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TWO-SCALE CONVERGENCE OF A MODEL FOR FLOW IN A

PARTIALLY FISSURED MEDIUM

G. W. CLARK & R.E. SHOWALTER

Abstract. The distributed-microstructure model for the flow of single phase
fluid in a partially fissured composite medium due to Douglas-Peszyńska-
Showalter [12] is extended to a quasi-linear version. This model contains the
geometry of the local cells distributed throughout the medium, the flux ex-
change across their intricate interface with the imbedded fissure system, and
the secondary flux resulting from diffusion paths within the matrix. Both the
exact but highly singular micro-model and the macro-model are shown to be
well-posed, and it is proved that the solution of the micro-model is two-scale
convergent to that of the macro-model as the spatial parameter goes to zero.
In the linear case, the effective coefficients are obtained by a partial decoupling
of the homogenized system.

1. Introduction

A fissured medium is a structure consisting of a porous and permeable matrix
which is interlaced on a fine scale by a system of highly permeable fissures. The
majority of fluid transport will occur along flow paths through the fissure system,
and the relative volume and storage capacity of the porous matrix is much larger
than that of the fissure system. When the system of fissures is so well developed
that the matrix is broken into individual blocks or cells that are isolated from each
other, there is consequently no flow directly from cell to cell, but only an exchange
of fluid between each cell and the surrounding fissure system. This is the totally
fissured case that arises in the modeling of granular materials. In the more general
partially fissured case of composite media, not only the fissure system but also
the matrix of cells may be connected, so there is some flow directly within the
cell matrix. The developments below concern this more general model with the
additional component of a global flow through the matrix.
An exact microscopic model of flow in a fissured medium treats the regions oc-

cupied by the fissure system and by the porous matrix as two Darcy media with
different physical parameters. The resulting discontinuities in the parameter values
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across the matrix-fissure interface are severe, and the characteristic width of the fis-
sures is very small in comparison with the size of the matrix blocks. Consequently,
any such exact microscopic model, written as a classical interface problem, is nu-
merically and analytically intractable. For the case of a totally fissured medium,
these difficulties were overcome by constructing models which describe the flow on
two scales, macroscopic and microscopic; see [2, 4, 5, 13, 23]. A macro-model for
flow in a totally fissured medium was obtained as the limit of an exact micro-model
with properly chosen scaling of permeability in the porous matrix. It is an exam-
ple of a distributed microstructure model. Derivations of these two–scale models
have been based on averaging over the exact geometry of the region (see [2, 3])
or by the construction of a continuous distribution of blocks over the region as in
[23] or by assuming some periodic structure for the domain that permits the use
of homogenization methods [8, 9]. (See [15] or [16] for a review, and for more in-
formation on homogenization see [7, 21].) This model was extended in [12] to the
partially fissured case. The novelty in this construction was to represent the flow
in the matrix by a parallel construction in the style of [6, 24]. Thus, two flows are
introduced in the exact micro-model for the matrix, one is the slow scale flow of
[5] which leads to local storage, and the additional one is the global flow within
the matrix. A formal asymptotic expansion was used in [12] to derive the corre-
sponding distributed microstructure model. See [10, 11] for another approach to
modeling flow in a partially fissured medium and [15] for further discussion and
related works. Here we extend the considerations to a quasi-linear version, and
we use two-scale convergence to prove the convergence of the micro-model to the
corresponding macro-model.
Our plan for this project is as follows. In the remainder of this section, we

briefly recall the partial differential equations that describe the flow through a ho-
mogeneous medium in order to introduce some notation. Then we describe in turn
various function spaces of Lp or of Sobolev type, the two-scale convergence proce-
dure, and basic results for weak and strong formulations of the Cauchy problem
in Banach space. In Section 2 we describe a nonlinear version of the micro-model
from [12] for flow through a partially fissured medium and show that this system
leads to a well-posed initial-boundary-value problem. In Section 3 we show that
this micro-model has a two-scale limit as the parameter ε → 0, and this limit sat-
isfies a variational identity. The point of Section 4 is to establish that this limit
satisfies additional properties which collectively comprise the homogenized macro-
model. These results on the well-posedness of the macro-model are sumarized and
completed in Section 5. There we relate the weak and strong formulations of the
macro-model problem to the corresponding realizations as a Cauchy problem for
a nonlinear evolution equation in Banach space. We also develop a simpler and
useful reduced system to describe this limit, and we show that it agrees with the
usual homogenized model from [12] in the linear case.
The authors would like to acknowledge the considerable benefit obtained from

discussions with M. Peszyńska [12, 16, 17, 18, 19, 20] on the homogenization method
for modeling of flow through porous media . These led to many substantial im-
provements in the manuscript.
We begin with a review of notation in the context of the flow of a single phase

slightly compressible liquid through a homogeneous medium. Thus the density
ρ(x, t) and pressure p(x, t) are related by the state equation ρ = ρ0e

κp, and the
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equation for conservation of mass is given by

c(x)
∂ρ

∂t
−∇ ·

N∑
j=1

(ρkj(ρ
∂p

∂xj
)
∂p

∂xj
) = f(x, t).

The state equation yields the relationship ∂ρ
∂xj
= κρ ∂p∂xj , so the conservation equa-

tion can be written

c(x)
∂ρ

∂t
−∇ ·

N∑
j=1

(kj(
1

κ

∂ρ

∂xj
)
1

κ

∂ρ

∂xj
) = f(x, t).

Finally, by introducing the flow potential u(w) =
∫ w
0 ρ dp, we have

c(x)
∂u

∂t
−∇ · µ(∇u) = f(x, t),

where the flux is given componentwise by the negative of the function µ(∇u) ≡
1
κ

∑N
j=1 kj(

∂u
∂xj
) ∂u
∂xj
. We shall assume below that this is a monotone function of the

gradient. The classical Forchheimer-type corrections to the Darcy law for fluids
lead to such functions with growth of order p = 3

2 .

Various spaces of functions on a bounded (for simplicity) domain Ω in RN with
smooth boundary ∂Ω ≡ Γ will be used. For each 1 < p < ∞, Lp(Ω) is the
usual Lebesgue space of (equivalence classes of) p-th power summable functions,
and W 1,p(Ω) is the Sobolev space of functions which belong to Lp(Ω) together with
their first order derivatives. The trace map γ : W 1,p(Ω)→ Lp(Γ) is the restriction
to boundary values.
Let Y = [0, 1]N denote the unit cube. Corresponding spaces of Y -periodic

functions will be denoted by a subscript #. For example, C#(Y ) is the Banach
space of functions which are defined on all of RN and which are continuous and
Y -periodic. Similarly, Lp#(Y ) is the Banach space of functions in L

p
loc(R

N ) which

are Y -periodic. For this space we take the norm of Lp(Y ) and note that Lp#(Y ) is

equivalent to the space of Y -periodic extensions to RN of the functions in Lp(Y ).

Similarly, we define W 1,p
# (Y ) to be the Banach space of Y -periodic extensions to

R
N of those functions inW 1,p(Y ) for which the trace (or boundary values) agree on
opposite sides of the boundary, ∂Y , and its norm is the usual norm ofW 1,p(Y ). The

linear space C∞# (Y ) ≡ C#(Y ) ∩C
∞(RN ) is dense in both of Lp#(Y ) and W

1,p
# (Y ).

Various spaces of vector-valued functions will arise in the developments below.
If B is a Banach space and X is a topological space, then C(X ;B) denotes the
space of continuous B-valued functions on X with the corresponding supremum
norm, and for any measure space Ω we let Lp(Ω;B) denote the space of p-th power
norm-summable (equivalence classes of) functions on Ω with values in B. When
X = [0, T ] or Ω = (0, T ) is the indicated time interval, we denote the corresponding
evolution spaces by C(0, T ;B) and Lp(0, T ;B), respectively.
Next we quote some definitions and results on two-scale convergence from [1]

slightly modified to allow for homogenization with a parameter (which we denote
by t ). These changes do not affect the proofs from [1] in any essential way.
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Definition 1.1. A function, ψ(x, t, y)∈ Lp
′
(Ω× (0, T ), C#(Y )), which is Y -periodic

in y and which satisfies

lim
ε→0

∫
Ω×(0,T )

ψ
(
x, t,

x

ε

)p′
dx dt =

∫
Ω×(0,T )

∫
Y

ψ(x, t, y)p
′

dy dx dt,

is called an admissible test function. Here p′ is the conjugate of p, that is, 1p+
1
p′ = 1.

Definition 1.2. A sequence uε in Lp((0, T )×Ω) two-scale converges to u0(x, t, y) ∈
Lp((0, T )× Ω× Y ) if for any admissible test function ψ(x, t, y),

(1.1) lim
ε→0

∫
Ω

∫
(0,T )

uε(x, t)ψ
(
x, t,

x

ε

)
dt dx =∫
Ω

∫
(0,T )

∫
Y

u0(x, t, y)ψ(x, t, y) dy dt dx.

Theorem 1.1. If uε is a bounded sequence in Lp((0, T ) × Ω), then there exists a
function u0(x, t, y) in L

p((0, T )× Ω× Y ) and a subsequence of uε which two-scale
converges to u0. Moreover, the subsequence u

ε converges weakly in Lp((0, T )×Ω)
to u(x, t) =

∫
Y
u0(x, t, y) dy.

When the sequence, uε, is W 1,p-bounded, we get more information.

Theorem 1.2. Let uε be a bounded sequence in Lp(0, T ;W 1,p(Ω)) that converges
weakly to u in Lp((0, T );W 1,p(Ω)). Then uε two-scale converges to u, and there is

a function U(x, t, y) in Lp((0, T )× Ω;W 1,p
# (Y )/R) such that, up to a subsequence,

∇xuε two-scale converges to ∇xu(x, t) +∇yU(x, t, y).

Theorem 1.3. Let uε and ε∇xuε be two bounded sequences in Lp((0, T ) × Ω)).
Then there exists a function U (x, t, y) in Lp((0, T )×Ω;W 1,p

# (Y )/R) such that, up

to a subsequence, uε and ε∇xuε two-scale converge to U (x, t, y) and ∇yU(x, t, y),
respectively.

Finally, we formulate the Cauchy problem or initial-value problem for an evolu-
tion equation in Banach space in a form that will be convenient for our applications
below. Let V be a reflexive Banach space with dual V ′; we shall set V = Lp(0, T ;V )
for 1 < p <∞, and its dual is V ′ ∼= Lp

′
(0, T ;V ′). Let V be dense and continuously

embedded in a Hilbert space H , so that V ↪→ H and we can identify H ′ ↪→ V ′ by
restriction.

Proposition 1.4. The Banach space Wp(0, T ) ≡ {u ∈ V : u′ ∈ V ′} is contained in
C([0, T ], H). Moreover, if u ∈ Wp(0, T ) then |u(·)|2H is absolutely continuous on
[0, T ],

d

dt
|u(t)|2H = 2u

′
(
t)(u(t)

)
a.e. t ∈ [0, T ] ,

and there is a constant C for which

‖u‖C([0,T ],H) ≤ C‖u‖Wp(0,T ) , u ∈ Wp .

Corollary 1.5. If u, v ∈ Wp(0, T ) then (u(·), v(·))H is absolutely continuous on [0, T ]
and

d

dt

(
u(t), v(t)

)
H
= u′
(
t)(v(t)

)
+ v′
(
t)(u(t)

)
, a.e. t ∈ [0, T ] .
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Suppose we are given a (not necessarily linear) function A : V → V ′ and u0 ∈ H ,
f ∈ V ′. Then consider the Cauchy Problem to find

u ∈ V : u′(t) +A
(
u(t)
)
= f(t) in V ′ , u(0) = u0 in H .(1.2)

It is understood that u′ ∈ V ′ in (1.2), so it follows from Proposition 1.4 that u is
continuous into H and the condition on u(0) is meaningful. If A is known to map
V into V ′, i.e., the realization of A : V → V ′ as an operator on V has values in V ′,
then (1.2) is equivalent to the variational formulation

(1.3) u ∈ V : for every v ∈ V with v′ ∈ V ′ and v(T ) = 0

−

∫ T
0

(
u(t), v′(t)

)
H
dt+

∫ T
0

A
(
u(t)
)
v(t) dt =

∫ T
0

f(t)v(t) dt +
(
u0, v(0)

)
H
.

The equivalence of the strong and variational formulations of the Cauchy problem
will be used freely in all of our applications below. See Chapter III of [22] for the
above and related results on the Cauchy problem.

2. The Micro-Model

We consider a structure consisting of fissures and matrix periodically distributed
in a domain Ω in RN with period εY, where ε > 0. Let the unit cube Y = [0, 1]N

be given in complementary parts, Y1 and Y2, which represent the local structure of
the fissure and matrix, respectively. Denote by χj (y) the characteristic function of
Yj for j = 1, 2, extended Y -periodically to all of R

N . Thus, χ1 (y) + χ2 (y) = 1.
We shall assume that both of the sets {y ∈ RN : χj (y) = 1}, j = 1, 2 are smooth.
With the assumptions that we make on the coefficients below to obtain coercivity
estimates, it is not necessary to assume further that these sets are also connected.
The domain Ω is thus divided into the two subdomains, Ωε1 and Ω

ε
2, representing

the fissures and matrix respectively, and given by

Ωεj ≡ {x ∈ Ω : χj
(x
ε

)
= 1}, j = 1, 2.

Let Γε1,2 ≡ ∂Ω
ε
1∩∂Ω

ε
2∩Ω be that part of the interface of Ω

ε
1 with Ω

ε
2 that is interior

to Ω, and let Γ1,2 ≡ ∂Y1∩∂Y2∩Y be the corresponding interface in the local cell Y .
Likewise, let Γ2,2 ≡ Ȳ2 ∩ ∂Y and denote by Γε2,2 its periodic extension which forms
the interface between those parts of the matrix Ωε2 which lie within neighboring
εY -cells.
The flow potential of the fluid in the fissures Ωε1 is denoted by u

ε
1 (x, t) and

the corresponding flux there is given by −µ1
(
x
ε ,∇u

ε
1

)
. The flow potential in the

matrix Ωε2 is represented as the sum of two parts, one component u
ε
2 (x, t) with

flux −µ2
(
x
ε
,∇uε2

)
which accounts for the global diffusion through the pore system

of the matrix , and the second component uε3 (x, t) with flux −εµ3
(
x
ε
, ε∇uε3

)
and

corresponding very high frequency spatial variations which lead to local storage in
the matrix. The total flow potential in the matrix Ωε2 is then αu

ε
2 + βu

ε
3. (Here

α+ β = 1 with α ≥ 0 and β > 0.)
In the following, we shall set Y3 = Y2 and likewise set χ3 = χ2 in order to

simplify notation. For j = 1, 2, 3, let µj : R
N × RN → RN and assume that for

every ~ξ ∈ RN , µj
(
·, ~ξ
)
is measurable and Y -periodic and for a.e. y ∈ Y, µj (y, ·)

is continuous. In addition, assume that we have positive constants k, C, c0 and
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1 < p <∞ such that for every ~ξ, ~η ∈ RN and a.e. y ∈ Y∣∣∣µj (y, ~ξ)∣∣∣ ≤ C
∣∣∣~ξ∣∣∣p−1 + k(2.1) (

µj(y, ~ξ)− µj(y, ~η)
)
·
(
~ξ − ~η

)
≥ 0(2.2)

µj

(
y, ~ξ
)
· ~ξ ≥ c0

∣∣∣~ξ∣∣∣p − k.(2.3)

Let cj ∈ C# (Y ) be given such that

0 < c0 ≤ cj (y) ≤ C, 1 ≤ j ≤ 3.(2.4)

Since these are given on RN , we can define for j = 1, 2, 3 the corresponding scaled

coefficients at x ∈ Ωεj ,
~ξ ∈ RN by

cεj (x) ≡ cj
(x
ε

)
, µεj

(
x, ~ξ
)
≡ µj

(x
ε
, ~ξ
)
.

The exact micro-model introduced in [12] for diffusion in a partially fissured
medium is given by the system

∂

∂t
(cε1 (x) u

ε
1 (x, t))− ~∇ · µε1

(
x, ~∇uε1 (x, t)

)
= 0 in Ωε1(2.5)

∂

∂t
(cε2 (x) u

ε
2 (x, t))− ~∇ · µε2

(
x, ~∇uε2 (x, t)

)
= 0 in Ωε2(2.6)

∂

∂t
(cε3 (x)u

ε
3 (x, t))− ε~∇ · µ

ε
3

(
x, ε~∇uε3 (x, t)

)
= 0 in Ωε2(2.7)

uε1 = αu
ε
2 + βu

ε
3 on Γε1,2(2.8)

αµε1

(
x, ~∇uε1 (x, t)

)
· ~ν1 = µ

ε
2

(
x, ~∇uε2 (x, t)

)
· ~ν1 on Γε1,2(2.9)

βµε1

(
x, ~∇uε1 (x, t)

)
· ~ν1 = εµ

ε
3

(
x, ε~∇uε3 (x, t)

)
· ~ν1 on Γε1,2(2.10)

where ~ν1 is the unit outward normal on ∂Ω
ε
1. We shall similarly let ~ν2 denote

the unit outward normal on ∂Ωε2, so ~ν1 = −~ν2 on Γ
ε
1,2. The first equation is

the conservation of mass in the fissure system. In the matrix, Ωε2, we have two
components of the flow potential. The first is the usual flow through the matrix, and
the second component is scaled by εp to represent the very high frequency variations
in flow that result from the relatively very low permeability of the matrix. Each
of these is assumed to satisfy a corresponding conservation equation. The total
flow potential in the matrix is given by the convex combination αuε2 + βu

ε
3 where

α ≥ 0, β > 0 denote the corresponding fractions of each, so α + β = 1. Thus,
the first interface condition is the continuity of flow potential, and the remaining
conditions determine the corresponding partition of flux across the interface. Since
the boundary conditions will play no essential role in the development, we shall
assume homogeneous Neumann boundary conditions

µε1

(
x, ~∇uε1 (x, t)

)
· ~ν1 = 0 on ∂Ωε1 ∩ ∂Ω ,(2.11)

µε2

(
x, ~∇uε2 (x, t)

)
· ~ν2 = 0 and(2.12)

µε3

(
x, ~∇uε3 (x, t)

)
· ~ν2 = 0 on ∂Ωε2 ∩ ∂Ω .(2.13)
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The system is completed by the initial conditions

uε1 (·, 0) = u
0
1(·), uε2 (·, 0) = u

0
2(·), uε3 (·, 0) = u

0
3(·)(2.14)

in Hε.
Next we develop the variational formulation for the initial-boundary-value prob-

lem (2.5)-(2.14) and show that the resulting Cauchy problem is well posed in the
appropriate function space. Define the state space

Hε ≡ L2 (Ωε1)× L
2 (Ωε2)× L

2 (Ωε2) ,

a Hilbert space with the inner product

([u1, u2, u3], [ϕ1, ϕ2, ϕ3])Hε ≡∫
Ωε1

cε1 (x)u1 (x)ϕ1 (x) dx+

∫
Ωε2

[cε2 (x) u2 (x)ϕ2 (x) + c
ε
3 (x)u3 (x)ϕ3 (x)] dx .

Let γεj :W
1,p(Ωεj)→ Lp

(
∂Ωεj
)
be the usual trace maps on the respective spaces for

j = 1, 2, ε > 0, and define the energy space

V ε ≡ Hε ∩ {[u1, u2, u3] ∈W
1,p (Ωε1)×W

1,p (Ωε2)×W
1,p (Ωε2) :

γε1u1 = αγ
ε
2u2 + βγ

ε
2u3 on Γ

ε
1,2}.

Note that V ε is a Banach space when equipped with the norm

‖[u1, u2, u3]‖V ε ≡ ‖χ
ε
1u1‖L2(Ω) + ‖χ

ε
2u2‖L2(Ω) + ‖χ

ε
2u3‖L2(Ω) +∥∥∥χε1~∇u1∥∥∥

Lp(Ω)
+
∥∥∥χε2~∇u2∥∥∥

Lp(Ω)
+
∥∥∥χε2~∇u3∥∥∥

Lp(Ω)
.

If we multiply each of (2.5), (2.6), (2.7) by the corresponding ϕ1(x), ϕ2(x), ϕ3(x)
for which [ϕ1, ϕ2, ϕ3] ∈ V ε, integrate over the corresponding domains, and make
use of (2.9)-(2.13), we find that the triple of functions ~uε(·) ≡ [uε1(·), u

ε
2(·), u

ε
3(·)] in

Lp (0, T ;V ε) satisfies

(
∂

∂t
[uε1(t), u

ε
2(t), u

ε
3(t)], [ϕ1, ϕ2, ϕ3]

)
Hε
+Aε ([uε1(t), u

ε
2(t), u

ε
3(t)]) ([ϕ1, ϕ2, ϕ3]) = 0

for all [ϕ1, ϕ2, ϕ3] ∈ V ε, where we define the operator Aε : V ε → (V ε)
′ by

Aε ([u1, u2, u3]) ([ϕ1, ϕ2, ϕ3]) ≡

∫
Ωε1

µε1

(
x, ~∇u1 (x)

)
· ~∇ϕ1 (x) dx

+

∫
Ωε2

{
µε2

(
x, ~∇u2 (x)

)
· ~∇ϕ2 (x) + µ

ε
3

(
x, ε~∇u3 (x)

)
· ε~∇ϕ3 (x)

}
dx

for [u1, u2, u3], [ϕ1, ϕ2, ϕ3] ∈ V ε. Thus, the variational form of this problem is to
find, for each ε > 0 and [u01, u

0
2, u

0
3] ∈ H

ε a triple of functions ~uε(·) ≡ [uε1(·), u
ε
2(·),

uε3(·)] in L
p (0, T ;V ε) such that

d

dt
~uε(·) +Aε~uε(·) = 0 in Lp

′

(0, T ; (V ε)′)(2.15)

and

~uε(0) = ~u0 in Hε.(2.16)

Conversely, a solution of (2.15) will satisfy (2.5)-(2.8), and if that solution is suffi-
ciently smooth, then it will also satisfy (2.5)-(2.13).
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The assumptions (2.1) , (2.2) and (2.3) guarantee that Aε satisfies the hypothe-
ses of [22, Proposition III.4.1], so there is a unique solution ~uε ≡ [uε1, u

ε
2, u

ε
3] in

Lp (0, T ;V ε) of (2.15) and (2.16). Note that since d
dt
~uε ∈ Lp

′ (
0, T ; (V ε)

′)
that

~uε ∈ C ([0, T ];Hε) and so (2.16) is meaningful by Proposition 1.4 above.

3. Two-scale limits

We introduce the scaled characteristic functions

χεj (x) ≡ χj
(x
ε

)
, j = 1, 2.

These will be used to denote the zero-extension of various functions. In particular,
for any function w defined on Ωεj the product χ

ε
j w is understood to be defined on

all of Ω as the zero extension of w. Similarly, if w is given on Yj , then χj w is the
corresponding zero extension to all of Y .
Our starting point is a preliminary convergence result for the solutions described

above.

Lemma 3.1. There exist a pair of functions uj in L
p
(
0, T ;W 1,p (Ω)

)
, j = 1, 2, and

triples of functions Uj in L
p((0, T )× Ω;W 1,p

# (Y )/R), gj in L
p′((0, T )× Ω× Y N )),

u∗j ∈ L2 (Ω× Y ) for j = 1, 2, 3, and a subsequence taken from the sequence of
solutions of (2.15)-(2.16) above, hereafter denoted by ~uε = [uε1, u

ε
2, u

ε
3], which two-

scale converges as follows:

χε1u
ε
1
2
→ χ1 (y)u1 (x, t)(3.1)

χε1
~∇uε1

2
→ χ1 (y)

[
~∇u1 (x, t) + ~∇yU1 (x, y, t)

]
(3.2)

χε2u
ε
2
2
→ χ2 (y)u2 (x, t)(3.3)

χε2
~∇uε2

2
→ χ2 (y)

[
~∇u2 (x, t) + ~∇yU2 (x, y, t)

]
(3.4)

χε2u
ε
3
2
→ χ2 (y)U3 (x, y, t)(3.5)

εχε2
~∇uε3

2
→ χ2 (y) ~∇yU3 (x, y, t)(3.6)

χε1µ
ε
1

(
~∇uε1

)
2
→ χ1 (y)~g1 (x, y, t)(3.7)

χε2µ
ε
2

(
~∇uε2

)
2
→ χ2 (y)~g2 (x, y, t)(3.8)

χε2µ
ε
3

(
ε~∇uε3

)
2
→ χ2 (y)~g3 (x, y, t)(3.9)

χεju
ε
j (·, T )

2
→ χj(y)u

∗
j (x), j = 1, 2, 3.(3.10)

Proof. Using Proposition 1.4 and (2.15) we can write

1

2

d

dt
([uε1, u

ε
2, u

ε
3], [u

ε
1, u

ε
2, u

ε
3])Hε + A

ε ([uε1, u
ε
2, u

ε
3]) ([u

ε
1, u

ε
2, u

ε
3]) = 0.

Integrating in t gives

1

2
‖~uε (t)‖2Hε −

1

2
‖~uε (0)‖2Hε +

∫ t
0

Aε ([uε1, u
ε
2, u

ε
3]) ([u

ε
1, u

ε
2, u

ε
3]) dt = 0(3.11)
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which, with the assumption (2.3) yields

(3.12)

1

2
‖~uε (t)‖2Hε + c0

∫ t
0

(∥∥∥χε1~∇uε1∥∥∥p
Lp(Ω)

+
∥∥∥χε2~∇uε2∥∥∥p

Lp(Ω)
+
∥∥∥εχε2~∇uε3∥∥∥p

Lp(Ω)

)
dt

≤
1

2

∥∥[χ1u01, χ2u02, χ2u03]∥∥2Hε + t |k| , 0 ≤ t ≤ T.

Thus, ~uε (·) is bounded in L∞ (0, T ;Hε) , and so χε1u
ε
1, χ

ε
2u
ε
2, and χ

ε
2u
ε
3 are bounded

in L∞(0, T ;L2(Ω)). Also, χε1
~∇uε1, χ

ε
2
~∇uε2 and εχ

ε
2
~∇uε3 are bounded in L

p(0, T ;
Lp(Ω)N ). We obtain (3.1) through (3.4) exactly as in [1, Theorem 2.9] by Theorem
1.2. Statements (3.5) and (3.6) follow from Theorem 1.3. Finally, from (2.1) and

the bounds already established, we have that χεjµ
ε
j

(
x, ~∇uεj (x, t)

)
(for j = 1, 2) and

χε2µ
ε
3

(
x, ε~∇uε3 (x, t)

)
are bounded in Lp

′
(
[0, T ], Lp

′
(Ω)
)
due to (2.3), (3.12) and

∫ T
0

∫
Ω

χεj

∣∣∣µj (x
ε
, ~ξ (x)

)∣∣∣p′ dxdt ≤ ∫ T
0

∫
Ω

χεj

∣∣∣~ξ (x)∣∣∣(p−1)p′ dxdt
=

∫ T
0

∫
Ω

χεj

∣∣∣~ξ (x)∣∣∣p dxdt.
Thus χεjµ

ε
j

(
x, ~∇uεj (x, t)

)
and χε2µ

ε
3

(
x, ε~∇uε3 (x, t)

)
converge as stated.

Define the flow potential uε ≡ χε1u
ε
1 + χ

ε
2 (αu

ε
2 + βu

ε
3) ∈ L

p
(
0, T ;W 1,p (Ω)

)
for

each ε > 0, and note that on Γε1,2

γε1u
ε = γε1u

ε
1 = αγ

ε
2u
ε
2 + βγ

ε
2u
ε
3 = γ

ε
2u
ε.

Thus

ε~∇uε = εχε1~∇u
ε
1 + χ

ε
2

(
αε~∇uε2 + βε~∇u

ε
3

)
∈ Lp ([0, T ]× Ω)

and from Lemma (3.1) we see that

uε
2
→ χ1 (y)u1 (x) + χ2 (y) (αu2 (x, t) + βU3 (x, y, t))

and

ε~∇uε
2
→ χ2 (y)β~∇yU3 (x, y, t) .

Now let ~ϕ ∈ C∞0

(
Ω, C∞#

(
Y N
))
and note that

∫
Ω

ε~∇uε (x, t) · ~ϕ
(
x,
x

ε

)
dx =

−

∫
Ω

uε (x, t)
[
ε~∇ · ~ϕ

(
x,
x

ε

)
+ ~∇y · ~ϕ

(
x,
x

ε

)]
dx.

Taking two-scale limits on both sides yields

(3.13)

∫
Ω

∫
Y

βχ2 (y) ~∇yU3 (x, y, t) · ~ϕ (x, y) dxdy =

−

∫
Ω

∫
Y

(χ1 (y)u1 (x, t) + χ2 (y) (αu2 (x, t) + βU3 (x, y, t))) ~∇y · ~ϕ (x, y) dxdy.
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The divergence theorem shows that the left hand side of (3.13) is simply

∫
Ω

∫
Y2

β~∇yU3 (x, y, t) · ~ϕ (x, y) dxdy = −

∫
Ω

∫
Y2

βU3 (x, y, t) ~∇y · ~ϕ (x, y) dxdy

+

∫
Ω

∫
∂Y2

βU3 (x, s, t) ~ϕ (x, s) · ~ν2dxds

while the right hand side of (3.13) can be written

−

∫
Ω

∫
Y1

u1 (x, t) ~∇y · ~ϕ (x, y) dxdy

−

∫
Ω

∫
Y2

(αu2 (x, t) + βU3 (x, y, t)) ~∇y · ~ϕ (x, y) dxdy.

We see that (3.13) yields

∫
Ω

∫
∂Y2

βU3 (x, s, t) ~ϕ (x, s) · ~ν2dxds =

−

∫
Ω

∫
Y1

u1 (x, t) ~∇y · ~ϕ (x, y) dxdy −

∫
Ω

∫
Y2

αu2 (x, t) ~∇y · ~ϕ (x, y) dxdy

= −

∫
Ω

∫
∂Y1

u1 (x, t) ~ϕ (x, s) · ~ν1dxds−

∫
Ω

∫
∂Y2

αu2 (x, t) ~ϕ (x, s) · ~ν2dxds.

Since U3 and ~ϕ are periodic on Γ2,2, this shows that

βU3 + αu2 = u1 on ∂Y1 ∩ ∂Y2 ≡ Γ1,2 .(3.14)

Next we seek a variational statement which is satisfied by the limits obtained in
Lemma 3.1. Choose smooth functions

ϕj ∈ L
p
(
0, T ;W 1,p (Ω)

)
, j = 1, 2, Φj ∈ L

p
(
(0, T )× Ω;W 1,p

# (Y )
)
, j = 1, 2, 3,

such that

∂ϕj

∂t
∈ Lp

′ (
0, T ;W 1,p (Ω)′

)
, j = 1, 2,

∂Φ3
∂t
∈ Lp

′
(
(0, T )× Ω;W 1,p

# (Y )
′
)
,

and βΦ3 (x, y, t) = ϕ1 (x, t)−αϕ2 (x, t) for y ∈ Γ1,2. In the following we shall use
the notation (·),t to represent the time derivative

∂
∂t (·). Apply (2.15) to the triple

[ϕ1 (x, t)+εΦ1
(
x, x
ε
, t
)
, ϕ2 (x, t)+εΦ2

(
x, x
ε
, t
)
, Φε3
(
x, x
ε
, t
)
] in Lp (0, T ;V ε), where

we define Φε3 (x, y, t) ≡ Φ3 (x, y, t)+
ε
βΦ1 (x, y, t)−

εα
β Φ2 (x, y, t). Then integrate by



EJDE–1999/02 FLOW IN A PARTIALLY FISSURED MEDIUM 11

parts in t to obtain

(3.15) −
2∑
j=1

∫ T
0

∫
Ωεj

cεju
ε
j (ϕj,t + εΦj,t) dxdt −

∫ T
0

∫
Ωε2

cε3u
ε
3Φ
ε
3,t dxdt

+
2∑
j=1

∫
Ωεj

cεju
ε
j (x, T )

(
ϕj (x, T ) + εΦj

(
x,
x

ε
, T
))

dx+

∫
Ωε2

cε3u
ε
3 (x, T )Φ

ε
3

(
x,
x

ε
, T
)
dx

−
2∑
j=1

∫
Ωεj

cεju
0
j

(
ϕj (x, 0) + εΦj

(
x,
x

ε
, 0
))

dx−

∫
Ωε2

cε3u
0
3Φ
ε
3

(
x,
x

ε
, 0
)
dx

+

2∑
j=1

∫ T
0

∫
Ωεj

µεj

(
x, ~∇uεj (x, t)

)
· ~∇
(
ϕj (x, t) + εΦj

(
x,
x

ε
, t
))

dxdt

+

∫ T
0

∫
Ωε2

µε3

(
x, ε~∇uε3 (x, t)

)
· ε

[
~∇Φε3

(
x,
x

ε
, t
)
+
1

ε
~∇yΦ

ε
3

(
x,
x

ε
, t
)]

dxdt = 0.

Letting ε→ 0 in (3.15) now yields

(3.16) −
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

cj (y)uj (x, t)ϕj,t (x, t) dydxdt

−

∫ T
0

∫
Ω

∫
Y2

c3 (y)U3 (x, y, t)Φ3,t (x, y, t) dydxdt

+

2∑
j=1

∫
Ω

∫
Yj

cj (y)u
∗
j (x)ϕj (x, T ) dydx+

∫
Ω

∫
Y2

c3 (y)u
∗
3 (x) Φ3 (x, y, T )dydx

−
2∑
j=1

∫
Ω

∫
Yj

cj (y)u
0
j (x)ϕj (x, 0) dydx−

∫
Ω

∫
Y2

c3 (y)u
0
3 (x) Φ3 (x, y, 0) dydx

+

2∑
j=1

∫ T
0

∫
Ω

∫
Yj

~gj (x, y, t) ·
[
~∇ϕj (x, t) + ~∇yΦj (x, y, t)

]
dydxdt

+

∫ T
0

∫
Ω

∫
Y2

~g3 (x, y, t) · ~∇yΦ3 (x, y, t) dydxdt = 0.

We can summarize the preceding as follows. Define the energy space

W ≡ {[u1, u2, U1, U2, U3] ∈ W
1,p(Ω)2 × Lp

(
Ω;W 1,p

# (Y )
)3
:

βU3(x, y) = u1(x) − αu2(x) for y ∈ Γ1,2}.

We have shown that the limit obtained in Lemma 3.1 satisfies

[u1, u2, U1, U2, U3] ∈ L
p (0, T ;W )

and by density, (3.16) holds for all [ϕ1, ϕ2, Φ1, Φ2, Φ3] ∈ Lp (0, T ;W ) such that
d
dt
[ϕ1, ϕ2, 0, 0, Φ3] ∈ Lp

′
(0, T ;W ′). It remains to find the strong form of the

problem and to identify the flux terms ~gj.
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4. The Homogenized Problem

We shall decouple the variational identity (3.16) in order to obtain the strong
form of our homogenized system. This will be accomplished by making special
choices of the test functions [ϕ1, ϕ2, Φ1, Φ2, Φ3] as above, and the strong form will
be displayed below in Corollary 5.2. First we choose ϕ1, ϕ2, Φ1, Φ2 all equal to zero,
and choose Φ3 as above and to vanish at t = 0 and t = T and on Γ1,2. Together
with the identity (3.14) from above, this gives at a.e. x ∈ Ω the cell system

c3 (y)
∂U3 (x, y, t)

∂t
− ~∇y · ~g3 (x, y, t) = 0 , y ∈ Y2 ,(4.1)

U3 and ~g3 · ~ν are Y -periodic on Γ2,2 ,(4.2)

βU3 = u1 − αu2 on Γ1,2 .(4.3)

Next let ϕ1 be as above and vanish at t = 0 and t = T , and choose Φ3 by the re-
quirement that βΦ3(x, y, t) = ϕ1(x, t) for y ∈ Y2. With the remaining test functions
all zero, this yields the macro-fissure equation

(4.4)

(∫
Y1

c1(y) dy

)
∂u1 (x, t)

∂t
+
1

β

∂

∂t

∫
Y2

c3(y)U3(x, y, t) dy

= ~∇ ·

∫
Y1

~g1 (x, y, t) dy .

Similarly we choose ϕ2 as above and vanishing at t = 0 and t = T and let Φ3 be
determined by βΦ3(x, y, t) = −αϕ2(x, t) for y ∈ Y1 to obtain the macro-matrix
equation

(4.5)

(∫
Y2

c2(y) dy

)
∂u2 (x, t)

∂t
−
α

β

∂

∂t

∫
Y2

c3(y)U3(x, y, t) dy

= ~∇ ·

∫
Y2

~g2 (x, y, t) dy .

Finally, by setting the test functions ϕ1, ϕ2, Φ3 all equal to zero and by choosing
Φ1, Φ2 as above, we obtain the pair of systems

~∇y · ~gj (x, y, t) = 0 y ∈ Yj ,(4.6)

~gj · ~ν = 0 on Γ1,2 and ~gj · ~ν is Y -periodic on ∂Yj ∩ ∂Y for j = 1, 2.(4.7)

Note that (4.1) and (4.4) and (4.5) hold in Lp
′
((0, T )×Ω;W 1,p

# (Y )
′) and Lp

′
(0, T ;

W 1,p(Ω)′), respectively. Substituting (4.1)-(4.7) in (3.16) gives the boundary con-
ditions ∫

Y1

~g1 (x, y, t) dy · ~ν1 = 0 and(4.8) ∫
Y2

~g2 (x, y, t) dy · ~ν2 = 0 on ∂Ω(4.9)

and the initial and final conditions

U3 (x, y, 0) = u
0
3 (x) , U3 (x, y, T ) = u

∗
3 (x, y)(4.10)

and

uj (x, 0) = u
0
j (x) , uj (x, T ) = u

∗
j (x) for j = 1, 2(4.11)
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in L2 (Ω× Y2) and L2 (Ω) respectively. The final conditions appearing above will
be used only to identify the functions ~gi (x, y, t) below; they are not part of the
problem. Note also that using (4.10) and (4.11), integrating by parts in t in (3.16) ,
and replacing the test functions ϕj (for j = 1, 2) and Φj (for j = 1, 2, 3) with
sequences converging to uj and Uj gives the following “homogenized” version of
(3.11) ,

(4.12)
1

2

2∑
j=1

∫
Ω

∫
Yj

cj (y) |uj (x, T )|
2
dydx+

1

2

∫
Ω

∫
Y2

c3 (y) |U3 (x, y, T )|
2
dydx

−


1
2

2∑
j=1

∫
Ω

∫
Yj

cj (y)
∣∣u0j (x)∣∣2 dydx + 12

∫
Ω

∫
Y2

c3 (y)
∣∣u03 (x)∣∣2 dydx




+

2∑
j=1

∫ T
0

∫
Ω

∫
Yj

~gj (x, y, t) ·
[
~∇uj (x, t) + ~∇yUj (x, y, t)

]
dydxdt

+

∫ T
0

∫
Ω

∫
Y2

~g3 (x, y, t) · ~∇yU3 (x, y, t) dydxdt = 0.

It remains to find ~g1, ~g2 and ~g3 in terms u1, u2, U1, U2 and U3. To this end, let ~φ

and ~ξ be in C∞0

(
[0, T ]× Ω;C∞# (Y )

)N
and Φ1,Φ2,Φ3 ∈ C∞0

(
[0, T ]× Ω;C∞# (Y )

)
and for ε > 0, define the triple of functions

ηεj (x, t) = χj

(x
ε

)
~∇uj (x, t) + εχj

(x
ε

)
~∇Φj

(
x,
x

ε
, t
)
+ λ~φ

(
x,
x

ε
, t
)
, j = 1, 2,

and

ηε3 (x, t) = χ2

(x
ε

)(
ε~∇Φ3

(
x,
x

ε
, t
)
+ λ~ξ

(
x,
x

ε
, t
))

.

Note that each ηεj (x, t) and (because of the continuity assumption) µj
(
x
ε
, ηεj (x, t)

)
(j = 1, 2, 3) arises from an admissible test function, and we have the two-scale
convergence

ηεj
2
→ ηj (x, y, t) ≡ χj (y) ~∇uj (x, t) + χj (y) ~∇yΦj (x, y, t) + λ~φ (x, y, t) , j = 1, 2,

ηε3
2
→ η3 (x, y, t) ≡ χ2 (y)

(
~∇yΦ3 (x, y, t)

)
+ λ~ξ (x, y, t) .

By (2.2) we have

(4.13)

2∑
j=1

∫ T
0

∫
Ωεj

(
µεj

(
x, ~∇uεj

)
− µεj

(
x, ηεj
))(

~∇uεj − η
ε
j

)
dxdt

+

∫ T
0

∫
Ωε2

(
µε3

(
x, ε~∇uε3

)
− µε3 (x, η

ε
3)
)(

ε~∇uε3 − η
ε
3

)
dxdt ≥ 0.
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Expanding (4.13) and employing (3.11) at t = T gives

1

2

2∑
j=1

{∫
Ωεj

cεj

(∣∣u0j ∣∣2 − ∣∣uεj (x, T )∣∣2) dx
}
+
1

2

∫
Ωε2

cε3

(∣∣u03∣∣2 − |uε3 (x, T )|2) dx
−

2∑
j=1

∫ T
0

∫
Ωεj

{
µεj
(
x, ηεj
)
·
(
~∇uεj − η

ε
j

)
+ µεj

(
x, ~∇uεj

)
· ηεj

}
dxdt

−

∫ T
0

∫
Ωε2

{
µε3 (x, η

ε
3) ·
(
ε~∇uε3 − η

ε
3

)
+ µε3

(
x, ε~∇uε3

)
· ηε3

}
dxdt ≥ 0.

Let ε→ 0 and apply the two-scale convergence results above to obtain

(4.14)
1

2

2∑
j=1

∫
Ω

∫
Yj

cj (y)
∣∣u0j (x)∣∣2 dydx+ 12

∫
Ω

∫
Y2

c3 (y)
∣∣u03 (x)∣∣2 dydx

−
1

2
lim
ε→0


 2∑
j=1

∫
Ωεj

cεj
∣∣uεj (x, T )∣∣2 dx+ 12

∫
Ωε2

cε3 |u
ε
3 (x, T )|

2
dx




−
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

µj (y, ηj (x, y, t)) ·
(
~∇yUj (x, y)− ~∇yΦj (x, y, t)− λ~φ (x, y, t)

)
dydxdt

−
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

~gj (x, y, t) ·
(
~∇uj (x, t) + ~∇yΦj (x, y, t) + λ~φ (x, y, t)

)
dydxdt

−

∫ T
0

∫
Ω

∫
Y2

µ3 (y, η3 (x, y, t))·
(
~∇yU3 (x, y, t)− ~∇yΦ3 (x, y, t)− λ~ξ (x, y, t)

)
dydxdt

−

∫ T
0

∫
Ω

∫
Y2

~g3 (x, y, t) ·
(
~∇yΦ3 (x, y, t) + λ~ξ (x, y, t)

)
dydxdt ≥ 0.

Set ~φ = χ1~θ1 + χ2~θ2 where ~θj ∈ C∞0 ([0, T ]× Ω, C
∞ (Yj)) and χj~θj is Y -periodic.

Following [1] we note that since each µj is continuous in the second variable, we

may replace Φj by sequences converging strongly in L
p((0, T )× Ω;W 1,p

# (Y )/R) to

χ1 (y)U1 (x, y, t), χ2 (y)U2 (x, y, t) and χ2 (y)U3 (x, y, t) for j = 1, 2 and 3, respec-
tively. Thus (4.14) becomes

(4.15)
1

2

2∑
j=1

∫
Ω

∫
Yj

cj (y)
∣∣u0j (x)∣∣2 dydx+ 12

∫
Ω

∫
Y2

c3 (y)
∣∣u03 (x)∣∣2 dydx

−
1

2
lim
ε→0


 2∑
j=1

∫
Ωεj

cεj
∣∣uεj (x, T )∣∣2 dx+ 12

∫
Ωε2

cε3 |u
ε
3 (x, T )|

2
dx



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+

2∑
j=1

∫ T
0

∫
Ω

∫
Yj

µj

(
y, ~∇uj (x, t) + ~∇yUj (x, y, t) + λ~θj (x, y, t)

)
·λ~θj (x, y, t) dydxdt

−
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

~gj (x, y, t) ·
(
~∇uj (x, t) + ~∇yUj (x, y, t) + λ~θj (x, y, t)

)
dydxdt

+

∫ T
0

∫
Ω

∫
Y2

µ3

(
y, ~∇yU3 (x, y, t) + λ~ξ (x, y, t)

)
·
(
λ~ξ (x, y, t)

)
dydxdt

−

∫ T
0

∫
Ω

∫
Y2

~g3 (x, y, t) ·
(
~∇yU3 (x, y, t) + λ~ξ (x, y, t)

)
dydxdt ≥ 0.

We now employ (4.10) , (4.11) and (4.12) in (4.15) to obtain

(4.16)
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

µj

(
y, ~∇uj (x, t) + ~∇yUj (x, y, t) + λ~θj (x, y, t)

)
· λ~θj (x, y, t) dydxdt

+

∫ T
0

∫
Ω

∫
Y2

µ3

(
y, ~∇yU3 (x, y, t) + λ~ξ (x, y, t)

)
· λ~ξ (x, y, t) dydxdt

−
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

~gj (x, y, t) ·λ~θj (x, y, t) dydxdt−

∫ T
0

∫
Ω

∫
Y2

~g3 (x, y, t) ·λ~ξ (x, y, t) dydxdt

≥
1

2
lim
ε→0


 2∑
j=1

∫
Ωεj

cεj
∣∣uεj (x, T )∣∣2 dx+ 12

∫
Ωε2

cε3 |u
ε
3 (x, T )|

2
dx




−
1

2

2∑
j=1

∫
Ω

∫
Yj

cj (y) |uj (x, T )|
2
dydx+

1

2

∫
Ω

∫
Y2

c3 (y) |U3 (x, y, T )|
2
dydx.

The right hand side of (4.16) is non-negative by [1, Proposition 1.6], so dividing by
λ and letting λ→ 0 gives

(4.17)
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

[
µj

(
y, ~∇uj (x, t) + ~∇yUj (x, y, t)

)
− ~gj (x, y, t)

]
·~θj (x, y, t) dydxdt

+

∫ T
0

∫
Ω

∫
Y2

[
µ3

(
y, ~∇yU3 (x, y, t)

)
− ~g3 (x, y, t)

]
· ~ξ (x, y, t) dydxdt ≥ 0.

This holds for all ~θ1, ~θ2, and ~ξ, so

µj

(
y, ~∇uj (x, t) + ~∇yUj (x, y, t)

)
= ~gj (x, y, t) in Yj , j = 1, 2,

and

µ3

(
y, ~∇yU3 (x, y, t)

)
= ~g3 (x, y, t) in Y2.

These identities complete the strong form of the homogenized problem. We shall
summarize and complement these results in the following section.
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5. The Main Result

Theorem 5.1. Assume that (2.1)-(2.4) hold, that β > 0, and that u01, u
0
2, and u

0
3 ∈

L2(Ω) are given. Then the limits [u1, u2, U1, U2, U3] established above in Lemma
3.1 are the unique solution

uj ∈ L
p(0, T ;W 1,p(Ω)), j = 1, 2, Uj ∈ L

p((0, T )× Ω;W 1,p
# (Yj)/R), j = 1, 2, 3,

with βU3(x, y, t) = u1(x, t)− αu2(x, t) for y ∈ Γ1,2 of the homogenized system

(5.1) −
2∑
j=1

∫ T
0

∫
Ω

∫
Yj

cj (y)uj (x, t)ϕj,t (x, t) dydxdt

−

∫ T
0

∫
Ω

∫
Y2

c3 (y)U3 (x, y, t)Φ3,t (x, y, t) dydxdt

−
2∑
j=1

∫
Ω

∫
Yj

cj (y)u
0
j (x)ϕj (x, 0) dydx−

∫
Ω

∫
Y2

c3 (y)u
0
3 (x) Φ3 (x, y, 0) dydx

+

2∑
j=1

∫ T
0

∫
Ω

∫
Yj

µj

(
y, ~∇uj (x, t) + ~∇yUj (x, y, t)

)
·
[
~∇ϕj (x, t) + ~∇yΦj (x, y, t)

]
dydxdt

+

∫ T
0

∫
Ω

∫
Y2

µ3

(
y, ~∇yU3 (x, y, t)

)
· ~∇yΦ3 (x, y, t) dydxdt = 0,

for all

ϕj ∈ L
p
(
0, T ;W 1,p (Ω)

)
, j = 1, 2, Φj ∈ L

p
(
(0, T )× Ω;W 1,p

# (Yj)
)
, j = 1, 2, 3,

for which

∂ϕj

∂t
∈ Lp

′ (
0, T ; (W 1,p (Ω))′

)
, j = 1, 2,

∂Φ3
∂t
∈ Lp

′
(
(0, T )× Ω; (W 1,p

# (Yj))
′
)
,

βΦ3 (x, y, t) = ϕ1 (x, t)− αϕ2 (x, t) for y ∈ Γ1,2,

and

ϕ1 (x, T ) = ϕ2 (x, T ) = Φ3 (x, y, T ) = 0.

Only the uniqueness needs yet to be verified, and this will follow below. In
particular, U1 and U2 are determined within a constant for each t ∈ (0, T ), so each
of these is unique up to a corresponding function of t. We shall check that (5.1)
is just the variational form of the Cauchy problem for an appropiate evolution
equation in Banach space, and that the corresponding strong problem is described
as follows. The state space is given by

H ≡ {[ϕ1, ϕ2, Φ3] ∈ L
2(Ω)× L2(Ω)× L2

(
Ω;L2(Y2)

)
with the scalar product

(u, ϕ)H ≡
2∑
j=1

∫
Ω

∫
Yj

cj(y) dy uj(x)ϕj(x) dx +

∫
Ω

∫
Y2

c3(y)U3(x, y)Φ3(x, y) dy dx.
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Define the energy space

V ≡ {[ϕ1, ϕ2, Φ3] ∈ H ∩
(
W 1,p(Ω)×W 1,p(Ω)× Lp

(
Ω;W 1,p

# (Y2)
))
:

βΦ3(x, y) = ϕ1(x)− αϕ2(x) for y ∈ Γ1,2}

and the corresponding evolution space by V = Lp(0, T ;V ).

Corollary 5.2. The triple u(·) ≡ [u1(·), u2(·), U3(·)] is the unique solution u(·) ∈ V
with u′(·) ∈ V ′ of the strong homogenized system(∫

Y1

c1(y) dy

)
∂u1 (x, t)

∂t
+
1

β

∂

∂t

∫
Y2

c3(y)U3(x, y, t) dy

= ~∇ ·

∫
Y1

µ1

(
y, ~∇u1 (x, t) + ~∇yU1 (x, y, t)

)
dy ,

(∫
Y2

c2(y) dy

)
∂u2 (x, t)

∂t
−
α

β

∂

∂t

∫
Y2

c3(y)U3(x, y, t) dy

= ~∇ ·

∫
Y2

µ2

(
y, ~∇u2 (x, t) + ~∇yU2 (x, y, t)

)
dy ,

c3 (y)
∂U3 (x, y, t)

∂t
− ~∇y · µ3

(
y, ~∇yU3 (x, y, t)

)
= 0 , y ∈ Y2 ,

U3 (x, y, t) and µ3

(
y, ~∇yU3 (x, y, t)

)
· ~ν are Y -periodic on Γ2,2 ,

βU3 = u1 − αu2 on Γ1,2 ,

with the boundary conditions∫
Y1

µ1

(
y, ~∇u1 (x, t) + ~∇yU1 (x, y, t)

)
dy · ~ν1 = 0 and∫

Y2

µ2

(
y, ~∇u2 (x, t) + ~∇yU2 (x, y, t)

)
dy · ~ν2 = 0 on ∂Ω,

and the initial conditions

uj (x, 0) = u
0
j (x) for j = 1, 2, U3 (x, y, 0) = u

0
3 (x) ,

where U1 ∈ Lp((0, T ) × Ω;W 1,p
# (Y1)/R), U2 ∈ Lp((0, T ) × Ω;W 1,p

# (Y2)/R) are
solutions of the local problems

~∇y · µj
(
y, ~∇yUj (x, y, t) + ~∇uj (x, t)

)
= 0 , y ∈ Yj ,

µj

(
y, ~∇yUj (x, y, t) + ~∇uj (x, t)

)
· ν = 0 on Γ1,2, Y -periodic on Γ2,2 j = 1, 2.

Proof. Define an operator A : V → V ′ by

(5.2) 〈Au, ϕ〉 ≡
2∑
j=1

∫
Ω

∫
Yj

{µj(y, ~∇uj (x) + ~∇yUj(x, y)} · (~∇ϕj (x)) dydx

+

∫
Ω

∫
Y3

{µ3(y, ~∇yU3(x, y)} · (~∇yΦ3(x, y)) dydx,

u = [u1, u2, U3], ϕ = [ϕ1, ϕ2,Φ] ∈ V,
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where U1(x, y) and U2(x, y) are determined by

(5.3) Uj ∈ L
p
(
Ω;W 1,p

# (Yj)
)
:∫

Ω

∫
Yj

{µj(y, ~∇yUj(x, y) + ~∇uj (x)} · (~∇yΦ(x, y)) dydx = 0,

Φ ∈ Lp
(
Ω;W 1,p

# (Yj)
)
,

for j = 1, 2. It has been already shown in Section 4 that [u1, u2, U1, U2, U3] satisfies
the homogenized system of Theorem 5.1, and from this it follows that u(·) satisfies
the variational form of the Cauchy problem (1.3). It is easy to check that A is
monotone and bounded V → V ′, so u(·) is the unique solution as well of the strong
problem (1.2), and this is realized as the strong homogenized system of Corollary
5.2.

Remark 5.1. Theorem 5.1 describes the limiting form of the original micro-model
from Section 2 as a system for the five unknowns u1, u2, U1, U2, and U3. This system
can also be realized from an evolution equation based on the variational identity
(3.16) on the space W , but this would be of degenerate type: the time derivatives
of U1 and U2 do not occur in the system. However, by following the suggestion
implicit in Corollary 5.2 we were able to incorporate the local functions U1 and U2
in the definition of the operator A and thereby to write our limiting system as a
non-degenerate evolution equation on the space V with three components.

In the linear case, one can carry this decoupling even further and represent each
of the functions U1 and U2 in terms of the corresponding u1 or u2 in order to obtain
a closed system for the remaining three unknowns. Suppose that we have symmetric
Y -periodic coefficient functions a1ij(y) ∈ C (Y1) and a

2
ij(y) ∈ C (Y2) (which are zero

off their respective domains). We assume that there is a c0 > 0, independent of y,
such that

N∑
i,j=1

akij(y)ξiξj ≥ c0|ξ|
2, y ∈ Yk for k = 1, 2.

Extending each akij to all of R by periodicity, we define for k = 1, 2 and
~ξ ∈ RN

µεk

(
x, ~ξ
)
i
=

N∑
j=1

akij

(x
ε

)
ξj .

Then with p = 2, the results developed above apply. For each of k = 1, 2 we isolate
from (5.1) the following problem for Uk(x, y, t):

Find Uk ∈ L2
(
(0, T )× Ω;W 1,2

# (Yk)
)
such that

(5.4)

∫ T
0

∫
Ω

∫
Yk

µk

(
y, ~∇uk (x, t) + ~∇yUk (x, y, t)

)
· ~∇yΦk (x, y, t) dydxdt = 0

for all Φk ∈ L
2
(
(0, T )× Ω;W 1,2

# (Yk)
)
.

The “input” to this problem is ~∇uk (x, t), independent of y, so this permits us to
separate variables with the following construction:
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For 1 ≤ i ≤ N , define W k
i (y) to be the solution of

−~∇y ·
[
µk(y, ~∇yW

k
i (y) + ~ei)

]
= 0 in Yk ,

µk(y, ~∇yW
k
i (y) + ~ei) · ~n = 0 on ∂Yk ∼ ∂Y

W k
i (·) is Y -periodic.

Then by linearity we can write

Uk(x, y, t) =

N∑
j=1

∂uk

∂xj
(x, t)Wj(y) .

If we substitute this into (5.1) with Φk(x, y, t) =
∑N
j=1

∂ϕk(x,t)
∂xj

W k
j (y), we obtain

the decoupled homogenized system

−
2∑
k=1

∫ T
0

∫
Ω

c̃kuk (x, t)ϕk,t (x, t) dxdt −
2∑
k=1

∫
Ω

c̃ku
0
k (x)ϕk (x, 0) dx

+

2∑
k=1

∫ T
0

∫
Ω

∫
Yk

N∑
i,j=1

Akij
∂uk

∂xi
(x, t)

∂ϕk

∂xj
(x, t) dydxdt = 0 for k = 1, 2

−

∫ T
0

∫
Ω

∫
Y2

c3 (y)U3 (x, y, t)Φ3,t (x, y, t) dydxdt

−

∫
Ω

∫
Y2

c3 (y)u
0
3 (x)Φ3 (x, y, 0)dydx

+

∫ T
0

∫
Ω

∫
Y2

µ3

(
y, ~∇yU3 (x, y, t)

)
· ~∇yΦ3 (x, y, t) dydxdt = 0.

where the coefficients are given by

c̃k =

∫
Yk

ck dy , Akij =

∫
Yk

µk(y, ~∇yW
k
i (y) + ~ei) · (~∇yW

k
j (y) + ~ej) dy .

These are the usual effective coefficients which are constants that result from the
“averaging” due to the homogenization procedure.
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