 1)?)
Azz = [ )
Ass = [D,

/64, Asy = [D’D)(2)7D2)(1),H)(1),D2)(1)/64’
Dy)( ),ﬁ)(l),DQ)(l),DQ)(l)/m&
D), 0)®, &)™, 0,)" /6s,

Ags = [D, D), E)Y D)V D))V 128, Ay = [D,E)?, DYV, )P /16,
Agr = [D, D)@, D)V D) /576,  Ass = [Cy, D)@, D) D)V H)P /64,
Ago = [D, D), F)V 1) 64, Ay = [D, D)@, F)V K)? 64,

Ay = [C5, D)@, D)? )Y D))V 64, Asy = [D, )@, F)Y D,)" /6.

~

In the above list, the bracket “[” is used in order to avoid placing the otherwise
necessary up to five parentheses “(”.

Using the elements of the minimal polynomial basis given above the following
affine invariant polynomials were constructed in [16].

Y1 (d) = A%(3A6 + 2A7) — 2A6(A8 + Alg), (24)

Yo(@) = 9AT A9(23252A5 + 23689A4,) — 144045 A5(3A10 + 13A11)
— 1280 A13(2A17 + A1g + 23A19 — 4A9) — 320A424(5045 + 341
+ 45411 — 18415) + 1204, Ag(6718Ag + 4033 Ag + 354241, + 2786 A4,2)
+ 3041 A15(14980A3 — 2029A, — 48266 A5) — 304, A7(76626 A3
— 15173 As + 11797 A9 + 16427 A1 — 30153412)
+ 845 A7(75515A¢ — 32954 A7) 4 245 A3(33057 Ag — 98759 A415)
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— 60480A2 Agy + Ay A4(68605A5 — 131816 A + 131073410 + 129953411 )
— 2A,5(141267A2 — 20874145 A15 + 3200 A5 A15),

~v3(@) = 84369645 Ag Arg + Ay (—27(689078Ag + 41917249 — 2907149 A1,
— 2621619A411)A13 — 26(21057 A3 Ags + 49005 A4 Ags
— 166774 A3 Agq + 11564144 Agy)),

’}/4(6) = —9A3(14A17 + A21) + Ag(—5601417 — 518A15 + 881419 — 2849
+509A51) — Ay(171A3 + 3A5(367Ag — 107 A1) + 4(9943 + 9349 A1,
+ As5(—63A13 — 69419 + TAgg + 24 A451))) + 72423 Asy,

v5(a) = —488A3 Ay + Ap(12(4468 A2 + 3242 — 91543, + 32049411 — 3898419 A1,
— 333142, + 2A5(78Ag + 199410 + 2433A11)) + 2A5(25488 4,5
— 60259419 — 16824 A51) + T79A4 Agy) + 4(7380A10 A3,
— 24(Aqo + 41A11) Azz + Ag(33453A31 + 19588 A3 — 468 A33 — 19120A434)
+ 96 Ag(—Asg + Asg) + 556 A4 Ay — As(27773Ass + 41538 A3
— 2304441 + 5544 A42)),

v6(a) = 2A30 — 33421,
y7(@) = Ay (64A3 — 541A4) A7 + 86Ag A1z + 128 AgA13 — 54A10A 13 — 128 A3 A0y
+ 256 A5 A9 + 101 A3 A9, — 27A4 Aoy,

v8(@) = 30634, A3 — 42A2(304Ag + 43(Ag — 11A410)) — 6A3A49(159Ag + 28 A9
+409A10) + 210043 Ag A1z + 315043 A7 Ay + 24A3(34A19
— 11A50) + 840A2 Ayy — 93245 A3 Ags + 52545 A4 Asy
+ 844 A2, — 630A13A33,

Yo(a) = 2Ag — 6Ag 4 A1g, vi0(a) = 3As + Aq1,
’711(&,) = —5A7;Ag + A7 Ag + 10A3A14, 712(5,) = 25A§A3 + 18A%2,
13(a) = Az, m4(a) = AsAy + 1843 A5 — 236 Az3 + 188 A4,

Y15(a, 2, y) = 44T\ T? — T (Thg + 2Th3) — 4(ToTh1 + AT7Tis + 5073 oz + 2T To3
+ 201314 + 4Ty T54),

6@, v,y) = Tis,  v17(a@,2,y) = Tiy + 12113,
s (@, z,y) = C1(Ca, C2)®) — 2C5(C1, C2) P,
F19(a, x,y) = D1(Ch, C2) P — ((Ca, C2)@, Cp) V),

51(a) = 9As + 3149 + 6410, 02(a) = 41Ag + 4449 + 32410,
55(d) = 3A1g — 4417, 64(@) = —5AsAs + 343 A4 + Ass,
35(@) = 6245 + 10249 — 125410, 66(a) = 2Ty + 374,
Bi(a) = 3A3 — 245 — 2412, [a(a) = 247 — 94,
B3(a) = Ag, Pa(a) =544+ 845,
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Bs(a) = As, Pe(a) = Ay,
) = 845 — 3A, — 445, [s(@) = 2445 + 114, + 204s,
)= —8A3+ 1144+ 4A5, pro(a) = 843 + 27TA4 — 5445,
Bri(a,z,y) = T? — 20T — 8Ty, Bra(a,z,y) = Tn,
Bis(a, z,y) = Ts,

Ba(
Bo(a

Ri(a) = —2A7(1243 4+ Ag + A1z) + 5A6(A1o + A1) — 241 (Ass
— Aoy) +2A5(A14 + Ass) + As(9As + TA12),
Ra(a) = Ag + Ag — 24109, Rz(a) = Ay,
Ru(a) = —3A2A1, + 444 A,
Rs(a, x,y) = (2Co(Ts — 8Ty — 2D3) + C1(6Ty — Tg) — (Cy, T5) ™M
+ 6D (C1Dy — Ts) — 9D3Cy),
Re(@) = —213AA¢ 4+ A1(2057Ag — 1264 A9 + 677A19 + 1107 A1)
+ 746(Ag7 — Agg),
Ra(@) = —6A2 — AyAg +2A3Ag — 5A4Ag + 4A4 A1 — 242 A3,
Rg(a@) = Ay, Rola) = —5Ag + 3Ag,
Rio(a) = TAg + 5A10 + 11411, Ri1(a, x,y) = T,

XS)(C]) = A6(A1A2 — 21415)(314% — 2‘48 — 21412),

X (@) = A7[414, Ay Ag + 846 Ag Ag — 25246 A10 + 379845 A1, — 2A7(6588A3
— 830A8 + 265A10 + 366411 — 156A12) + 1098A6A12
+ 983A3A14 - 1548A4A14 - 365A3A15 + 1350A4A15 + 1550A2A16
— 13504, As],

X3 (@) = 08183 [8A1 (42 A3 — 2445 As + 5942 A5) + Ag(2196A7 + 38449 + 2445

436041 — 432A12) =+ 4A7(123A8 — 61A10 — 2341 + 123A12)
Y0 (@) = —378A% + 213 A5 + 40Ag — 187 A1 — 205411 + 317 Aqg,

X0 (@) = 48A6(65 A9 — 54A1g — 27 A1) — 16A7(TT4A? — 38245 + 263 A1

+ 12941, — 360A415) + T2A4(23A14 + 3A15) — 16A43(163A14

+ 185A415) — 179245 A6 + 16A; (5442 A5 — 173 A9y + 27Asy),

X3 (@) = 061 83[A7(245 — As) — 2434q], X (@) = 1245 — TA4,
Xf)( ) = A4(5As — 18142 — Ajg — 3411 + 9412),

XSB)( ) = A3(24s — 6AT — Ag + A1g — A11 + 3A12),
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X (@) = 49071656765835 A% + 27 A% (1344257279043 411 — 1270094588593 A 15)
+ 3A2(176071859457 A2 A4 + 2042424190056 A%, — 4553853105234 A1, A1

+ 2056276619466 A%, 4 221071597034 A5 A15 — 539155411551 A5 A9
+ 65833344676 A5 Agg + 26464141896 A4 A1 + 303070135713 A5 Agy
— 137515925820 A5 Ag3) + 1048(35846142A3 A4 A1; — 163576560 A%,
— 21276288 A3 A4 A15 — 19547838042, A1 + 325223640A4,, A%,
— 9386268043, + 782460 A4 Ag Agg + 26186136 Ay Ag Ago
+ 42548200 A5 Ag Agy — 2682720 A2 Agg — 83946780 A5 A5 A3y
+ 429178020 A5 A5 Azy — 204768603 A3 Ay Azy — 125823390 A5 A5 As4),
(@) = 10687627614087 A% — 3642 Ay (57734730901 A1,
— 18520980346 A15) — 54A7 (29889576561 A1,
+ 85579885241 A15) — 1848441298229 A, As A1g
— 995417129104 A4 A10A19 + 139152650610A45A19A1g
— 854619791782A4A11 A1g — 234092667978 A5 A11 Ao
— 1064773031314A, A15A19 — 1538921088774 A5 A12A 19
— 200109956062A44 Ag Agg — 3339915826444 A19 Az
+ 118216863645 A19A20 — 336995611924, A11 Agg
+ 359794764 A5 A 11 Agg — 150658987068 A4 A19 Agg
— 97478758260 A5 A1 Agg — 1043930677997 Ay Ag Aoy
— 3812856790904, A19Aa; — 266080146306 A5 A10As;
— 340140897016 A4 A11 Aoy — 373227206190 A5 A11 Aoy
— 763104633190A4A15Ag; — 470713035534 A5 A12 Aoy,
(@) = — (3083831194542 A3 A4 + 2760800121876 A% A2
+ 7697984307234 A7 Ag Ag + 3201113344320 A7 A3
— 1697507613684 A% Ag A1o + 3182511158443 A4 A1,
— 695990880 A% Ag Ay, — 6141096043 A%,
4 10245847104 A3 A4 A15 — 24350953680 A4 Ag A7
— 291364848044 Ag A7 — 2523363762580A2 A5 A s
— 29706323760 A4 Ag A1s + 334082073870A7 A5 A9
+ 142776946840 A2 A5 Aog + 47764080 A4 Ag Aoy
+ 28221048042 Ay Aoy + 2047601391150 A% A5 Agy
+ 63016473792 A5 Ag Aoy + 77305513600 A5 Ag Ago
— 35441430120 A2 A5 Ags — 42056705280 A5 Ag Aos
— 163762560 A2 Agg — 94243374720 A5 A5 A3y + 290822854080 A5 A5 Aso
— 150861290016 A5 A4 A3y — 47162628000 A2 A5 Asy),



22 R. D. S. OLIVEIRA, A. C. REZENDE, D. SCHLOMIUK, N. VULPE EJDE-2017/295

X (@) = (78154342 — 1912260 A4 A2 — 377236244 Ag Ag — 237900 A4 As A1
— 178080 A5A10A13 — 193248 A5 A1 Ays — 1318176 A2 A4
+ 119474044 A5 Ayg — 13910442 A1g + 56706 A4, A5 A g
+ 702144 A2 Ayg — 565524, A5 Aoy — 1104043 Agy — 995070 A4 A5 Agy
— 32856 A2 A4 Aoz + 2611245 A5 Asy),
X&(@) = 5442 A5 + 61145 Ag — 10445 A1y — 14045 A5 + 73241 Ayy
— 243A31 — 234 A33 + 245 A3,
xﬁf)(d) = —(11A4 + 1045),

X (@) = (—242A4, — 80A2 + 6445 Ag — 80AgA1g + 1649 A1 — 9A%) — 3245 Ay,

+48Ag A1y + 2A10A 1 + 2343, + 120A5A 7 + 24A5A15 — 4A5 A1

+ 644 A0; +4A5A51)(264A3Ag — 11243 A9 — 56 A9 A17

+ T46A10A17 4+ 1006 A1, Ay 4 424A10A1s 4 82441, Ay

+ 109245 A19 — 384 A9 Arg — 9T A19Arg + 153411 Ayg — 26445 Agg

+168A9Asg + 14419 A00 — 14411 Asg — 620A5 Aoy + 81410 Ax

— 81411 Ag + 12644 A30 — 20845 A3, — 11245 A33),

YW (@) = (—12(51842 — 16 A9 (2410 + 5A11) + 2(A10 + 3411)(31A10 + 69411

+ Ag(369A10 + 871 A1) — 96A3A17) + 2A5(552A2 — 404 A5 + 2271 A9
— 316A9 — 167445;) — 13544 Aa; — 240A5A93)(4A2(6160 40
— 60659 A10 + 5565A11) + 533574410417 + 2120070411 Ay7
+ 365744 A10A1s + 657528 A11 Ays — T13634A10 A1 + 8Ag(22484 A7
+10472A15 4+ 10911419 — 2156 Agg) + 121318419 A5 — 1113041, Agg
+ 522591 A19 Aoy — 357309411 Agy + T2A5 (13247 Ay7 + 108145
+ 7084 A21) + 2079 A4 Az + 18652045 Asy),

X(A5) (@) =95A9 + 2A,0, X(j)(&) =4A — 44,
X5(@) = (A4 — 245)(As — 2411),  x{(@) = (A5 — As)(4s — Aw),
X (@) = —2A5(6348A2 — A4(502073 Ay + 250407 A9 + 37072A40)
+ 1845(720A95 + 8179A43)) + 3(640A3 + 36A2(3218A15 + 17721 A1)
+ 8A9(7505A4 A1s + 37966 A2 Ags) + 4A5(A13(T4429A15 + 44574 A1)

— 7A10(5387A22 + 47411423) + 243552A7A27)
+ A4(—341504A10A18 — 78779A7Ags + 234046A2A33)),
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X(@) = 2484A2(2415 + 9A10) — 245(2T6 A2 + A4(—341114 5 + 51231419
— 35504 A0) + 46794 A5 Ags) + 3(4A5(5403A13A15 — 20222413419
— 6123410400 + 1144449 Ags + T131A10A0s
+ 41384 A7 Ao7) + A4(1080AgArs — 35328419 A1 — 52173 A7 Ags
+ 3584245 A33)),

X\(@) = (A3 — Ag)(8A2 — 44A3As + 2T A Ag + 4A3Ag + 2243410 — 9A4 A1),
Xg)( ) = 24148 — 231410, XE4)( ) = 5A8 — Ag,
(@) = 949 — 254s.

We also need here the following additional affine invariant polynomials, con-
structed in [28]:

Hip=—[D,N)® D
Hyy = 3[(Cy,8H + N)D +2D,N)* — 321
Hyy = (D, D),
N7 = 12D1(Cy, Do)V + 2D3 + 9D, (Cy, C2)® + 36[Co, C1) M), Do)V,

Hy = —[(C1,8H + N)V + 2D, N], Hy= —[f) D)® D) DY® = 12D,
p) )
[ CQ;

D Dg)(l)]

Next we construct the following T-comitants (for the definition of T-comitants
see [25]) which are responsible for the existence of invariant straight lines of systems

[3):
BS(EL7:L'7y) (027 ) D= JaCOb(027 )7

BQ(&axay) = (B3aB3)( ) _6B3(C27D) ) (25)
B, (@) = Res, (027 f)) Jy? = —279375 (By, By).

Lemma 2.22 (see [24]). For the existence of invariant straight lines in one (re-
spectively 2; 8 distinct) directions in the affine plane it is necessary that By = 0
(respectively Bo = 0; B3 =0).

At the moment we only have necessary and not necessary and sufficient condi-
tions for the existence of an invariant straight line or for invariant lines in two or
three directions.

Let us apply the translation x = 2’ + xo, ¥y = 3’ + yo to the polynomials
p(a,z,y) and ¢(a@,z,y). Then we obtain p(a(a,xo,%0),z’,y’) = p(a, ' + 0,y +30),
g(ala,zo,y0),2",y") = q(a,z’ + xo,y" + yo). Let us construct the following polyno-
mials

Pi(aax07y0) = ReSZL” (CZ (d(évx07y0)7 ) CO( (a’ anyO) x/7y/))/(yl)i+17
Fi(&,l‘o, yo) € R[&, .Z‘(),yo], 1=1,2.
We denote

&, z,y) = Ti(a,zo, € Ra,z,y] (i=1,2).

yo) | {zo=z,yo=y}
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Observation 2.23. We note that the polynomials & (a,z,y) and Ey(a,x,y) are
affine comitants of systems and are homogeneous polynomials in the coeffi-
cients a,b,c,d,e, f,g,h,k,l,m,n and non-homogeneous in x,y and deg; & =3,
deg () &1 =5, degz &2 =4, deg(, ) E2 = 6.

Let &(a, X,Y, Z), i = 1,2, be the homogenization of gi(ix,y), ie.

&(a, XY, Z) = 2°61(a, X/ 2,Y)Z), &a,X,Y,Z)= 75 (a, X/ 2,Y]Z)
The geometrical meaning of these affine comitants is given by the following lemma
(see [24]):

Lemma 2.24 (see [24]). (1) The straight line L(z,y) = vz+vy+w = 0, u,v,w € C,
(u,v) # (0,0) is an invariant line for a quadratic system (L.3)) if and only if the

polynomial L(x,y) is a common factor of the polynomials £ (a,z,y) and E(a, x,y)
over C, i.e.

Eila,z,y) = (uz + vy + w)Wi(w,y), i=1,2,
where Wi(z,y) € Clz, y).

(2) If L(x,y) = 0 is an invariant straight line of multiplicity A for a quadratic
system (1.3), then [L(z,y)]* | ged(&1,E) in Cla,yl, i.e. there exist Wi(a,x,y) €
Clz,y], i = 1,2, such that

gi(&7l',y) = (ux+vy+w)>‘Wi((a),x,y), 1= 132
(3) If the line loo : Z = 0 is of multiplicity A\ > 1, then Z ' | ged(&1, ).
To detect the parallel invariant lines we need the following invariant polynomials:
N(a,z,y) = D3+ Ts — 2Ty = 9N,
6(a) = 245 — A4 (= Discriminant (N (a, z,y)) /1296).
Lemma 2.25 (see [24]). A necessary condition for the existence of one couple

(respectively two couples) of parallel invariant straight lines of a system (1.3) cor-
responding to a € R*? is the condition 6(a) = 0 (respectively N(a,z,y) =0).

Now we introduce some important G L-comitant in the study of the invariant
conics. Considering Cs(a, z,y) = ypa(a, z,y) — q2(a, z,y) as a cubic binary form
of x and y we calculate

n(@) = Discrim[Cy/2®, €], M (a,z,y) = Hessian[Cy],
where £ = y/x or £ = x/y. According to [30] we have the next result.

Lemma 2.26 ([30]). The number of infinite singularities (real and imaginary) of
a quadratic system in QS is determined by the following conditions:

(i) 3 real if n > 0;

(ii) 1 real and 2 imaginary if n < 0;

(iii) 2 real if n =0 and M # 0;

(iv) 1 real if n =M =0 and Cy # 0;

(v) o0 ifn=M=Cs=0.
Moreover, for each one of these cases the quadratic systems can be brought
via a linear transformation to one of the following 5 canonical systems:

{¢a+cm+dy+gx2+(h1)xy,

2.6
y=b+ex+ fy+(g—)wy+ hy’; (26)
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i =a+cr+dy+ gz’ + (h+ 1)y,

{y—b+6x+fy9:2+gfvy+hy2; 27

& =a+cx+dy + gz* + hay,
{y:b+ea:+fy+(g—1)a:y+hy2; (28)

& =a+cx+dy + gz* + hay,
{y:b+ex+fy—x2+gxy+hy2; (29)

T=a+cx+d z2,
{yb:exjr_f;/jr_:ry. (2.10)
Finally, to detect if an invariant conic

O(z,y) = p+qr+ry + sz + 2txy +uy? =0 (2.11)

(or an invariant line) of a system has multiplicity greater than one, we use
the notion of k-th extactic curve &,(X) of the vector field X (see ([1.2)), associated
to systems . This curve is defined in the paper [7, Definition 5.1] by the
polynomial

U1 V2 . g
&1 (X) = det X(v1) X(v2) X(v) ,
Xl:l.(vl) Xl'_.l'(vg) Xl:l.(yl)
where vy, v9, ..., vy is the basis of the C-vector space C, [z, y] which is the set of all

polynomials in z, y of degree n, of polynomials in C,[z,y] and | = (k+1)(k+2)/2.
Here X°(v;) = v; and X7(v1) = X(X771(v1)). According to [7] the following
statement holds.

Lemma 2.27. Assume that an algebraic curve ®(x,y) = 0 of degree k is an in-
variant curve for systems (1.3). Then this curve has multiplicity m if and only if

O(x,y)™ divides & (X).

3. CONFIGURATIONS OF INVARIANT HYPERBOLAS FOR THE CLASS QSH(, )

Theorem 3.1. Consider the class QSH(,~0y of all non-degenerate quadratic dif-
ferential systems possessing three distinct real singularities at infinity.

(A) This family is classified according to the configurations of invariant hyperbo-
las and of invariant straight lines of the systems, yielding 162 distinct such configu-
rations. This geometric classification appears in Diagrams[3 to[If} More precisely:

(A1) There are exactly 3 configurations of systems possessing an infinite number
of hyperbolas.

(A2) The remaining 159 configurations could have up to a mazimum of 3 distinct
mwvariant hyperbolas, real or complex, and up to 4 distinct invariant straight
lines, real or complex, including the line at infinity.

(B) he bifurcation diagrams for systems in QSH, ¢y done in the coefficient space

R 4n terms of invariant polynomials appear in Diagrams and [20. In these
diagrams we have necessary and sufficient conditions for the realization of each one
of the configurations.
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(unﬁq H.1
PD=4P,
h
ﬂ[SUc=U1+U2+Uz ) Config. 1.2 m
(1,1)
1 Config. H.5
PD=2P, +2P, v o1
- PD=4P, ¢
h h 1)
MSyc =2U,+Us+Us " Config. 1.4
PD=2P,+2P, v
) Config. H.5
PD=4P,
h
MSoc =30, + Us+ Us
Config. H.6
PD=2P,+2P, g
> Config. H.7
PD=4P,
e }5 h Z’
MSoc =U1+Us+Us+25 “’ Config. .8
PD=2P;+2P, \
Config. H.9
PD=4P,
h h
MSpc=U,+2Us +Us+£| N
Config. H.10
TMH=1 _ 5 - o)
TML=1 PD=2P,+2P, o @
s Em Config. H.11
ICD=H+L :m)
PD=4P,
h h h
MSoc =U1+2Us+Us+2s amm H.12
v [PD=2P, +2P; | "
\ Config. H.13
h h h an
A,19(,(7:U1+2Uz+b‘3+35‘ oot
PD=4P, ”"
MSo=2U, + Uy + Uy + 24 8 oo 15
|PD=2P1+2P,
) -
’ Config. H.16
PD;=2p
—"
‘ w
PD=4P ’ X Config. H.17
h  h PDy=2P;+2P; " CUH H.18
MSoc =Ur+Us+Us+ 81 45 e e ’ "
PD;=2P 279
w
PD=2P, 2P,
PD;=2P,+2P, !
: ,

> Ay (neat page)

Config. H.19

DiAaGrAM 3. Configurations with one hyperbola and TML =1

Remark 3.2. The invariant polynomials X
{4,...
so on) are introduced in Section [2] Moreover,
(i = 1,2, 3) the following sets of conditions

(C1) (B2R1 #0)U (B2 =3 =0N B3 #0),
(C2) (BufsRe #0)U

,G} and 0 < ¢ < 8, as well as other invariant polynomials (7, 0, 1;, §;. .. an

in Diagrams |15| and [20] where W &

d
in these diagrams we denote by (€;)

(Bs=73=0, Ra #0),
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Config. H.20
PD;=2P “'
—1—
(1)
PD=4P ' Config. .21
Lo PD—2Py+2P, b Q Confi .22
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—
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(1

PD=4P
hoho hooh
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PD=2P,+2P,

W
’ @
(

Config. H.24

PDy=2P1+2P, \ o
[Thr=emiT e
2\ @ Config. H.23
U.mﬁg H.25
\ o
(1)

0

L

PD;=2P
—

w
PD;=2P+2P, ®
> \

’ \ Confg. 127 Config. H.26
_ o
PD=4P, ’
h h 3 ) .
MSoc = Uy +Us+Us +241+ 245 9. N
Config. H.28 an
’ Config. .29
PD=2P+2Py \ PD;=2p w
[PD=2P1+2P, | ’

Ay PD=4P @
TMH=1 ’ i
ey PD;=2P,+2P; '

[OD=H L h hhh o .
MSoc =201 +Un+Us+ 81+ B ’
] Config. .31 Config. 150
PD = 2P )
o\
(1)
PD=2P,+2P,

PDf:QP
—

) S Lo h
MSoc=2Uy+Us+Us+2s1+ 89

hohhog
MSoe =30, +Up+Us+ 31+

a

PD;=2P, +2P;
>

an
Config. H.52
a

PD;=2P1+2P, \
—
)

Config. H.93

)

(1,1)
\ Config. H.34
a

.
(1)
(2.1)
Config. H.95
o

PD=4P
—

)
Config. H.56

n

PD=2P,+2P, \ '
—

DIAGRAM 4. (cont. of Diag. [3)) Configurations with one hyperbola

and TML =1

(C3) (B1=0)N((112=0,Rg #0) U (713 =0))).

Remark 3.3. For more details about the geometric classification of the configura-

tions of systems in QSH(,~) see Section

Proof of Theorem[3.1. We prove part (A) under the assumption that part (B) is

already proved. Later, we prove part (B).

We first need to make sure that the concepts introduced above gave us a suffi-
cient number of invariants under the action of the affine group and time rescaling
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DiacrAM 5. Configurations with one hyperbola and TML = 2

so as to be able to classify geometrically the class QSH, () according to their con-
figurations of their invariant hyperbolas and lines. Summing up all the concepts
introduced, we end up with the list: (CD, MSoc, TMH, TML, PD, PDy, PD,,
mP, I. From this list we clearly have that TMH and TML are invariants under the
group action because the action conserves lines and the type of a conic as well as
parallelism and it conserves singularities of the systems which are simple points on
an invariant curve. The types of the divisor (CD on P(C) and of the zero-cycle
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DIAGRAM 6. (cont. of Diag. [5)) Configurations with one hyperbola

and TML =2

MSoc on P2(R) are invariants under the group because the group conserves the
multiplicities of the invariant curves as well as the multiplicities of the singularities.
The number of vertices of a basic polygon is conserved under the group action ba-
sically because the number of intersection points of the various invariant curves is
conserved. Furthermore the coefficients of mP are also conserved because multiplic-
ities of the singularities are conserved. For analogous reasons the coefficients of PD,
PDy, PD are also conserved. The invariant I is also conserved because complex
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DiAGrAM 7. (cont. of Diag. [5)) Configurations with one hyperbola
and TML =2

intersection points of a line with a hyperbola as well as intersection multiplicities
are conserved. The concepts involved above yield all the invariants we need and we
now prove that the 162 configurations obtained in this section are distinct.

Fixing the values of TMH and TML, we first apply the main divisor (CD. In many
cases, just using the invariants contained in (CD and the zero-cycle MSoc (TMH,
TML and the corresponding types) suffice for distinguishing the configurations in a
group of configurations. In other cases more invariants are needed and we introduce
the necessary additional invariants, to distinguish the configurations of the following
groups. The result is seen in the Diagrams [3] to

We finally obtain that the 162 geometric configurations displayed in Diagrams [3]
to|l4] are distinct, which yields the geometric classification of the class QSH accord-
ing to the configurations of invariant hyperbolas and lines. This proves statement
(A) of this theorem.

Proof of part (B). We assume 1 > 0. In this case according to [24, Lemma 44] there
exist an affine transformation and time rescaling which brings systems to the
systems

d d
S =atcatdy+ga®+(h—Day, L =b+ex+ fy+(g—Day+hy’

(3.1)

withn=1and § = —(g—1)(h—1)(g+ h)/2. O

3.1. Subcase 6 # 0. Following Theorem [2.18] we assume that for a quadratic
system the conditions 6 # 0 and v; = 0 are fulfilled. Then, as it was proved in
[15], by an affine transformation and time rescaling, this system could be brought
to the canonical form

d d
d—i:a+cz+gx2+(h71)o:y, d—i:bfchr(gfl)nyrhyQ, (3.2)
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DiaGgraM 8. Configurations with one hyperbola and TML = 3

for which we calculate
5 = —1575¢%(g — 1)*(h — 1)*(g + h)(3g — 1)(3h — 1)(3g + 3h — 4) By,
By = —c(g — 1)(h—1)(3g — 1)(3h — 1)/4, (3.3)
fa=—clg=h)Bg+3h—4)/2, 0=—(g—1)(h—1)(g+h)/2
where By = b(2h — 1) — a(2g — 1).
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DIAGRAM 9. (cont. of Diag Configurations with one hyperbola
and TML =3

3.1.1. Possibility 41 # 0. In this case the condition v = 0 is equivalent to (3g +
3h — 4)B; = 0.

Case B2 # 0. Then 3g + 3h — 4 # 0 and we obtain B; = 0. Since ¢ # 0 from the
rescaling (x,y,t) — (cx,cy,t/c) we may assume ¢ = 1. Moreover as (2g — 1)?
(2h—1)? # 0 because (2 # 0 (i.e. g—h # 0), the condition By = 0 could be written
as a =a1(2h —1) and b = a1(2g — 1). So setting the old parameter a instead of ay,
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DiagraM 10. Configurations with one hyperbola and TML > 4

we arrive at the 3-parameter family of systems

dzx

o =a(2g—1)—y+ (9— 1)zy + hy?

(3.4)

d
=a(2h — 1)+ 2+ gz* + (h — 1)y, dit/

with the condition
a(g —1)(h —1)(g+ h)(g — h)(3g — 1)(3h — 1)(3g + 3h — 4) # 0. (3.5)
These systems possess the invariant hyperbola

O(x,y) =a+axy =0. (3.6)
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DiAGrAaM 11. Diagram of configurations with two hyperbolas and

TML =1

Remark 3.4. We point out that for systems

(3.4) the parameters g and h have the

same significance, because we could replace g by h via the change (z,y,t,a,g,h) —
(—y,—x,—t,a,h,g), which brings a system to one of the same form.

For systems (3.4) we calculate
By =2a*(g —1)*(h = 1)*(g — h)(29 —

1)(2h — 1)[a(g + h)* —1]. (3.7)

Subcase By # 0. In this case by Lemma we have no invariant lines. For systems

(3.4) we calculate ug = gh(g+h—1) and we
po = 0.

consider two possibilities: pg # 0 and

(a) Possibility po # 0. Then by Lemma the systems have finite singularities
of total multiplicity 4. We detect that two of these singularities are located on the



EJDE-2017/295 CLASSIFICATION OF QUADRATIC DIFFERENTIAL SYSTEMS 35

&)
@

Config. H.132
hi ha  hihal o
MSoc =Uy+Us+ Us
s TE Ty

(1)
hi hy hihal “ Config. H.133
A[So(7U1+U2+U3+51+52 n
O
hy hihal .
[CD=HytHyt L Loo [MSoo =0y 4 Ut 1y +"517 485 ;'

ha  hiha hil i hihs  hol

MSoc= Uy +Us + Us+ 4+ 8y + 402 44

hi ha hihal hiha . hih:
MSye =Uy+Ust Uy +81 50+ 53"+ "4

hihe hlhzlllz PD=3P1+3P,
MSoc=U+ Us + Us

b | bl Ml hzlz
391+ St syt s

PD=4P,+4P,
R A

1CD=Hy+Ho + L1+ Lo+Loo by ke, PD=3PI3Ps
MSoc=U1+ Us + Us

L hals ;,212 hihaly
3 + 54

+ 51+ s2+ s

47
L

, hy  hiha  halily
MSoc=U1+ Us + Us
’7111 hgl| hila ’L;l;
1+ S2+ S3+ S

TMH=2 hihy  hihy
TML>? | MSoc=U1+ Us + Us

ICD=Hi+Ho+LY+LS + Lo

%
)
W A Config. H.1}2
(“ <N onfig.
b b haha “
\MSoc=U+ Us + Us (1)

>

Config. H.148
—/C C C C Config. H.144
ICD=H§+HG+LE+L5+ Lo ‘
' Config. H.145
ICD=H{+HS + L1+ Lo+ Loo ‘

L Ay (next page)

DiAGrAaM 12. Diagram of configurations with two hyperbolas and
TML > 2

hyperbola, more exactly such singularities are M; o (ZL'LQ, y172) with

 —1+7, 1+V7

T1,2 = 729 y Y12 = “on

On the other hand for systems (3.4)) we calculate the invariant polynomial
X = (9= 1D2(h = 1)(g = h)*(3g = 1)*(3h = 1)* 2y,

X' = —105a(g — 1)%(h — 1)%(g — h)*(3g — 1)*(3h — 1)*/8

Zy =1 —4agh. (3.8)
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DI1AGRAM 13. (cont. of Diag Diagram of configurations with
two hyperbolas and TML > 2

A\

and by we conclude that Sign(xill)) = sign(Z) (if Z; # 0) and sign(xg)) =
—sign(a). So we consider three cases: Xi‘l) <0, Xi‘l) > 0 and Xi\l) =0.

(al) Case XS) < 0. So we have no real singularities located on the invariant
hyperbola and we arrive at the configurations of invariant curves given by Config.
H.1if x'2) < 0 and Config. H.2 if ;) > 0.

(a2) Case XS) > 0. In this case we have two real singularities located on the
hyperbola. We have the next result.

Lemma 3.5. Assume that the singularities M o (:c172,y172) (located on the hyper-
bola) are finite. Then these singularities are located on different branches of the

hyperbola if X(Cl) < 0 and they are located on the same branch if Xg) > 0.
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DiaGrAM 14. Diagram of configurations with three or more hy-
perbolas (TMH > 3)

Proof. Since the asymptotes of the hyperbola (3.6)) are the lines =0 and y = 0 it
is clear that the singularities M; o are located on different branches of the hyperbola
if and only if 122 < 0. We calculate

—1+¢Z][_1_¢71] _%
29 2g g (3.9)
X&) = 35agh(g — 1)*(h — 1)*(g — h)*(g + h)*(3g — 1)*(3h — 1)?/32.

T1Xg = [

By condition (3.5) we obtain that sign(zizs) = sign(xg)). This completes the
proof of the lemma. O

Other two singular points of systems (3.4)are M3 4 (1:374, y3,4) (generically located
outside the hyperbola) with

-2+ V7 g1+ V7]
AT T g h—1) 0 BT T g1 (3.10)
Zy=1+4a(l1—g—h).
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DIAGRAM 15. Bifurcation diagram in R'? of the configurations:
Casen>0,0#0

We need to determine the conditions when the singular points located outside
the hyperbola coincide with its points (singular for the systems or not). In this
order considering (3.6) we calculate

A—(2¢-1)2h-1)[1 &
2(g+h—1)2

(I)(:L'a y)|{x:m3y4, y=y3a} = 93,4(0,,9, h)7
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(€]
0
X5 >0, Config. H.42
(1)
Xz <0 Config. H.70
1o=0 D<0 Config. H.71
(1)
X' >0} D>0 Config. H.41
D=0 Config. H.55
C
- D#0 Config. H.60
|:(€1):|
H1=0 Config. H.63
1o 70 Config. H.69
(1)
o Xr Config. H.61
1
Xo' >0
< D#0 Config. H.59
x}l)>0 )
By #0 Xp #0 : i
B1#£0 27 D=0 (’T) Config. H.62
/ 0
XS) <0 . D Config. H.68
Config. H.56
(1)
Xo' >0
X(l):() =0 & Config. H.57
- YW<o
m_q L Config. H.50
Xo =
D70 Config. H.51
Bo=0 Config. H.5/
2= C4 (nezt page)
[©) ——C» (next page)

B1=0

PL=2 ¢y (next page)

DiAaGrAM 16. (cont. Diag. Bifurcation diagram in R'2? of the
configurations: Case n >0, 6 # 0

39

where A = 2a(g+ h —1)(4gh — g — h). Tt is clear that at least one of the singular

points Ms(x3,ys3) or My(x4,ys) belongs to the hyperbola (3.6) if and only if

Q3 = —

023
(g+h—1)2

=0, Z3=(29—1)(2h—1)—a(4gh — g — h)>.
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(1)
0
m Config. H.84

(1)
(p’ <0
Xr Config. H.86
(1) (1)
>0 . <0 )
Ca e Xg Config. H.85
@) Dol
B1=0 X >0 X Config. H.83
m_ &3 =0
X =0 m_g ==—— Config. H.81
Bi#A0| | By=0 | 5 Config. H.82
(2)
X4 <0 Config. H.37
(2)
G | @52 <O, Config. 1.52
A D50
[(62)] B Config. H.53
(2) Xg)

Xa =0 @ <0 .
Config. H.45 Xa <0 @ Config. H.1
>0 Config. H.2

(3)
3) xp <0 Config. H.17
0
X5~ Config. H.19

X(g) ) <0 Config. H.16
HX@) <0
po#0 @ B Config. H.18
Xq >0 <o

Config. H.21
Config.H.23

[n>o] xp'=0

Config. H.20
Config. H.26

(3)
B1 £0 V9 — P =0 Config. 1.7
= Config. H.8
(3)

<0
Xa =% Config. H.3

@
9 <o 2% Config. .52
®_
p =0 Config. H.3/

; >0
8140 1o=0 X(/'f)>U—C—> Config. I—{?!J
3
Xg)<0 X(s) £0 Config. H.9
X(C:}):O Xp =0 Config. H.11
®)
>0
e ) XB Config. H.10
(4, =0
Rs 70 Xa Config. H.14
B1=0
! Cs (neat page)
B 70 5120
Ce (neat page)
. Ba=0|75=0
Cs 22 Cr7 (next page)
[61=0]| 5,—0

Cs (next page)

DIAGRAM 17. (cont. of Diag. Bifurcation diagram in R'2 of
the configurations: Case n > 0, 8 # 0

On the other hand for systems (3.4) we have

X5 =105(g — h)(3g — 1)(3h — 1) Z3 /4

the condition Xg) = 0 is equivalent to Z3 = 0. We examine

and clearly by
two subcases: XS) # 0 and XS) =0.



EJDE-2017/295

(3)

CLASSIFICATION OF QUADRATIC DIFFERENTIAL SYSTEMS

XA‘<0> Config. H.49
(1)
Xp <0 Config. H.74
(3)
: >0
X(Fj)#o Xa D<0 Config. H.73
(1)
Xz >0 D>0 Config. H.41
D=0 Config. H.55
(3) _
Xa = Config. H.67
(565 0 D=0 Config. H.69
|; fo] Ho#0 10 <0 .
1= D+#0 Config. H.61
o >0
N ‘(‘3’) Config. H.59
5270 ﬂﬁ Config. H.62
(3)
=0
. ; Ap Config. H.68
(J),O ‘((3>7é0
Xp = ho=0 T f) Config. H.57
3
V=0
B2#0 Xo Config. H.50
By=0 Config. H.86
) D#£0
¥ <o Config. H.128
. D=0 Config. H.130
10 <0 X(?) )
" Config. H.129
X&' =0
Be#0 Bi1#0 Config. H.124
Co to >0 Config. H.127
[51 :0] L10=0, Config. H.125
B1=0 Config. H.135
(3)
Xq <0 Config. H.37
(3)
C- (G '—>XC =0 Config. H.52
ST >0
ng(? - Config. H.53
15=0 11 @)
(=0 (4)
n>0 Ra#0|1Xa Config. H.45 W g X5 <0 Config. H.1
0#0 Xa < RO i
LB 0] = Config. H.2
=
o 70 A < <0
D0 Xp Config. H.17
V(4) >0
>0 ~AB Config. H.19
(4)
520 _ xp <0 Config. H.27
X(4) )
B2+6240 = Config. H.28
1o=0 Cy (neat page)
Rs#0 FPL=% Cho (neat page)
Cs Ps=02=0
— t=————— (i1 (next page)
[Bs=0l| , _
B7=0

Ci2 (next page)

DIAGRAM 18. (cont. of Diag Bifurcation diagram in R'? of
the configurations: Case n > 0, 8 # 0

41

(o) Subcase XS) # 0. Then Z3 # 0 and on the hyperbola there are two simple
real singularities (namely M 2(z1,2,y1,2)). By Lemmatheir position is defined

by the invariant polynomial XS) and we arrive at the following conditions and

configurations:
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(f) <0 Config. H.5
@
Cy Xp > Config. H.6
- = (4)
5§+6§7§0 f;l)<o Xp <0 Config. H.35
B 70 X' >0 »
no=0 Config. H.36
) @
<0
Cio XA Config. H.37
B3+ #0] Config. H.53
L Bl:o i
2020 Config. H.123
(5)<0 Config. H.121
>0 onfig. H.
Cll Ho (5)>0 . ﬁ i
[58:62:()] (5)<0 onfig. H.1:
= Config. H.122
Ho=0 (5)>0
Xa 27, Config. H.126
(4)
<4) (1) Config. H.1
x >0
0340 f) Config. H.2
0
(4)>0 Xf)< Config. H.17
4
X5 Config. H.19
By #0 %55; A mﬁ Config. H.132
Bs #0 D>0, config. H.135
Xf >0 D<0 Config. H.136
: (b) D>0 Config. H.13/
= C H.156
Bs=0 X<6) onfig. 9
) _ 4 Config. H.157
5
X
Bo=0 [14=0 :;) Config. H.40
Rs#0] [Xa > Config. H.58

DIAGRAM 19. (cont. of Diag. Bifurcation diagram in R'? of
the configurations: Case n >0, 8 # 0

()<0andx()<0:>Conﬁg H.17;
()<0andx()>0:>Conﬁg H.19;
()>Oandx < 0 = Config. H.16;
()>Oandx )>0:>Conﬁg H.18.
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(1)
M» Config. H.2

L1
Xp <0
1
X%)?éo . Config. H.17
0 Xp = Config. H.18
Bi£0 Y >0 ¥
T40 Xz <0 Config. H.21
1)
X(DU:O X >0 Config. H.22
" T= Config. H.25
Xa =0 Config. H.8
(1)
Bro#0|17=0] | Xa <0,
R0 i()mﬁg. H.38
X <0 Config. H.75
= D<0 )
11070 Xq >0 " Config. H.72
Xz >0| D>0 Config. H.46
B1=0 W D=0 Config. H.65
Bs 70 Xa =0, Config. H.42
(1)
-0 X <0 Config. H.76
Moo= )
X5 >0 .
B Config. H.77
(3)
X4 <0 Config. H.2
(3)
X([i;r)#o Xe <0 Config. H.17
3. _ — ®) ®3)
oo 7= |00 200
/32723#0 @) 0 c Conﬁg.H.]S
Xp — - g
N£0 Config. H.21
N
= Config. H.8
Ho#0
B, £0 Ci13 (next page)
=0
>0 04 #0 P fo Ci14 (next page)
0=0 Br#0 | vs=0 | | 2=, Ci5 (nest page)
B1oR770 5=0
B27#0 ! Ci¢ (nest page)
By— =0]79=0
Bs=0 B RZ,;&O" Ci7 (next page)
B=0
- Cis (next page)
IN=0, Cig (next page)

DIAGRAM 20. Bifurcation diagram in R'2? of the configurations:
Casen>0,0=0

(8) Subcase XS) = 0. In this case the conditions Z3 = 0, By # 0 (see (8.7)) and
(3.5) implies 4gh — g — h # 0 and we obtain a = (29 — 1)(2h — 1)/(4gh — g — h)*.
Then considering Proposition we calculate

D=0, T=-3[g(g—1)(2h—1)z+h(h—1)2g—1)y]°P,
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(7)
o <0
X7 <0 X Config. H.78
B Config. H.79
(7)
X <0, Config. H.96
(7)
Xc <0 (1)
. Xp <0 Config. H.99
Xp >0 B10<0
X(D7)>0 Pro< Config. H.95
N 51020 Config. H.94
T
@ 0 1< Config. H.100
. N>0 Config. H.98
Cis o XEZ) <0 ?7) Config. H.97
[10740]| x>0 XD <O .
'onfig. H.93
Xp 20[ o)

>0
Xp Config. H.92

N
Mﬁ Config. H.89
@ N>0, Gonfig. H.90

Xp =0
(7)

x¢ <0 .
Xg) >0 = Config. H.88
By #0 Xp >0 Config. H.87

- N<O
ng,;) <0 Config. H.103
P =0 N>0, config. H.102

(7)
>0
X5 Config. H.101

(7)
Xp <0 Config. H.106
0470 Cia (7)
Xp <0 s
[MUZO] 22— Config. H.105

>0y P >0

Config. H.107

(1) _
Xp =0 Config. H.104

(7)
-1 <0
Xe =0, Config. H.111

Fo70 X((Z)>0 N<0 Config. H.112
[B 1;0} 0 N>0 Config. H.110
[Ho=2 Config. H.116
B2 #0 o0 N<O, Config. H.140
Cis N>0, config. H.139
N#£0 [04=0]| o =0
{n>0} [Bs=0] =0

B2=0

B7#0

Config. H.146

Ci7 (next page)

Cis (neaxt page)

IN=0, Cig (neat page)
DiAGrAM 21. (cont. of Diag Bifurcation diagram in R'? of
the configurations: Casen > 0,60 =0

P = m& — 3¢ — 3h+4gh)*(gz — hy)*[(2g — D)z + (2h — 1)y]”.

(B1) Possibility T # 0. Then T < 0 and according to Proposition systems
(3.4) possess one double and two simple real finite singularities. More exactly, we

detect that one of the singular points Ms(xs,ys) or My(x4,ys) coalesced with a
singular point located on the hyperbola, whereas another one remains outside the
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W<

Config. H.115
(7)
<0
By #0|x 7 >0 Xf?) Config. H.114
Xe 20, config. H.11
fig. H.113
55 #0 =0 onfig
A Config. H.117
Ci7 By=0 i
By #0 ) Config. H.119
ﬂ7i0 95 = Config. H.147 @ -
Rz XA =7 Config. H.80
Rs#0 =0 . onfig. H.
Xa > Config. H.91
X <0
B2+62#£0 XEZ) <0 - Config. H.78
>0
Xp Config. H.79
5 =0 XA >()[—> Config. H.96
B10#£0 %77;200 || lT‘C{)nﬁg H.95
5
™M _g X < Config. H.108
= M0
X5 Config. H.109
N#£0 X(A”<0
[ 6=0] Bs =0,=0 o Config. H.143
Xa > Config. H.141
(7)
Xa~ <0, Config. H.144
(7)
>
By 70 Config. H.145
7
i T0=0 X’ =0 Config. H.153
Ba= Config. H.151
(7
Xa <0, Config. H.142
+(3)
X <0 )
{Zig] 77 #0 By 40 ij>>0[—»( Config. H.137
>0 - M» Config. H.138
10
VM _p )
Cis . Xa Config. H.152
- =0 .
[52=0] L22= =, Config. H.149
B10=0 - !
- n,,lozox" <0 Config. H.155
>0
Config. H.15/,
Y10 <0
y7=0 Config. H.159
(7) 210>0 Config. H.158
<0 ! -
Br=0[77=0 o Config. H.150
Raz 0] [Xa”> Config. H.1/8
N=0

Cig (next page)

DIAGRAM 22. (cont. of Diag. Bifurcation diagram in R'? of
the configurations: Casen > 0,60 =10

hyperbola. Taking into consideration Lemma [£.5| we obtain the following conditions
and configurations:
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W
Config. H.79
Re<0 Config. H.96
/ﬁ#O/ﬁ:Wu:04JA?>O X' < Config. H.93
Ro7 0 Ro>0 XE’Z) Config. H.92
X(S)_ 2D Config. H.87
Cio A Config. H.101
B
N_:O 712=0 (2) iy Config. H.120
Config. H.118
&;OM Ro<0, Config. H. 160
13=01 Ro >0 Config. H. 161
M Config. H.162

DI1AGRAM 23. (cont. of Diag. Bifurcation diagram in R'? of
the configurations: Casen > 0,60 =10

(€Y)

® X&' <0 and X( < 0 = Config. H.21;
. (1) < 0 and x( > 0 = Config. H.23;
° ( )~ 0 and X( ) <0 = Config. H.20;
. X(C) > 0 and X( ) >0= Config. H.22.

(62) Possibility T = 0. In this case by conditions (3.5) and ug # 0 the equality
T = 0 holds if and only if P = 0 which is equivalent to 2 — 3g — 3h + 4gh = 0 (or
equivalently 2 — 3g + h(4g — 3) = 0). Since g — h # 0 (see (3.5))), the condition
(4g — 3)2 + (4h — 3)? # 0 holds, then by Remark [3.4] we may assume (4g — 3) # 0,
ie. h= (39 —2)/(4g — 3) and we obtain

3 2

—————(g—1)*(29 — 1)*[g(49 — 3 2-3 .
Mg_mAg )?(29 — 1)*[g(4g — 3)z + (2 — 39)y]
Since R # 0, by Proposition we obtain one triple and one simple singularities.
More precisely the singular points M3 and M, coalesced with one of the singular
points M7 or My and the last point becomes a triple one. In this case, we calculate

D=T=P=0, R=

We remark that the condition x
g(8g —2) < 0 (ie. 0 < g < 2/3) and for these values of g we have 49 — 3 < 0,

= -

105(g —

1)%(3g —1)*(59 — 3)°

8(4g —3)° ’

359(3g — 2)(g — 1)"°(3g — 1)*(5g — 3)*(2¢° — 1)?

W =

1)

< 0 implies x5

8(4g — 3)10
(1)

> 0. Indeed, if x’

< 0 then
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which is equivalent to ngl) > (. Taking into consideration Lemma ﬁ we obtain

the following conditions and configurations:
° X(Cl) < 0 = Config. H.26;
° X((,}) > 0 and Xg) < 0 = Config. H.24;
. X(Cl) > 0 and xg) > 0 = Config. H.25.
(a3) Case XS) = 0. By condition (3.5, the condition X(Al) = 0 implies Z; = 0
and it yields @ = 1/(4gh). In this case the points Mo coalesce and we have a
double point on the hyperbola. So we calculate

X = g (9= 1P = R0~ 130~ 1DP3h = 1)
Xe) =35(g — 1) (h — 1) (g — h)*(g+ h)*(3g — 1)*(3h — 1)2/128 > 0,
) = g (o= 1B = D=1 £0.

Since Xg) # 0, no other point could coalesce with the double point on the hyperbola

and we arrive at the configurations given by Config. H.7 if ngl) < 0 and Config.
H.8 if x> 0.

(b) Possibility up = 0. Then by Lemma at least one finite singular point
has gone to infinity and collapsed with one of the infinite singular points [1,0, 0],
[0,1,0] or [1,1,0]. By the same lemma, a second point could go to infinity if and
only if p(z,y) = 0. However, for systems we have the following remark.

Remark 3.6. If for a system (3.4]) the condition pg = 0 holds then p; # 0.
Moreover by (2.1]) the condition R = 3u2 # 0 is fulfilled.

Indeed for systems (3.4) we calculate
po =gh(g+h—1)=0, p=g(l—g—2gh)x+h(l—h-2gh)y.  (3.11)

We observe that in the case g = 0 (respectively h = 0; g = 1 — h) we get p1 =
h(1 —h)y # 0 (respectively p1 = g(1 — g)y # 0; i1 = h(h — 1)(2h — 1)(z — y) # 0)
by condition (3.5)).

We consider the cases: XS) <0, XS) > 0 and XS) =0.

(bl) Case ij) < 0. The points on the hyperbola are complex and, moreover, 1 —

4agh < 0 implies agh > 0 and hence Xg) > 0. Then we arrive at the configurations

given by Config. H.3 if ) < 0, and Config. H.A4 if x|} > 0.

(b2) Case Xixl) > 0. The points on the hyperbola are real and we observe that
because of condition the equality X((,}) = 0 is equivalent to gh = 0. So we
consider two subcases: X((,}) # 0 and Xg) =0.

(o) Subcase X(Cl) # 0. Then the condition pug = 0 gives g+h—1=10,1.e. g=1-h
and one finite singularity has gone to infinity and collapsed with the point [1, 1, 0].
Clearly that this must be a singular point located outside the hyperbola and hence
on the finite part of the phase plane of systems there are three singularities,
two of which (M; and Ms) being located on the hyperbola.

Since the singular points on the hyperbola are real we have to decide when the
third point will belong also to the hyperbola. For systems with g =1 — h we
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calculate
X' = —105ah*(h — 1)%(2h — 1)*(3h — 1)*(3h — 2)? /s,
D = 105(2h — 1)3(2 = 3h)(3h — 1)[1 + a(2h — 1)?] /4.

We observe that the condition Xg) < 0 implies XS) # 0. Indeed, supposing

Xg) = 0 and considering condition (3.5]), we obtain a = —1/(2h — 1)? and hence

X% = 10502 (h — 1)2(3h — 1)2(3h — 2)?/8 > 0.

So in the case xg) < 0 we get the following conditions and configurations:

e W <0 = Config. H.30;

° Xg) > 0 and x%) # 0 = Config. H.32;
N Xg) > 0 and XS) =0 = Config. H.34;

whereas for XS) > (0 we get

. Xg) < 0 = Config. H.29;
° Xg) > 0 and XS) # 0 = Config. H.31;
° Xg) > 0 and XS) = 0 = Config. H.33.

(B) Subcase X(c}) = 0. Then gh = 0 and g2 + h? # 0 because g — h # 0. By
Remark [3:4] we may assume g = 0 and then one of the singularities located on
the hyperbola has gone to infinity and collapsed with the point [1,0,0]. The
calculations yield

x5 = —105ah?(h — 1)2(3h — 1)2/8, X'} = 1051(3h — 1)(1 — 2h — ah?) /4.
(3.12)

(B81) Possibility XS) < 0. Then we have to analyze two cases: XS) # 0 and
Xp' =0.

If XS) # 0, the finite singularities M3 4 remain outside the hyperbola and we
arrive at the configuration given by Config. H.9. In the case xg) = 0 (which yields
a = (1 — 2h)/h?), one of the singular points Mjs 4 coalesces with the remaining
singularity on the hyperbola. For this case we calculate

D=0, P=(3h-2)7%2z+y—2hy)* T=-3n*h-1)%P.

We observe that the condition ngl) > 0 implies T # 0. Indeed, the conditions
ijl) =T =0 imply h = 2/3 and a = —3/4, and hence Xg) > 0.

Moreover, according to Remark in the case pg = 0, the condition R # 0
is satisfied for systems (3.4). Then, since T # 0, we obtain PR # 0, and by
Proposition 2.17] we have a double singular point on the hyperbola and we arrive
at Config. H.11.

(82) Possibility xg) > 0. We again analyze the cases XS) # 0 and x($> =0. In

the case XS;) # 0, the finite singularities M3 4 remain outside the hyperbola and

we arrive at the configuration given by Config. H.10. If XS) = 0, we obtain the
configurations shown in Config. H.12 if T # 0, and Config. H.13 if T = 0.

(b3) Case X(Al) = 0. By condition (3.5, the condition XS) = 0 implies Z; =0
(then gh # 0) and hence a = 1/(4gh). Therefore the condition pg = 0 yields
g = 1 — h. In this case the singular points M; 2 coalesce and we have a double



EJDE-2017/295 CLASSIFICATION OF QUADRATIC DIFFERENTIAL SYSTEMS 49

point on the hyperbola. For systems (3.4) with ¢ =1 — h and a = 1/[4h(1 — h)],
we calculate

X% = 105h(h — 1)(2h — 1)%(3h — 1)%(3h — 2)?/32,
W = %58 h*(h —1)*(2h — 1)*(3h — 1)*(3h — 2)?,
m_ 105

XD = T6h(h — 1)
D=0, T=-31%"h-1)>22h—1)%x—y)*@+y)?>#0.

(2h —1)3(3h — 1)(3h — 2),

Since XS) # 0 (from condition ), the singular point located outside the hyper-
bola could not collapse with this double point and we arrive at the configurations
given by Config. H.14 if x}) < 0 and Config. H.15 if '} > 0.

Subcase By = 0. According to Lemma the condition By = 0 is necessary in
order to exist an invariant line of systems . Considering the condition we
obtain that B; = 0 (see ) is equivalent to

(29 —1)(2h — 1)[a(g + h)* — 1] = 0.
On the other hand, for these systems we calculate
X' = 1059 = 1)(h = 1)(g — 1)(3g = DGR~ 1) Zs,  Zu = [a(g +h)* 1],

and by (3.5) the condition Z, = 0 is equivalent to Xg) =0.
(a) Possibility XS) # 0. In this case we get g = 1/2 and this leads to the systems

Ccli—f =a(2h—1)+z+2%/2+ (h — 1)zy, % = —y(2+ = — 2hy)/2, (3.13)
for which the following condition holds (see (3.5])):
alh —1)(2h — 1)(2h + 1)(3h — 1)(6h — 5) # 0. (3.14)

We observe that besides the hyperbola (3.6)) these systems possess the invariant
line y = 0, which is one of the asymptotes of this hyperbola. For the above systems
we calculate

o 105
po =h(2h —1)/4, Xy = —?(h —1(2h = 1)(3h - 1)Z“|{g=1/2}’

By =0, By=—648a(h—1)*(2h = 1)°y" Za| _, -

Therefore we conclude that by conditions XS;I) # 0 and we obtain By # 0
and, by Lemma we could not have an invariant line in a direction which is
different from y = 0. Moreover, by condition 6 # 0 and according to Lemma [2:25]
in the direction y = 0 we could not have either a couple of parallel invariant lines
or a double invariant line.

(al) Case po # 0. Then h(2h — 1) # 0 and considering the coordinates of the
singularities M;(x;,y;) (i = 1,2,3,4) mentioned earlier (see page for g = 1/2
we have

$1,2:—1i\/1—2ah, y172:—1:|:\/1—2(1h,
X34 = -1+ 14+ 2(1(1 — Qh), Y34 = 0.
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We recall that the singular points Mi 2(x1 2,%1,2) are located on the hyperbola. We
also observe that the singularities M3 4(x3.4,Ys3,4) are located on the invariant line
y=0.

On the other hand, for systems we calculate

X4 =2712(h — 1)%(2h — 1)2(3h — 1)2(1 — 2ah),
x5 = —105a(h — 1)3(2h — 1)%(3h — 1)?/512,
X&) =271635ah(h — 1)*(2h — 1)2(2h + 1)*(3h — 1)2,
D = 3a*(2h — 1)*[2a(2h — 1) — 1] (1 — 2ah),

and it is clear that, because of the factors 1 —2ah and 1+ 2a(1 — 2h), the invariant

polynomials qul) and D govern the types of the above singular points (i.e. are they

real or complex or coinciding), whereas the invariant polynomials ngl) and XS ) are
respectively responsible for the position of the hyperbola on the plane and for the
location of the real singularities on the hyperbola (i.e. on the same branch or on
the different ones).

(al) Subcase Xi‘l) < 0. Then the singularities M; 2 (located on the hyperbola)
are complex, whereas the types of singularities M3 4 (located on the invariant line

y = 0) are governed by D. We observe that clearly the condition XE41) < 0 implies

X((}) > 0.

Furthermore, we see that Xg) > 0 implies D < 0. Indeed, the condition xg) >0
yields @ < 0 and, since 1 — 2ah < 0 (i.e. 4ah > 2), we have 2a(2h — 1) — 1 =
4ah — 2a — 1 > 0; then D < 0. So we arrive at the following conditions and
configurations:

° Xg) < 0 and D < 0 = Config. H.39;
e X" < 0and D >0 = Config. H.49;
) Xg) < 0and D =0 = Config. H.44;
) Xg) > 0 = Config. H.38.

(B) Subcase X(Al) > 0. In this case the singularities M o are real and we have to
decide if they are located either on different branches or on the same branch and,
moreover, the position of the hyperbola.

We observe that the conditions Xg) < 0 and XS) < 0 imply D < 0. Indeed, the

conditions xg) < 0 and Xg) < 0 yield @ > 0 and ah < 0, respectively, and, since

1 —2ah > 0, we have 2a(2h — 1) — 1 = 4ah — 2a — 1 < 0; then D < 0.

So in the case Xg) < 0 we get the following conditions and configurations:

. Xg) < 0 = Config. H.75;

e x> 0and D < 0= Config. H.74;
) Xg) >0 and D > 0 = Config. H.48;
e x> 0and D=0= Config. H.64;

whereas for xﬁ;” > 0 we get

° X(c}) < 0 and D < 0 = Config. H.73; X(c}) >0 and D < 0 = Config. H.72;
e \V <0and D> 0= Config. H4T; y;) > 0 and D > 0 = Config. H.46;
° Xg) < 0 and D =0 = Config. H.66; X(Cl) >0 and D = 0 = Config. H.65.
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() Subcase Xixl) = 0. By condition (3.5)), the condition qul) =0 implies Z; =0
and hence a = 1/(2h). In this case the points M; o coalesce and we have a double
point on the hyperbola. For systems (3.4) with a = 1/(2h) we calculate

35
W= g1 (=D} 2h = 1)* (20 + 1)*(3h — 1)%,
3

T 210p

(h—1)(2h — 1)*y?[2® + 4h(h — 1)y?]".

T

From , we have Xg) > 0 and sign(T) = sign (h(h— 1)), therefore according

to Proposition besides the double point on the hyperbola, we could have two
simple points on the invariant line y = 0.

We observe that the condition Xg) > 0 implies T > 0. Indeed, if X(Bl) > 0 we

have a < 0 and, since a = 1/(2h) (i.e. h < 0), we obtain h(h — 1) > 0; then S > 0.

So we arrive at the configuration Config. H.67 if Xg) < 0 and T < 0; Config.

H.43 if Y} < 0 and T > 0; and Config. H.42 if i) > 0.

(a2) Case pp = 0. Then h(2h — 1) = 0 and considering the condition we
get h = 0. In this case one of the singular point located on the hyperbola has gone
to infinity and coalesced with [0 : 1 : 0] (since y; = x/4, see Lemma [2.15). The
second singularity on the hyperbola has the coordinates (—2, —a/2), whereas the
coordinates of the singularities M3 4(x3.4,¥s,4) located on the invariant line y = 0
remain the same. Since for systems with h = 0 we have D = —3a%(2a + 1)
we obtain sign(D) = sign(2a + 1).
We observe that in the case Xg) < 0, we have @ > 0 and hence D =2a+1 > 0,
which implies the existence of two real simple singularities on y = 0 and we obtain
the configuration shown in Config. H.70. Now, in the case Xg) > 0, we obtain
the following conditions and configurations: Config. H.71 if D < 0; Config. H.41 if
D > 0; and Config. H.55 if D = 0.

(b) Possibility Xg;l) = 0. In this case we obtain a = 1/(g + h)? and this leads to
the systems

dzx 2h — 1

2
il h—1
TR e SR (b=,
(3.15)
@fﬂf +( fl)x +h 2
at (gt h2 YTV gy
possessing the following invariant line and invariant hyperbola
r—y+2/(g+h)=0, &(z,y)= +zy =0. (3.16)

(9 +n)?

We claim that the condition Xg) = 0 implies D < 0 and XS) < 0. Indeed, if

X(El) =0, then a = 1/(g + h)? and in this case we see that

(1 _105(g —1)*(h —1)*(g — h)*(3g — 1)*(3h — 1)?
i S(g+ P2 =
_192(g — h)%(g+ h —2)*(g + h — 2gh)?
D=- (g+h)® =0

by condition (3.14)). This proves our claim.
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For the above systems we calculate

648
By=————(9-1)*h—-1)?229—1)(2h — 1)(z — y)* 3.17
> (g+h)4(9 )7 (h = 1)7(2g — 1)( )(z =) (3.17)
and by Lemma [2:22] for the existence of an invariant line in a direction different
from y = x it is necessary By = 0.

(bl) Case By # 0. Since § # 0 by Lemma we could not have a couple
of parallel invariant lines in the direction y = x and obviously the invariant line
y=x+2/(g+h) is a simple one. As before we consider two subcases: po # 0 and
Ho = 0.

(al) Subcase g # 0. Then gh(g + h — 1) # 0 and systems (3.15)) possess four
real singularities M;(x;, y;) with the coordinates

1 1 h g
ry=—-——-7", = —; Tog = ————r, = —;
! g+h s g+h 2 glg+h) 92 h(g+h)
2h —1 29— 1
_ L ogs= 22 3.18
z3 g+ h Y3 g+ h ( )
2h — 1 29— 1
Ty = — Ya =

(g+h)(g+h—1) (g+h)(g+h—1)

It could be checked directly that the singularity M;(z1,y1) is a common (tan-
gency) point of the invariant hyperbola and of the invariant line . Moreover,
the singular point M (2, y2) (respectively My(z4,y4)) is located on the hyperbola
(respectively on the invariant line), whereas the singularity Ms(x3,ys) generically
is located outside the invariant hyperbola as well as outside the invariant line.

For systems (3.15)) we calculate

W _ L e e 2 \2(en 132
W = =19 = D20 = 129~ B9~ D2Bh = D 21y ey

X&) = 2 ghlg — 1)}(h — 1)*(g — 0)*(3g —~ 1)*(3h — 1%, (3.19)
O 2(91375@2 (9 — h)*(3g — 1)(3h — 1)(g + h — 2gh)

and, by (3.5), the condition XS) =0 is equivalent to Z; = —(g — h)?/(g+ h)? =0
and this contradicts the condition . So the singular points M; and My could
not coalesce.

We consider two possibilities: X(cp < 0 and Xg) > 0.

(al) Possibility Xg) < 0. In this case the singularities M; > are located on
different branches of the hyperbola and we need to decide if the singular point Mj3
coalesces with the singularities on the hyperbola, and this fact is governed by the
polynomial D. However, this last polynomial could vanish because of the factors
g+ h—2and g+ h — 2gh. Then, according to , we need to distinguish the
cases ijl) # 0 and Xg) =0.

So we get the configurations Config. H.60 if D # 0; Config. H.63 if D = 0 and
ijl) # 0; and Config. H.69 if D = 0 and XS) =0.

(a2) Possibility Xg) > 0. Assume Xg) > 0, i.e. gh > 0. Then, by Lemma
both singularities M, o are located on the same branch of hyperbola. It is clear
that the reciprocal position of the singularities My (located on the hyperbola) and
My (located on the invariant line) with respect to the tangency point M;j of the
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hyperbola and the invariant line (3.16), define different configurations. More exactly
the type of the configuration depends on the sign of the expression:

_ (g —h)?
T e (R

and hence we need sign (g(g +h— 1)) when gh > 0. We calculate

Xp' = (g+h)(g+h—1)(g = 1)*(h = 1)*(g = h)*(3g — 1)*(3h — 1)/256
and, since in the case gh > 0 we have sign(g) = sign(g + h), we deduce that

sign(x) = sign (g +h)(g +h— 1)) = sign (g(g + h — 1)).

We observe that conditions x(é) > 0 and X%l) < 0 imply D # 0 (i.e. D < 0).
Indeed, if we suppose D = 0, then (g+h—2)(g+h—2gh) = 0. In the case g = 2—h,
we have

W = (h—1)1(3h — 5)%(3h — 1)%/32 > 0,

by (3.14), which contradicts the condition Xg) < 0. On the other hand, if g =
h/(2h — 1), we have

1 _ 1 40 _ 1)10 1)2 —1)2(1—9 9h2
Xr 32(2h—1)10h(h VO (h+1)%(3h — 1)%( h+2h%) > 0,

by (3.14)), which again contradicts the condition Xg) < 0. So we detect that in the

case XE!«}) < 0 we obtain the configuration Config. H.61.

In the case X%l) > 0, the polynomial D could vanish and we need to detect
to which singular points My or My the singularity M3 collapses. So we get the
following conditions and configurations: Config. H.59 if D # 0; Config. H.62 if
D =0 and Xg) # 0; and Config. H.68 if D = 0 and Xg) =0.

(8) Subcase pp = 0. Then gh(g+ h — 1) = 0 and, by Lemma at least one
finite singularity has gone to infinity and coalesced with an infinite singular point.

Since for systems (3.15) we have X(Cl) = 0 if and only if gh = 0 (see (3.19)), we
consider two possibilities: X(Cl) # 0 and XS) = 0.

(81) Possibility X(c}) # 0. Then the condition g = 0 implies g+ h — 1 = 0, i.e.
g = 1—h and considering the coordinates (3.18)) of the finite singularities of systems
(3.15]) we observe that the singular point My located on the invariant line has gone
to infinity and coalesced with the singularity [1 : 1 : 0]. In this case calculation
yields

XY = h2(h—1)2(2h — 1)*(3h — 1)%(3h — 2)2 /64,
x5 = =105 h%(h — 1)2(2h — 1)2(3h — 1)%(3h — 2)%/8,
x5 =35h%(1 — B)3(2h — 1)%(3h — 1)2(3h — 2)2/32,
D = —192(2h — 1)%(1 — 2h + 2h?)?,
and by (3.14) we have XS) > 0, Xg) > 0 and D < 0. Moreover, since by Remark
[3:6] the condition R # 0 holds, then according to Proposition all three finite

singularities are distinct. This means that the singularities located on the hyperbola
are simple and belong to different branches (respectively of the same branch) of the
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hyperbola if X((}) < 0 (respectively x(cl) > 0). As a result we get configurations
Config. H.56 if Xg) < 0 and Config. H.57 if X(Cl) > 0.

(82) Possibility Xg) = 0. Then gh = 0 (this implies uyg = 0) and we have
g%+ h? # 0 because g — h # 0. Considering Remark without loss of generality,
we may assume g = 0. In this case, the singularity M located on the hyperbola
has gone to infinity and coalesced with the point [1,0,0]. Since by Remark
[3.6] we have 1 # 0, then according to Lemma [2.15|other three finite singular points
remain on the finite part of the phase plane.

It is clear that depending on the position of the singular point M, (located on
the invariant line ) with respect to the vertical line x = x; we get different
configurations. So this distinction is governed by the sign of the expression z4—x1 =
1/(1 — h). Moreover, since in this case we have the invariant line x —y +2/h = 0,
its position depends on the sign of A. Then we need to control the sign (h(l - h))
Thus, we calculate

W = B3(h — 1)3(3h — 1)2/256, D = —192(h — 2)?
and we have sign (h(1 — h)) = —Sign(x%l)).

It is clear that, in the case x%l) < 0, we have D # 0 and, since the condition R # 0
holds (see Remark, Proposition assures us that all three finite singularities
are distinct if D # 0. So we arrive at the configuration given by Config. H.50.

Now, in the case x%l) > 0, the polynomial D could vanish and we obtain the
configuration Config. H.51 if D # 0 and Config. H.54 if D = 0.

(b2) Case By = 0. Considering and the condition we obtain g = 1/2
and this leads to the 1-parameter family of systems

dr  4(2h—1) x? dy
b S Tt (h—Dry, 2 =—y2+az—2hy)/2, 3.20
R CT s +(h=Day, — =-y2+z-2hy)/ (3.20)
for which the condition 63,52 # 0 gives
(h—=1)(2h +1)(2h — 1)(3h — 1)(6h — 5) #£ 0. (3.21)
These systems possess two invariant lines and a hyperbola
Pyt =0 y=0, B@y) = — oy =0
Yo YT Y ’y_(2h+1)2 y="
as well as the following singularities M;(z;,y;):
2 2 4h 1
= — _ C e — _ )
Yot T onyr T T+ T @Rty (322)
_20-2m) 4 o '
$3—72h+1 y Yz =Up Ta = M1 Yqg = V.

We observe that from condition (3.21)) all singularities are located on the finite part
of the phase plane, except the singular point Ms which could go to infinity in the
case h = 0. For the above systems we calculate

x5 = 35h(h — 1)*(2h — 1)%(3h — 1)2/16384

and we analyze the subcases X(Cl) <0, X(Cl) > 0 and XS) =0.
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(al) Subcase XS) < 0. Then h < 0 and it implies

48 9 6
o =h(2h—1)/4#0, D= @h T 1) (2h —3)*(2h — 1)° £ 0.
Since the singular points on the hyperbola are located on different branches, we
arrive at the unique configuration Config. H.84.

(8) Subcase XS) > 0. Then h > 0 (this implies again pg # 0) and the singularities
on the hyperbola are located on the same branch. Thus, it is necessary to distinguish
the position of My on the hyperbola with relation to M7, which is the intersection
point of the hyperbola and the invariant line x —y+4/(2h +1) = 0, and My, which
is the intersection point of the two invariant lines, as well as the position of the
singularities M3 and My on the invariant line y = 0. We calculate

4(2h —1) _ 2(2h - 3)

(.1‘1—1}2)(3?1—374):W, (334_1'3)— 2h + 1

and hence sign(2h — 1) (respectively sign(2h — 3)) will describe the position of the
singularity My on the hyperbola (respectively the position of the singularity M3 on
the invariant line y = 0). We calculate

YW =2"182n— 1220+ 1)(h+1)*Bh—1)2, P =(@2n-3)(h+1)/8

and, by (3.21) and since h > 0, we obtain sign(2h — 1) = sign(Xg)) and sign(2h —
3) = sign(XS)).

We observe that the condition Xg) = 0 yields h = 3/2 and this implies D = 0.
In this sense, we obtain the following conditions and configurations:

X%l) < 0 = Config. H.86;
xg.;l) > 0 and xg) < 0 = Config. H.85;
Xﬁ,” > 0 and Xg) > 0 = Config. H.83;

X%l) > 0 and X(Gl) =0 = Config. H.81;

(v) Subcase Xg) = 0. Then h = 0 (this implies po = 0) and the singularity My
has gone to infinity and coalesced with [0: 1 :0]. As a result we get Config. H.82.
Case (B2 = 0. Since 81 # 0 (i.e. ¢ # 0) we get (¢ — h)(3g + 3h —4) = 0. On the
other hand, for systems we have

Bz =—clg—h)(g—1)(h-1)/4

and we consider two possibilities: 53 # 0 and 83 = 0.
Possibility 33 # 0. In this case we have g — h # 0 and the condition §; = 0 yields
3g+3h—4=0,ie. g=4/3— h. In this case, for systems (3.2)), we calculate

v3 = 7657c(h — 1)*(3h — 1)*[a(5 — 6h) — 3b(2h — 1)],

B3 = —c(h —1)(3h — 2)(3h — 1)/18, Ry = (a — b)c(h — 1)*>(3h — 1)3/6.
Without loss of generality, we may assume 2h — 1 # 0, otherwise via the change
(x,y,t,a,b,¢) — (y,x,t,b,a, —c) we could bring systems (3.2) with & = 1/2 to the
same systems with h = 5/6. Therefore, from 5 # 0, the condition v3 = 0 yields
b = a(5 — 6h)/[3(2h — 1)] and since ¢ # 0 we may assume ¢ = 1 by the rescaling
(z,y,t) — (cx,cy,t/c).
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We remark that the condition 73 = 0 could be written as a = a;(2h — 1) and
b = a1(5 — 6h)/3. So setting the old parameter a instead of a1, we arrive at the
2-parameter family of systems

d 4 —3h
& :3&(2h—1)+x+73x2+(h—1)1:y,
dt 3 (3.23)
@_a(5—6h)_ +1— hx I
e 3 Y Y Yy,
for which the condition 68; 53R, # 0 is equivalent to the condition
alh—1)(3h —1)(3h —2) £ 0. (3.24)

Moreover, these systems possess the same invariant hyperbola (3.6]).

Observation 3.7. We observe that the family of systems is in fact a subfam-
ily of systems under the relation g = 4/3 —h. Moreover, if we present the con-
dition in the form F(a, g, h)(3g+3h—4) # 0, then in the case g = 4/3 — h, the
condition is equivalent to F'(a, g, h) # 0. We also point out that the condition
g = 4/3—h does not imply the vanishing of any of the invariants X(Al), Xg), ceey Xg).
Hence, all the configurations of systems are the configurations of systems

(3.4) determined by the same invariant conditions.

Considering this observation, we could join the conditions defining the family
(3.4) (i.e. n >0, 808182 # 0) with the conditions which define the subfamily
(i.e. >0, 081 #0, B2 =0 and B3 # 0). More precisely, the conditions defining
both such families of systems are 35 + 32 # 0 and (€;), where

(€1) : (B2R1 #0) U (B2 =73 =00Np5 #0).

Possibility f3 = 0. From 81 # 0 (i.e. (9 —1)(h —1) # 0), we get g = h. In this
case, we calculate

vo = 6300h(h — 1)*(3h — 2)(3h — 1)?B,

0=—h(h—1)% B =—(h—1)*(3h—1)?/4,

B4 =2h(3h —2), 5 =—2h*(2h —1).

We shall consider two cases: 34 # 0 and (4 = 0.
(a) Case B4 # 0. So the condition y2 = 0 implies B; = 0 and by Theorem [2.1§]

the condition (5 # 0 is necessary for the existence of hyperbola. Hence, we arrive
at the particular case of systems (3.4) when g = h, i.e. we get the systems

c(lTx =a(2h — 1) + 2 + ha® + (h — 1)y,
dt (3.25)
dit/ =a(2h—1) —y+ (h— Vzy + hy*
with the condition
ah(h —1)(2h — 1)(3h — 1)(3h — 2) £ 0. (3.26)

These systems possess the invariant line and hyperbola

1+h(x—y)=0, P(z,y)=a+axy=0.
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Since pg = h%(2h — 1) # 0 (see (3.26)), systems have finite singularities M; (z;,y;)
of total multiplicity 4:

1+ 1 —4ah? 1F 1 —4ah?

Z1,2 = — oh y Y12 = oh ,
—1++v1+4a—8ah 1F+v1+4a— 8ah
x3,4 = 5 y Y34 = B ,

We detect that the singularities Mj o are located on both the hyperbola and the
straight line. These singular points are located on different branches (respectively
on the same branch) of the hyperbola if only if z1ze < 0 (respectively xi2z9 > 0),
where 2125 = a. Moreover, these singularities are real if 1 — 4ah? > 0, they are
complex if 1 — 4ah? < 0 and they coincide if 1 — 4ah? = 0.

On the other hand, we calculate

Y& = 20220 — 1)2(3h — 1)2(1 — 4ah?), X\ = —a(h —1)2(2h — 1)*>(3h — 1)*/4

and, by condition (3.26]), we have sign(1 — 4ah?) = sign(Xf)) (if 1 —4ah? # 0) and
sign(zqz2) = —sign(Xg)).

We observe that at least one of the singular points M3 4 could be located either
on the invariant hyperbola or on the invariant straight line. Next we determine the

conditions for this to happen. We calculate
O(2,Y)|{w=ws.4, y=ys.a} = (—1+4ah V14 4a — 8ah) = 95)4((1, h),
(14 h(x — Y)]l{z=s.4, y=ys 1} = L T A(=1 £ V1 +4a — 8ah) = O3 4(a, h).

So M3 or My could be located on the invariant hyperbola (respectively invariant
line) if and only if Q40 = 0 (respectively ©304 = 0). So we have

Q5 = —a(l —4ah®) =0, O304 = (1 —2h)(1 —4ah?®) =0

if and only 1 — 4ah* = 0 (because of condition (3.26)).

Thus, in the case XE42) = 0 we arrive at the configuration given by Config. H.37
if y'?) < 0; Config. H.52 if ¥ > 0 and 2 < 0; and Config. H.53 if x7) > 0 and
Xg) > 0.

Assume now Xf) =0, i.e. 1 —4ah? =0. By condition we have h # 0 and
hence a = 1/(4h?). It could be easily observed that in this case the singular points
M5 and M3 coalesce with the singularity M7 and this point becomes a triple point
of contact of the invariant hyperbola and invariant line. We remark that this point
of contact could not be of multiplicity 4 because in this case we have

po =h*2h—1)#0, D=T=P=0, R=3hr*h—-1)22h—1)*(z+y)*#£0,

by condition . Thus, in the case Xff) = 0 we get the configuration given by
Config. H.45.

(b) Case B4 = 0. Then, from 6 # 0, we get h = 2/3 and we obtain a family of
systems which is a subfamily of systems setting h = 2/3. Since in this case

we have
X&) =8(9 - 16a)/729, x\2 = —a/324,

it is clear that we obtain again the same four configurations as for the family (3.26))
with the same invariant conditions. As earlier we could join the cases 4 # 0
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and B4 = 0. More precisely, the conditions defining the corresponding families of
systems are

(€2) : (BaPBsR2 #0)U(Bs =73 =0, R2 #0).

3.1.2. The possibility 1 = 0. Considering (3.3) and the condition 6 # 0, we get
¢(3g — 1)(3h — 1) = 0. On the other hand, for systems (3.2)) we calculate

Bs = —c(g—1)(h—1)/2
and we shall consider two cases: s # 0 and Gg = 0.
Case g # 0. Then ¢ # 0 (as before we could assume ¢ = 1 by a rescaling) and the
condition 8; = 0 implies (3g — 1)(3h — 1) = 0. Therefore, by Remark we may
assume h = 1/3 and this leads to the following 3-parameter family of systems

d d
d%f:a+x+9$2*2$y/3a d%:b*y+(g*1):vy+y2/3a (3.27)
which is a subfamily of (3.2]).

For these systems we calculate
v4=16(g — 1)*(3g — 1)*[3a(2g — 1) + b] [(3g + 1)*(b — 2a + 6ag)
+6(1—3g)] /243,
Be=1(9—1)/3, Bo=(1—g)(39—1)/2, Rs=a(3g—1)*/18.
Subcase (B3 # 0. Then 3g — 1 # 0 and, to have 4 = 0, we must have [3@(29 -1+
b] [(3g + 1)%(b — 2a + 6ag) + 6(1 — 3g)] = 0.

We claim that systems (3.27) with (3g + 1)?(b — 2a + 6ag) + 6(1 — 3g) = 0
(ie. b=2(3g—1)(3 —a— 6ag — 9ag?)/(3g + 1)?) could be brought to the same
systems with b = 3a(1 — 2g) via an affine transformation. Indeed, from 6 # 0 (i.e.
(3g+1)(g — 1) # 0), we may apply the affine transformation

3g+1 3g+1 2 3(g—1)
= ———x, = T—y)+——, t=—""t 3.28
1 31— g) Y1 3(1_9)( Y) 1—g 1 39 + 1 ( )
and we arrive at the systems
dx d
Hl = a1 + 71 + G177 — 22191 /3, Eyl =b1 — 1+ (91 — Dzays +41/3,
1 1

where by = —3a;1(2g91 — 1), a1 = —a(3g+ 1)2/[9(g — 1)?] and g; = (2 — 3g)/3. This
completes the proof of our claim.
Next we consider the following family of systems

d
—m:a+x+gx2—2xy/3,

dt (3.29)
— = -3a(29—1) —y + (¢ — Dy + /3,

with the condition
a(g—1)(3g—1)(3g+1) #£0. (3.30)
According to Theorem these systems possess either one or two invariant
hyperbolas if either d; # 0 or §; = 0, respectively, where §; = (3g — 1) [6(1 — 3g) +
a(3g +1)?]/18.
(a) Possibility 61 # 0. Then systems possess the unique invariant hyper-
bola
O(z,y) =3a —axy = 0. (3.31)



EJDE-2017/295 CLASSIFICATION OF QUADRATIC DIFFERENTIAL SYSTEMS 59

For systems ([3.29)) we calculate
By =8a’(g—1)*(29 — 1)(3g — 1)[3 + a(3¢g + 1)?] /27. (3.32)
(al) Case By # 0. In this case, by (3.30), we have (29 —1)[3+ a(3g + 1)?] # 0.
For systems (3.29) we calculate pg = g(3g — 2)/9 and we consider two possibilities:

o # 0 and po = 0.
(al) Subcase g # 0. In this case the systems have finite singularities of total
multiplicity 4 with coordinates M;(x;,y;):

—1++1+4ag y 3(1 ++/1+ 4ag)
’ 2

Tio = % 2= T,
1+ /1—-8a+ 12ag ~3(29 - 1)(1+ /T —8a + 12ag)
L3,4 = 2(3g — 2) » Y34 = 2(39 — 2) .

We detect that the singularities M; 2 are located on the invariant hyperbola.
More exactly, these singular points are located on different branches (respectively
on the same branch) of the hyperbola if only if x129 < 0 (respectively zyzo > 0),
where z1x2 = —a/g. Moreover, these singularities are real if 1 + 4ag > 0, complex
if 1 4+ 4ag < 0 or they coincide if 1 + 4ag = 0.

On the other hand, we calculate

(3) _ 7713280

X = 722201 4 tag) 601 — 39) + (39 + 1)),
164798932 2
\i = —gr—alg — 1’89 ~ 1*[6(1 - 39) + a(3g + 1],
66560 2
X&) = =5 ag[6(1 - 39) + a(3g + 1],

and, from condition ([3.30]), we have sign(xf’)) = sign(1 + 4ag) (if 1+ 4ag # 0) and

sign(Xg)) = sign(zix2).

We point out that at least one of the singular points M3 4 could be located on
the invariant hyperbola. Next we determine the conditions for this to happen. We
calculate

3[2a(g —1)(3g — 2) — (29 — 1)(1 + /T = 8a + 12ayg)]
2(3g — 2)

(I)(QI, y)‘{fl::w?,'zl, y=y3,.4}
= Qg_A(a,g, h).
It is clear that at least one of the singular points M3 or M, belongs to the hyperbola
(3.31) if and only if Q4Q) = 0. So we have
9ala(g —1)? — 29 +1] 0

"o
Ui =5 gy

and, since
(3) 736
b =81
we deduce that at least one of the singular points Ms 4 belongs to the hyperbola if

(39— 1)[a(g — 1)* — 29 + 1] [6(1 — 3g) + a(3g + 1)?],

and only if X(g) =0.

(al) Possibility Xff) < 0. So we have no real singularities located on the invariant

hyperbolas and we arrive at the configurations given by Config. H.1 if XS;’") < 0and

Config. H.2 if Xg) > 0.
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(«2) Possibility Xf) > 0. In this case we have two real singularities located on
the hyperbola and we need to decide if they are located either on different branches
or on the same branch of the invariant hyperbola and also if at least one of the
singular points M3 4 will belong to the hyperbola.

(i) Case XS) # 0. Then a(g —1)> —2g + 1 # 0 and on the hyperbola there
are two simple real singularities (namely M 2) and we arrive at the conditions and
configurations given by:

. X(g)) < 0 and xg’) < 0 = Config. H.17;
° X(CS) < 0 and Xg) > 0 = Config. H.19;
° X((?) > 0 and Xg) < 0 = Config. H.16;
. X(C?’) > 0 and xg’) > 0 = Config. H.18.

(ii) Case Xg) = 0. In this case, because of By # 0 and (3.30), we obtain
a= (29 —1)/(g — 1)2. Then, considering Proposition we calculate

D=0,

te _21(857g(g_—3)1)4(3g —1)%(3gz — y)*[3(29 — D)z —y]”

x [3g(g — Dz +2(29 — 1)y]”.

(ii.1) Subcase T # 0. Then T < 0, X(j) > 0 and, according to Proposition
in this case systems possess one double and two simple real finite singularities.
More exactly, we detect that one of the singular points M3 or My coalesced with
a singular point located on the hyperbola, whereas the other one remains outside
the hyperbola. Then, we obtain the conditions and configurations as follow:

° X(CS) < 0 and Xg) < 0 = Config. H.21;
. X((jj) < 0 and Xg) > 0 = Config. H.23;
o \¥ > 0= Config. H.20,
in which in the last case the condition X(Cg) > 0 implies Xg) < 0, because T < 0

yields 0 < g < 1/2 and, for these values of g combined with the condition x(cg) > 0,

we have a < 0 and hence X(g) <0.

(ii.2) Subcase T = 0. In this case, by conditions and po # 0, the equality
T = 0 yields g = 3/5 and hence X(c?) = —416000/3 < 0, which leads to configuration
given by Config. H.26.

(a3) Possibility X(j) = 0. From (3.30), condition X(j) = 0 implies 1 + 4ag = 0
and hence ¢ = —1/(4g). In this case the points M o collapse and we have a double
point on the hyperbola. In this case we see that

(3) _ 46(3g — 1)*(9g —1)°
XD 8192

£0

and 01 # 0, by . So, as Xf) 2 0 no other point could collapse with the double
point on the hyperbola, we arrive at the configuration Config. H.7 if Xg) < 0 and
Config. H.8 if XS) > 0.

(8) Subcase pg = 0. We consider the possibilities: X(j’) < 0, X(j) > 0 and
X =o.
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(B81) Possibility xf) < 0. The singular points on the hyperbola are complex
and, since 1 4 4ag < 0 yields ag < 0, we have g = 2/3 and then a < 0, which is

equivalent to X(33) < 0. So we arrive at the configuration given by Config. H.3.

(82) Possibility Xf) > 0. Analogously we have g = 2/3 and the points on the
hyperbola are real. We observe that,by condition , the equality X(g’) =0is
equivalent to g = 0. So we consider two subcases: X(C?) # 0 and X(g’) =0.

(i) Case X(C?’) = 0. Then one finite singularity has gone to infinity and coalesced
with the point [1,1,0]. As observed earlier, this must be a singular point located
outside the hyperbola which goes to infinity and hence on the finite part of the
phase plane of systems there are three singularities, two of which (M; and
M>) being located on the hyperbola.

Since the singular points on the hyperbola are real, we have to decide when the
third point will belong also to the hyperbola. For systems with g = 2/3 we
calculate

7713280 164798932
X(j) = T(8a+3)(3a72)2, X(g) = Ta(?’a*2)2>
(3) 133120 (3) 736
@ = g o2 4 = T g0 2)
We observe that si By — g ®3) B _ _
gn(xy ) = —sign(xs’) and, moreover, x,,’ = 0 (ie. a = 3)

implies Xg) < 0. So we get the following conditions and configurations:

. Xg) < 0 and X([:;’) # 0 = Config. H.32;
o \¥ <0and x!¥ =0 = Config. H.34;
. X(c%) > 0 = Config. H.29.

(ii) Case Xg)) = 0. Then g = 0 and this implies

W = 164798932a(a + 6)2/81, X =0, '3 = —736(a1)(a +6)%/81.
So we get the following conditions and configurations:

° Xg) < 0 and xg’) # 0 = Config. H.9;

e (¥ <0and \!¥ =0 = Config. H.11;

. XS) > 0 = Config. H.10,

in which in the last case the condition Xg) >0 (i.e. a > 0) implies XS) # 0.

(83) Possibility XE43) = 0. Because of , the condition pg = xf) = 0 implies
g(3g —2) =14 4ag = 0. Then this yields g # 0 and hence g = 2/3 and a = —3/8.
In this case the singularities M; > coalesce and we have a double point on the
hyperbola. For systems with a = —3/8 we calculate

& = 162500 > 0, 'Y = 575/18 £ 0.

Since Xg)) # 0, no other point could coalesce with the double point on the hyperbola
and we arrive at the configuration Config. H.14.

(a2) Case By = 0. Thus, according to Lemma [2.22] the condition B; = 0 is
necessary in order to exist an invariant line of systems @D Considering ,
the condition By = 0 (see (3.32)) is equivalent to

(29— 1)[3+a(3g+1)*] =0.
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On the other hand for these systems we calculate
Xy = (39— 1)[3+a(3g+ 1)?][6(1 — 39) + a(3g + 1)*]

and we examine two possibilities: XS’) # 0 and xg’) =0.
(al) Subcase XE@S) # 0. In this case we get ¢ = 1/2 and this leads to the systems

d d
d—f =a+z+22/2 - 22y/3, di; = —y(1 +2/2—y/3), (3.33)
for which the following condition holds (see (3.30])):
a(25a — 12) # 0. (3.34)

Since the family of systems (3.33) is a subfamily of (3.29) (setting g = 1/2),
the invariant hyperbola remains the same as in (3.31]). Besides this hyperbola,

systems (3.33) possess the invariant line y = 0, which is one of the asymptotes of
this hyperbola. For the above systems we calculate

o = —1/36, % = (25a + 12)(25a — 12)/192,
By =0, Bsy=—8a(25a+ 12)y™.

Therefore, we conclude that, from conditions Xg) # 0 and , we obtain By # 0
and by Lemma [2.:22| we could not have another invariant line in a direction different
from y = 0. Moreover, by condition § # 0 and according to Lemma in the
direction y = 0 we could neither have a couple of parallel invariant lines nor a
double invariant line.

Since pg # 0, systems possess finite singular points of multiplicity 4 with
coordinates M;(x;,y;) (i =1,2,3,4):

z12=—-1£vV2a+1, y12=3(1£v2a+1)/2,
234 =-1%£v1-2a, y34=0.

We recall that the singular points M 2 are located on the hyperbola and that the
singularities M3 4 are located on the invariant line y = 0.
On the other hand for systems (3.33]) we calculate

482080
Y = Tg(&z +1)(25a — 12)?, D =a*(2a — 1)(2a +1)/3,
3 41199733 3 2080
ng) =T a(25a — 12)% X(C) =——5 a(25a — 12)?

and then the invariant polynomials Xf) and D govern the types of the above sin-

gular points (i.e. are they real or complex or coinciding), whereas the invariant

polynomials Xg) and Xg)) are responsible respectively for the position of the hy-

perbola and the location of the real singularities on it (i.e. on the same branch or

on the different ones).

)

(al) Possibility XE43 < 0. Then the singularities M; 2 (located on the hyperbola)

are complex. Since XE43) < 0, we obtain Xg) < 0 and D > 0, and by Proposition
the singularities on the invariant line are real and distinct. So we get the
configuration given by Config. H.49.

(«2) Possibility Xf’) > 0. In this case the singularities M; » are real and they are
located on different branches (respectively on the same branch) of the hyperbola

if X(C?’) < 0 (respectively X(C?’) > 0). We observe that the conditions X(j) > 0 and
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D > 0 imply a > 1/2 and then Xg) > 0 and XS’) < 0. Moreover, the conditions
XE:’) > (0 and xg) < 0yield —1/2 < a < 0 and then D < 0 and X(CB) > 0. Therefore,
we arrive at the following conditions and configurations:
X < 0 = Config. H.74;

3

XB) >0 and D < 0 = Config. H.73;
XS) >0 and D > 0 = Config. H.47;
xg’) >0 and D = 0 = Config. H.66.

(a3) Possibility XS) = 0. By condition (3.34)), the condition XS) = 0 implies
a = —1/2. In this case the points M o collapse and we have a double point on the
hyperbola. For systems with @ = —1/2 we calculate

W = 41199733/41472 > 0, T = —(3z — 2y)(92> — 24zy + 8y*)? /4478976 < 0.

So, according to Proposition 2:17} besides the double point on the hyperbola, we
have two simple real singular points on the invariant line y = 0 and we get the
configuration given by Config. H.67.

(B) Subcase XS) = 0. In this case we obtain a = —3/(3g + 1)? and this leads to
the systems

dx 3 dy 929 —1)

@ _ 2 _opy/3. M9 -1 2/3
o (3g+1)2+:ﬁ+g$ zy/3, By - 1)? y+(g—Dry+y°/
(3.35)
with the conditions
(9—1)(3g = 1)(3g +1)(6g — 1) # 0. (3.36)

Moreover, systems (3.35)) possess the following invariant line and invariant hyper-

bola
18

(3g+1)2
(3)

We observe that the condition xj’ = 0 implies

z—y+6/(3g+1)=0, ®(z,y)= + 22y = 0. (3.37)

(3)  T713280(3g — 1)%(6g — 1)?
Xa = 27(3g + 1)
(3) 164798932(g — 1)%(3g — 1)%(6g — 1)?
Xp =~ 3(3g 1 1) <0,
because of . Therefore, the points on the hyperbola are real and distinct and
the hyperbola assumes only one position.
For the above systems we calculate

(s
W(Q -1)%(2g - 1)(z —y)* (3.38)
and, by Lemma for the existence of an invariant line in a direction different
from y = x it is necessary Bs = 0.

(B1) Possibility By # 0. Then 2g — 1 # 0 and, since § # 0, by Lemma [2.25
we could not have a couple of parallel invariant lines in the direction y = x and
obviously the invariant line y = z + 6/(3g + 1) is a simple one. As before, we
consider two cases: po # 0 and po = 0.

>0,

2 =
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(i) Case pup # 0. Then ¢g(3g — 2) # 0 and systems ([3.35) possess four real
singularities M;(x;, y;) having the following coordinates:

.3 3 1 9y
1= 39"‘]—) y1_39+1a 2 — g(3g+1)7 92—3g+17
_ 1 73(2971).

3 9(2g — 1
oy = — = (29 - 1)

(3g+1)(3g —2)’ (3g+1)(3g —2)

We could check directly that the singularity M; is a common (tangency) point
of the invariant hyperbola and of line . Moreover, the singular point My
(respectively My) is located on the hyperbola (respectively on the invariant line),
whereas the singularity M3 is generically located outside the hyperbola as well as
outside the invariant line.

For systems ([3.15)) we calculate

64
(3 199680g(6g — 1)2 (5 1472(g +1)(3g — 1)2(6g — 1) '
Xo = T Egrz 0 0T 27(3g + 1)2 '

(i.1) Subcase X(c?) < 0. Then g < 0 and the singular points M; o are located on
different branches of the hyperbola and we obtain the configuration Config. H.60
if D # 0 and Config. H.69 if D = 0.

(i.2) Subcase Xg) > 0. Then g > 0 and the singular points M o are located
on the same branch of the hyperbola. It is clear that the reciprocal position of
the singularities M» (located on the hyperbola) and My (located on the invariant
line) with respect to the tangency point M; of the hyperbola and the invariant line
defines different configurations. More exactly, the type of the configuration

depends on the sign of the expression:

B 3(3g — 1)?

~ 9(39-2)(3g+ 1)

Hence, we observe that sign ((z1 — z2)(z1 — 24)) = sign(uo). So, if D # 0, we arrive

at the configuration Config. H.61 if ug < 0 and Config. H.59 if pg > 0.

We consider now the case D = 0. Then, by condition , we have (g+1)(3g—
5) = 0 and clearly the invariant polynomial x [:,3 distinguishes which one of the two
factors vanishes.

If X(DB) # 0, then g+ 1 # 0 and we get g = 5/3. We observe that in this case the
singularity M3 collapses with the singular point M, located on the invariant line.
On the other hand, we calculate

T = —256(x — y)2(5z — y)(5x + y)? /177147 < 0

(z1 — z2)(T1 — T4)

and, by Proposition we have three distinct singularities (one of them being
double). Now, assuming g = 5/3, for systems (3.35]), we calculate

B = 748800 > 0, (21 — w2) (w1 — 24) = 4/15 > 0

and hence we arrive at the configuration given by Config. H.62.
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In the case XS') = 0, we have g = —1 and then the singularity M3 collapses with
the singular point M located on the hyperbola (but outside of the invariant line).
Moreover, for g = —1 we have

T = —256(z — y)?(3z + y)*(97 +y)?/243 < 0

and again we conclude that systems (3.35)) possess three distinct singularities (one
double). In this case we have

X&) = —2446080 < 0, (21 — xa)(21 — 24) = 12/5 > 0

and therefore we get the configuration given by Config. H.68.

(ii) Case pp = 0. Then g(3g — 2) = 0 and, by Lemma at least one finite
singularity has gone to infinity and coalesced with an infinite singular point. Since
for systems we have X(Cg) = 0 if and only if g = 0 (see (3.40)), we consider

two subcases: X(CS) # 0 and Xg) =0.

(ii.1) Subcase X(g’) # 0. Then the condition po = 0 implies 3g — 2 = 0 (i.e.
g = 2/3) and, considering the coordinates of the finite singularities of systems
, we observe that the singular point My located on the invariant line has gone
to infinity and collapsed with the singularity [1,1,0]. In this case calculation yields

D = —1600/19683 < 0, X =133120 > 0,

and, since by Remark [3.6] the condition R # 0 holds, according to Proposition [2.17}
all three finite singularities are distinct. Moreover, becuase Xg) > 0, the singulari-
ties are located on the same branch of the hyperbola and we get the configuration
given by Config. H.57.

(ii.2) Subcase X(g’) = 0. Then g = 0 and in this case the singularity Ms located
on the hyperbola @ has gone to infinity and coalesced with the point [1: 0 : 0].
Since by Remark [3.6] we have u; # 0, according to Lemma the other three
finite singular points remain on the finite part of the phase plane.

Now, depending on the position of the singular point My (located on the in-
variant line ) with respect to the vertical line x = x1, we may get different
configurations. This distinction is governed by the sign of the expression x4 — x1

and we calculate

D =—-1600/3 #0, x4—x =3/2>0.

Since by Remark [3.6] the condition R # 0 holds, according to Proposition all
three finite singularities are distinct (D # 0) and since x4 — z1 > 0, we arrive at
the configuration given by Config. H.50.

(62) Possibility By = 0. Counsidering and the condition , we obtain
g = 1/2 and this leads to the system

d
d—f = —12/25+ x + 22 /2 — 2zy/3,

dy

i —y(l+z/2—y/3), (3.41)

possessing the two invariant lines and the invariant hyperbola:

72
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as well as the following singularities M;(x;,y;) with the coordinates

. 6 y 6 . 4 y 9
1= —%» 1= T3 2= "7, 2= T
N e N 5 (3.42)
= =, :0’ = -y :0'
xs3 5 Y3 T4 5 Y4

Hence, all singularities are located on the finite part of the phase plane since
to = —1/36 # 0. We calculate

D = —2352/390625 < 0, x2) = 319488/5 > 0.

Since X(Cg) > 0, the singular points M; and M, are located on the same branch

of the hyperbola and we need to detect the position of the singularity Ms on the
hyperbola. This fact is verified by the sign of the expression (x; — z3)(z1 — 24) =
—12/25 < 0. Then, we arrive at the configuration given by Config. H.86.

(b) Possibility 61 = 0. From condition we get a = 6(3g —1)/(3g+1)? and
we get the following 1-parameter family of systems

de 6(3g—1 2x
dy _ 1801 29)(39 — 1) v (3:49)
i (3g+1)2 —y+g—Dzy+ 3,
with the conditions
(9—1)(3g—1)(3g +1) #0. (3.44)
Moreover, systems possess two invariant hyperbolas:
Oy (z,y) = m +2z2y =0,
(3.45)

36(3g—1) 12
(I) =
2(@:y) (B3g+1)2  3g+1

We observe that the family of systems (3.43)) is a subfamily of systems and
hence, via the transformation (3.28)), systems (3.43) could be brought to systems
of the same form but with the new parameter g; = 2/3 — g. So, this trans-
formation induces a transformation in the coefficient space which fixes the point
g = 1/3 and sends the interval (—oo,1/3] onto the interval [1/3,+00). Thus, in
what follows we shall consider only the values of the parameter g on the interval
(—o00,1/3].

In this sense, we get the next remark.

x4 2zx(x —y) = 0.

Remark 3.8. By an affine transformation and a time rescaling, we could assume
that the parameter g in systems (3.43) belongs to the interval (—oo, 1/3].

For systems ([3.44)) we calculate

32 ,
B =Gy mild — 1B — 1)*(29 — 1)(69 — 1) (3.46)

and we analyze two subcases: By # 0 and B; = 0.

(bl) Case By # 0. In this case from (3.44) we have (2g — 1)(6g — 1) # 0. For
systems (3.43) we calculate pg = g(3g —2)/9 and we consider two subcases: g # 0
and po = 0.
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(a) Subcase po # 0. Then the systems have finite singularities of total multiplic-
ity 4 with coordinates:

L Bl _ 18 6 _ 3(1—3g)
Lo yBgr1) T 3gr1r P T3 2T 311
3(3g — 1 9(29 — 1)(3g — 1
ey SB9—D v = 929 -1)Bg—1) (3.47)
(39 +1)(3g —2) (B3g+1)(3g—2)’
2 6(1—29)

O v L . e

We detect that the singularities M; o are located on the first invariant hyperbola
and moreover the singularity M is also located on the second hyperbola, i.e.
M5 is a point of intersection of these two hyperbolas on the finite part of the plane.
The singular point M3 belongs to the second hyperbola, whereas the singularity
My generically is located outside the hyperbolas.

For systems ([3.45)) we calculate
Xi = (99 = 1)(99 —5)/9, o= 9(3g —2)/9,

16
=———— (99— 1)%(9g — 5)%(5g — 1)%(15g — 7)%.
3(3g+1)8(9 )°(99 — 5)%(5g9 — 1)*(15g — 7)
On the other hand, we have
~ 6(1—3g) ~ 12(1 - 5g) ~ 4(159 —T7)
T1T2 = g(39+1)23 @1(%4,3}4) - (39_2)2 ’ (I)2(~T4»y4) - (39_2)2 .

We observe that the singular points M; o are located on different branches (re-
spectively on the same branch) of the first hyperbola if only if z1z9 < 0 (respec-
tively z1zo > 0), and this is governed by the sign(zize) = —sign (g(Bg — 1))
Since by Remark we have g € (—00,1/3], we conclude that in this interval
sign(z1z2) = —sign(po)-

Besides, we point out that the singular point My(z4,y4) (which generically is
located outside of the hyperbolas) could be located on one of these invariant hy-
perbolas if and only if the following condition holds:

12(1 — 59), 4(15g — 7)., 48(1 — 5g)(15g — 7)
H@+D”U@+w]‘ By + 1)t

We observe that in the case X 7é 0 the condition (5g—1)(159—7) = 0 is equivalent
to D =0.

(al) Possibility po < 0. According to Remark the condition pg < 0 is
equivalent to g > 0 and the singular points M; » are located on the same branch of
the first hyperbola. We calculate

=0.

[@1(My)] [@2(My)]

9g — 1

T — Ty = ———.
P 9B+ )

We observe that sign(z; —z2) = sign(x g’)) because of Remark@ Then we consider

the cases X%) <0, X(g) > 0 and X(g) 0.

(i) Case x (%) < 0. Then (99—1)(99—5) < 0 and we consider two subcases: D # 0
and D = 0. If D # 0 we have only simple singular points on the hyperbolas and
we arrive at the configuration shown in Config. H.128. Otherwise, D = 0 implies
the existence of a double singular point on the first hyperbola and this point is
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characterized by the collision of the singular points M; and My, and we get the
configuration given by Config. H.130.

(ii) Case xg) > 0. Then (9g—1)(9g —5) > 0 and we get the configuration given
by Config. H.129.

(iii) Case XS)) = 0. Then (1 —5g¢)(9¢g — 5) = 0 and, according to Remark we
get g = 1/5. In this case, the singularities M; and M, have collided and we obtain
a double singular point at the intersection of the two hyperbolas and hence
we get the configuration given by Config. H.124.

(a2) Possibility po > 0. In this case the singularities M 5 are located on different
branches of the first hyperbola and we get the configuration given by Config. H.127.

(B) Subcase pup = 0. Then g = 0 and the point M; has coalesced with the point
[1,0,0] at infinity and we obtain the configuration shown in Config. H.125.

(b2) Case By = 0. Considering (3.44), the condition B; = 0 (see (3.46)) is
equivalent to (2g — 1)(6g — 1) = 0. According to Remark we have g = 1/6
and in this case, besides the hyperbola, we have the invariant line x —y +4 = 0.
Since By = —6400(x — y)*/9 # 0, the system could not possess another invariant
line by Lemma Moreover, we observe that the point M; is the point of
intersection of the first hyperbola and the invariant line. Since py = —1/36 < 0
and x13 = —7/36 < 0, we get the configuration given by Config. H.135.

Subcase B2 = 0. Then g = 1/3 and we arrive at systems of the form
dx

T =a+z+2°/3 - 2xy/3,

For systems (]3.48)) we calculate
v5 = 256ab(a — b)/81, R4 = 128(a* — ab + b*)/6561.

dy _

i b—y—2xy/3 +y*/3, (3.48)

To have 5 = 0 we must have ab(a —b) = 0. We observe that in the case ab =0 we
may assume b = 0 from the change (z,y,t) — (—y, —z, —t). On the other hand,
the systems with b = 0 could be brought to the same systems with b = a
via the change (z,y,t) — (z,2 — y + 3, —t). Therefore, we consider the family of
systems

dx

dt

with the condition a # 0.

We observe that the above family of systems is a subfamily of systems
defined by the condition h = 1/3. For the family , it was shown that,
from conditions (i.e. h # 1/3), we have sign(XA2 ) = sign(1l — 4ah?) and
sign(xg)) = sign(zix2). Clearly that for the subfamily these invariants
vanish and we need other invariant polynomials which are responsible for the
sign(1 — 4ah?) and sign(z;72) in this particular case.

We calculate

(1- 4ah2)|{h:1/3} = (9 —4a)/9, (x1x2)|{h:1/3} =a.
On the other hand, for systems (3.49)) we calculate

d
= —a/3+ 2+ 2%/3 — 2xy/3, i —a/3 —y —2xy/3+y*/3, (3.49)

X = 12341248002(9 — 4a)/19683, x'3 = 10649604 /729

and hence sign(Xf)) = sign(9 — 4a) and sign(x(c?’)) = sign(z122).
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Thus, considering the conditions and configurations for family (3.25)), we get the
configurations given by Config. H.37 if Xff) < 0; Config. H.52 if Xf) > 0 and
Xg) < 0; Config. H.53 if Xf) > 0 and X(g) > 0 and Config. H.45 if Xf) =0.

Case 85 = 0. The conditions s = —c(g — 1)(h—1)/2 =0 and 6 = (g — 1)(h —
1)(g + h)/2 # 0 imply ¢ = 0. Then for systems with ¢ = 0 we calculate

Br =229 —1)(2h —1)(1 — 29 — 2h), 75 = —288(g — 1)(h — 1)(g + h)B1B2Bs,
where

B =b2h—1)—a(2g —1); Bs=0b(1—2h)+2a(g+2h—1);
Bs =a(l —2g) +2b(2g+ h —1).

We consider two subcases: 87 # 0 and g7 = 0.

Remark 3.9. Considering systems with ¢ = 0, having the relation (2h —
1)(29 — 1)(1 — 29 — 2h) = 0 (respectively (4h —1)(4g —1)(3 —4g — 4h) =0), by a
change, we may assume any of the factors 2h—1, 29— 1 or 1 —2g—2h (respectively
4h — 1, 49 — 1 or 3 —4g — 4h) to be zero, for instance we could set 2h —1 = 0
(respectively 4h — 1 =0).

Indeed, it is sufficient to observe that in the case 2g9—1 = 0 (respectively 4g—1 =
0) we could apply the change

(z,y,a,b,9,h) — (y,z,b,a,h,g),

which conserves systems (3.2) with ¢ = 0, whereas in the case 1 — 29 — 2h = 0
(respectively 3 — 4g — 4h = 0) we apply the change

(xay7a7b7gah) = (y—a:,—x,b—m—a,h,l—g—h),

which also conserves systems (3.2)) with ¢ = 0.
Subcase (37 # 0. According to Theorem [2.18] in this case for the existence of an
invariant hyperbola, it is necessary and sufficient 75 = 0, which is equivalent to
B1B2Bs = 0. We claim that, without loss of generality, we may assume B; = 0, as
other cases could be brought to this one via an affine transformation.
Indeed, assume first B; # 0 and By = 0. Then we apply to systems (3.2)) with
¢ = 0 the linear transformation 2’ =y — x, ¥’ = —x and we get the systems
x/il ) ’ . yli/ ’ 1o 1,12
— =dad +gz (' =1z'y', —=b+(¢ —Dz'y +h'y"=.
dt dt
These systems have the following new parameters:
ad=b—a, V=—a, ¢g=h hH=1-—g—h.
A straightforward computation gives
By =V (2n —1)—d'(2¢' — 1) =b(1 — 2h) + 2a(—1+ g+ 2h) =By =0

and hence, the condition Bs; = 0 we replace by B; = 0 via a linear transformation.

Analogously in the case By # 0 and Bz = 0, via the linear transformation
2" = —y,y" = x—vy, we replace the condition B3 = 0 by B; = 0 and this completes
the proof of our claim.
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Since 37 # 0 (i.e. 2h — 1 # 0) the condition B; = 0 yields b = a(2g —1)/(2h — 1)
and we arrive at the 3-parameter family of systems

d
d—x =a(2h — 1) + g2* + (h — D)ay,
d’f (3.50)
d%{ =a(2g—1)+ (9 — Dy + hy?
with the condition
a(g—1)(h—1)(29 —1)(2h — 1)(g + h)(2g + 2h — 1) # 0. (3.51)
These systems possess the invariant hyperbola
O(z,y) =a+zy=0. (3.52)

For systems we calculate
Bs =2(4g — 1)(4h — 1)(3 — 49 — 4h),
b5 = 2a(4g — 1)(4h — 1)[68(g> + h?) + 236gh — 79(g + h) (3.53)
— 144gh(g + h) + 22],

According to Theorem [2.18] these systems possess either one or two invariant hy-
perbolas if either 32 + 63 # 0 or 3s = dy = 0, respectively.

We claim that the condition B = d; = 0 is equivalent to (4g — 1)(4h — 1) = 0.
Indeed, assuming that (4g — 1)(4h — 1) # 0 and s = d2 = 0 we obtain

3—4g—4h =0, 68(g®+ h?) +236gh —79(g + h) — 144gh(g + h) +22 = 0.

The first equation gives ¢ = 3/4 — h and then from the second one we obtain
(2h — 1)(4h — 1) = 0, which contradicts the condition and the assumption.
This completes the proof of our claim.

(a) Possibility 32 + 05 # 0. Then this implies (4g — 1)(4h — 1) # 0 and systems
possess only one invariant hyperbola. For these systems we calculate

By =24d%(g—1)*(h—1)*(29 — 1)(2h — 1)(g — h)(g + h)*

and considering we conclude that the condition B; = 0 is equivalent to
g —h =0. We examine two cases: By # 0 and B; = 0.

(al) Case By # 0. Then g — h # 0 and by Lemma we have no invariant
lines. For systems we calculate po = gh(g + h — 1) and we consider two
subcases: g # 0 and pg = 0.

(o) Subcase po # 0. In this case the systems have finite singularities of total
multiplicity 4 with the following coordinates M;(z;, y;):

v —agh v —agh
T2 =% s Y12 == ;
g h
a(l—g—nh) a(l—g—nh)
—+(2h VLI —4(2g- )Y "IT W
3,4 ( ) g+h—1 Y3,4 (29 -1) g+ h—1

We detect that the singularities M; 2 are located on the invariant hyperbola.
More exactly, these singular points are located on different branches (respectively on
the same branch) of the hyperbola if and only if z125 < 0 (respectively x5 > 0),
where z1x2 = ah/g. Moreover, these singularities are real if agh < 0, they are
complex if agh > 0 and they coincide if agh = 0.
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On the other hand, we calculate
X&) = —16128a°gh(g — 1)2(h — 1)*(g + h)*(2g — 1)*(2h — 1)*(4g — 1)?(4h — 1)?,
&) = —42577924 (g + h)* (29 — 1)°(2h — 1)%(4g — 1)>(4h — 1)?

and from the condition (3.51) we have Sign(xff)) = —sign(agh) = —sign(ziz2)
and sign(Xg)) = —sign(a) (which corresponds to the position of the hyperbola).
We observe that in the case the singular points M; and M, are real, they must
be located on different branches of the hyperbola (we recall that systems (3.50))

is symmetric with respect to the origin). Moreover, we could not have XSL) =

because pg # 0 and (3.51)).

Besides, we point out that at least one of the singular points Ms3 4 could be
located on the invariant hyperbola and we determine the conditions for this to
happen. We calculate
a(dgh — g —h)

g+h—-1 ~
It is clear that both of the singular points M3 and M, belong to the hyperbola
(3.52)) if and only if 4gh — g — h = 0. Since

D = —768a*(4gh — g — h)* o,

<D(I3a y3) = (p(l‘47y4) =

we deduce that both of the singular points M3 4 belong to the hyperbola if and only
if D=0.

(al) Possibility Xff) < 0. So we have no real singularities located on the invariant
hyperbolas and we arrive at the configurations given by Config. H.1 if X(é) < 0and
Config. H.2 if Xg) > 0.

(a2) Possibility xff) > 0. In this case we have two real singularities located on
the hyperbola and they are located on different branches. Now, we need to decide
if both of the singular points M3 4 will belong to the hyperbola.

(i) Case D # 0. Then 4gh —g—h # 0 and on the hyperbola there are two simple

real singularities and we obtain the configurations given by Config. H.17 if Xg) <0

and Config. H.19 if X(B4) > 0.
(ii) Case D =0. Then 4gh —g—h =0 (i.e. g = h/(4h — 1)) and in this case we
calculate

X = —4128768 a0 (h — 1)2(2h — 1)3(3h — 1h)?/(4h — 1),
D=T=0, PR=-256a>h%2h—1)*[x — (4h — 1)y]°/(4h — 1)!!

and, from X(f) > (0, we have PR > 0 and on the hyperbola there are two double real
singularities (see Proposition we arrive at the configurations given by Config.
H.27 if ¥\ < 0 and Config. H.28 if ¥\ > 0.

(B) Subcase pg = 0. We consider the possibilities: Xff) < 0, xff) > 0 and
Xy =o.

(B1) Possibility XE:) < 0. Then gh # 0 and the condition g = 0 yields g = 1—h.
So we calculate

D=0, p =0, ps=ah(l—h)2h—1)>2x—y)*#0.
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Hence, two singular points go to infinity in the direction y = x and we get the

configurations Config. H.5 if X(é) < 0 and Config. H.6 if Xg) > 0.

(82) Possibility XE:) > 0. As in the previous subcase, two singular points go to
infinity in the direction y = = and, moreover, the singularities M; o are real. So we

obtain the configurations Config. H.35 if xg) < 0 and Config. H.36 if Xg) > 0.
(a2) Case By = 0. Then by conditions (3.51]), we get g = h and systems ({3.50))
possess the invariant line z —y = 0. For this case from (3.51)) we have

po = h?(2h —1) #0, D =12288a*h%(1 — 2h)°® # 0.
(o) Subcase X%) < 0. In this case the singularities M; o are complex and, since
W = 258048 a®hS(h — 1)*(2h — 1)8(4h — 1)* < 0,

we have x(é) = —68124672a’h*(2h — 1)12(4h — 1)* < 0. So, we obtain the unique
configuration Config. H.37.

(B) Subcase Xff) > 0. In this case the singularities M o are real and analogously
we have sign(xff)) = sign(Xg)). So we get the unique configuration Config. H.53.

(b) Possibility s = d = 0. Then this implies (4g — 1)(4h — 1) = 0 and, by a
change, we may assume h = 1/4, without loss of generality. In this case, systems
(3.50|) possess the two invariant hyperbolas

<I>1(x,y):a+xy:0, @2({177],/):@—1'(1'—@/):0.
For these systems we calculate
po = g(4g —3)/16, By =9a%(g — 1)*(29 — 1)(4g — 1)(4g + 1)*/1024

and, by conditions (3.51)), we verify that By # 0. Then we consider two cases
o # 0 and pg = 0.

(bl) Case po # 0. Then g(4g — 3) # 0 and the systems have finite singularities
of total multiplicity 4 with the following coordinates M;(x;, y;):

v—a

T2 = j:Tg, y1,2 = £2¢/—ayg,

—a(4g — 3) —a(4g —3)

49—-3 49—-3

We detect that the singularities M; 2 are located on the invariant hyperbola
Dy (z,y) = 0. More exactly, these singular points are located on different branches
(respectively on the same branch) of the hyperbola if only if x;29 < 0 (respectively
x1z9 > 0), where x1z92 = a/4g. Moreover, these singularities are real if ag < 0,
they are complex if ag > 0 and they coincide if ag = 0. We also point out that the
position of the hyperbolas are governed by sign(a).

On the other hand, we calculate

W = —41a(8g — 3)%/128.

We observe that in the case the singular points M; and My are real, they must

be located on different branches of the hyperbola (we recall that systems (3.50)

is symmetric with respect to the origin). Moreover, we could not have XE45) =0

because g # 0 and (3.51)).

Moreover, we also detect that the singularities M3 4 are located on the invariant
hyperbola ®5(z,y) = 0 and their position regarding on which branch they are

T34 =+ Y34 = £2(29 — 1)
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located is also governed by sign(a) and they will be complex, real or coinciding
depending on the sign of the expression a(4g — 3) and hence the sign of ug plays
an important role in this analysis.

Besides, we point out that the singular points M; 5 could not be located on the
hyperbola ®5(x,y) = 0 and, conversely, M3 4 could not be located on the hyperbola
Dy (z,y) = 0, since we have

a
3—4g

a
Po(21,2,912) = — #0, P1(234,¥34) = # 0,

4g

because of conditions (3.51)).
We consider the case g < 0 (i.e. 0 < g < 3/4). Then, for these values of g, we

have 8¢ — 3 < 0 and, independently of the sign of a, we get the unique configuration
Config. H.123.
In the case po > 0, we obtain the configuration Config. H.121 if XE45) < 0 and

Config. H.131 if ¥ > 0.

(b2) Case po = 0. Then g(4g — 3) = 0 and depending on which one of these two
factors vanishes, we have different finite singular points coalescing with an infinite
singular point. More precisely, if 4g — 3 = 0 then the singular points M3 4 coalesce
with [1,1,0], and if g = 0 then the singular points M 5 coalesce with [1,0,0].

However, we observe that, applying the change (z,y,t,a) — (—z,y — z,t, —a),
we could bring systems with h = 1/4 and g = 3/4 to the same systems with
h=1/4 and g = 0. So, without loss of generality, we may assume g = 0.

Thus, we obtain the configurations given by Config. H.122 if Xff) < 0 and Config.
H.126 if ¥ > 0.

Subcase f7 = 0. We recall that the conditions 8; = B = 0 yields ¢ = 0 and systems
(3.2) with ¢ = 0 becomes

d d

Without loss of generality, Remark assures us that we may choose g =1/2 —h
in order to have 87 = 2(2¢g — 1)(2h — 1)(1 — 29 — 2h) = 0.
Now, we calculate
By = 4h(1 — 2h)
and we analyze two possibilities: B9 # 0 and [y = 0.

(a) Possibility B9 # 0. As earlier, according to Theorem in this case for the
existence of at least one invariant hyperbola, it is necessary and sufficient 75 = 0,
which is equivalent to B1B2B3 = 0 and, without loss of generality, we may assume
By = 0, as other cases could be brought to this one via an affine transformation.

(al) Case 63 # 0. In this case we have only one invariant hyperbola and the
condition d3 # 0 yields a — b # 0. Then, the condition 75 = 0 is equivalent to
b(1 — 2h) — 2ah = 0, which could be rewritten as a = a1(2h — 1) and b = —2a;h.
So, setting the old parameter a instead of a;, we arrive at the 2-parameter family
of systems

dx

i a(2h — 1) + (1 —2h)x?/2 + (h — 1)y, % = —2ah — (2h + 1)zy/2 + hy?,
(3.55)

with the condition

ah(h —1)(2h — 1)(2h + 1)(4h — 1) # 0. (3.56)
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These systems possess the invariant hyperbola
O(z,y) =a+zy=0. (3.57)
‘We observe that, from ,
By = a®h(h —1)2(2h — 1)(2h +1)%(4h — 1) # 0
and, hence, systems possess no invariant line. Moreover, we have
po = h(2h —1)/4#0, D =12a*h(1 —2h)(1 — 4h + 8h*)* £ 0,

because of the same conditions, and then all the finite singularities remain in the
finite part of the phase plane and none of them coalesces with other points. Con-
sidering the coordinates of these singularities M;(x;,y;) (i=1,2,3,4), we have

2ah(2h — 1) B 2ah(2h — 1)

2% — 1 9 Y12 = + 2h )
34 =£(2h —1)V2a, y34=12hV2a.

After simple calculations, we obtain that M; o are located on the hyperbola,
whereas M3 4 are located generically outside the hyperbola. Then, the singular
points M o are complex if ah(2h — 1) < 0 and they are real if ah(2h — 1) > 0.
We point out that these two singularities could not coincide since ah(2h — 1) # 0,
because (B.56). So, we need to control sign (ah(2h — 1)). Moreover, sign(a) gives

the position of the hyperbola on the phase plane.
On the other hand, we calculate

X =2016a°h5(h — 1)2(2h — 1)3(2h + 1)2(4h — 1)*,
W = —17031168 a®h®(2h — 1)5(4h — 1)*,

T12 ==

Therefore, we arrive at the following conditions and configurations:

xff) < 0 and xg) < 0 = Config. H.1;
X(:) < 0 and XS;*) > 0 = Config. H.2;
XE;L) > 0 and Xg) < 0 = Config. H.17;
xff) > 0 and Xg) > 0 = Config. H.19.
(a2) Case 63 = 0. In this case, the conditions 5 = 03 = 0 yield a — b = 0 (i.e.
b = a) and systems

d d
dit” —a+(1-2n)2%/2+ (h—1)zy, d% =a— (2h+ Day/2+hy?,  (3.58)
with the condition
ah(h —1)(2h — 1)(2h + 1) # 0, (3.59)
possess at least two invariant hyperbolas. We calculate 3g = —2(4h — 1)? and we

analyze two subcases: g # 0 and (s = 0.
() Subcase Bg # 0. Then 4h — 1 # 0 and systems (3.58]) possess two invariant
hyperbolas:

(I)l(xvy) = -
We observe that
By =0, By=—-162a%(h —1)?(2h 4+ 1)*(z —y)* # 0,

ta(r—y) =0, Bo(z,y) == +2y(x—y)=0. (3.60)

_*
2h —1 h
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because of (3.59), and this implies that systems (3.58)) possess only one invariant
straight line, namely z — y = 0.
From condition (3.59)), we obtain

po =h(2h —1)/4#0, D= —12a*h(2h—1) #0,
and then we have four distinct finite singularities M;(x;,y;) (i = 1,2, 3,4), where

V2ah(2h — 1) _ 4 V20hCh-1)
oh — 1 v Y12 = o )
T34 = i\/%, Y34 = £V 2a.

We observe that the singular points M o are located on the first hyperbola ,
whereas M3 4 are located on the invariant line. Additionally, the singularities M o
(respectively M3 4) are complex if ah(2h — 1) < 0 (respectively a < 0) and are real
if ah(2h — 1) > 0 (respectively a > 0).

So, we need to control sign (ah(2h — 1)) and sign(a). Moreover, sign (h(2h —1))
gives the position of the hyperbolas on the phase plane.

On the other hand, we calculate

X(f) = ah(2h —1).

T12 =%

If XE46) < 0, then the singularities M; o are complex and we get the configuration

Config. H.132 if D < 0 and Config. H.133 if D > 0.

In the case Xf) > 0, the singular points M; 5 are real and we obtain the config-
uration Config. H.136 if D < 0 and Config. H.134 if D > 0.

(B) Subcase Bg = 0. Then h = 1/4 and systems possess three invariant

hyperbolas, namely the two presented in (3.60) with 2 = 1/4 and
O3(z,y) = 2a —xy = 0.

In this case, we observe that D = 3a?/2 > 0 and we obtain the configuration

Config. H.156 if Xf) < 0 and Config. H.157 if X(A6) > 0.
(b) Possibility g = 0. Then h = 0 (this yields ¢ = 1/2) and systems (3.54)

becomes
dx dy

E:a—i-xQ/Q—xy, %:b—xy/l (3.61)

According to Theorem [2.18] in this case for the existence of at least one invariant
hyperbola, it is necessary and sufficient v = 0, which is equivalent to (a — b)b = 0.
Without loss of generality, we may assume b = 0, since we could pass from the case
b = a to the case b = 0, via the affine transformation (x,y,t) — (z,z — y, —t).
Then, we arrive at the 1-parameter family of systems

d d
d—f =a+x?/2 — 2y, di; = —zy/2. (3.62)
with the condition a # 0.

The above family possesses the invariant hyperbola
O(z,y)=a—xzy=0 (3.63)

and, since B; = 0 and By = —162a%y* # 0, because a # 0, systems possess
the only one invariant line y = 0.
We calculate
/~L0:/4"1:07 /1'220"’52/8, D =0.
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Then, two finite singular points has coalesced and have gone to infinity and coa-
lesced with [0,1,0]. Counsidering the remaining singularities on the finite part of
the plane, their coordinates are M;(x;,y;) (i = 1,2):

T12=xV—-2a, yi2=0.

We point out that these two singularities are located on the invariant line and
they are complex if @ > 0 and are real if a < 0. So, we need to control sign(a),
which also gives the position of the hyperbola on the phase plane.

On the other hand, we calculate

XSS) = —a/16.

So, we obtain the configuration Config. H.40 if XS’) < 0 and Config. H.58 if
(5)
Xa >0

3.2. Subcase 6 = 0. For systems (|1.3)) we assume 7 > 0 and therefore we consider
systems (3.1)) for which we have

0=—(g—1)(h—1)(g+h)/2

Since 6 = 0, we get (g — 1)(h — 1)(g + h) = 0 and we may assume g = —h,
otherwise in the case g = 1 (respectively h = 1) we apply the change (x,y,g,h) —
(—y,x —y,1 —g— h,g) (respectively (as,y h) (y —x,—x,h,1 — g — h)) which
preserves the quadratic parts of systems (|3 .

So, g = —h and we arrive at the systems

dzx

E:a—l—cx—hﬁ—i—(h—l)xy, E—b—}—fy—i—(h—f—l)xy—i—hy, (3.64)

for which we calculate N = 9(h? —1)(x —y)?. We consider two possibilities: N # 0
and N = 0.

3.2.1. Possibility N # 0. For systems (3.64]), we calculate
= (e = f)*(c+ f)(h—1)*(h+1)*(3h — 1)(3h + 1) /64,
Gs=(c—f)(h—=1)(h+1)/4, [(1o=—-2(3h—1)(3h+1).
According to Theorem [2.18] a necessary condition for the existence of hyperbolas
for these systems is 7, = 0.
Case s # 0. Then c— f # 0 and the condition v, = 0 yields (c¢+ f)(3h—1)(3h+1) =
0. So, we consider the subcases: (19 # 0 and (19 = 0.

Subcase 19 # 0. Then (3h — 1)(3h + 1) # 0 and we get f = —c and obtain the
following systems

2—% =a+cr—ha®+ (h—1)zy,
dt (3.65)
d—:z =b—cy— (h+ V)xy + hy>.

Now, to possess at least one hyperbola, it is necessary and sufficient that for the
above systems the condition

7 =8(h—1)(h+1)[a(2h +1) + b(2h — 1)] =0
holds, and because N # 0 this is equivalent to a(2h + 1) + b(2h — 1) = 0.
Since B = ¢(h — 1)(h +1)/2 # 0 (i.e. ¢ # 0), we could apply the rescaling
(z,y,t) — (cx,cy,t/c) and assume ¢ = 1. Moreover, since (2h — 1)+ (2h+1)? # 0,
the condition a(2h + 1) + b(2h — 1) = 0 could be written as a = —a;(2h — 1) and
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b = a1(2h + 1). So, setting the old parameter a instead of a;, we arrive at the
2-parameter family of systems

C;—x =a(2h —1)+x — ha?® + (h — 1)y,
t (3.66)

d
ditJ =—a(2h+1) —y — (h+ Day + hy?,
with the condition
alh —1)(h+1)(3h — 1)(3h + 1) # 0. (3.67)

We observe that the family of systems (3.66|) is a subfamily of systems (3.4)) with
g=—h.
The above systems possess the invariant hyperbola
b(z,y)=a+2y=0 (3.68)
and for them we calculate
By = —4a*h(h — 1)*(h + 1)%(2h — 1)(2h + 1). (3.69)

(a) Possibility By # 0. Then h(2h —1)(2h + 1) # 0 and by Lemma systems
(3.66) possess no invariant lines. Since pg = h? # 0, these systems have finite
singularities M;(x;,y;) of total multiplicity 4, whose coordinates are

1+ /14 4ah? 1F V1 4+ 4ah?
Tio=—""77"" WYo2=— "7,
2h 2h
pey 2 GREDOEVTTEG) (b4 D0 VT )
3,4 — 9 3,4 = .
’ 2 ’ 2

We observe that the singular points M 2 are located on the hyperbola, whereas
the singularities M3 4 are generically located outside of it.
On the other hand, for systems (3.66)), we calculate the invariant polynomials

XD = R2(h — 1)2(h + 1)2(3h — 1)2(3h + 1)2(1 + 4ah?) /16,
X% = —105ah?(h — 1)%(h +1)2(3h — 1)%(3h + 1)2/2

and, by the condition (3.67)), we conclude that sign(xill)) = sign(1 + 4ah?) (if

1 + 4ah?® # 0) and sign(xg)) = —sign(a). So, we consider three cases: XS) <0,

X(Al) >0 and ngl) = 0.
(al) Case XE41) < 0. Then 1 + 4ah? < 0 yields a < 0 and hence Xg) > 0. So,
since the singular points located on the hyperbola are complex, we arrive at the
configuration given by Config. H.2.
(a2) Case qul) > 0. In this case, we have two real singularities located on the
hyperbola. We calculate z1z9 = —a and, from the condition , we obtain
that Sign(xg)) = sign(x122), which defines the location of the singular points M; o
concerning the branches of the hyperbola (i.e. they are located either on different
branches if Xg) < 0 or on the same branch if Xg) > 0).
However, we need to detect when the singularities M3 4 also belong to the hy-

perbola. In this order, considering (3.68)), we calculate
4?1+ 2aF V1+4a] —1+V1+4a
2

@(1’7 y)|{9::w3,4, y=ys,a} = Q3,4 (aa g, h)
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It is clear that at least one of the singular points M3 or M, belongs to the hyperbola

(3.68) if and only if
Q3 = a(16ah’ +4h* — 1) = 0.

On the other hand, for systems (3.66)), we have
W = —105h(3h — 1)(3h +1)(16ah* + 4h® — 1)
and clearly, by (3.67] - the condition X = 0 is equivalent to 16ah* + 4h? — 1 = 0.

We examine two subcases: XSD # 0 and x%) =0.

(a) Subcase XS) # 0. Then, on the hyperbola there only two simple real sin-
gularities and we obtain the configurations given by Config. H.17 if Xg) < 0 and
Config. H.18 if Xg) > 0.

(B) Subcase Xg) = 0. In this case, the condition 16ah* + 4h? —1 = 0 yields

—(2h — 1)(2h + 1)/(16h*) and we calculate
D =0,
T = —3(2h% — 1) (2 +y)?[(2h + 1)z — (2h — 1)y]”
x [(h+1)2h + )z — (h— 1)(2h — 1)y]°.

If T # 0, then we have a double and a simple singular points on the hyperbola and

we arrive at the configurations shown in Config. H.21 if xg) < 0 and Config. H.22

if Xg) > 0. In the case T = 0, we obtain » = 4+1/2/2 and hence Xg) > 0. Then,
we have a triple and a simple singular points on the hyperbola and we obtain the
configuration Config. H.25.

(a3) Case ij) = 0. Then a = —1/(4h?) and hence xg) > 0. In this case, the
singular points M; and M coalesce and we get the configuration Config. H.8.

(b) Possibility By = 0. Then h(2h — 1)(2h + 1) = 0 and we analyze the two
cases: o # 0 and pg = 0.

(bl) Case pg # 0. Then h # 0 and the condition By = 0 is equivalent to
(2h—1)(2h+1) = 0. Without loss of generality, we may assume h = —1/2, otherwise
we apply the change (z,y,t,h) — (—y, —z, —t,a, —h), which keeps systems
and changes the sign of h.

So h = 1/2 and then systems possess the invariant line y = 0 and the
singularities M3 4 are located on this line. In this case, we calculate

X =225(a+1)/16384, X\ = —23625a/2048, D = —48a%(a+ 1)(4a + 1).

(a) Subcase x () < 0. Then a + 1 < 0 implies a < 0 and hence X( )
obtain the configuration shown in Config. H.38.

> 0. So, we

(B) Subcase XS) > 0. Then @ > —1 and we have real singularities on the
hyperbola. So, we get the following conditions and configurations:

W <0 = Config. H.75;
()>0andD<0:>Conﬁg H.72;
)

)

ng >0 and D > 0 = Config. H.46;

e x}3) > 0and D=0 = Config. H.65.

(v) Subcase X( ) = 0. Then a = —1 (consequently D = 0 and Xg) > 0) and
this implies the existence of a double singular point on the hyperbola and the
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singularities on the invariant line are complex, obtaining the configuration Config.
H.42.

(b2) Case pp = 0. Then h = 0 and we also have u; = 0 and po = —zy, which
means that the singular points M 2 have gone to infinity and coalesced with the
singular points [1,0, 0] and [0, 1, 0].

Considering Lemma [2.24] we detect that Z is a simple factor of & and &. So,
we deduce that the infinity line Z = 0 is a double invariant line for systems ([3.66)).

Since XS) = 1 > 0, we obtain the configurations Config. H.76 if Xg) < 0 and

Config. H.77 if Xg) >0
Subcase $19 = 0. Then (3h —1)(3h 4+ 1) = 0 and as earlier we may assume h = 1/3
and obtain the systems
dx a 2 22y dy 5a dry  y?
@3ty o w3 YT Ty B0
with the condition a # 0. We again remark that the family of systems is a
subfamily of systems with g = —h and h = 1/3.
These systems possess the invariant hyperbola

O(z,y) =a+zy=0. (3.71)
and for them we calculate
wo=1/9, D= -16(4a+ 1)(4a + 9)(16a — 45)/19683, B; = 1280@2/2187.

Since By # 0, systems (3.70)) do not possess invariant lines and the condition pg # 0
implies that the finite singularities M;(x;,y;) are of total multiplicity 4, and their
coordinates are

Y1,2

_3FV4a+9
s4 T 9 )
_ —1+Vda+1 5(1 F Vda+ 1)

Y34 = 6

We observe that the singular points M o are located on the hyperbola, whereas
the singularities M3 4 are generically located outside of it.

Concerning the singular points M 2, we see that z1z2 = —a and the sign(a) will
detect the location of these singularities on the same or different branches of the
hyperbola as well as its position on the phase plane.

Moreover, we need to detect when the singularities M3 4 also belong to the
hyperbola. Considering , we calculate

8a+bdbyvda+1-5
q)(xay)‘{xzxg,z;, y=y3a} — 18 = QéA(a,g, h)

and we observe that at least one of the singular points M3 or M, belongs to the

hyperbola (3.71) if and only if
a(16a — 45)
a0 = L0
On the other hand, for systems (3.70)), we calculate the invariant polynomials

X(3) _123412480(4a +9) X(g) 168754106368 a
V= _

=0.

243 »AB 243 ’
3 1064960 a 3 5888(16a — 45)
NG 2 =
¢ 9 oAb 729
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and we conclude that sign(xf)) = sign(4a + 9) (if 4a +9 # 0), sign(xg)) =
sign(x(g)) = —sign(a) and at least one of the singular points M3 or M, belongs to

the hyperbola if and only if X(D?’) =0.

We observe that the condition X(j’) < 0 implies Xg’) > 0 and X((,%) > 0, all the
finite singular points are complex and we get the configuration Config. H.2.

In the case Xf) > 0, the singularities M o are real and we arrive at the following
conditions and configurations:

N X(S) # 0 and Xg) < 0 = Config. H.17;
o %W £0and x¥) > 0 = Config. H.18;
o X}y = 0= Config. H.21.

And in the case Xf) = 0, the singular points M 2 have collapsed and M3 4 are

complex, obtaining the configuration Config. H.8.
Case g = 0. Then f = ¢ and hence y; = 0. We calculate

B2 =clh—1)(h+1)/2, [r=-202h—1)(2h+1)

and we analyze two subcases: (B2 # 0 and (B3 = 0.
Subcase (B2 # 0. Then ¢ # 0 and we obtain the systems

d d

d—i =a+cx—hz®+ (h—1)zy, dfth =b+cy— (h+Dxy + hy’. (3.72)
(a) Possibility 87 # 0. Then (2h — 1)(2h + 1) # 0 and, according to Theorem

2.18] for the existence of at least one invariant hyperbola for systems (3.72)), it is

necessary and sufficient the conditions v = 0 and (19R7 # 0. So, we calculate
8 :42(h— 1)(h+1) 52537 ﬁlO = —2(3h— 1)(3h+1)7
E = —2(h—1)(2h — 1) — 2a(h — 1)(3h — 1)% 4+ b(2h — 1)(3h — 1),
Es=—-2c%(h+1)(2h + 1) +2b(h + 1)(3h + 1)* — a(2h + 1)(3h + 1)*.
We observe that the condition v = 0 is equivalent to £,€3 = 0 and by the change
(z,y,a,b,¢,h) — (y,z,b,a,c, —h), we may assume that the condition £ = 0 holds.
Since (7810 # 0, we could write the condition & = 0 as ¢ = ¢1(3h — 1), b =
bi(h — 1) and a = (by — 2¢3)(2h — 1)/2. Then, we apply the reparametrization
by = ac? and a = 2a;. Finally, since ¢; # 0 (because ¢ # 0), we could apply

the rescaling (x,y,t) — (c1z,c1y,t/c1) and assume ¢; = 1. Thus, setting the old
parameter a instead of a1, we arrive at the 2-parameter family of systems

o _ (a—1)(2h — 1) + (3h — 1)z — ha® + (h — 1)zy,
dt (3.73)
% =2a(h — 1)+ (3h — 1)y — (h + 1)ay + hy?,
with the conditions
(a—1)(h—1)(h+1)(2h — 1)(2h +1)(3h — 1)(3h + 1) # 0. (3.74)

These systems possess a couple of parallel invariant lines and an invariant hyperbola:
Lio(x,y)=hz—y)*—Bh—1)(z—y)+2h—a—1=0, (3.75)
O(z,y)=1—a—2x+z(xr—y)=0.
We remark that, since

Discriminant [£12(z,y), 2 — y] = (h — 1)* + 4ah,
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these lines are complex (respectively real) if (h — 1)? + 4ah < 0 (respectively (h —
1)2 + dah > 0).
We calculate

64 =3(h—1)(2h — 1)[(h — 1)*(2h + 1) + a(3h + 1)*] /2
and we consider two cases: d4 # 0 and 64 = 0.

(al) Case 04 # 0. In this case we have (h — 1)2(2h + 1) + a(3h + 1)? # 0 and
hence ®(x,y) = 0 (see (3.75)) is the unique invariant hyperbola. Since By = 0 for
systems (3.73)), we calculate

By = —1296a(a — 1)(h — 1)*(h + 1)?(2h — 1)(z — y)*.

(a) Subcase Ba # 0. Then a # 0 and, since jg = h?, we consider two possibilities:
to # 0 and po = 0.

(al) Possibility po # 0. So we get h # 0 and the finite singularities of systems
(3.73]) are of multiplicity 4, and their coordinates are M;(z;,y;):

h+14/(h—1)2+4ah (h=1)[h— 1+ /(h—1)? + 4ah]
2 2= 2h ’
2

(2h—1)[h+1 izwh/(h 1)2 4 4ah] sl 14 O TR dah

We observe that the singular points M o are located on the hyperbola and on
the invariant lines, whereas the singularities M5 4 are located on the invariant lines.

Concerning the singular points M 2, we see that zyz2 = h(1 — a) and hence
sign (h(a — 1)) detects the location of these singularities on the same or different
branches of the hyperbola. Moreover, the position of the hyperbola is governed by
sign(a — 1).

To detect when the singularities M3 4 also belong to the hyperbola, we consider

(3.75) and we calculate

T1,2 =

T34 =

A [(h+1)(2h = 1)\/(h = 1)% + dah]
(I)(zvy)|{w:w3,47y:y3,4} = 2h2

= QgA(a,g, h)

where A = 2ah(1 — 3h) + (1 — h)(1 — h + 2h?), and we observe that at least one of
the singular points M3 or My belongs to the hyperbola (3.75)) if and only if

(a—1)[a(3h — 1)% +2(h — 1)3]
h2
On the other hand, for systems , we calculate the invariant polynomials
XY = (h = 1)2(h +1)?[(h — 1)® + 4ah] /16,
X = 6480(a — 1)(h — 1)2[(h — 1)2(2h + 1) + a(3h + 1)*]?,
X = 2160 (1 — a)(h — 1)%[(h — 1)2(2h + 1) + a(3h + 1)*]%,

Qe = 0.

and we conclude that sign(xg)) = sign ((h — 1)% + 4ah) (if (h — 1)® + 4ah # 0),

sign(xg)) = sign(a—1), sign(Xg)) = sign (h(1—a)) and at least one of the singular

points M3 or M, belongs to the hyperbola if and only if a(3h —1)2+2(h —1)3 = 0.

(i) Case XEZ) < 0. Then all the finite singular points are complex as well as the

pair of invariant lines. Moreover, the condition XEZ) <0 (i.e. (h—1)%2+4ah <0)
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yields ah < 0. Combining this inequality with Xg) < 0 (i.e. a—1 < 0) (respectively
X(B’7) >0 (i.e. a—1>0)), we obtain h < 0 (respectively h > 0) and hence Xg) <0

(respectively Xg) > 0). So, we arrive at the configuration Config. H.78 if Xg) <0

and Config. H.79 if Xg) > 0.

(ii) Case Xg) > 0. Then all the finite singular points and the pair of invariant
lines are real. In this sense, according to the position of the finite singular points
on the hyperbola and on the invariant lines, we may have different configurations.

We calculate
a(3h—1)2 +2(h—1)3

(x1 — 24) (72 — 23) = —

h b
(1 —24) — (2 —x3) = (3h—1) (};L_ 1)2 +4ah’
(xl - 1'4) + (LL'Q — x3> — (l_h)#

and we observe that sign ((z1 — z4)(z2 — 23)), sign ((z1 — 24) — (z2 — x3)) and
sign ((acl —x4)+ (2 — :vg)) govern the position of the four finite singularities along
the hyperbola and the invariant lines. More exactly, if (x1 — z4)(z2 — 23) < 0
(respectively (z1—x4)(z2—x3) > 0), then the sign (21 —z4)—(z2—x3)) (respectively
sign ((m1 —x4) + (22 — 333))) distinguishes the position of M3 and My with respect
to the hyperbola.

On the other hand, we calculate

X9 =3(h = 1)2(h 4+ 1)?[a(3h — 1)? + 2(h — 1)%] /8,
Bro=—2(h—1)(Bh+1), N=9(h—1)(h+1)(z—y)

We consider two subcases: Xg) # 0 and Xg) =0.

(ii.1) Subcase X(D7) # 0. In this case the singularities M3 4 do not belong to the
hyperbola and we need to distinguish when the singular points M; » are located on
different or on the same branch.

(ii.1.1) Possibility xg) < 0. Then M, 5 are located on different branches of the
hyperbola and, if Xg) < 0, we obtain a < 0 and h < 0, and hence Xg) < 0. So, we
get the configuration Config. H.96.

In the case Xg) > (0, we observe that the condition X(D7) < 0 implies N < 0. So,
we arrive at the following conditions and configurations:

e \\7 <0 = Config. H.99;
° Xg) > 0 and (19 < 0 = Config. H.95;
) Xg) > 0 and (319 > 0 = Config. H.94.
(ii.1.2) Possibility Xg) > 0. Then M, > are located on the same branch of the

hyperbola.

If Xg) < 0, the condition Xg) > 0 implies f19 < 0 and we obtain the following

conditions and configurations:
° Xg) < 0 and N <0 = Config. H.100;
° Xg) < 0and N >0 = Config. H.98;
. Xg) > 0 = Config. H.97.
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In the case Xg) > 0, the condition Xg) < 0 implies (19 < 0. Moreover, if

Xg) > 0, independently of sign(N), we are led to the same configuration. So,
considering the claim stated in the next paragraph, we arrive at the configuration
Config. H.93 if x\7) < 0 and Config. H.92 if {7 > 0.

We claim that, if Xg) > 0 and Xg) > 0 (i.e. the singular points M; 2 are located
on the same branch and the hyperbola is positioned in the sense of Xg) > 0), we
could not have the configuration with the singular points M3 4 located inside the
region delimited by both branches of the hyperbola.

Indeed, suppose the contrary, that this configuration is realizable. Then the
conditions XEZ) > 0, xg) > 0 and X((,Z) > (0 are necessary and these conditions are
equivalent to

(h —1)>+4ah >0, a—1>0, h<O0.

We assume that M3 and M, are located inside the region delimited by both branches
of the hyperbola. We observe that inside this region we also have the origin of
coordinates (because ®(0,0) = 1 —a < 0). Therefore we must have Q4 > 0 and
sign(Q + ) = sign(A) = sign(1 — a). Hence the condition A < 0 must hold.
However, the conditions (h — 1)? +4ah > 0 and h < 0 imply

A = 2ah(1-3h)+(1—h)(1—h+2h?) = %[(1—3h)[(h—1)2+4ah]+(1—h)(h+1)2] > 0,
and this proves our claim.

(ii.2) Subcase Xg) =0. Then a = —2(h — 1)3/(3h — 1)? and the singular points
My coalesces with the singularity M;. We note that the hyperbola divides the plane
into three regions: ®(z,y) < 0, ®(z,y) > 0 and ®(x,y) = 0, and the singular point
M3 could be located only in the first two regions. Moreover,

(2h —1)(h —1)(h+1)?

P(Ma) =~ h2(3h — 1)

and, in this case, we have

3h — 1 — 4h> 3-5n

heh—1) 0 Lemeoyt g =0

Ly=x—y+

We calculate
X = (h=1)*(h+1)*/(16(3h = 1)°),
X&) = —58320(2h — 1)(h — 1)5(h + 1)5/(3h — 1)°,
X = 19440 h(2h — 1)(h — 1)S(h +1)%/(3h — 1)C,
N =9(h—1)(h+1)(x —y)>
From condition 7 we have XE47) > 0, sign(xg)) = —sign(2h — 1), sign(xg)) =
—sign (h(2h — 1)) and sign(N) = —sign ((h — 1)(h + 1)). Moreover, £y — L =
(h=1)(h+1)/[h(3h —1)].
If Xg) < 0 (i.e h > 1/2), we have Xg) > 0 and sign (®(Ms)) = —sign(Ly —L2) =

—sign(N). Then we get the configuration Config. H.89 if N < 0 and Config. H.90
if N >0.
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In the case Xg) > 0 (i.e h < 1/2), the condition x(g) < 0 implies N < 0

(then zo — x3 < 0), obtaining the configuration Config. H.88. If X(c7) > 0 (then
®(M;3) > 0), independently of the sign of N, we get the configuration Config. H.87.

(iii) Case XEZ) = 0. Then we have two double singular points (namely M; = Ms

and M3 = M,) and a double invariant line. The condition XEZ) = 0 yields a =

—(h —1)?/(4h) and hence X(C7) >0 and sign(xg)) = sign(Xg)) = —sign(h).
We observe that, if Xg) > 0, independently of sign(f19) and sign(N), we are
conducted to the same configuration. Thus, we get the following conditions and

configurations:

. Xg) <0 and N <0 = Config. H.103;

. Xg) < 0and N > 0 = Config. H.102;

° Xg) > 0 = Config. H.101.

(a2) Possibility pop = 0. Then h = 0 and, since we also obtain 1 = 0 and
o = xy, two finite singularities of systems have gone to infinity and coalesced
with [1 : 0 : 0] and [0 : 1 : 0]. The remaining two finite singularities have the
coordinates M;(z;,y;):

r1=1 y1=—-a, xp=a—1, y2=-2.

In this case, the invariant hyperbola remains the same, whereas one of the invariant
lines (3.75)) goes to infinity and hence the line of infinity Z = 0 becomes double (see
Lemma [2.24)). The remaining invariant line is expressed by 2 —y — (a + 1) = 0.
We observe that the singular point M is the intersection of the hyperbola and
the straight line, whereas My is generically located on the line and outside the
hyperbola. However, My can be located on the hyperbola if and only if

D(z2,y2) = (a—1)(a—2) =0,

which is possible if and only if a« — 2 = 0, because of conditions (3.74).
For systems (3.73)) with h = 0, we calculate

X =6480(a — 1)(a+1)2, D =3(a—2)/8.

We note that, if Xg) < 0, then a < 1 and hence Xg) < 0. So, we have the
following conditions and configurations:

W <0 = Config. H.106;

xg) > 0 and Xg) < 0 = Config. H.105;
W >0 and x7 > 0 = Config. H.107;
Xg) > 0 and Xg) =0 = Config. H.104.

(8) Subcase Bs = 0. Then a = 0 and we arrive at the family of systems

d—x:1—2h+(3h—1)x—hw2+(h—1)my,

dt
d
—d‘z{ = (3h— 1)y — (h + D)zy + hy?,

(3.76)

with the condition

(h—1)(h+ 1)(2h — 1)(2h 4+ 1)(3h — 1)(3h + 1) # 0. (3.77)
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These systems possess three invariant lines and an invariant hyperbola
»Cl(x,y):x_y_]-zoa EQ(xay):h($_y)+1_2h:0,

L3(x,y)=y=0, @(x,y)=1-2x+z(x—y)=0. (3.78)

Since g = h?, we consider again the possibilities: o # 0 and pg = 0.

(B1) Possibility po # 0. Then h # 0 and the finite singularities of systems
are of multiplicity 4, and their coordinates are M;(z;,y;):
(h—1)?

h )

2h —1
=
We observe that the singular points M; o are located on the hyperbola, M; is
located on the lines £1 = 0 and L3 = 0, M, is located on the line £, = 0, M3 is
located on the line £; = 0 and My is located on the lines £, = 0 and £3 = 0.

Concerning the position of these singularities in relation to the invariant lines
and the invariant hyperbola, we have:

331:1, y1:0, Izzh, Yo =

$3:2h_17 9322(}1_1)7 Ty y4:O

e the location of M; and M, on the branches of the hyperbola: sign(zjas) =
sign(h);

e M3 and M, could not belong to the hyperbola, since ®(x3,y3) = 2(1—h) #
0 and ®(z4,y4) = (b — 1)2/h? # 0, because of ([3.77));

e the position of the line £2 = 0 with respect to the line £1 = 0: sign(£; —
L5) = sign (h(h —1));

e the position of M; and My on L3 = 0: sign(z, — xz4) = sign (h(l — h));

e the position of My and My on Lo = 0: sign(xo — z4) = sign(h);

e the position of M; and M3 on £y = 0: sign(x; — z3) = sign(1 — h).

On the other hand, for systems , we calculate the invariant polynomials

X&) =2160h(h —1)°(2h +1)%, N =9(h—1)(h+1)(z — )™

We observe that the condition X(c7) < 0 implies that sign(h — 1) is controlled and
we have the unique configuration given by Config. H.111.

In the case Xg) > (0, we obtain the configuration Config. H.112 if N < 0 and
Config. H.110 if N > 0.

(82) Possibility po = 0. Then h = 0 and, since we also obtain u; = 0 and
o = xy, two finite singularities of systems have gone to infinity and collapsed
with [1,0, 0] and [0, 1,0]. The remaining two finite singularities have the coordinates
M;(xi, yi):

T = 717 Y1 = 727 Ty = 1) Y2 = 0.
In this case, the invariant hyperbola remains the same (since it does not depend on
h), whereas the invariant line £o = 0 goes to infinity and hence the line of infinity
Z = 0 becomes double and we obtain only one configuration given by Config. H.116.

(a2) Case 6, = 0. In this case, the condition (h —1)%(2h + 1) + a(3h +1)2 =0

yields a = —(h — 1)2(2h + 1))/(3h + 1)?, which leads to the family of systems
de  2(h+1)*(1—2h)
dt (3h+1)2
dy  2(1—h)3(2h+1)

e Ght 12 + (8h — 1)y — (h + V)zy + hy?,

+ (8h — )a — ha? + (h — 1)zy,
(3.79)
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with the condition

(h=1)(h+1)(2h—-1)(2h+1)(3h —1)(3h + 1) #0. (3.80)
These systems possess two invariant lines and two invariant hyperbolas
4h 5h? — 1
@y =a—y—g=7=0 Lfny)=v-y ehan Y
2(h+1)3
i) == "7 _9 —qy) = 3.81

2(1—h)*  2(3h—1)
(3h 4+ 1) 3h+1
Since pg = h2, we consider again the possibilities: Lo # 0 and pg = 0.

(al) Subcase g # 0. Then h # 0 and the four finite singularities of systems
(3-79) have coordinates M;(z;,y;), where:

Pa(z,y) = z—ylr—y)=0.

(h+1)2 (h—1)2 2h(h +1) (2h +1)(h — 1)?
W=7+ Y= —F7 7 2= (7 5 Y= —F 507
3h+1 3h+1 3h+1 h(3h +1)
~2(h+1)(2h —1) ~2(h—1)(2h +1)
BT 81 0 BT T s
(2h — 1)(h + 1)? 2h(h —1)
rp= <, Yra=—Y——"—"
h(3h +1) 3h+1

We observe that the singular point M is located on both hyperbolas and on the
line £, = 0, M5 is located on the hyperbola ®; = 0 and on the line L5 = 0, M3 is
located on the line £; = 0 and M, is located on the hyperbola ®; = 0 and on the
line £o = 0.

Concerning the position of the singular points on the lines and hyperbolas, we
observe that the position of My and M5 on £; = 0 is governed by sign(z, — x3) =
sign ((h —1)(h+1)(3h+1)) and the position of My and My on Lo = 0 is governed
by sign(zs — 4) = sign (h(h — 1)(h + 1)(3h + 1)). Moreover, the position of the
hyperbolas is governed by sign ((h — 1)(h +1)).

We observe that, in the case (h —1)(h + 1) < 0, we have —1 < h < 1. Then,
analyzing the sign of the expression h(3h+1), we verify that all the possible configu-
rations for these values of the parameter coincide. Analogously, we obtain the same
configurations by analyzing the sign of h(3h + 1) subjected to (h — 1)(h 4+ 1) > 0.
So, it is sufficient to only study sign ((h — 1)(h + 1)).

Thus, we conclude that sign(N) = sign ((h — 1)(h + 1)) and we arrive at the
configuration given by Config. H.140 if N < 0 and Config. H.139 if N > 0.

(B8) Subcase pog = 0. Then h = 0 and two finite singular points have gone to
infinity and coalesced with [1,0,0] and [0,1,0], since 3 = 0 and ps = xy. The
remaining two finite singularities have the coordinates M;(x;,y;), where

Xr, = —2, Yy = —2, T = 1, Yo = 1.

In this case, both invariant hyperbolas remain the same (since they do not depend
on h), whereas the invariant line £o5 = 0 goes to infinity and hence the line of infinity
Z = 0 becomes double (see Lemma and we obtain only one configuration given
by Config. H.146.

(b) Possibility 87 = 0. We recall that the conditions fg = 0 and (G2 # 0 imply
f = ¢ # 0, and then we arrive at systems . As earlier, via a time rescaling,
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we may assume ¢ = 1. Moreover, the condition $7; = 0 implies (2h —1)(2h+1) =0
and, without loss of generality, we could choose h = 1/2, otherwise we apply the
change (z,y,t,a,b, h) — (—y,—x,—t,b,a,—h), which keeps the systems and
changes the sign of h.

Now, according to Theorem for the existence of at least one hyperbola for
systems (3.72), it is necessary and sufficient the conditions y9 = 0 and Rg # 0. So,
we calculate 79 = 3a/2 and, setting a = 0, we obtain the 1-parameter family of

systems

dx 9 dy
— =x— 2 — 2, —= =
with the condition b+ 4 # 0. These systems possess three invariant lines (two of

them being parallel) and an invariant hyperbola

£1’2(.’Il,y> = (x_y)Q _2(‘T_y) +2b:07 £3($7y) =T = 07
O(z,y)=4+b—4dx+z(x—y)=0.

b+y—3xy/2+y?/2, (3.82)

(3.83)

We remark that, since Discriminant [£1 2(z,y), ® — y| = 4(1 — 2b), these lines
are complex (respectively real) if 2b — 1 < 0 (respectively 2b — 1 > 0).
We calculate 65 = 3(8 — 25b)/2 and we consider two cases: d5 # 0 and d5 = 0.
(bl) Case d5 # 0. In this case we have 25b — 8 # 0 and hence ®(x,y) = 0 (see
(3.45)) is the unique invariant hyperbola. Since B; = By = 0 for systems ,
we calculate
By = —27ba*(z — y)? /4.

() Subcase Bz # 0. Then b # 0 and, since pug = 1/4, the finite singularities
M;(x;,y;) of systems (3.82) are of total multiplicity 4, and their coordinates are

3+£v1-2b 1Fv1-2b
— 7:!: 2 s x374 = 0’ y3,4 = —1 :l: m.

Z1,2 9 , Y12 =
We observe that the singular points M 2 are located on the hyperbola and on
the invariant lines £y = 0, whereas the singularities M3 4 are located on the

intersections of the couple of parallel invariant lines with the third one.
Considering the singular points M; 2, we see that z122 = (b + 4)/2 and hence
sign(b + 4) detects the location of these singularities on the same or different
branches of the hyperbola. Moreover, the position of the hyperbola is governed
by sign(b+ 4).
To detect when the singularities M3 4 also belong to the hyperbola, we consider

and we calculate
[®(23,y3)] [®(x4,54)] = (b+4)* #0,

otherwise the hyperbola splits into two lines. Thus none of the singular points M3

or My could belong to the hyperbola (3.45]).

On the other hand, for systems (3.82)), we calculate the invariant polynomials
X5 =901 —2b)/256, X\ =135(b + 4)(25b — 8)?/8

and we conclude that Sign(X(An) = sign(1 —2b) (if 20 — 1 # 0) and from d5 # 0 (i.e.
25b — 8 # 0) we have sign(Xg)) = sign(b + 4).

(al) Possibility XEZ) < 0. Then all four finite singularities are complex as well as
the invariant lines £ 9 = 0 and we get the configuration shown in Config. H.115.
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(a2) Possibility XEZ) > 0. Then all four finite singularities and the invariant lines
L12 = 0 are real and we obtain the configuration Config. H.114 if Xg) < 0 and
Config. H.113 if {7 > 0.

(a3) Possibility xg) = 0. Then we have two double finite singular points (namely,
My=Ms, and M3=»M,) and also the invariant lines £; o = 0 coalesce and we obtain
a double invariant line. So, we arrive at the configuration Config. H.117.

(B) Subcase Bs = 0. Then b = 0 and we obtain a specific system possessing a
fourth invariant line, namely £, = y = 0. Then, we obtain the unique configuration
Config. H.119.

(b2) Case 05 = 0. Then b = 8/25 and again we obtain a concrete system,
but now possessing a second hyperbola, namely ®o(z,y) = —4/25 — 4y/5 + y(x —
y) = 0. Moreover, we observe that, for systems with b = 8/25, we have
Bs = —54x%(x — y)?/25 # 0 and hence there are no more invariant lines rather
than the ones given in . So, we arrive at the unique configuration Config.
H.147.

Subcase B2 = 0. Then ¢ = 0 and we obtain the systems
% =a—ha® + (h— 1)y, % =b— (h+1)zy + hy®. (3.84)

(a) Possibility 7 # 0. Then (2h — 1)(2h + 1) # 0 and, since (19 = —2(3h —
1)(3h + 1), we consider two cases: (19 # 0 and (19 = 0.

(al) Case B19 # 0. Then (3h — 1)(3h + 1) # 0 and, according to Theorem
for the existence of at least one invariant hyperbola for systems , it is
necessary and sufficient the conditions v7vs = 0 and R5 # 0. So, we calculate

v =8h—1)(h+1)&, ~s=42(h—1)(h+1)(3h —1)*(3h + 1) £83,
& =al2h+1)+b(2h—1), & =2a(l—h)+b2h—-1),
E3=2b(h+1) —a(2h+1).

We observe that we can pass from the condition & = 0 to the condition £3 = 0 via
the change (z,y,a,b,h) — (y,z,b,a,—h), and any of these conditions is equivalent
to vg¢ = 0. However, the condition & = 0 could not be replaced. So, we need to
analyze the possibility vz = 0 and then the possibility 7g = 0. We calculate

Bs = —6(4h —1)(4h + 1), b2 =2[(a+ b)(128h> — 11) + (a — b)h(400h> — 49)].

(o) Subcase B2 + 85 # 0. By Theorem m (see Diagram [1fin this case systems
possess a single invariant hyperbola if and only if v7v8 = 0 and R5 # 0. We
consider the cases y7 = 0 and ~g = 0 separately.

(al) Possibility v7 = 0. Then & = 0 and we obtain a subfamily of systems
with ¢ = 0. So, we arrive at the 2-parameter family of systems
dr _ a(2h — 1) — ha? + (h — 1)y,
dt

dy (3.85)
i —a(2h + 1) — (h + 1)zy + hy?,
for which h # 0, otherwise we get degenerate systems, and considering the condition
NB7510R5(8% + 63) # 0, we have

ah(h —1)(h+1)(2h — 1)(2h + 1)(3h — 1)(3h + 1)(4h — 1)(4h + 1) £ 0.  (3.86)
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These systems possess two parallel invariant lines and the invariant hyperbola
Lio=(r—y)?—4a=0, ®(z,y)=a+zy=0. (3.87)

Since g = h? # 0, these systems possess all four finite singularities on the finite
part of the phase plane and their coordinates are M;(x;,y;), where

T1,2 = i\/aa Y12 = :F\/aa T34 = :l:(2h - 1)\/57 Y34 = i(2h + ]')\/a

We observe that the singular points M 2 are located on the hyperbola and on
the invariant lines £; 2 = 0, whereas the singularities M3 4 are located only on the
invariant lines.

Considering the singular points M; 2, we see that z1x2 = —a and hence sign(a)
detects the location of these singularities on the same or different branches of the
hyperbola. Moreover, the position of the hyperbola is also governed by sign(a).

We point out that the singularities M3 4 could not belong to the hyperbola since

[©(23,43)] [®(24,ya)] = 16a°h" # 0,

because of conditions (3.86). On the other hand, we calculate XE42) = 80ahS and we

note that Sign(xf)) = sign(a). So, we arrive at the configurations given by Config.

H.80 if Xf) < 0 and Config. H.91 if X(Az) > 0.

(a2) Possibility s = 0. Then & = 0 and this is equivalent to the relations
a = a1(2h — 1) and b = 2a;(h — 1), where a; is a new parameter. So, setting this
reparametrization in and replacing the old parameter a instead of ai, we
arrive at the 2-parameter family of systems

(fi—z =a(2h —1) — ha? + (h — 1)zy,
dt (3.88)
d—:g =2a(h — 1) — (h + V)zy + hy?,

with the conditions
ah—1)(h+1)(2h—1)(2h+1)(3h = 1)(Bh + 1)(4h — 1)(4h+1) £ 0.  (3.89)
These systems possess two parallel invariant lines and the invariant hyperbola
Lis=(x—y)?—a/h=0, ®(x,y)=a—z(x—y)=0. (3.90)

We consider the coordinates M;(x;,y;) of the finite singular points of systems
(13-88):

h—1)vVah
1,2 = £Vah, y1,2:i%7

S (2h —;)\/ah’

We observe that the singular points M; » are located on the hyperbola and on
the invariant lines £; o = 0, whereas the singularities M3 4 are located only on the
invariant lines.

Considering the singular points M o, we see that 122 = —ah and hence sign(ah)
detects the location of these singularities on the same or different branches of the
hyperbola. Moreover, the position of the hyperbola is governed by sign(a).

We remark that the singular points M3 4 could not belong to the hyperbola since

a?(3h —1)?

[‘I>($3,y3)} [‘I)(I4,y4)] =z #0,

Y3,4 = £2Vah.
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because of conditions (3.89). On the other hand, we calculate
YW =ah(h—1)%(h+1)2/4, X\V =6480a®(h — 1)%(3h + 1)*

and we note that sign(XEZ)) = sign(ah) and sign(xg)) = sign(a).

If XEZ) # 0 (i.e. h # 0), we obtain the following conditions and configurations:

. Xg) < 0 and Xg) < 0 = Config. H.78;

. XEZ) < 0 and Xg) > 0 = Config. H.79;
° XEZ) > 0 and xg) < 0 = Config. H.96;
. X(A7) > 0 and Xg) > 0 = Config. H.95.

In the case XEZ) =0 (i.e. h =0), then we have g = g1 = p2 = us = 0 and
ps = a?x?y? # 0. Thus, the four finite singularities have gone to infinity and two
of them coalesced with [1,0,0] and the other two of them coalesced with [0, 1, 0].
Moreover, the two invariant lines £; o = 0 have also gone to infinity and hence the
line of infinity Z = 0 is a triple invariant line for the system, because Z?2 is a double
factor of the polynomials & and & (see Lemma .

Now, according to the sign(a) we have different position of the hyperbola and
consequently distinct configurations. So, we get the configurations shown by Config.
H.108 if 7 < 0 and by Config. H.109 if 7 > 0.

(B) Subcase fs = d2 = 0. Then the condition fg = 0 gives (4h — 1)(4h +
1) = 0 and, without loss of generality, we may assume h = 1/4 by the change
(z,y,a,b,h) — (y,z,b,a,—h).

We calculate

02 = 6(b—3a), 7 =—-15(3a—b)/4, ~s=15435(3a — 5b)(3a — b)/8192
and hence the condition do = 0 yields b = 3a and then v; = g = 0. So we obtain
the 1-parameter family of systems
CC% =a—2?/4 — 3xy/4, % =
with the condition a # 0. These systems possess two parallel invariant lines and
two invariant hyperbolas

£172:(x7y)2+8a:0, (I)l(x7y):2a7xy:07
Oo(z,y) =2a+z(x —y) =0.

3a — bry/4 +y? /4, (3.91)

(3.92)

Since po = 1/16 # 0, all the four finite singularities are on the finite part of the
phase plane and their coordinates are M;(x;, y;):

T2 =*tV—2a, yi12=FV—-2a, w34= iTQ(I7 Y34 = ?3 5 2a-

We observe that the singular points M; > are located on the first hyperbola
®; = 0, whereas the singularities M3 4 are located on the second hyperbola 5 = 0.
All singular points are located on the invariant lines £; o = 0.

Considering the singular points M o (respectively Mz 4), we see that z122 = 2a
(respectively x3z4 = a/2) and hence sign(a) detects the location of these singulari-
ties to be on the same or different branches of the hyperbolas that they are located
on. Moreover, the position of the hyperbola is also governed by sign(a).
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We remark that the singular points M o (respectively Ms4) could not belong
to the hyperbola ®5 = 0 (respectively ®; = 0) since
[@2(z1,y1)] [P2(z2, y2)] = 4a® #0, [®1(z3,y3)] [®1(z4,y4)] = a®/4 # 0,
because a # 0.
On the other hand, we calculate
XY = —225a/2048

and we note that Sign(X(An) = —sign(a). So, we get the configurations shown by

Config. H.143 if ¥ < 0 and Config. H.141 if y{{) > 0.
(a2) Case 19 = 0. Then (3h — 1)(3h + 1) = 0 and, without loss of generality,

we may assume h = 1/3, since the case h = —1/3 could be brought to the case
h =1/3 via the change (x,y,a,b, h) — (y,z,b,a, —h). So, we arrive at the systems
d d
d—”; =a—12/3— 2ay/3, dit’ = b—day/3 +12/3. (3.93)

with the condition a # 0, possessing a pair of parallel invariant lines and a couple
of invariant hyperbolas with parallel asymptotes
Lia(w,y) = (x —y)* = 3(a—b) =0,
D 9(x,y) =3a++/3(4a—b)z +z(x —y) =0.
In accordance to Theorem[2.18] we have to analyze the following subcases: 7 # 0
and 7 = 0 and we calculate
N7 = —65(5a — b) /27, 10 = 8(4a — b)/27.

(a) Subcase y7 # 0. Then we could not have other invariant hyperbolas rather
than the ones in . Moreover, the hyperbolas are complex if v19 < 0,
real if 10 > 0 and they coincide if 719 = 0. Then, we consider two possibilities:
710 < 0 and y10 > 0.

(al) Possibility v10 < 0. Then the hyperbolas are complex. In this case,

(3.94)

we set a new parameter v # 0 satisfying 4a — b = —3v?, which yields b = 4a + 3v?
and we obtain the 2-parameter family of systems

d d

d—f =a—2%/3— 2xy/3, d—':f = da + 302 — dxy/3 + 42 /3, (3.95)

with the condition av # 0, possessing the invariant lines and invariant hyperbolas
Lia(z,y) = (x —y)? +9(a+v*) =0, (3.96)
Dy 5(z,y) = 3a £ 3ive + z(z —y) = 0.
We calculate
po=1/9, By =0, By=-512a(4a+ 3v?)(z —y)*

and we consider two cases: By # 0 and By = 0.
(i) Case By # 0. Then there are no other invariant lines rather than £ 2 = 0 in
(13.96)). We calculate

o =1/9#0, D =—4096v"*(a+v?)?/3,
S = 256v%(a + v?)(z — y)?(2z + y)? /2187,
R = —16[(4a + 5v°)z” + 2(2a + v*)zy + (a + 2v%)y?] /81,
T = —81RS/32.
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We claim that all four finite singular points are complex. Indeed, if a +v? > 0, we
observe that

Discriminant [R, z] = —1024v(a + v*)y*/729 < 0,
Coefficient [R,y?] = —16(a + 20?)/81 < 0

and hence R < 0. Since D < 0, by Proposition all four finite singularities of
systems are complex.

Now, if a +v? < 0, then D < 0 and S < 0, and by Proposition all four finite
singularities of systems are complex.

Finally, if a + v?> = 0, then D = T = 0 and we have two collisions of finite
singular points, i.e. we have two double singular points. As in any case we have
only complex singularities, these double singular points are also complex. So, our
claim is proved.

We calculate xY) = —16(a+v2)/81 and we note that sign(x'y) = — sign(a+v?).

If Xg) < 0, then the invariant lines are also complex and we get the configuration
Config. H.144. In the case XEZ) > 0 the invariant lines are real and we arrive at

the configuration Config. H.145. If X(A7) = 0, then the invariant lines coalesce and
become a double line, which leads to configuration Config. H.153.

(ii) Case By = 0. Then 4a + 3v? = 0 and systems have a third invariant
line y = 0 and the lines £; 5 = 0 are complex. So, we get the configuration Config.
H.151.

(a2) Possibility y10 > 0. In this case, we set the new parameter v # 0 satisfying
4a — b = 3v?, which yields b = 4a — 3v? and we obtain the 2-parameter family of
systems

d d
d—f:a—x2/3—2my/3, d—gt/:4a—3v2—4xy/3+y2/37 (3.97)

with the condition a # 0, possessing the invariant lines and invariant hyperbolas

Lia2(z,y) = (z = y)* +9(a —v*) =0,

3.98
@1 5(z,y) =3a+3vx +z(x—y) =0. (3.98)

Remark 3.10. We remark that, the condition v = 0 for systems (3.97)) is equivalent
to Y10 = 0.

We calculate
po=1/9, By =0, By=—512a(4a — 3v?)(z —y)*

and we consider two cases: By # 0 and By = 0.

(i) Case By # 0. Then there is no other invariant line rather than £; 3 = 0 in
(3.98]). Since pg # 0, all four finite singularities of systems are on the finite
part of the phase plane and their coordinates are M;(x;,y;), where

SULQ:—UZE 1]2—0,7 y1’2:—v:F2 ’02—@,

rzga=vEVvZ—a, ysa=vF2Vv?—a.

We observe that the singular points M; > are located on the first hyperbola
®; = 0 and on the invariant lines £, 2 = 0, whereas the singularities M3 4 are
located on the second hyperbola ®3 = 0 and on the invariant lines £; o = 0.
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Considering the pairs of singular points M; > and Mz 4, we see that z1xy =
x3x4 = a and hence sign(a) detects the location of these singularities to be on the
same or different branches of the respective hyperbola they are located on.

We remark that the singular points M o (respectively M3 4) could belong to the
hyperbola ®5 = 0 (respectively ®; = 0) if and only if

(@2 (21, y1)] [P2(22,y2)] = 36av” =0,
[(bl(ziiay?))} [(1)1(1’4,y4)] = 36@1)2 = 07

which are equivalent to v = 0. However by Remark and the condition 19 > 0
we have v # 0.
On the other hand, we calculate

X7 =16(* —a)/81, ¥ = 17039360 a(a + 3v2)%/9

and we conclude that sign(xg)) = sign(v? — a) and Sign(x(c?’)) = sign(a).
Since v # 0, the invariant hyperbolas ®; o = 0 are distinct. We observe that the

condition XEZ) < 0 implies @ > 0 (as v # 0) and consequently, x(g’) > 0. Moreover,

if XEZ) = 0, then both invariant lines coalesce and we obtain the double invariant

line (z — y)? = 0. So, we arrive at the following conditions and configurations:

. X%\:; <0= Cogf)ig. H.142;
° XE47) > 0 and X%) < 0 = Config. H.137;
e x4 >0and x5 >0 = Config. H.138;
e \7 =0 = Config. H.152,

(ii) Case By = 0. Then a = 3v%/4 and we have a third invariant line £3(z,y) =
y = 0 and the previous two lines could be factored as £q(x,y) =22 —2y+3v =10
and Lo(z,y) =22 — 2y —3v =0.

Since a > 0, we have

X0 =40?/81 >0, X&) = 199680000 > 0

and we obtain the unique configuration Config. H.149.

(a3) Possibility y10 = 0. In this case according to Remark we have v = 0,
and then Xg) = —16a/81 # 0. In this case, the two hyperbolas coalesce and we
get a double hyperbola. Furthermore, the singularities coalesce two by two and we
have two double singular points (namely M; = M3 and My = My).

It remains to observe that the condition X(A7) < 0 (respectively XEZ) > 0) implies

X(Cg) > 0 (respectively X(C3) < 0). So, we get the configuration Config. H.155 if

XEZ) < 0 and Config. H.154 if XEZ) > 0.
(B) Subcase vz = 0. Then b = 5a and we arrive at the l-parameter family of

systems

dz 9
— =a—2/3 —2zy/3
7 / y/3,
with the condition a # 0.

These systems possess a couple of parallel invariant lines, a pair of invariant

hyperbolas with parallel asymptotes presented in (3.94) and a third hyperbola
£1,2($7y) = (fE - y)2 +12a = 07
Q1 9(z,y) =3atvV-3az+z(zr—y)=0, D3(z,y)=2y—3a=0.

dy

o = day/3 + y*/3, (3.99)

(3.100)



94 R. D. S. OLIVEIRA, A. C. REZENDE, D. SCHLOMIUK, N. VULPE EJDE-2017/295

Since B; = 0 and By = —2560a2(x — y)* # 0, systems could not possess
other invariant lines than the ones in . Moreover, we have pg = 1/9 # 0 and
all the four singularities are on the finite part of the phase plane with coordinates
M;(x;,y;), where

—3a 5V —3a
T12 =xV-3a, Yi2=FV-3a, T34= ﬂ:T, Ysa=F—5—-

We observe that all four singular points are located on the invariant lines and
also: Mj is located on the hyperbolas &, = 0 and &3 = 0, M is located on the
hyperbolas ®; = 0 and ®3 = 0, M3 is located on the hyperbola ®; = 0 and M, is
located on the hyperbola ®5 = 0.

Concerning the position of the singularities on the hyperbolas, we have

e the position of My and M;z on ®4(x,y) = 0 is controlled by sign(zqzs3) =

sign(a);

e the position of M; and My on ®s(x,y) = 0 is controlled by sign(ziz4) =
sign(a);

e the position of My and My on ®3(x,y) = 0 is controlled by sign(zoxs) =
sign(3a).

We also point out that because a # 0, the singularities could be located on the
hyperbolas only as it is described above.

We remark that, if @ > 0, then the four singularities are complex as well as
the pair of invariant hyperbolas ®; o(x,y) = 0 and the couple of invariant lines
£172(l‘7y) =0.

On the other hand, we calculate v19 = —8a/27 and we conclude that sign(y10) =
—sign(a). So, we arrive at the configuration Config. H.159 if 19 < 0 and Config.
H.158 if y10 > 0.

(b) Possibility f7 = 0. Then (2h —1)(2h+1) = 0 and, without loss of generality
as earlier, we may assume h = 1/2. So, we obtain the systems

d d

d—f:a—xQ/Q—xy/Q, d—?z:b—3xy/2+y2/2. (3.101)
According to Theorem the condition 7 = 0 is necessary and sufficient for

the existence of invariant hyperbolas for systems (3.101f). Moreover, this condition

implies the existence of two such hyperbolas.

We calculate 77 = —12a = 0 and we obtain the 1-parameter family of systems
d d
di; = —2%/2 — 2y/2, diz = b—3zy/2 +12/2. (3.102)

with the condition b # 0.
These systems possess three invariant lines and two invariant hyperbolas

Lia(z,y) = (x—y)?+2b=0, L3(z,y)=2=0,
Di(w.y) =b— 2wy =0, Dyla.y) = b+ (e —y)=0.
For systems ([3.102) we calculate B; = By = 0 and B3z = —27bx?(x — y)?/4 # 0
and therefore by Lemma systems (3.102)) could not posses other invariant lines

rather than the ones in (3.103)). Since pg = 1/4 # 0, these systems have finite
singularities of total multiplicity 4 with coordinates M;(x;,y;), where
vV —2b vV —2b

Yz a = :l:\/ —2b.

T12 = iT7 Y12 = :FTa z34 =0,

(3.103)
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We observe that the singular points M; » are located on the two hyperbolas and
on the lines £; » = 0 and the singularities M3 4 are located on the three invariant
lines.

Moreover, due b # 0 we deduce that the singular points M3 4 could not belong to
the hyperbolas. By the same argument the singular points M; o could not belong
to the invariant line £3 = 0.

Since z1z2 = b/2, the position of the singular points M o on the hyperbola is
governed by sign(b), as well as the position of the invariant hyperbolas.

We calculate XE:) = —9b/128 and we conclude that sign(XEZ)) = sign(b).

It is worth mentioning that, if b6 > 0, then all four singular points are complex as
well as the couple of invariant lines £1 2 = 0. So, we get the configuration Config.

H.150 if ¥ < 0 and Config. H.148 if ) > 0.

3.2.2. Possibility N = 0. Since for systems (3.1) we have 8 = —(g — 1)(h — 1)(g +
h)/2 = 0, we observe that the condition

N=(g-1(g+1Dz®>+2(g—1)(h—Day+ (h—1)(h+1)y*=0

implies the vanishing of two factors of . Then, without loss of generality, we may

assume g = 1 = h, otherwise in the case g+ h = 0 and g — 1 # 0 (respectively

h—1#0), we apply the change (z,y,9,h) — (—y,z —y,1 — g — h, g) (respectively

(z,y,9,h) — (y —x,—x,h,1 — g — h)) which preserves the form of such systems.
So, g = h =1 and by an additional translation we arrive at the systems

C{%:a+dy+x2, %:b—l—ex—kgﬁ, (3.104)
for which we calculate
61 =4de, (2= -2(d+e).

According to Theorem [2.18] a necessary condition for the existence of hyperbolas
for these systems is 1 = 0. This condition is equivalent to de = 0 and, without loss
of generality, we may assume e = 0, by the change (x,y,a,b,d,e) — (y,2,b,a,e,d).

Then B2 = —2d and we analyze two cases: 32 # 0 and G2 = 0.

Case B2 # 0. Then d # 0 and via the rescaling (x,y,t) — (4dx,4dy,t/(4d)), we
may assume d = 4. In this case, since f; = 0, according to Theorem the
conditions 7117 = 0 and Rg # 0 are necessary and sufficient for the existence of one
invariant hyperbola.

We calculate v1; = —64(a — 4b + 1) and, setting a = 4b — 1, we obtain the
1-parameter family of systems
dx dy
— =4db—1+4y+2°, — =b+y’ 3.105
o tAy s o =btys (3.105)

for which Rg = 40(b + 1) # 0. These systems possess the invariant lines and the
invariant hyperbola

Lis(x,y)=y*+b=0, ®(x,y)=b-1—-z+3y+y(x—y)=0.  (3.106)

Since By = 0 and By = —124416(b+ 1)y* # 0, systems (3.105]) could not possess
other invariant lines rather than the ones in (3.106)). Moreover, pg = 1 # 0 implies
that these systems possess finite singularities M;(z;,y;) of total multiplicity four
and their coordinates are

T12=—-1£2V-b, y12=%V-b, 1234=1£2V-b, y34=FV-b
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We observe that the singular points M; » are located on the hyperbola and on the
lines, whereas the singularities Mz 4 are located on the invariant lines. Moreover,
at least one of the singular points M3 4 could belong to the hyperbola if an only if

[®(x3,y3)] [®(24,y4)] = 4(b+1)(4b+ 1) =0,

i.e. if and only if 4641 = 0.

Since x5 = 4(4b+ 1), the position of the singular points M; 5 on the hyperbola
is governed by sign(4b+ 1), while the position of the invariant hyperbola is governed
by sign(b).

We calculate

Y =806, ¥ =804b+1), Ry=40(b+1)

and we conclude that sign(xf)) = —sign(b) and sign(xg)) = sign(4b + 1).
We observe that, if b > 0, then all four singularities and the invariant lines are

complex. So, we arrive at the unique configuration Config. H.79 if Xf) < 0.

In the case X(f) > 0, we get the following conditions and configurations:
Ro < 0 Config. H.96;

Rg > 0 and X(g) < 0 = Config. H.93;

e Rg >0 and Xg) > 0 = Config. H.92;

e Rg >0 and X(DS) = 0 = Config. H.87.

If xff) = 0, then b = 0 and the invariant lines coalesce and become a double line.
Moreover, the singularity M; coalesces with M3, and so does My with My, and we
have two double singular points, leading us to the configuration Config. H.101.
Case B = 0. Then d = 0 and, according to Theorem m (see Diagram 1)) we have
at least one hyperbola if and only if the conditions (€3) are satisfied, where by (€3)
we denote

(€3): (b1 =0)N((112=0,Rg #0) U (113 =0))).
We observe that the condition ;2 = 0 leads to the existence of only one invariant
hyperbola, whereas the condition 733 = 0 leads to the existence of an infinite
number of such hyperbolas.

We calculate 712 = —128(a — 4b)(4da — b), 13 = 4(a — ).

Subcase 712 = 0. Then (a — 4b)(4a — b) = 0 and, via the change (z,y,a,b) —
(y,x,b,a), we may assume b = 4a and we arrive at the l-parameter family of
systems

dx 5 dy 9

a—a—kz, a—éla—&—y, a # 0. (3.107)
These systems possess two couples of parallel invariant lines and the invariant hy-
perbola

£1,2(337y) :x2—|—a:O7 53,4(‘T7y) :y2+4a:07

(z,y) =a—=z(x—y)=0.
Since B; = By = 0 and Bz = 36azx?y? # 0, systems (3.107)) could not possess
other invariant lines rather than the ones in ([3.108]). Moreover as pg = 1 # 0,

by Lemma the above systems possess finite singularities M;(z;,y;) of total
multiplicity four and their coordinates are

T12 =EV—a, yYi2==x2V—-a, z34=xV—-a, yY3s=F2V-—a.

(3.108)
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We observe that all four singularities belong to the lines £ 234 = 0. Moreover,
the singular points M; 5 are located on the hyperbola, whereas the singular points
M3 4 could not belong to the hyperbola becuase a # 0.

Since x1z2 = 4a, the position of the singular points M; 2 on the hyperbola is
governed by sign(a), as well as the position of the invariant hyperbola.

We calculate Xi‘z) = —80a and we conclude that sign(X(j)) = —sign(a).

Since in the case a > 0 all four singularities and the invariant lines are complex,

we arrive at the configuration Config. H.120 if Xf) < 0 and Config. H.118 if

2
Xa > 0.
Subcase v13 = 0. Then b = a and we arrive at the 1-parameter family of systems
d d
d—j:a—&-ﬁ, d—§:a+y2, a#0. (3.109)

These systems possess five invariant lines and the family of invariant hyperbolas

£1,2(‘T7y) :SC2+CL:0, E374(l',y) :y2+a:03

(3.110)
Ls(z,y)=xz—y=0, P(z,y)=2a—7r(z—y)+22y=0, reC.

Since 19 = 1 # 0 the above systems possess finite singularities M;(z;,y;) of total
multiplicity four and their coordinates are

T12=*V—a, Yi2==*V—-a, x34=EV—-a, y3s4=FV-—a

We observe that all four singularities belong to the lines £4 234 = 0. Moreover,
the singular points Mj 2 are located on the hyperbolas for any » € C and on the
line L5 = 0.

The sign(a) distinguishes if the singularities are either real, or complex, or coin-
ciding (if a = 0). Since Rg = 16a, we conclude that sign(Rg) = sign(a).

In the case a # 0, we could assume ¢ = 1 if a > 0 and a = —1 if a < 0, by
a rescaling. So, we arrive at the configuration Config. H.160 if Rg < 0, Config.
H.161 if Rg > 0 and Config. H.162 if Rg = 0.

The proof of statement (B) of Theorem is complete.

4. CONFIGURATIONS OF INVARIANT HYPERBOLAS FOR THE CLASS QSH,—¢)

Theorem 4.1. Consider the class QSH,—o of all non-degenerate quadratic differ-
ential systems possessing an invariant hyperbola and either exactly two distinct
real singularities at infinity or the line at infinity filled up with singularities.

(A) This family is classified according to the configurations of invariant hyper-
bolas and of invariant straight lines of the systems, yielding 43 distinct such con-
figurations. This geometric classification appears in Diagrams [24 and [26. More
precisely:

(A1) There are exactly 9 configurations with an infinite number of invariant hy-

perbolas.

(A2) The remaining 34 configurations could have up to a maximum of 2 distinct

tmwvariant hyperbolas, real or complex, and up to 3 distinct invariant straight
lines, real or complex, including the line at infinity.

(B) Diagmm is the bifurcation diagram in the space R'2 of the coefficients of
the system in QSH ;) according to their configurations of invariant hyperbolas and
invariant straight lines. Moreover, Diagram [27 gives an algorithm to compute the



98 R. D. S. OLIVEIRA, A. C. REZENDE, D. SCHLOMIUK, N. VULPE EJDE-2017/295

configuration of a system with an invariant hyperbola for any quadratic differential
system, presented in any normal form.

Remark 4.2. In the above theorem we indicate that the 43 configurations obtained
for the family QSH,—¢) are distinct because of the types of ICD,ILD, M Soc and
PD. We defined in Section |2| such functions on the family QSH,—q). We can read
several geometrical invariants, modulo the group action, from the expressions of
these cycles. They form a complete set of geometric invariants for the configurations
of the family QSH,—¢).

Remark 4.3. The invariant polynomials which appear in Diagram[2]are introduced
in Section [2| Moreover, in this diagram we denote by (€;) the following condition

(€1) : (66 = 0,$11R11 # 0) N ((Br2 # 0,75 = 0) U (Br2 = 716 = 0)).

Remark 4.4. For more details about the geometric classification of the configura-
tions of systems in QSH(,—q) see Section @

We prove part (A) under the assumption that part (B) is already proved. Later,
we prove part (B). Summing up all the concepts introduced in order to define the
invariants, we end up with the list: (CD, ILD, MSoc, TMH, TML, PD, O and
| Sing . |- The proof of part (A) of this theorem could be done in a similar way of
the proof of part (A) of Theorem (3.1
Proof of part (B). Following the conditions given by Diagram 2] (the case n = 0). We
consider two possibilities: M(a,x,y) # 0 (i.e. at infinity we have two distinct real
singularities) and M = 0 = Cy (when we have an infinite number of singularities
at infinity).

4.1. Possibility M(a,z,y) # 0. According to Lemma there exists a linear
transformation and time rescaling which brings systems (1.3]) to the systems
d
CTI =a+ cx + dy + gz* + hxy,
t (4.1)

d
dit/ =b+er+ fy+ (9 — zy + hy*.
For this systems we calculate
Co(z,y) = 2%y, 6=—h*(g—1)/2. (4.2)

4.1.1. Case 6 # 0. In this case h(g — 1) # 0 and by a translation we may assume
d =e =0. So in what follows we consider the family of systems

d
—x:a+cx+gx2+hxy,

dt
" (4.3)

E:b+fy+(gfl)xy+hy2

for which calculations yield:

n =2~ fle+ f*hHg—1)*/32, B2 =h*(2c— f)/2.

According to Theorem [2.18| for the existence of an invariant hyperbola of the above
systems the condition «; = 0 is necessary. So we consider two subcases: (2 # 0
and 2 = 0.
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Config. H1
h h
_MSoc=2U,+Us, 2 Confio B2
h h
MSoc=2U,+3U, N S _
v Config. H.3

Ko hop
MSoc=2U14+2Us+ 51 1)

(2) (@)

h h h — Config. H.5
MSoc=2U1+U, +251 mConﬁg,HA
g (

)

b h poop M, l
MSpc =207 +Us+ %1+ 5 \
PD=2P,+2P, ‘ o

h ho .
TML—1 | MSoc =20, +20U5+25, , \ o . Config. 1.6

Config. s
Config. HT
PD— 2P leﬁg H.9
MSoc —2U1+U2+291+92 0=1

PD 2P +2P,

2,

3 noohoop Config. 11.10
(MSoc =2U1+Uz+381+ 52 "

@ \ C()rtﬂy.ﬁ.ll
b h -
TMH=1} MSyc=2U14+U, o Cun,ﬁq, H.12

@)
h  hl h w Conﬁ(; 13
MSoc =2U1+Uz+2s;
MSoo=2U,+Us+51+ 52

TML=2 \v
MSyc:=2U1+Us +251+6L2+53 & -
\v k\ onfig. .16
Config. H.15

TN
| PD= 2P\ +2Py+3Ps+3Py w

TML>3
———=" A; (neat page) Config. HAT

L T
MSoc =2U1+Us+ 81+ 82+ 83+ 54

Di1AGrAM 24. Diagram of configurations with one simple hyperbola

Subcase B2 # 0. Then 2¢ — f # 0 and the condition v, = 0 implies f = —c. Then
we calculate
o = —14175¢%h° (g — 1)*(3g — 1)[a(2g — 1) — 2bh],
B =—3ch*(g—1)(3g —1)/4

and following Diagram [2| (see Theorem [2.18]) we examine two possibilities: §; # 0

and 3y = 0.
Possibility 81 # 0. Then the necessary condition 5 = 0 (for the existence of a
hyperbola) gives a(2g — 1) — 2bh = 0 and setting a = 2a1h (since h # 0) we get
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(2) L~
Config. H.18

ICD=M\+LY +L5+ L o

(2,2)

MSyc = 4U1 +U2+61+52 k

onfig. H.19

PD=2P,+3P, N
ICD =Hy+L1+ Lot Log . >
onfig. H.20 -
MSo =20+ Ty +
00 =201+ 2 pp_3p +3P,

I hl hl — 1
Bstses = S

Conﬁg,ﬁ 21

Al (2)
TMH=1 dh
sl [CP =Mt 2Lit Lo | L2 o
Config. H.23 f’ 2:2) PD=2P,+3P +3P3

[CD=H1+L1+2Ls - 11) Config. H.22
Config. H.24 ’ )
ICD:H1+3£1+£OO R 0]
Config. H.25 .2)
ICD=H1+4L1+ L

(1)
Config. H.26 ’

DI1AGRAM 25. (cont. of Diag. Configurations with one simple hyperbola

b= a1(2g — 1). Therefore keeping the old parameter a (instead of a;) we arrive at
the following family of systems

d d
dj: = 2ah + cx + gz + hay, d—z:a(2g—1)fcy+(g—1)zy+hy2.
We observe that since ch # 0 , we may assume ¢ = h = 1 by the rescaling

(x,y,t) — (cx,cy/h,t/c) and the additional parametrization ah/c?> — a. So we
get the following 2-parameter family of systems

d d
£=2a+w+gw2+wy, £=a(29—1)—y+(9—1)wy+y2, (4.4)
which possess the following invariant hyperbola (with cofactor (2g — 1)z + 2y):
d(z,y)=a+2y=0 (4.5)

and for which the following coefficient conditions (defined by 65281 R1 # 0) must
be satisfied:

alg —1)(3g — 1) #0. (4.6)
For systems (|4.4)) we calculate
By =4a(g — 1)2(1 — 2g). (4.7)

(1) Case By # 0. In this case by Lemma we have no invariant lines. For
systems (|4.4) we calculate o = g and we consider two subcases: 1o # 0 and pg = 0.
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zmﬁq Ha1

ICD=H{+HS +L1+ Lo+ Lo

(2.2)

ICD=2H1+L

TMH=2

ICD=2H+L1+L+

MSoe=0, @ Config. 11.29

MSoc —251+252

MSpc=0,

MSyc = s1

‘(*uu/u, .28
. nﬂﬁg 130

|, Config. 11 31

Conﬁq .32

I m

ICD=2H,+L1+Lo+ L

+S4 ‘

\ | Config. 1133

ICD=2H1+3L1+ L

@.2)

TMH>2

|Sing.|=2

ILD=3L,+3L

[LD=2Ly+Lo+La+2Lns
(137

@( onfig. H.34
(@)

C(mﬁq .35

TMH=>

ILD=Ly+Ly+L3

Ll | Lylsh™
MSoc=s1+ "5

lllzh

lilsh™>
MSoc = +%

1Singscl =00 | 11D = £1+£5 +L£§

ILD=3L,

lly lll;h“’

llgh™
MSyc= 51+ + 783

MSoc=0
—>

l
MSoc= st
—

g Config. .41

MSoc=0 Config. H.42

e onfig. H.43
1

J\ISU(J =3 51
e

DiAcrAM 26. Diagram of configurations with TMH > 2
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(a) Subcase po # 0. Then by Lemma the systems have finite singularities
of total multiplicity four. More exactly, systems (4.4]) possess the singular points

My 2(z1,2,91,2) and M3z 4(23,4,93.4), where

. —1++/1—4ag
2= ———(
’ 2g

Y12 =

14+ /1 —4ag

2 )
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X4)

0 ~
Config. H.1

xe! <0 7
XS)#O W Config. H.6
Xc > anﬁg H5

1 (b ~
1070 YW >0 X <0, Gonfig. H10
T#0
L#0 <0y o =
M _ Xg)>0 Config. H.8
o >0

Config. H9

B #0 _ ~
17 (1) H»C’onf‘ig.l—l.ll

=0 ~
X4 Config. H4
~(1) £0

~(1
W=

Lo = Config. H3

Conﬁg. H7
(1) ~
Xa <0 Conﬁg.H.lQ

D<0 (O
1 Xo <

( ConﬁgA H17
Xa’>0[" ) 0 i
Xc Config. H.16

Config. H14

D>0

B2#0

/(1) -
#0 Config. H.15

1
=

D=0
Cr)nﬁy. H13
Config. H1

) 2
B1=0 [11=0 <0 ; Cont: 116
= Y4=Y, 5 =
L R3#0 )(m >0 Xp = Conﬁg H10

0+0 - = (8)

Config. H5
Config. HA4

Xa =0

HoR10<0

MA0 e 0 1oR10>0, 0. 6
Ho=
B2=01|B1=714=0,
Ri0#0
B:Bs=0
0-0

4>Conﬁ(1 H2
MC Config. H31
Config. H29
2", A, (next page
1( page) M(::('(mﬁgH’i?
Cy=0 Ay (nezt page) Config. H.30

[M=0]

DIAGRAM 27. Bifurcation diagram in R'? of the configurations:
Casen =10

x34=—-1%tvV1—4a, ysa=029g—1)(1FV1—4a)/2

We detect that the singularities M o (xu, y1,2) are located on the hyperbola. On
the other hand for systems (4.4) we calculate the invariant polynomials

X4 =9(g — 1)%(3g — 1)%(1 — 4ag) /64

and by (3.5) we conclude that sign(qul)) = sign(1 — 4ag) (if 1 — 4ag # 0) and we
consider three possibilities: X( ) < 0, X( )> 0 and X(Al) =0.
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X<7)<0 B
h Config. H18 (7
F .
R, <0 Config. H22
xm >0 ~
£0|[p 0470 L Config. H.20
po7#0|Bs=15=0,] | (7 -
R7#0 Xa >0 —>R7>0 Config. H21
04=0 Config. H.33
X(7) —0 B
A Config. H23
M Conﬁg.ﬁ.19
B12#0 0 -
7] ~
{6:0 Y16 =0 270, Config. H.25
NAO (e 35=0 .
&) 96 =", Config. H.34
0 -
=<l Config. H27
B12=0 |v17>0 Conﬁg.ﬁQg
=0 B B
- M’ Config. H34
71670 -
n=0 B3 #0|Mo=77=0,] | . Config. H19
N=0 Ruz0 e Config. H.26
0 ~
Bis=0[r = 1270 | Config. F.35
13 Y8="P19=0 11 =0 B
Config. H.36
Hy<0 ~
Config. H.39
Ho701Hy >0 Config. HAL
H9=0, Gonfig. 1143
LA N o Hy#0 _
{C :07} N =0 27 Config. H.37
M:O H12 #0 Hll <O B
Ho—0 Config. HA40
HlO =0 2— I N
>0, Config. H.38

@. Config. H.42

DIAGRAM 28. (cont. of Diag Bifurcation diagram in R'? of
the configurations: Case n =0

(al) Possibility XE41)
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< 0. So we have no real singularities located on the invariant

hyperbola and we arrive at the configurations of invariant curves given by Config.

H.1.

(a2) Possibility x';’ > 0. In this case the singularities My o (21,2,91.2) located
on the hyperbola are real and we have the next result.
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Lemma 4.5. Assume that the singularities My s (x12,y12) (located on the hyper-
bola) are finite. Then these singularities are located on different branches of the

hyperbola if Xg) < 0 and they are located on the same branch if Xg) > 0, where
&) = 315ag(g — 1)4(3g — 1)2/32.
Proof. Since the asymptotes of the hyperbola (3.6]) are the lines x = 0 and y = 0 it

is clear that the singularities M; o are located on different branches of the hyperbola
if and only if 122 < 0. We calculate

—1+4++v1—-4ag,;—1—-+/1—-4a a
Ty = | N 91=2 (4.8)

29 29 g
and because of condition (3.5) we obtain that sign(zize) = sign(X(Cl)). This com-
pletes the proof of the lemma. O

Other two singular points M3 4 (x374, y3,4) of systems (4.4)) are generically located
outside the hyperbola. We need to determine the conditions when some singular
points of the system become singular points lying on the hyperbola. Considering

(3.6) we calculate
@Yl r=rs, y=ps.a) = (29 = (=1 VI = 1a) +aldg - 1) = Qs (a,9)

Put Q3(a,g) = Q4(a,9) and Q4(a,g) = Q_(a,g). It is clear that at least one of the
singular points M3(x3,ys3) or My(z4,y4) belongs to the hyperbola (3.6) if and only
if

Q3 = a[2(1 — 29) + a(1l — 49)*] = aZ; = 0.

On the other hand for systems (4.4) we have }g) = 547, and clearly from (3.5

the condition ')V(S) = 0 is equivalent to Z; = 0. We examine two cases: }28) #£0
and ')V(g) =0.

(o) Case A){g) % (0. Then Z; # 0 and on the hyperbola there are two simple real
singularities (namely M 2(21,2,¥1,2)). By Lemma their position is defined by
the invariant polynomial Xc} and we arrive at the configuration given by Config.
H.6 if xg) < 0 and by Config. H.5 if Xg) > 0.

(B) Case ’)V((Dl) = 0. In this case the condition Z; = 0 implies 4g—1 # 0 (otherwise
for g = 1/4 we get Z; =1 # 0. So we obtain a = 2(2g — 1)/(4g — 1)2. In this case
the coordinates of the finite singularities M;(z;,y;) (i = 1,2,3,4) are as follows

1—2g 2g 2
T T L e Tl
29 —1 4(1 —2g) 2(g —1)2
ygzygzﬁ, $4=m» y4=ﬁ,

i.e. all the singularities are real. Then considering Proposition [2.17] we calculate
D=0, T=-3[29(g—1)z+ (29— 1)y]’P,
(49 = 3)* (97 — y)* (29 — = + 2y)?
(49 — 1) '
(B1) Subcase T # 0. Then T < 0 and according to Proposition systems
(4.4) possess one double and two simple real finite singularities. As it is mentioned

above, the singular point Mjs(x3,ys3) coalesces with the singular point Ms(z2,y2)
located on the hyperbola, whereas My(x4,y4) remains outside the hyperbola.

P =
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Considering the coordinates of the singular points we calculate

. . 315g(2g — 1)(g — 1)*(3g — 1)?
sign(z12,) = sign(g(2g — 1)), &) = 9(% 16()5 1;2( 917

Therefore in the case xg) < 0 the singular points M; and Ms = Mj are located

on different branches of the hyperbola and we arrive at the configuration Config.
H.10.

Assume now that the condition Xg) > 0 holds, i.e. the two singular points (one
double and one simple) are located on the same branch of the hyperbola. Since on
this branch are also located two infinite singular points (one double and one simple),
it is clear that the reciprocal position of singular points M; and M5 (double) on the
branch leads do different configurations. So we need to determine the conditions
to distinguish these two situations.

We calculate

1—-2¢ 2 1
gldg—1) 1-4g g(4g—1)

and hence the reciprocal position of M; and My depends on the sign of the expres-
sion g(4g — 1). On the other hand, the condition Xg) > 0 implies g(2g — 1) > 0,
i.e. we have either ¢ < 0 or ¢ > 1/2. Since pg = g we deduce that these two
possibilities are governs by the invariant polynomial .

It is easy to detect that we arrive at Config. H.8 if o < 0 (i.e. g <0) and we
get Config. H.9 if po > 0 (i.e. g > 1/2).

(82) Subcase T = 0. In this case from the condition By # 0 (i.e. 29 — 1 # 0)
the equality T = 0 holds if and only if P = 0 which is equivalent to 4g — 3 = 0, i.e.
g = 3/4. In this case we obtain

D=T=P=0, R=23(3z—4y)?/64

Ty — T2 =

and since R # 0, by Proposition [2.17] we obtain one triple and one simple singu-
larities. More precisely the singular points My, M3 and M, coalesce and since all
the parameters of systems are fixed we get the unique configuration given by
Config. H.11.

(a3) Possibility xi\l) = 0. In this case we get ¢ = 1/(4a) and the singularities
M o (xl,g, yl’g) located on the hyperbola coincide. On the other hand we have Z; =
a # 0 and hence none of the singular points M3 4 could belong to the hyperbola.
So we arrive at the unique configuration presented by Config. H.A4.

(b) Subcase pi9 = 0. Then we have y; = —y and by Lemma one finite
singular point has gone to infinity and coalesced with the infinite singular point
[1,0,0]. In this case we arrive at the 1-parameter family of systems

dz

d
o = 2a+wtay, £=—a—y—xy+y2 (4.9)

possessing the singular points M7 (x},y]) and Ms 3(x2.3,y2,3) (the same points for
the particular case g = 0) with the coordinates

rh=—a, yi=1; z34=-1%tV1—4da, yzs=(-1++v1-4a)/2.

We observe that only the singular point Mj is located on the hyperbola. On the
other hand it was shown earlier that one of the points M 3(x23,¥2,3) belongs to
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the hyperbola if and only if Z; = 0 which in this case gets the value Z; = a + 2.
For systems (4.9) we calculate

5 =54(a+2)

and it is not too difficult to detect that in the case A)Qg) #0 (i.e. a+2#0) we
arrive at the unique configuration given by Config. H.3.

Assume now )zg) = 0. Then a = —2 and we get a system with constant co-
efficients for which the singular point M, has coalesced with M]. As a result we
obtain Config. H.7.

(2) Case By = 0. Considering and the condition this implies g = 1/2
and we obtain the following 1-parameter family of systems

d d

—x:2a+x+x2/2+xy7 —y:—y(1+x/2—y). (4.10)
dt dt

These systems besides the hyperbola (3.6) possess the invariant line y = 0 and four
singular points M;(z;,y;) with the coordinates

1+v/1-2
x1,2:_1:|: V1_2a, y1,2:faa

T34 = -1+ vV 1-— 4&, Y34 = 0.

We observe that the singular point M; and Ms are located on the hyperbola,
whereas M3 and M, are situated on the invariant line y = 0, which is one of the
asymptotes of the hyperbola (3.6). For the above systems we calculate

D =4842(1 — 2a)(da — 1), xV) =9(1 — 2a)/1024

and it is clear that from the condition (i.e. a # 0) two of the finite singular
point could coalesce if and only if D = 0. So we examine three subcases: D < 0,
D>0and D=0.

(a) Subcase D < 0. Then (1—2a)(4a—1) < 0 and we observe that if qul) <0 (ie.
a > 1/2) all the singular points are complex and we get the unique configuration
given by Config. H.12.

Assume now XE41) >0 (i.e. @ < 1/2). Then the condition D < 0 implies a < 1/4

and all singular points are real. We calculate 122 = 2a and XS) = 316a/4096 and
hence this invariant polynomials governs the position of the singular points located
on the hyperbola (on the same branch or not). Thus we get Config. H.17 when
X(cp < 0 and Config. H.16 when X(Cl) > 0.

(b) Subcase D > 0. In this case we have 1/4 < a < 1/2 and therefore the
singular points located on the hyperbola are real, whereas the singularities from
the invariant line are complex. As a > 0 we deduce that the real singularities
are located on the same branch of the hyperbola. As a result, we get the unique
configuration Config. H.14.

(c) Subcase D = 0. Then either a = 1/4 or a = 1/2 and these possibilities are
distinguished by Xi;l)- Therefore we get the configuration Config. H.15 if XS) #0
and Config. H.13 if X(Al) =0.
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Possibility 81 = 0. Then because 6 # 0 (i.e. h(g — 1) # 0) and to the condition
B2 = 3ch?/2 # 0, the condition 3; = 0 implies g = 1/3 and 72 = 0. So we arrive at
the following family of systems

dv 9 dy
E—a—l—cx—i—x/?ﬂ—hxy, i

We observe that since ch # 0 we may assume ¢ = h = 1 by the rescaling (z,y,t) —
(cx,cy/h,t/c). According to Theorem (see Diagram [2)) the above systems
possess an invariant hyperbola if and only if 74 = 0 and R3 # 0. Considering the
condition ¢ = h = 1 for these systems we calculate

v4 = 16(a + 6b)?/3, Rz = 3b/2

b—cy —2xy/3 + hy?.

and hence the condition 4 = 0 gives b = —a/6 # 0. So we get the following
1-parameter family of systems

d d
d—f:a—&—x—kxz/i’,—i—xy, d—?z—a/ﬁ—y—Z&:y/S—&—gf (4.11)
with a # 0 which possess the following invariant hyperbola
O(z,y) =a+2zy=0 (4.12)

and singular points M;(z;,y;) (i=1,2,3,4) with the coordinates

z12=(-3£3(3-2a)/2, yi12=(3%/3(3—2a)/6,
T34 =—1+vV1-2a, yzs=(—1+v1-2a)/6.

We observe that the singularities M o (371,2, yl,g) are located on the hyperbola and

since Xf) = 2(3 — 2a)/9 we deduce that these points are complex (respectively,
real) if X(A2) < 0 (respectively X(A2) > 0) and they coincide if X(Az) =0.

On the other hand we have x129 = 3a/2 and Xf) = 23a/12 and therefore we
conclude that the singular points M;j o are located on different branches of the
hyperbola if Xff) < 0 and on the same branch if xff) > 0.

Other two singular points Ms 4 (x3’4,y374) of systems generically are lo-
cated outside the hyperbola. In order to determine the conditions when at least

one of these singular points is located on the hyperbola we calculate
(I)(:L’, y)|{$:$3,47 y=y3.4} (CL +2 + 2 \% 1- 2&)/3 = Q3,4((1)7
Q3 = a(12+a)/9, x5 = —9a(12 4 a)/8.

It is clear that at least one of the singular points M3 or M, belongs to the hyperbola
if and only if Xg) =0.

Since for systems we have By = 2a®/27 # 0 and o = 1/3 # 0, by Lemmas
and [2.22] we have no invariant lines and none of the finite singularities could
go to infinity. So we arrive at the following conditions and configurations:

. X(AZ) < 0 = Config. ﬁ.l;
xf) >0, Xff) < 0 and Xg) # 0 = Config. I~{.6;
xff) >0, xf) < 0 and XS) = 0 = Config. H.10;
xf) > 0 and Xf) > 0 = Config. ﬁ.5;

XE42) = 0 = Config. H.4.
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Subcase B2 = 0. Then f = 2c and this implies 71 = 0. By Theorem [2.18] (see
Diagram [2)) in this case we have an invariant hyperbola if and only if v = 81 =
v14 = 0 and Rq9 # 0. Moreover, this hyperbola is simple if 5785 # 0 and it is
double if 8783 = 0. So we calculate

o = —14175ac®h® (g — 1)3(1 + 3g), B1 = —9¢*(g — 1)*h?/16
and evidently the condition 75 = 3 = 0 implies ¢ = 0. Then we obtain
Y14 = —80R®[a(2g — 1) — 2bh], Rig = —4ah® # 0

and as h # 0 the condition v14 = 0 gives a(2g —1) —2bh = 0. Then setting a = 2a1h
we get b = a1(2g — 1) and keeping the old parameter a (instead of a1) after the
additional rescaling y — y/h we arrive and at the following 2-parameter family of

systems

d d
d—‘: = 2a + gz* + wy, dit’ =a(29— 1) + (g — Day +y*. (4.13)

These systems possess the invariant hyperbola (3.6) and we calculate

Br=8(1—-2g), Ps=32(1-4g), Bi=4a’(9g—1)*(1-29), po=g
and following Diagram [2[ (see Theorem [2.18)) we examine two possibilities: 570s # 0

and (;0s = 0.
Possibility 3;0s # 0. In this case for systems (4.13)) the condition

alg—1)2g - 1)(dg— 1) £0 (4.14)
is satisfied and this implies By # 0. Therefore according to Lemma these
systems could not have invariant lines and as earlier we consider two cases: o # 0
and pg = 0.

(1) Case po # 0. Then systems possess four finite singular points M;(x;, ;)
(i=1,2,3,4) with the coordinates

T =+ —a/g, yi2==+V—ag,
T34 =2V —a, y3a==EvV—a(l-2g).

We detect that the singularities M; o (ZL‘LQ, yl,g) are located on the hyperbola and
they are complex (respectively, real) if ag > 0 (respectively ag < 0). Moreover
since z1x9 = a/g then in the case when they are real (i.e. ag < 0) these points are
located on different branches of the hyperbola .

On the other hand considering singular points M3 4 (23.4,¥3,4) we calculate

(I)(wvy”{x:ws, y=ys} — (I)(xvy)|{$=x4, y=ya} — a(4g - 1) # 0,
i.e. for any values of the parameters a and g satisfying the condition (4.14) these
singularities could not belong to the hyperbola (3.6]).

For systems (4.13) we calculate poR1p = —8ag # 0 and hence sign(uoR10) =
—sign(ag). So we arrive at the configuration given by Config. H.1 if uoR19 < 0
and by Config. H.6 if uoR1o > 0.

(2) Case g = 0. Then g = 0 and we calculate

po=p1 =0, pp=ay’#0
and by Lemma [2.15 two finite singular points have gone to infinity and both co-
alesced with the infinite singular point [1,0,0]. As a result we get the unique
configuration Config. H.2.



EJDE-2017/295 CLASSIFICATION OF QUADRATIC DIFFERENTIAL SYSTEMS 109

Possibility 570 = 0. Assume first §; = 0, i.e. ¢ = 1/2 which implies B; = 0 and
systems possess the invariant line y = 0. Since R19 = —8a, considering the
coordinates of the singularities we arrive at Config. H.31 if Rio0 < 0 and at Config.
H.32 if R19 > 0.

Suppose now (g = 0 which gives ¢ = 1/4. Then the singularities M3 and My
coalesce with M; and Ms, respectively. So in this case systems have two
double singular points located on the hyperbola which are complex if ¢ > 0 and
real if a < 0. So we obtain Config. H.29 if R1o < 0 and Config. H.30 if Rio > 0.

4.1.2. Case § = 0. According to we get h(g — 1) = 0 and since for systems
we have g = gh? we consider two subcases: g # 0 and po = 0.

Subcase pg # 0. Then h # 0 and the condition 8 = 0 yields g = 1. Since h # 0 via
the affine transformation

x1=x+d/h, y1=hy+c—2d/h
we may assume d = f =0, h = 1 and systems (4.1]) become as systems

d d
d—?:a+cx+x2+xy, £:b+6$+y2 (4.15)

for which we calculate
N=9° pBi=2, [Bs=—e/4, v =9cc*/16.

Since N4 # 0 following Diagram [2| (see Theorem [2.18) for the existence of an
invariant hyperbola the conditions v; = 72 = (3 = 0 are necessary. Therefore we
have e = 0 and this implies 713 = 72 = 0 and

vg = 42(9a — 18b — 2¢%)%.

So setting for simplicity ¢ = 3c; and a = 2a; the condition g = 0 yields b = a; — ¢2

and keeping the notation for the parameters ¢ and a we arrive at the 2-parameter
family of systems

d d
d—f:2a+30x+x2+xy, d—z:a—c2+y2. (4.16)
These systems possess the following invariant hyperbola and two invariant lines:
®(z,y) =a+cr+ay=0, Lig=y+Vc2—a=0 (4.17)

and singular points M;(z;,v;) (i=1,2,3,4) with the coordinates

Tio=—cEtVc—a, y2==%Vc%—aq,
34 =—-2(ctVc—a), ysa=xVc—a.

The singularities M; » (x172,y172) are located at the intersection points of the hy-
perbola with invariant lines, whereas the singularities Ms 4 are located only on
the invariant lines. More precisely, the singular point M3 (respectively, My) is lo-
cated on the same invariant line as the singularity M; (respectively, Ms). Since
X(A7) = (c? — a)/4 we deduce that all these finite singular points as well as the in-
variant lines L o are complex if )(547) < 0 and real if XEZ) > (. In the case XEZ) =0
(then a = ¢? # 0) we obtain that the singular point M (respectively, M3) coincides
with My (respectively, My) and moreover, in this case invariant lines coincide, too.

So we consider three possibilities: XEZ) <0, XEZ) > (0 and Xg) =0.
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Possibility XSZ) < 0. Then ¢?—a < 0 (this implies @ > 0) and all the singularities and
the invariant lines are complex. As a result we arrive at the unique configuration
given by Conlfig. H.18.

Possibility XEZ) > 0. In this case the finite singularities My # My and M3 # M, are
real and we observe that the singular points M3 4 of systems generically are
located outside the hyperbola. We calculate

Q(2,Y)[{w=ws1, y=ysa} = 30 +4c(—cE£2Vc? —a) = Q34(a,c),
Q3Q4 = a(9a — 8¢?).

On the other hand by Theorem (see Diagram [2)) the hyperbola is simple
if 6, = 3(9a — 8¢?) # 0 and it is double if 4 = 0. So we conclude that at least one
of the singularities M3 4 belongs to the hyperbola if and only if the hyperbola is
double (i.e. when d4 = 0). So we consider two cases: d4 # 0 and 4 = 0.

(1) Case 64 # 0. Then all four finite singularities are real and distinct. In this
case in order to detect the different configurations we need to distinguish the posi-
tion of the branches of the hyperbola (which depends on the sign of the parameter
a) as well as the position of the singular point M3 on the line y = v/¢? — a with
respect to M; and the position of My on the line y = —v/c¢? — a with respect to
Ms. So considering the coordinates of the finite singularities we calculate

129 = a, (z1—23)(r2 —x4) =9a — 8%, R; = —3a/4, Xg) = 9q — 8¢2.

So the singularities M; and M; are located on the same branch of the hyperbola if
R~7 < 0 and on different branches if R7 > 0. To determine exactly the position of
M; and M3 as well as of My and M, we observe, that by the rescaling (z,y,t) —
(—z, —y, —t) we may assume that the parameter ¢ > 0. This means that 7 —x3 =
c¢+3vVe2 —a >0 (because ¢ > 0 and ¢ — a > 0) and hence the sign of x5 — x4 is

governed by the invariant polynomial x%?)-

Thus in the case XEZ) > 0 and 04 # 0 (then Xg) # 0) we arrive at the following
conditions and configurations:

e Ry <0and x\7) < 0= Config. H.22;
e R7 <0 and Xg) > 0 = Config. H.20;
e R7 >0 = Config. H.21.

(2) Case 64 = 0. Then a = 8¢%/9 # 0 and by Theoremm (see Diagram |2)) the
hyperbola (4.17) is double. Moreover in this case the singular point M, coincides
with Ma, located on the hyperbola. Since ¢ # 0 (i.e. no other singularities could

coincide) we get the unique configuration Config. H.33.

Possibility xf) = 0. Then a = ¢ # 0 and this implies the coalescense of the
singularity Ms with M; and of My with Mj. Clearly in this case we get the double
invariant line y = 0 and since ¢ # 0 we obtain Config. H.23.

Subcase pg = 0. Then the condition 6 = pug = 0 gives h = 0 and for systems

in this case we calculate

N=9g-1)(1+9)2*, M =9=0k=0, B =dg—1)(1+g)/4

We next consider two possibilities: NV # 0 and N = 0.
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Possibility N # 0. In this case by Theorem (see Diagram [2) for the existence
of at least one hyperbola the condition (€;) are necessary and sufficient, where

(€1): (B =0,B11R11 #0) N ((Brz # 0,715 = 0) U (B12 = 716 = 0)).
So the condition G = 0 is necessary. Since N # 0 we get d = 0 and moreover as

g—1# 0, due a translation, we may assume e = f = 0. Therefore we arrive at the
family of systems

d d
@ vresror, Y obig-nm,

for which following Diagram [2| we calculate:
B =429 - Da®, Ru=-3b(g —1)%2", fi2 = (39 — Dz,
s =49 —1)*(3g — D[a(3g — 1) + *(1 — 2g)]2”.

So according to Theorem the condition ($11R11 # 0 is necessary for the exis-
tence of a hyperbola and considering Diagram [2] we have to consider the two cases:
P12 # 0 and (12 = 0.

(1) Case B12 # 0. By Theorem in this case there exists one hyperbola if
and only if 415 = 0. We observe that because b # 0 (since R1; # 0) we may assume
b =1 by the rescaling (x,y,t) — (bx,y,t/b). Since 3g—1 # 0, setting ¢ = (3g—1)c;
the condition v;5 = 0 yields a = ¢?(2g — 1) and renaming the parameter c¢; as ¢
again we arrive at the 2-parameter family of systems

d d
d—f = (c+a)[c(29 — 1) + ga], d—‘z =1+ (g - Day (4.18)
for which the condition Nf311612R11 implies
(9-D(g+1)(29 -1)Bg — 1) # 0. (4.19)
These systems posses the following invariant hyperbola and invariant lines:
1
O(z,y) = ——+cy+ay =0,
(z,9) oy 1Tyt (4.20)

Li=gr+c¢(29—1)=0, Ly=x2+c¢=0.
On the other hand for systems (4.18]) we calculate
po=p1 =0, po=c?glg—12129— 1Dz, ~i=clg—1)*(1—-3g)z3/2 (4.21)
and by Lemma [2.15|in the case pg # 0 these systems possess finite singular points
of total multiplicity two. Other two points have gone to infinity and coalesced with
the singularity [0,1,0]. So we consider two cases: ug # 0 and ps = 0.

(a) Subcase ps # 0. Then ¢ # 0 and by the rescaling (z,y,t) — (cx,y/c,t/c) we
may assume ¢ = 1. In this case the 1-parameter family of systems (4.18)) possess
the finite singular points M;(z;,y;) (i=1,2) with the coordinates

=2 g1
g (9—1)(29—1) ’ g—1
We detect that the singular point M is located at the intersection point of the
hyperbola with invariant line L; = 0 (see (3.31)) whereas M, is located on the line
Ly = 0 outside the hyperbola.
On the other hand taking into account (4.21)) for systems (4.18]) with ¢ = 1 we

have 716 # 0 (because (4.19)) and hence by Theorem [2.18] (see Diagram [2) the
hyperbola (3.31) is a simple one. So considering the condition (4.19) and looking
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at all the intervals given by this condition we arrive at the unique configuration
presented by Config. H.19.

(b) Subcase o = 0. Then considering and condition we get cg =0
and we consider two possibilities: v16 # 0 and v14 = 0.

(b1) Possibility y16 # 0. Then ¢ # 0 (and we may assume ¢ = 1) and this implies
g = 0. So we arrive at the system with constant coefficients

dx dy
a—*(lﬁ’l‘), p =1—-uy

possessing one finite singular point M; (—1, —1), the invariant hyperbola xy+y—1 =
0 and the invariant line £ +1 = 0. On the other hand following Lemma we
detect that the line at infinity Z = 0 is double for these systems because Z is
a common factor of degree one of the polynomials & (X,Y,Z) and & (XY, 7).
Moreover, since g = p1 = po = 0 and p3 = —x2y, according to Lemma we
deduce that another finite singular point has gone to infinity and coalesced with
[1,0,0]. We observe that M; belongs to the invariant line and it is outside the
hyperbola, i.e. we get Config. H.24.

(b2) Subcase y16 = 0. In this case ¢ = 0 and we get the systems

% = gz?, %=1+(9—1)xy,

for which g # 0 (otherwise we obtain a degenerate system). For these systems we
calculate

po =1 = p2 = p3 =716 =0, g = 929547 66 = (9 — 1)(4g — 1)(332)/2
and by Lemma we deduce that all four finite singular points have gone to
infinity and coalesced with [0, 1,0]. Moreover, for the above systems we calculate

(X)) = g2® (1 + g — ay + gay)
and by Lemma the invariant line x = 0 is a triple one.

According to Diagram [27] the hyperbola is simple if 6 # 0 (i.e. 49 — 1 # 0) and
it is double if dg = 0 (i.e. 49— 1 = 0). So we arrive at Config. H.25 if dg # 0 and
at Config. H.34 if 65 = 0.

(2) Case 12 = 0. Then g = 1/3 and we calculate y16 = —2cx®/9. Since by
Theorem [2.18] in the case under consideration the condition ;6 = 0 is necessary

for the existence of an invariant hyperbola, we obtain ¢ = 0 and we arrive at the
1-parameter family of systems

C;—f =a+2?/3, C(% =1-2zy/3.

For these systems we calculate ;7 = 32ax?/9 and following Theorem we con-
clude that for v17 < 0 or 717 > 0 or 17 = 0 we obtain three different configurations
by the number and types of hyperbolas. Since sign(a) = sign(v;7) setting a new pa-
rameter k as follows: a = sign(a)k?/3 after the rescaling (z,y,t) — (kx,3y/k, 3t/k)
(in the case k # 0) or the rescaling  — 3z if a = 0, the above systems become

dx 9 dy
— = —=1-2 4.22
Y —re, Doio, (422
where & = sign(y17) if 117 #0 and e =0 if y17 =0, i.e. € € {-1,0,1}.

These systems possess the following invariant hyperbolas and invariant lines:

Oy 5(z,y) =3+ vV—ey—a2y=0, Liso=x+t+/—e=0. (4.23)
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We detect that these systems possess the finite singularities My o (£+/2, 3+1/(24/%))
(if € # 0) and each one of the lines intersect only one of the hyperbolas.
On the other hand for systems (4.22)) we calculate

po=p1 =0, pp=4dex®, pz=0, py=a>(x+2ey)>

Therefore by Lemma [2.15] we conclude that in the case ¢ # 0 only two finite
singularities of these systems have gone to infinity and coalesced with [0, 1, 0] and
we get Config. H.27 if 717 < 0 and Config. H.28 if v1i7 > 0.

Assume now ;7 =0 (i.e. € =0). Then pu; =0 for i =0,1,2,3 and py = 2* and
by Lemma [2.15] all the finite singularities of this system have gone to infinity and
coalesced with [0, 1, 0].

We observe that the two lines coincide and we get the invariant multiple line
x = 0. Considering Lemma, for systems with ¢ = 0 we calculate

Ep(X) = 223 (2 — 3y)

and by this lemma in the case under consideration the invariant line x = 0 is a
triple one. Since by Theorem (see Diagram the hyperbola in the case
~v17 =0 (i.e. € =0) is double, we arrive at the same configuration given by Config.
H.34.
Possibility N = 0. Then (g —1)(g + 1) = 0 and as 13 = (g — 1)?22/4 we consider
two cases: (13 # 0 and (13 = 0.

(1) Case 13 # 0. Therefore the condition N = 0 gives ¢ = —1 and we can
assume e = f = 0 by a translation. So we get the systems
Z—f =a+cx+dy — 22, % =b—2xy,
which by Theorem (see Diagram [2)) possess an invariant hyperbola if and only
if 710 = 117 = 0 and R1; # 0. Calculations yield

Y10 = 14d* =0, 17 = —8(16a + 3c?)z?* + 4dy(14cx + 9dy) = 0,

Ri1 = —62(2b2® — cdry® — d*y®) # 0

and therefore we obtain d = 0, a = —3¢?/16 and b # 0 and we may assume b = 1
by the rescaling y — by. So we arrive at the 1-parameter systems

d d

d—f = —3c?/16 + cx — 22, d—:: =1-2zy

possessing the invariant hyperbola and the invariant lines
O(z,y) =4+3cy— 122y =0, Ly =4x—c=0, Ly=4x—-3c=0. (4.24)
We observe that for ¢ = 0 the lines coincide and this phenomenon is governed by

the invariant polynomial v,6 = —2cx®. So we consider two subcases: vi6 # 0 and

Y16 = 0.
(a) Subcase v16 # 0. Then ¢ # 0 and we may assume ¢ = 4 by the rescaling
(x,y,t) — (cx/4,4y/c,4t/c). So we obtain the system

dx dy
—(r—1)(3 = L =1-2 4.2
i (—1)3 - ), i Yy (4.25)

which possesses the following invariant hyperbola and invariant lines:

P(z,y) =1/3+y—a2y=0, Li=x-1=0, Ly=2-3=0 (4.26)
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and two finite singularities: M;j(1,1/2) and M5(3,1/6). Since pg = p1 = 0 and
pz = 1222 by Lemma we conclude that two finite singularities of this system
have gone to infinity and coalesced with [0,1,0]. So considering the position of the
hyperbola, invariant lines and of the finite singularities we arrive at Config. H.19.
(b) Subcase 16 = 0. Then ¢ = 0 and we obtain the system

dx 5 dy

E:—x , EZI*QIZ/,
for which

po = = =p3 =0, pg=a".

So by Lemma [2.15] all the finite singularities of this system have gone to infinity
and coalesced with [0, 1, 0].

On the other hand we observe that the invariant line x = 0 is a multiple one.
For the above system we calculate &% (X) = 22y and by Lemma we deduce
that the invariant line = 0 has multiplicity four. So considering the invariant
hyperbola (for ¢ = 0) we arrive at the configuration given by Config. H.26.

(2) Case 15 = 0. Then we have g = 1 and we can assume ¢ = 0 by a translation.
So we get the systems

d d
d%f =a+dy+z°, di; =b+ex+ fy,
and by Theorem (see Diagram [2)) these systems possess an invariant hyperbola
if and only if 79 = 418 = 719 = 0. Calculations yield
Y9 =—6d> =0, 15 =8z(ex® —2dy*) =0, 19 =4(da+ f*)z+4dfy=0

and evidently this implies d = e = 0 and a = — f?/4 which leads to the 2-parameter
family of systems

dx 2 2 dy
= — 4 == b .
g = /A, =t fy
For these systems we calculate pg = 1 = 0, po = f?2? and we consider two

subcases: o # 0 and ug = 0.
(a) Subcase pg # 0. Then f # 0 and we may assume f = 1 and b = 0 because of
the transformation (x,y,t) — (fz,y —b/f,t/f). So we obtain the system

dx dy

which possesses the 1-parameter family of hyperbola:
®(z,y) = —q/2+qr+y+22y =0, qeC\{0}

as for ¢ = 0 we get a reducible conic.
On the other hand system (4.27)) possesses the following invariant lines and finite
singularities:

Li=20-1=0, Ly=2c+1=0, Ly=y=0, Ma(+1/2,0).
Following Lemmas and for this system we calculate
gcd (81(X,Y, 2),E&(X,Y, 2)) = YZ(2X — Z)*(2X + Z),
E(X) = (1 —22)%(1 + 2x)y/4

Yy (4.27)

and we deduce that the invariant lines Ly, = 0 and L3 = 0 are simple, whereas the
line L1 = 0 as well as the infinite line Z = 0 are double ones.
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So considering the fact that other two finite singular points have gone to infinity
and coalesced with [1,0,0] we arrive at Config. H.35.

(b) Subcase pz = 0. In this case we have f = 0 and as b # 0 (otherwise we get
degenerate system) we may assume b = 1 by the change y — by and we get the
system

dr. 5 dy
at ~ " At
which possesses the 1-parameter family of hyperbola:

1 (4.28)

O(z,y)=1+rc+2y=0, reC
and has no finite singularities. Calculations yield

Ho = p1 = p2 = p3 = 0, M4:$4,
ng(gl(XaKZ)752(XaKZ)) :X3Z27 éol(X):ZXB
and considering Lemma [2.15] we conclude that all the finite singularities of these
systems have gone to infinity and coalesced with [0, 1,0]. Moreover by Lemmas m

and [2.27] the invariant line 2 = 0 as well as the infinite line Z = 0 are of multiplicity
3. As a result we arrive at the configuration given by Config. H.36.

4.2. Possibility M (a,z,y) = 0 = C2(a, z,y). In this section we consider the con-
figurations of invariant hyperbolas and invariant lines of quadratic systems with
C3 = 0, taking into account Theorem [2.18| (see Diagram [2). Then the line at in-
finity is filled up with singularities and according to [28] in this case via an affine
transformation and time rescaling quadratic systems could be brought to the fol-
lowing systems

t=k+cx+dy+z> §=1+xy. (4.29)
Following [28] we consider the stratification of the parameter space of the above
systems given by invariant polynomials Hg — Hio in [28, Table 1 on page 754]
according to possible configurations of invariant lines. So for systems we
calculate Hig = 36d? and we consider two cases: Hig # 0 and Hyy = 0.

4.2.1. Case Hyg # 0. Then d # 0 and as it was shown in [28, pages 748,749], in
this case via some parametrization and using an additional affine transformation
and time rescaling we arrive at the following 2-parameter family of systems
t=at+y+(x+c)? §=ay. (4.30)
for which we calculate
Ny =16¢(9a + ¢?), Hy = 2304a(a + ¢*)?

and by Theorem (see Diagram [2)) for the existence of invariant hyperbola the
condition N; = 0 is necessary and sufficient. So we have either ¢ = 0 or 9a+¢? = 0.
However in the second case the condition a < 0 must hold and in the case a = 0
we get again ¢ = 0. In the case a < 0 we may assume a = —1 and ¢ > 0 by the

rescaling (z,y,t) — (sign(c)v/—axz, —ay,t/(sign(c)\/—a)), therefore we set ¢ = 3.
Moreover the transformation

(LE,y,t) = (2($ - 1)7 4(y —T— 1)3 t/Q)
sends the system (4.30) for a = —1, ¢ = 3 to the system (4.30) with a = —1 and
¢ = 0. Thus we assume ¢ = 0 and we get the systems

t=a4+y+a2 y=uzy (4.31)
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which possess the following 1-parameter family of hyperbolas
O(s,x,y) =a+2y+2>—m?y> =0 (4.32)
as well as the following invariant lines and finite singularities:
Li=y=0, Lyz=az’+(a+y)?>=0; M(0,—a), Msz(+v—a,O0).

We observe that the two lines Ly 3 = 0 as well as the singular points Mj 3 are real
if a < 0; they are complex if @ > 0 and they coincide if « = 0. Moreover these three
possibilities are distinguished by the invariant polynomial Hg = 2304a3.

So, considering that all the hyperbolas from the family intersect the in-
variant line y = 0 at the singular points M5 3 we arrive at the configuration Config.

H.39 if Hy < 0; Config. H.41 if Hy > 0 and Config. H.43 if Hy = 0.

4.2.2. Case Hig = 0. In this case we have d = 0 and we distinguish two subcases:
k # 0 and k = 0. Since for systems with d = 0 we have Hi5 = —8k22? it is
clear that this invariant polynomial governs these two subcases.

Subcase His # 0. Then k # 0 and as it was shown in [28], page 750] in this case via
an affine transformation and time rescaling after some additional parametrization
we arrive at the following 2-parameter family of systems

t=a+(x+c)? y=ay. (4.33)

For these systems the condition His = —8(a + ¢?)%x2 # 0 must hold and according
to Diagramthe condition N7 = 16¢(9a+c?) = 0 must be satisfied for the existence
of invariant hyperbolas. On the other hand for these systems we have Hy = 8cx?
and we consider two possibilities: Ho = 0 and Hs # 0.

Possibility Hy # 0. Then ¢ # 0 and in this case we get 9a + ¢ = 0, i.e. a =
—c?/9 # 0. Therefore by the rescaling (z,y,t) — (2cz,y,t/(2c)) systems
could be brought to the system

i = (1432)(2+32)/9, o=y (4.34)

This system possesses the 1-parameter family of the hyperbolas and three invariant
lines

O(z,y) = 4+1224+92% +my+3may =0; y =0, 3z+1=0, 3z+2=0, (4.35)

as well as the singularities M7(—1/3,0) and M2(—2/3,0). It is not too difficult to
convince ourselves that in this case we get the configuration given by Config. H.37.
Possibility Hy = 0. Then ¢ = 0 and we get the systems

t=a+2% P=uzy, a#0, (4.36)
which possess the following family of conics and the invariant lines:
(I)(1'7y) :a+m2—m2y2:0; Ll :y:o7 L2’3 :x2+a:0 (437)

as well as two finite singularities: M 2(£v/—a, y).

On the other hand we calculate Hy; = —192az?; therefore sign(a) = — sign(Hy,).
So considering the position of the invariant lines and of the hyperbolas given in
we obtain the configuration Config. H.40 if H;; < 0 and Config. H.38 if
Hqyp > 0.
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Subcase Hy» = 0. Then k = 0 and we arrive at the family of systems with
d = k = 0 for which we have N; = —16¢> and by Theorem m (see Diagram
we have to force the condition ¢ = 0. Since I # 0 (otherwise we get a degenerate
system) by the change y — ly we may assume [ = 1 and we arrive at the system

2 g=1+uay, (4.38)

T=ux
which possesses the following family of hyperbolas
O(z,y) =1+ma? +2zy=0

and the invariant line x = 0. We remark that by Lemma this line is triple

since for this system we have & (X) = X3. So considering the absence of finite

singularities of system we obtain the configuration given by Config. H.42.
This completes the proof of statement (B) of Main Theorem.

5. CONCLUDING COMMENTS

Details about the configurations and their realizability. Diagrams and
give an algorithm to compute the configuration of a system with an invariant
hyperbola for any system presented in any normal form and they are also the
bifurcation diagrams of the configurations of such systems, done in the 12-parameter
space of the coefficients of these systems.

5.1. Concluding comments for n > 0. In this section we consider the class of all
non-degenerate systems in QSH(,~¢). According to Theorem this class yields
162 distinct configurations which can be split according the following geometric
classification.

(A1) There are exactly 3 configurations of systems possessing an infinite number
of hyperbolas, namely Config. H.160, Config. H.161 and Config. H.162, which are
distinguished by the number and multiplicity of the invariant straight lines of such
systems.

(A2) The remaining 159 configurations could have up to a maximum of 3 distinct
invariant hyperbolas, real or complex, and up to 4 distinct invariant straight lines,
real or complex, including the line at infinity. Assuming we have m invariant
hyperbolas H; : fi(z,y) = 0 and m/ invariant lines L; : g;(z,y) = 0, the geometry
of the configurations is in part captured by the following invariants:

(a) the type of the main divisor > n(H;)H; + > n(L;)L; on the plane P»(R),
where n(H;), n(L;) indicate the multiplicity of the respective invariant
curve;

(b) the type of the zero-cycle MSoc = Y ;U; + > mjs; on the plane P>(R),
where [;, m; indicate the multiplicity on the real projective plane, of the
real singularities at infinity U; and in the finite plane s; of a system ,
located on the invariant lines and invariant hyperbolas;

(¢) the number of the singular points of the systems which are smooth points
of the curve: T(X,Y,Z) = [[Fi(X,Y,Z) - [1G,(X,Y,Z) - Z = 0 where
F;, G;’s are the homogenizations of f;’s, g;’s respectively, where f; = 0 are
the invariant hyperbolas and g; = 0 are the invariant straight lines, and
by their positions on T'(X,Y,Z) = 0. This position is expressed in the
proximity divisor PD on the Poincaré disk of a system, defined in Section

2
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We have exactly 120 distinct configurations of systems with exactly one hyper-
bola which is simple:

(i) 40 of them with no invariant line other than the line at infinity: 36 of them
having only a simple line at infinity, 2 of them having a double line at
infinity, and 2 of them having a triple line at infinity;

(ii) 46 of them with only one invariant line other than the line at infinity: 39
of them having only simple lines, 3 of them with a double finite line, and 4
of them with the line at infinity being double;

(iii) 23 of them with two distinct simple affine invariant lines (real or complex)
and a simple line at infinity;

(iv) 6 of them with three simple invariant straight lines other than the line at
infinity;

(v) 2 of them with two simple lines and one double line: 1 of them with a
double finite line and 1 of them with a double line at infinity;

(vi) 3 of them with four simple invariant straight lines other than the line at
infinity.

We have exactly 35 distinct configurations with hyperbolas of total multiplicity
two:

(vii) 11 of them with no invariant straight line other than the line at infinity;
(viii) 5 of them with only one simple invariant straight line other than a simple
line at infinity;
(ix) 11 of them with exactly two invariant lines which are simple other than the
line at infinity, which 2 of them with a double hyperbola;
(x) 3 of them with exactly one double line either in the finite plane or at infinity;
(xi) 5 of them with three simple invariant straight lines other than the line at
infinity.
We have exactly 4 distinct configurations with three distinct hyperbolas:

(xii) 2 of them with only one invariant straight line other than the line at infinity;
(xiii) 2 of them with exactly two invariant lines which are simple other than the
line at infinity.

5.2. Concluding comments for n = 0. In this section we consider the class
QSH(;,—0) of all non-degenerate quadratic differential systems possessing an
invariant hyperbola and either exactly two distinct real singularities at infinity or
the line at infinity filled up with singularities. According to Theorem this
class yields 43 distinct configurations which can be split according the following
geometric classification.

(A1) There are exactly 9 configurations with an infinity of invariant hyperbolas.
These configurations could have up to 3 distinct affine invariant lines which could
have multiplicities up to at most 3. The configurations are split as follows:

(a) 2 of them with exactly two infinite singularities (Config. H.35 and Config.
ﬁ.36) distinguished by the type of the invariant lines divisor ILD (as defined
in Section ;

(b) 7 of them with the line at infinity filled up with singularities (Config. H.i,
with 37 < < 43). The type of the ILD splits these configurations in three
groups:

Group 1: Config. ﬁ.i, with 37 <4 < 39, first distinguished by the number
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of finite singularities (3 for Config. H.39 and 2 for Config. Hi, i€ {37,38}).
The last two configurations are distinguished by the number of finite singu-
larities not located on the invariant hyperbolas (1 for i = 37, 0 for i = 38);
Group 2: Config. H.i, with i € {40,41}; and

Group 3: Config. ﬁ.i, with i € {42,43}. The configurations in these groups
are distinguished by the type of the zero-cycle MSyc;

(A2) The remaining 34 configurations could have up to a maximum of 2 distinct
invariant hyperbolas, real or complex, and up to 3 distinct invariant straight lines,
real or complex, including the line at infinity.

We have exactly 11 distinct configurations of systems with exactly one hyperbola
which is simple, and no invariant affine lines. These are classified by the total
multiplicity of the real singularities of the systems located on the algebraic solutions
(TMS) as follows:

(a) only one configuration (Config. H.1) with TMS = 3;
(b) 5 configurations with TM .S = 5 grouped as follows by the number of their
singularities and their multiplicities:
— one with only two singularities, both multiple and both at infinity
(Config. H.2);
— two with an additional finite singularity (Config. H.3, Config. H.4)
but with distinct multiplicities;
— two with two additional finite simple singularities (Config. ﬁ.5, Con-
fig. ﬁG) distinguished using the proximity divisor PD defined in Section
2
(¢) 4 with TMS = 6: one with only one finite singularity (Config. ﬁ.?); 3
with two finite singularities with the same multiplicities, distinguished by
the invariant O defined in Section [2[ (Config. ﬁ.i, with 8 <1 < 10);
(d) 1 with TMS = 7 (Config. H.11).
We have exactly 6 distinct configurations with a unique simple invariant hyper-
bola and a unique simple invariant line:

(e) one with no finite singularity (Config. H.12);

(f) one with only one finite singularity located on the hyperbola (Config. ﬁ.13);

(g) two with three finite singularities (Config. ﬁ.13, Config. ﬁ.15), distin-
guished by the number of finite singularities located on the invariant line;

(h) two with four simple finite singularities (Config. H.16, Config. H.17), which
are distinguished by the proximity divisor PD (see Section ;

We have exactly 9 distinct configurations with a simple invariant hyperbola and
invariant lines, including the line at infinity, of total multiplicity 3 < TML < 5:

(i) 5 configurations have exactly three distinct simple invariant lines (Con-
fig. ﬁ.z’, 18 < i < 22) distinguished by the types of ICD, M Syc and the
proximity divisor PD;

(j) 4 configurations with exactly two invariant lines, one of them being multiple
(Conlfig. ﬁ.l?, 23 < i < 26). They are distinguished by the multiplicities
of the two invariant lines.

We have exactly 8 distinct configurations with invariant hyperbolas of total mul-
tiplicity 2:
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(k) two with two distinct hyperbolas, one with real hyperbolas (Config. H.27)
and one with complex (non-real) hyperbolas (Config. ﬁ.28)7

(1) six of them with a double hyperbola, one with 4 finite singularities (Con-
fig. ﬁ.32), one with 3 finite singularities (Config. ﬁ.33), one with 2 finite
singularities (Config. ﬁ.30), and three without any finite singularity (Con-
fig. ﬁ.29, Config. ﬁ.31, Config. ﬁ.34), distinguished by the presence and
multiplicity of the finite invariant line;
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