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EXISTENCE OF SOLUTIONS TO A PARATINGENT EQUATION
WITH DELAYED ARGUMENT

LOTFI BOUDJENAH

Abstract. In this work we prove the existence of solutions of a class of

paratingent equations with delayed argument,

(Pt x)(t) ⊂ F ([x]t) for t ≥ 0

with the initial condition x(t) = ξ(t) for t ≤ 0. We use a fixed point theorem

to obtain a solution and then provide an estimate for the solution.

1. Introduction

The first works on differential inclusions were published in 1934-35 by Marchaud
[17] and Zaremba [26]. They used terms of contingent or paratingent equations.
Later, Wasewski and his collaborators published a series of works and developed
the elementary theory of differential inclusions [24, 25]. Within few years after
the first publications, the differential inclusions resulted to be the basic tool in the
optimal control theory. Starting from the pioneering work of Myshkis [18], there
exists the whole series of papers devoted to paratingent and contingent differential
inclusions with delay; see for example Campu [6, 7] and Kryzowa [15]. After this,
many works appear on differential inclusions with delay, for example Deimling [8],
Haddad [9, 10, 11, 12] Kamenskii et al. [14] and Zygmunt [27]. Recent results for
differential inclusions with a finite delay r > 0 in spaces of Banach were obtained by
Syam [23] and Castaing-Ibrahim [7]. Recently, Raczynski has successfully applied
differential inclusions to simulation and modelling theory [19, 20, 21]. A more
extended survey on differential inclusions can be found in the book of Aubin and
Cellina [1], the book of K. Deimling [8], the book of M. Kamenskii [14] and the
book of G. V. Smirnov [22].

In this work we study the existence of the solutions of the paratingent equation
with delayed argument,

(Pt x)(t) ⊂ F ([x]t) for t ≥ 0,

x(t) = ξ(t) for t ≤ 0 .
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2. Preliminaries

Let (E, ρ) and (E′, ρ′) two metric spaces. By CompE, we denote the set of
all the nonempty and compact subsets of E. When E is a vector space, Conv E
denotes the set of all convex elements of CompE.

A set-valued map, F : E → Comp E′, is called upper semi-continuous in E, and
denoted by u.s.c , if for any point a ∈ E and all ε > 0, there exists δ > 0 such that
x ∈ B(a)δ ⇒ F (x) ⊂ B(F (a))ε where B(a)δ = B(a, δ) = {x ∈ E : ρ(a, x) < δ} and
B(F (a))ε = B(F (a), ε) = {y ∈ E′ such as z ∈ F (a) and ρ′(y, z) < ε}. (see [2])

On the upper semi-continuity of a set-valued map, we have the following lemma
(see [13]).

Lemma 2.1. Let (E, ρ) and (E′, ρ′) be two metric spaces. A set-valued map,
F : E → Comp E′, is u.s.c if and only if, for all sequences {xi} ∈ E and {yi} ∈ E′

such that {xi} → x0 and {yi} ∈ F (xi), there exists a subsequence {yik
} of {yi}

which converges to y0 ∈ F (x0).

Let C the space of continuous functions x : R → Rn with the topology defined by
an almost uniform convergence (i.e. a uniform convergence on each compact interval
of R). It is well know that the almost uniform convergence in C is equivalent to
the convergence by the metric ρ defined as follows

ρ(x, y) =
∞∑

i=1

1
2i

min{(1, sup |x(t)− y(t)|),−i ≤ t ≤ i} for x, y ∈ C.

Then C is a metric locally convex linear topological space. Let β < 0 be a fixed real
number and let I = [0,∞[⊂ R. If x ∈ C, the symbol [x]t denotes the restriction
of x on the interval [β, t] when t ∈ I and ‖x‖t = max{|x(s)|, β ≤ s ≤ t} with
|x| = max{|x1|, |x2|, . . . , |xn|} for x = (x1, x2, . . . , xn) ∈ Rn.

Let G denote the metric space whose elements are functions [x]t, [y]u, . . . , where
t ∈ I, u ∈ I, the distance between two functions [x]t, [y]u , being understood as a
distance of their graphs in R× Rn in the Hausdorff sense.

Paratingent of a function. Having a function x ∈ C and t ∈ I, the set of limit
points

lim
x(ui)− x(si)

ui − si
= α ,

where ui ∈ I, si ∈ I, ui 6= si (i = 1, 2, . . . ), and lim ui = lim si = t, is called the
paratingent of x at the point t and denoted by (Ptx)(t). It is easy to see that (Ptx)
maps the interval I to the family of the nonempty and closed subsets of Rn (see
[3]).

Paratingent equation with a delayed argument. Let a set-valued map F :
G → Comp Rn, be a relation of the form

(Pt x)(t) ⊂ F ([x]t) where t ∈ I, x ∈ C. (2.1)

is called paratingent equation with a delayed argument. Every function x ∈ C
satisfying (2.1) will be called the solution of these equation.

The generalized problem of Cauchy for (2.1) consists in the search for a solution
of (2.1) which will be satisfy the initial condition

x(t) = ξ(t) for t ∈ [β, 0] (2.2)
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where the function ξ ∈ C , called the initial function, is given in advance (i.e. the
solution of (2.1) must contain a certain curve given in advance).

3. Existence of solutions

To show that the paratingent equation with delayed argument (2.1) with the
initial condition (2.2) has at least one solution on interval [0, T ] (T > 0 an arbitrary
real positive number), we assume the following hypothesis:

(H1) The set-valued mapping F : G → Conv Rn is upper semi-continuous and
satisfies the condition

F ([x]t) ⊂ B(0, w(t, ‖x‖t)) for t ≥ 0 (3.1)

where B(0, r) denotes the closed ball with center at 0 of Rn and radius
r, w(t, y) is a continuous function from I × I to I, increasing in y and
such that the ordinary differential equation y′ = w(t, y), with the initial
condition y(0) = A (an arbitrary real positive number) has a maximal
solution on all intervals I and for all A.

Theorem 3.1. Under the hypothesis (H1), for each ζ, the paratingent equation
with delayed argument (2.1)–(2.2) has a solution on [0, T ], with arbitrary T > 0.

For the proof of this theorem we need some lemmas. First we will state Opial’s
theorem [16].

Lemma 3.2. Let w(t, y) a continuous function from I × I to I, increasing with
respect to y and M(t) a maximal solution of the ordinary differential equation y′ =
w(t, y), with the initial condition y(t0) = y0, on the interval [t0, T ], where T > t0
(T an arbitrary positive real number). Let m(t) be function which is continuous and
increasing on [t0, T ] and such that m′(t) ≤ w(t, m(t)) almost everywhere on [t0, T ].
If m(t0) ≤ y0, then m(t) ≤ M(t) for all t ∈ [t0, T ].

Lemma 3.3. Let x, y ∈ C. If for all t ≥ 0,

(Pty)(t) ⊂ B(0, w(s, ‖x‖t) (3.2)

Then for all t ≥ 0 and for all h ≥ 0 we have

|y(t + h)− y(t)| ≤
∫ t+h

t

w(s, ‖x‖s)ds (3.3)

Proof. Let T be fixed in I,

Q(h) =
∫ t+h

t

w(s, ‖x‖s)ds + 2ε(h + 1) ,

and R(h) = |y(t + h) − y(t)|. It is suffices to prove that for each ε > 0 and each
h > 0 we have

R(h) < Q(h) . (3.4)
Suppose that there exist an ε > 0 such that (3.4) is not satisfied, and let h0 the lower
bound of the set {h > 0 : R(h) ≥ Q(h)}. Since R(0) = 0 and Q(0) = 2ε, we have
R(0) < Q(0), the number h0is necessarily positive, i.e., h0 > 0. If R(h0) > Q(h0),
there would be exist a real number h′ ∈]0, h0[ such that R(h′) = Q(h0), contrary
to the definition of h0. Therefore, we obtain

R(h0) = Q(h0) = |y(t + h0)− y(t)|. (3.5)
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Let {hi}, i = 1, 2, . . . , be an increasing sequence of positives numbers converging
to h0. We have R(hi) < Q(hi) for i = 1, 2, . . . , from (3.5), we have

|y(t + h0)− y(t + hi)|
h0 − hi

≥ |y(t + h0)− y(t)|
h0 − hi

− |y(t + hi)− y(t)|
h0 − hi

≥ |Q(t + h0)−Q(t + hi)|
h0 − hi

= 2ε +
1

h0 − hi

∫ t0+h0

t0+hi

w(s, ‖x‖s)ds

= 2ε + w(u, ‖x‖u) ,

where u ∈ [t0 + hi, t0 + h0]. Therefore, starting at a certain integer N we have

|y(t + h0)− y(t + hi)|
h0 − hi

> ε + w(t + h0, ‖x‖t+ho
) .

Passing to limit, as i →∞, we have

lim
|y(t + h0)− y(t + hi)|

h0 − hi
≥ ε + w(t + h0, ‖x‖t+ho

) > w(t + h0, ‖x‖t+ho
) .

However,

lim
|y(t + h0)− y(t + hi)|

h0 − hi
∈ (Pt x)(t + h0) ;

thus we obtain a contradiction with hypothesis (3.2). Therefore, (3.3) must be true
for all t ∈ I and all h > 0. �

Lemma 3.4. If x ∈ C and (Pt x)(t) ⊂ B(0, w(t, ‖x‖t)) for t ∈ I, then for all
t > 0 we have ‖x‖t ≤ M(t) where M(t) is the maximal solution of the ordinary
differential equation y′ = w(t, y), with the initial condition y(0) = ‖x‖0.

Proof. If t ∈ I and u ∈ [0, t], we have

|x(u)| = |x(u)− x(0) + x(0)| ≤ |x(0)|+ |x(u)− x(0)|.
However, |x(0)| ≤ max{|x(s)|, β ≤ s ≤ 0}, and according to Lemma 3.3 we obtain

|x(u)− x(0)| ≤
∫ u

0

w(s, ‖x‖s)ds .

Then

|x(u)| ≤ ‖x‖0 +
∫ u

0

w(s, ‖x‖s)ds .

Letting ‖x‖0 = µ, we obtain

max{|x(u)|, β ≤ s ≤ 0} ≤ µ +
∫ u

0

w(s, ‖x‖s)ds;

however,

‖x‖t ≤ µ +
∫ u

0

w(s, ‖x‖s)ds = µ +
∫ t

0

w(s, ‖x‖s)ds .

If we assume λ(t) = ‖x‖t, we have

λ(t) ≤ µ +
∫ t

0

w(s, ‖x‖s)ds .

After derivation, we obtain λ′(t) ≤ w(t, λ(t)). From this and using lemma 3.2, we
obtain λ(t) ≤ M(t) for t ≥ 0, where M(t) is the maximal solution of the ordinary
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differential equation: y′ = w(t, y), with the initial condition y(0) = µ. Finally we
have ‖x‖t ≤ M(t), for t ≥ 0. �

Lemma 3.5. Let x, y ∈ C such that ‖x‖t ≤ M(t) for t ∈ I, where M(t) is
the maximal solution of the ordinary differential equation: z′ = w(t, z), with the
initial condition z(0) = ‖y‖0. If (Pty)(t) ⊂ B(0, w(t, ‖x‖t)) for all t ∈ I; then
‖y‖t ≤ M(t) for all t ∈ I.

Proof. If t ∈ I and u ∈ [0, t], we have

|y(u)| = |y(u)− y(0) + y(0)| ≤ |y(0)|+ |y(u)− y(0)| .
However, |y(0)| ≤ max{|y(s)|, β ≤ s ≤ 0}, and in view of Lemma 3.3 we have

|y(u)− y(0)| ≤
∫ u

0

w(s, ‖x‖s)ds .

So that
|y(u)| ≤ ‖y‖0 +

∫ u

0

w(s, ‖x‖s)ds .

From the preceding inequality and hypothesis ‖x‖t ≤ M(t), we obtain

|y(u)| ≤ ‖y‖0 +
∫ u

0

w(s, M(s))ds .

Then
max{|y(s)|, β ≤ s ≤ 0} ≤ ‖y‖0 +

∫ u

0

w(s, M(s))ds ;

in other words,

‖y‖u ≤ ‖y‖0 +
∫ u

0

w(s, M(s))ds .

If we pose λ(u) = ‖y‖u and ‖y‖0 = η, we obtain

λ(u) ≤ η +
∫ u

0

w(s, M(s))ds .

After derivation, we have λ′(u) ≤ w(u, M(u)) = M ′(u) for u ≥ 0. Given that
λ(0) = M(0) = η, and that the functions λ and M are positive on I, it follows that
λ(t) ≤ M(t) for t ≥ 0; i.e.,

‖y‖t ≤ M(t), for t ≥ 0.

�

Lemma 3.6. Under the hypotheses of Lemma 3.5, the function y satisfies locally
the Lipschitz condition

|y(t)− y(t′)| ≤ ΩT |t− t′|
where ΩT = max{w(s,M(T )) : s ∈ [0, T ]}, t, t′ ∈ [0, T ], and T is an arbitrary
positive number.

Proof. Let T an arbitrary positive number and t′, t ∈ [0, T ]. According to Lemma
3.3, we have

|y(t)− y(t′)| ≤
∫ t

t′
w(s, ‖x‖s)ds

However, in view of Lemma 3.5, we have ‖x‖s ≤ M(s) for s ∈ [0, T ]. Therefore,

|y(t)− y(t′) ≤
∫ t

t′
w(s, ‖x‖s)ds ≤

∫ t

t′
w(s,M(s))ds ≤

∫ t

t′
w(s,M(T ))ds
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we obtain |y(t)− y(t′)| ≤ ΩT |t− t′| where ΩT = max{w(s,M(T )), s ∈ [0, T ]}. �

Before proving the main theorem, we will still need some lemmas by Zygmunt
[27].

Lemma 3.7. Let x, y be functions in C and {xi}, {yi}, i = 1, 2, . . . be subsequences
of functions in C. If xi → x, yi → y, (Pt yi)(t) ⊂ F ([xi]t) for t > 0, and yi(t) =
ξ(t) for t ≤ 0, i = 1, 2, . . . . Then (Pt y)(t) ⊂ F ([x]t) for t ≥ 0, and y(t) = ξ(t) for
t ≤ 0.

Lemma 3.8. Let x, y be functions in C and F : G → Conv Rn be an upper semi-
continuous set-valued map. Define G(t) = F ([x]i) for t ≥ 0. Then the two following
statements are equivalent.

(P1) (Pt y)(t) ⊂ G(t)
(P2) For all t ∈ I and all ε > 0, there exists δ > 0 such that for all τ ∈ I, all

σ ∈ I, and τ 6= σ, we have {|τ−t| < δ and |σ−t| < δ} ⇒ y(σ)−y(τ)
σ−τ ∈ G(t)ε,

where G(t)ε is the closure of the ε-neighborhood of G(t).

Lemma 3.9. Let x, ξ be two functions in C and F : G → Conv Rn be an upper
semicontinuous set-valued map. Let us define G(t) = F [x]t for t ≥ 0. Then there
exist a function y ∈ C such that (Pt y)(t) ⊂ G(t) for t ≥ 0 and y(t) = ξ(t) for
t ≤ 0.

The proof of the three lemmas above can be found in [27]. Now we shall prove
the main theorem.

Proof of Theorem 3.1. Let T > 0 be an arbitrary fixed real number. Let us consider
the family Φ of functions x ∈ C satisfying the following three conditions:

x(t) = ξ(t), for t ∈ [β, 0] (3.6)

‖x‖t ≤ M(t), for t ∈ [0, T ] (3.7)

|x(t)− x(t′)| ≤ ΩT |t− t′|, for t ∈ [0, T ] (3.8)

where ΩT = max{w(s,M(T )), s ∈ [0, T ]} and M(t) is the maximal solution of the
ordinary differential equation: y′ = w(t, y), with the initial condition y(0) = (0).

We shall show that Φ is a nonempty, compact and convex subset of the space C.
(i) Φ is nonempty, it contains the function

f(t) =

{
ξ(t) for t ∈ [β, 0]
ξ(0) for t ∈ [0, T ]

(ii) That Φ is compact, follows from Arzela’s Theorem: its elements are uniformly
bounded and equicontinuous.
(iii) It is easy to establish that Φ is convex. Let us consider the map L : Φ → C
such that for x ∈ Φ,

L(x) = {y ∈ C : y(t) = ξ(t)for t ∈ [β, 0] and (Pt y)(t) ⊂ F ([x]t) for t ∈ [0, T ]}.

For each fixed function x in Φ, the set L(x) is nonempty according by Lemma 3.9,
convex by Lemma 3.8. and closed by Lemma 3.7.

Now we show that if for all x ∈ Φ, F ([x]t) ⊂ B(0, w(t, ‖x‖t)) for t ∈ [0, T ], then
L(x) is compact. Let y ∈ L(x), i.e., y(t) = ξ(t) for t ∈ [β, 0] and (Pt y)(t) ⊂ F ([x]t)
for t ∈ [0, T ].
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Let us show that y ∈ Φ, i.e. that y verified the conditions (3.6), (3.7) and (3.8).
(i) Obviously we have y(t) = ξ(t) for t ∈ [β, 0].
(ii) From hypotheses (Pt y)(t) ⊂ F ([x]t) for t ∈ [0, T ] and F ([x]t) ⊂ B(0, w(t, ‖x‖t))
for t ∈ [0, T ], we obtain (Pt y)(t) ⊂ B(0, w(t, ‖x‖t)) for t ∈ [0, T ]. According to
Lemma 3.5, we have ‖y‖t ≤ M(t)for t ∈ [0, T ].
(iii) Finally, in view of Lemma 3.6, we have |y(t) − y(t′)| ≤ ΩT |t − t′| for t ∈
[0, T ]. Moreover, since L(x) ⊂ Φ, all elements of L(x) are uniformly bounded and
equicontinuous; since L(x) is closed, it is compact. Therefore, L maps Φ in the
family of the nonempty, compact and convex subsets of Φ.

Let us show that the application L is upper semi-continuous. Let xi, x, yi ,
i = 1, 2, . . . , an elements of Φ such that xi → x and yi ∈ L(xi). Since Φ is compact,
from sequence {yi} i = 1, 2, . . . , we can extract a subsequence {yi} which converges
to a certain function y. According to Lemma 3.7, we have (Pt y)(t) ⊂ F ([x]t) for
t ∈ [0, T ] and y(t) = ξ(t) for t ∈ [β, 0]. Therefore, y ∈ L(x) and by applying Lemma
2.1, we show the upper semi-continuity of the map L.

Using the Glicksberg Ky Fan theorem on the fixed point for multimaps in locally
convex spaces [4], the map L has a fixed point in Φ. Therefore, there exists a
function x0 ∈ Φ such that x0 ∈ L(x0), i.e., we have

(Pt x0)(t) ⊂ F ([x0]t)

for t ∈ [0, T ], and x0(t) = ξ(t) for t ∈ [β, 0]. In other words, x0 is a solution of the
paratingent equation with delayed argument (2.1) with the initial condition (2.2).
Moreover, we have an estimate of the solution x0,

‖x0‖t ≤ M(t) for t ∈ [0, T ].

�

Remark. Kryzowa [15] assumed that F ([x]t) ⊂ B(0,M(t) + N(t)‖x‖t) and Zyg-
munt [27] assumed that F ([x]t) ⊂ B(0,M(t) + N(t)‖x‖α

t ) with M(t), N(t) ≥ 0
real-valued continuous functions and 0 < α ≤ 1 for t ≥ 0. In our work we have as-
sumed that F satisfies condition (3.1) which is more general than those of Kryszowa
and Zygmunt.
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Montpellier II, 1993.
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