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Exact multiplicity results for quasilinear

boundary-value problems with cubic-like

nonlinearities ∗

Idris Addou

Abstract

We consider the boundary-value problem

−(ϕp(u
′))′ = λf(u) in (0, 1)

u(0) = u(1) = 0 ,

where p > 1, λ > 0 and ϕp(x) = |x|p−2x. The nonlinearity f is cubic-
like with three distinct roots 0 = a < b < c. By means of a quadrature
method, we provide the exact number of solutions for all λ > 0. This
way we extend a recent result, for p = 2, by Korman et al. [17] to the
general case p > 1. We shall prove that when 1 < p ≤ 2 the structure of
the solution set is exactly the same as that studied in the case p = 2 by
Korman et al. [17], and strictly different in the case p > 2.

1 Introduction

We consider the question of determining the exact number of solutions of the
quasilinear boundary-value problem

−(ϕp(u′))′ = g(λ, u), in (0, 1) (1)

u(0) = u(1) = 0 ,

where p > 1, λ > 0 and ϕp(u) = |u|p−2u for all u ∈ R and g(λ, u) = λf(u).
Here the nonlinearity f ∈ C2(R,R) is cubic-like satisfying

f(0) = f(b) = f(c) = 0 for some constants 0 < b < c , (2)

f(x) > 0 for x ∈ (−∞, 0) ∪ (b, c) (3)

f(x) < 0 for x ∈ (0, b) ∪ (c,+∞) ,

f ′′(u) changes sign exactly once when u ∈ (0, c) , (4)

F (c) > 0, where F (s) =
∫ s
0
f(u)du, s ∈ R . (5)
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Beside conditions (2)-(5) we shall assume in the case where p 6= 2, the following
additional conditions: There exists u0 ∈ (0, c) such that

(p− 2)f ′(u)− uf ′′(u) ≤ 0 for u ∈ (0, u0] (6)

with strict inequality in an open interval I ⊂ (0, u0), and

(p− 2)f ′(u)− uf ′′(u) ≥ 0 for u ∈ [u0, c) . (7)

When p = 2, we prove in Section 3, that (6) and (7) are consequences of (2)-(4).
During this last decade, many articles dealing with boundary-value problems

with cubic-like nonlinearities have been published. (See for instance; [12]-[26]).
However, all the related results have been obtained for the case p = 2; that
is, for the Laplacian operator. The case of cubic-like nonlinearities when the
differential operator is the p-Laplacian with p 6= 2 has yet to be studied.
When p = 2 and f satisfies conditions (2)-(5), the solution set of problem

(1) was studied recently by Korman et al. [17]. They provide exactness results.
They show (among other interesting things) that there exists a critical number
λ0 > 0 such that problem (1) has no nontrivial solution for 0 < λ < λ0, has a
unique nontrivial solution for λ = λ0 and has exactly two nontrivial solutions
for all λ > λ0. So, a natural question arises; how does the solution set of (1)
look like when p 6= 2? The purpose of this work is to answer this question. We
shall give an exactness result with respect to p > 1; we prove, in particular, that
when 1 < p ≤ 2 the structure of the solution set of (1) is exactly the same as
that studied in the case p = 2 by Korman et al. [17], and is strictly different in
the case p > 2.
It is known that exactness results are more difficult to derive than a lower

bound of the number of solutions to boundary value problems such as (1).
The main tool used here is the so-called quadrature method. The delicate

part in the process of the proof corresponding to the exactness part of the main
results is the study of the exact variations of the time map under consideration
over its entire definition domain (Lemma 4).
Notice that here, the cubic-like nonlinearity f has three distinct roots a <

b < c with a = 0. Recently, together with A. Benmezäi [2] (see also, [3]), we
considered the case a < b = 0 < c = −a and f is odd for the p-Laplacian
case with p > 1. Also, we have considered in [8] a more general case where
a < b = 0 < c, p > 1, and f is not necessary odd; there we have defined a new
kind of functions we called: half-odd. However, the main results of the present
paper are directly related to those of Korman et al. [17] and not to those of [2]
and [8]. That is why we do not describe them here. (Also, this would require a
large space).
The paper is organized as follows. The main results are stated in Section 2.

Next, in Section 3 we shall state and prove some properties of the nonlinearity
f . These are of importance in the sequel. Some preliminary lemmas are the
aim of Section 4; the first lemma (Lemma 1) is technical and in the second one
(Lemma 2) we locate all the eventual nontrivial solutions of problem (1). The
proof of Lemma 2 is postponed to the appendix. After describing the quadrature
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method used in order to look for the solutions, we devote two lemmas (Lemmas
3, 4) to study the limits and variations of the time-map. In Section 5, the main
results are proved. Finally, in Section 6 we ask two questions.

2 Notation and main results

In order to state the main results, let us first define the subsets of C1([0, 1])
which contain the solutions of the problem (1).

Let A+1 be the subset of C
1([0, 1]) consisting of the functions u satisfying

• u(x) > 0, for all x ∈ (0, 1), u(0) = u(1) = 0 < u′(0).

• u is symmetrical with respect to 1/2.

• The derivative of u vanishes once and only once.

Let Ã+1 be the subset of C
1([0, 1]) consisting of the functions u satisfying

• u(x) > 0, for all x ∈ (0, 1), u(0) = u(1) = 0 < u′(0).

• u is symmetrical with respect to 1/2.

• There exists a compact interval K ⊂ (0, 1) such that for all x ∈ (0, 1),

u′(x) = 0 if and only if x ∈ K .

Definition Let u ∈ C([α, β]) be a function with two consecutive zeros x1 < x2.
We call the I-hump of u the restriction of u to the open interval I = (x1, x2).
When there is no confusion we refer to a hump of u.

Let B+(k), (k ≥ 1) be the subset of C1([0, 1]) consisting of the functions u
satisfying

• For all i ∈ {0, · · · , k} there exist ai = ai(u), bi = bi(u) in [0, 1] such that

0 = a0 ≤ b0 < · · · < ai ≤ bi < · · · < ak ≤ bk = 1

u > 0 in (bi, ai+1), for all i ∈ {0, · · · , k − 1}

u ≡ 0 in [ai, bi], for all i ∈ {0, · · · , k − 1} .

• Every hump of u is symmetrical with respect to the center of the interval
of its definition.

• The derivative of each hump of u vanishes once and only once.

• Each hump is a translated copy of the first one.
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Figure 1: 1 < p ≤ 2.

Let B+k be the subset of B
+(k) consisting of the functions u satisfying

ai(u) = bi(u) for all i ∈ {0, · · · , k}.

If there exists i0 ∈ {0, · · · , k} such that ai0(u) < bi0(u) we say that u ∈ B̃
+
k .

Therefore, B+(k) = B+k ∪ B̃
+
k and B

+
k ∩ B̃

+
k = ∅.

We call two functions u1, u2 in B̃
+
k (k ≥ 1), equivalent if for all i ∈ {0, · · · , k},

the i-th hump of u1 is a translated copy of the i-th hump of u2, or equivalently,
u2 is obtained from u1 by translating some (maybe all) of its humps. It is
clear that this is an equivalence relation. For all u ∈ B̃+k we denote Cl(u) the
equivalence class of u.
Notice that when f satisfies (2), (3) and (5), there exists a unique r ∈ (b, c)

such that
F (r) = 0 . (8)

For p > 1 and x ∈ [r, c], define

S+(x) =

∫ x
0

{F (x)− F (ξ)}−1/pdξ .

We shall prove in Lemma 3 that S+(r) (resp. S+(c)) is infinite if and only if
1 < p ≤ 2. So, for p > 2 we can define ν = (2S+(c))p/p′, where p′ = p/(p− 1),
and for all integer k ≥ 0 we define λk = (2kS+(r))p/p′ and notice that

0 = λ0 < λ1 < · · · < λk = k
pλ1 . . . for all k ≥ 1, and lim

k→+∞
λk = +∞ .

For λ > 0, denote Sλ the solution set of problem (1).
The main results are worth being described by means of diagrams. The first

result (Theorem 2.1) concerns the case where 1 < p ≤ 2. The corresponding
diagram (Figure 1) indicates the existence of a unique branch and it is⊂-shaped.
So, there is no nontrivial solution for 0 < λ < λ0, a unique nontrivial solution
for λ = λ0, and exactly two nontrivial solutions for λ > λ0. All these solutions
are in A+1 .
When p > 2, we have to consider the sequence (λk)k≥0 and the number

ν > 0. This number maybe smaller than λ1, equal to λ1, or greater than λ1.
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Figure 2: p > 2, λn−1 < ν < λn, 1 < n.
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Figure 3: p > 2, λn−1 < ν < λn, 1 < n.

In this later case, it may lie between two consecutive points of the sequence:
λn−1 < ν < λn, with n > 1 (Figures 2 and 3), or it maybe equal to some λn
with n > 1.
An immediate examination of these bifurcation diagrams, shows that when

ν moves from zero to infinity, the upper branch changes but not the others,
i.e., beside the upper branch which is different from a diagram to an other, the
remaining branches are the same in all these diagrams.
Now consider any one of figures 2 or 3 and let us describe each kind of its

branches. The λ-axis designates the trivial solutions, and at each λk, k ≥ 1,
there is a bifurcation point which indicates a pair (uk, λk) such that uk ∈ B

+
k .

The upper branch contains a point which indicates a pair (u1, ν) such that
u1 ∈ A

+
1 . All points lying on this branch which are on the left of (u1, ν) are in

A+1 , and those lying at the right are in Ã
+
1 .

The remaining branches are in some sense ”singular”. Usually a point (u, λ)
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lying on any branch designates a couple where u is a solution of some kind and
λ is a real number. This is the case in our diagrams as far as the upper branch
or the lower one (λ-axis) are concerned. However, a point on the remaining
branches indicates (Cl(u), λ), i.e., the equivalence class of a certain solution u
lying in some B̃+k , k ≥ 1, and λ is a real number. So, if u is a solution in some
B̃+k , with k ≥ 1, for some λ > 0 then any v ∈ Cl(u) is also a solution in the

same B̃+k .
The singularity of these branches maybe removed. In fact, consider the same

equivalence relation but defined on B+k , (for all k ≥ 1). Then it is clear that

Cl(u) = {u}, for all u ∈ B+k .

So, the bifurcation points on the λ-axis maybe considered as indicating
(Cl(uk), λk) = ({uk}, λk) instead of (uk, λk). Also, consider on A

+
1 ∪ Ã

+
1 the

same equivalence relation in essence (which maybe formulated differently). It is
clear that

Cl(u) = {u}, for all u ∈ A+1 ∪ Ã
+
1 .

This way, any point on any branch shall designates a couple (Cl(u), λ) and
the elements in Cl(u) are solutions of the problem (1) for the same λ. There-
fore, there is coherence in the diagrams and the singularity mentioned above is
removed.
The statements of the main results below indicate that for ν ≤ λ1 the upper

branch contains a turning point, but when ν > λ1, either it still contains a
turning point (Figure 2) or there is no such point (Figure 3).

The main results read as follows

Theorem 2.1 Assume that 1 < p ≤ 2 and f satisfies conditions (2)-(5), and
(6), (7). Then there exists λ0 > 0 such that

(i) If 0 < λ < λ0, Sλ = {0}.

(ii) If λ = λ0, there exists vλ ∈ A
+
1 such that Sλ = {0} ∪ {vλ}.

(iii) If λ > λ0, there exists vλ, wλ ∈ A
+
1 such that vλ 6= wλ and Sλ = {0} ∪

{vλ, wλ}.

Theorem 2.2 Assume that p > 2 and f satisfies conditions (2)-(5), and (6),
(7). Moreover, assume that ν < λ1. Then there exists µ ∈ (0, ν) such that

(i) If 0 < λ < µ, Sλ = {0}.

(ii) If λ = µ, there exists vλ ∈ A
+
1 such that Sλ = {0} ∪ {vλ}.

(iii) If µ < λ ≤ ν, there exists vλ, wλ ∈ A
+
1 such that vλ 6= wλ and Sλ =

{0} ∪ {vλ, wλ}.

(iv) If ν < λ < λ1, there exists vλ ∈ A
+
1 and uλ ∈ Ã

+
1 such that Sλ =

{0} ∪ {vλ} ∪ {uλ}.
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(v) If λ = λ1, there exists uλ ∈ Ã
+
1 and uλ,1 ∈ B

+
1 such that Sλ = {0}∪{uλ}∪

{uλ,1}.

(vi) If λk < λ < λk+1, k ≥ 1, there exists uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k such that

uλ,i ∈ B̃
+
i for all i = 1, · · · , k and Sλ = {0}∪{uλ}∪Cl(uλ,1)∪· · ·∪Cl(uλ,k).

(vii) If λ = λk+1, k ≥ 1, there exists uλ ∈ Ã
+
1 and uλ,1, · · ·uλ,k+1 such that

uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {uλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

Theorem 2.3 Assume that p > 2 and f satisfies conditions (2)-(5), and (6),
(7). Moreover, assume that ν = λ1. Then there exists µ ∈ (0, λ1) such that

(i) If 0 < λ < µ, Sλ = {0}.

(ii) If λ = µ, there exists vλ ∈ A
+
1 such that Sλ = {0} ∪ {vλ}.

(iii) If µ < λ < λ1, there exists vλ, wλ ∈ A
+
1 such that vλ 6= wλ and Sλ =

{0} ∪ {vλ, wλ}.

(iv) If λ = λ1, there exists vλ ∈ A
+
1 and uλ,1 ∈ B

+
1 such that Sλ = {0}∪{vλ}∪

{uλ,1}.

(v) If λk < λ < λk+1, k ≥ 1, there exists uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k such that

uλ,i ∈ B̃
+
i for all i = 1, · · · , k and Sλ = {0}∪{uλ}∪Cl(uλ,1)∪· · ·∪Cl(uλ,k).

(vi) If λ = λk+1, k ≥ 1, there exists uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k+1 such that

uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {uλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

Theorem 2.4 Assume that p > 2 and f satisfies conditions (2)-(5), and (6),
(7). Moreover, assume that there exists n > 1 such that λn−1 < ν < λn. Then
one and only one of the following possibilities occurs:
Possibility A. There exists µ ∈ (0, λ1) such that

(i) If 0 < λ < µ, Sλ = {0}.

(ii) If λ = µ, there exists vλ ∈ A
+
1 such that Sλ = {0} ∪ {vλ}.

(iii) If µ < λ < λ1, there exist vλ, wλ ∈ A
+
1 such that vλ 6= wλ and Sλ =

{0} ∪ {vλ, wλ}.

(iv) If λ = λ1, there exist vλ ∈ A
+
1 and uλ,1 ∈ B

+
1 such that Sλ = {0}∪ {vλ}∪

{uλ,1}.

(v) If λk < λ < min{λk+1, ν}, 1 ≤ k ≤ n − 1, there exist vλ ∈ A
+
1 and

uλ,1, · · · , uλ,k such that uλ,i ∈ B̃
+
i for all i = 1, · · · , k and Sλ = {0} ∪

{vλ} ∪ Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k).
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(vi) If λ = λk+1, 1 ≤ k ≤ n− 2, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,k+1 such

that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {vλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

(vii) If λ = ν, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,n−1 such that uλ,i ∈ B̃

+
i

for all i = 1, · · · , n− 1, and Sλ = {0}∪ {vλ} ∪Cl(uλ,1)∪ · · · ∪Cl(uλ,n−1).

(viii) If max{λk, ν} < λ < λk+1, k ≥ n − 1, there exist uλ ∈ Ã
+
1 and

uλ,1, · · · , uλ,k such that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, and Sλ = {0} ∪

{uλ} ∪ Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k).

(ix) If λ = λk+1, k ≥ n − 1, there exist uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k+1 such

that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1and Sλ = {0} ∪ {uλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

Possibility B.

(i) If 0 < λ < λ1, Sλ = {0}.

(ii) If λ = λ1, there exists uλ,1 ∈ B
+
1 such that Sλ = {0} ∪ {uλ,1}.

(iii) If λk < λ < min{λk+1, ν}, 1 ≤ k ≤ n − 1, there exist vλ ∈ A
+
1 and

uλ,1, · · · , uλ,k such that uλ,i ∈ B̃
+
i for all i = 1, · · · , k and Sλ = {0} ∪

{vλ} ∪Cl(uλ,1) ∪ · · · ∪Cl(uλ,k).

(iv) If λ = λk+1, 1 ≤ k ≤ n− 2, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,k+1 such

that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {vλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

(v) If λ = ν, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,n−1 such that uλ,i ∈ B̃

+
i for

all i = 1, · · · , n− 1, and Sλ = {0} ∪ {vλ} ∪ Cl(uλ,1) ∪ · · · ∪ Cl(uλ,n−1).

(vi) Ifmax{λk, ν} < λ < λk+1, k ≥ n−1, there exist uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k

such that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, and Sλ = {0} ∪ {uλ} ∪Cl(uλ,1)∪

· · · ∪ Cl(uλ,k).

(vii) If λ = λk+1, k ≥ n − 1, there exist uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k+1 such

that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1and Sλ = {0} ∪ {uλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

Theorem 2.5 Assume that p > 2 and f satisfies conditions (2)-(5), and (6),
(7). Moreover, assume that there exists n > 1 such that ν = λn. Then one and
only one of the following possibilities occurs:
Possibility C. There exists µ ∈ (0, λ1) such that

(i) If 0 < λ < µ, Sλ = {0}.

(ii) If λ = µ, there exists vλ ∈ A
+
1 such that Sλ = {0} ∪ {vλ}.
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(iii) If µ < λ < λ1, there exist vλ, wλ ∈ A
+
1 such that vλ 6= wλ and Sλ =

{0} ∪ {vλ, wλ}.

(iv) If λ = λ1, there exist vλ ∈ A
+
1 and uλ,1 ∈ B

+
1 such that Sλ = {0}∪ {vλ}∪

{uλ,1}.

(v) If λk < λ < λk+1, 1 ≤ k ≤ n − 1, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,k

such that uλ,i ∈ B̃
+
i for all i = 1, · · · , k and Sλ = {0} ∪ {vλ} ∪ Cl(uλ,1) ∪

· · · ∪ Cl(uλ,k).

(vi) If λ = λk+1, 1 ≤ k ≤ n− 1, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,k+1 such

that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {vλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

(vii) If λk < λ < λk+1, k ≥ n, there exists uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k such

that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, and Sλ = {0}∪ {uλ} ∪Cl(uλ,1)∪ · · · ∪

Cl(uλ,k).

(viii) If λ = λk+1, k ≥ n, there exist uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k+1 such that

uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {uλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

Possibility D.

(i) If 0 < λ < λ1, Sλ = {0}.

(ii) If λ = λ1, there exists uλ,1 ∈ B
+
1 such that Sλ = {0} ∪ {uλ,1}.

(iii) If λk < λ < λk+1, 1 ≤ k ≤ n − 1, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,k

such that uλ,i ∈ B̃
+
i for all i = 1, · · · , k and Sλ = {0} ∪ {vλ} ∪ Cl(uλ,1) ∪

· · · ∪ Cl(uλ,k).

(iv) If λ = λk+1, 1 ≤ k ≤ n− 1, there exist vλ ∈ A
+
1 and uλ,1, · · · , uλ,k+1 such

that uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {vλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

(v) If λk < λ < λk+1, k ≥ n, there exists uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k such that

uλ,i ∈ B̃
+
i for all i = 1, · · · , k, and Sλ = {0} ∪ {uλ} ∪ Cl(uλ,1) ∪ · · · ∪

Cl(uλ,k).

(vi) If λ = λk+1, k ≥ n, there exist uλ ∈ Ã
+
1 and uλ,1, · · · , uλ,k+1 such that

uλ,i ∈ B̃
+
i for all i = 1, · · · , k, uλ,k+1 ∈ B

+
k+1 and Sλ = {0} ∪ {uλ} ∪

Cl(uλ,1) ∪ · · · ∪ Cl(uλ,k) ∪ {uλ,k+1}.

The novelty in these results concerns the cases p > 1 with p 6= 2. The case
p = 2 was proved by Korman et al. [17]. Of course, the case p = 2 is also
studied here.
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3 Some properties of the nonlinearity f

In this section we establish some properties of f . These are used in the sequel
and are of importance in our analysis. We first state the properties and next
we give the proofs.

Statement of properties

Assume that f satisfies (2)-(4), then there exists u0 ∈ (0, c) such that

f ′′ ≥ 0 in (0, u0] , (9)

f ′′ ≤ 0 in [u0, c) . (10)

Moreover, there exist two open intervals I and J with I ⊂ (0, u0) and J ⊂ (u0, c)
such that

f ′′ > 0 in I , (11)

f ′′ < 0 in J . (12)

Hence

f ′ is increasing in (0, u0], and strictly increasing in I , (13)

f ′ is decreasing in [u0, c), and strictly decreasing in J . (14)

Furthermore,
f ′(0) < 0, f ′(u0) > 0, f

′(c) < 0. (15)

Hence, there exist u−0 ∈ (0, u0) and u
+
0 ∈ (u0, c) such that

f ′ ≤ 0 in [0, u−0 ) ∪ (u
+
0 , c] (16)

f ′(u−0 ) = f
′(u+0 ) = 0 (17)

f ′ > 0 in (u−0 , u
+
0 ) . (18)

Moreover,
f ′(b) > 0 . (19)

So,

0 < u−0 < b < u
+
0 < c , and (20)

f attains its minimum (resp. maximum) on [0, c] at u−0 (resp. at u
+
0 ). (21)

Proof of properties

By (2) and (3), it follows that f ′′ must change sign at least once in (0, c), say at
u0, and by (4), it follows that (9) and (10) hold. If f

′′ ≡ 0 in (0, u0] it follows
that f ′ is constant in (0, u0]. But, by (2) and (3) it follows that f

′(0) ≤ 0. Thus,
f ′ ≤ 0 in (0, u0]. On the other hand, by (10) it follows that f ′ is decreasing
in [u0, c), thus f

′ ≤ 0 in [u0, c) and furthermore, f is decreasing in [0, c]. By
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f(0) = f(c) = 0 it follows that f ≡ 0 in [0, c] which contradicts (3), and
therefore, since f ∈ C2, the existence of I is proved and that of J is similar.
Thus, (11) and (12) are proved. Immediate consequences are (13) and (14). So,
f ′ attains its maximum value on (0, c) at u0. Thus, it can easily be proved that
f ′(u0) > 0. In fact, if the contrary holds, it follows that f

′ ≤ 0 in (0, c) and
hence f is monotonic decreasing in (0, c), and by f(0) = f(c) = 0 it follows that
f ≡ 0 in [0, c] which contradicts (3), which proves that f ′(u0) > 0.
Let us prove that f ′(0) < 0 (resp. f ′(c) < 0). If the contrary holds, that is

if f ′(0) ≥ 0 (resp. f ′(c) ≥ 0), by (13) (resp. by (14)) it follows that f ′(x) ≥ 0
for all x ∈ (0, u0) (resp. x ∈ (u0, c)) and hence, f is increasing in (0, u0) (resp.
in (u0, c)). Due to the fact that f vanishes at 0 (resp. at c), it follows that
f ≥ 0 in (0, u0) (resp. f ≤ 0 in (u0, c)), which contradicts (3). Therefore, (15)
is proved. By making use of continuity arguments it follows that (13), (14) and
(15) imply (16), (17) and (18).
Let us prove (19). First, by (3) it follows that f ′(b) ≥ 0. If f ′(b) = 0, by

(15)-(18) it follows that b ∈ (0, u−0 ) ∪ (u
+
0 , c). Assume that b ∈ (0, u

−
0 ) (resp.

b ∈ (u+0 , c)). By (16), it follows that f
′ ≤ 0 in (0, b) (resp. in (b, c)) and

therefore f is decreasing in (0, b) (resp. in (b, c)). By f(0) = f(b) = 0 (resp.
f(b) = f(c) = 0) it follows that f ≡ 0 in [0, b] (resp. in [b, c]) which contradicts
(3). Therefore, (19) is proved, and immediate consequences are (20) and (21).

4 Preliminary lemmas

Lemma 1 is a technical one. The aim of the next lemma is to answer to the
question : how does any solution to (1) look like ? We shall prove that if u is a
nontrivial solution to (1), then

u ∈ A+1 ∪ Ã
+
1 ∪
⋃
k≥1

B+(k).

The proof of Lemma 1 is the same as that of Lemma 8 in [7] or Lemmas 6 and
8 in [5] (see also analogous lemmas in [1], [4]). So, it is omitted. The proof of
Lemma 2 is not complicated but long and tedious. So, it is postponed to the
appendix.
Next, we define the time map on its interval of definition, compute its limits

at the boundary points of its definition domain in Lemma 3, and then study its
exact variations on its entire definition domain in Lemma 4.

Lemma 1 Assume that f ∈ C(R) satisfies (3) and (5). Consider the function
defined in R± by

s 7−→ G±(λ,E, s) := E
p − p′λF (s), (22)

where E, λ > 0 and p > 1 are real parameters. Then

(i) If E > E∗(p, λ) := (p
′λF (c))1/p (resp. E > 0), the function G+(λ,E, ·)

(resp. G−(λ,E, ·)) is strictly positive in R+ (resp. in R−).
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(ii) If E = E∗(λ), the function G+(λ,E, ·) is strictly positive in (0, c) and
vanishes at c.

(iii) If 0 < E < E∗(λ), the function G+(λ,E, ·) admits in the open interval
(b, c) a unique zero s+(λ,E) and is strictly positive in the open interval
(0, s+(λ,E)). Moreover,

(a) The function E 7→ s+(λ,E) is C1 in (0, E∗(λ)) and,

∂s+

∂E
(λ,E) =

(p− 1)Ep−1

λf(s+(λ,E))
> 0, (23)

for all E ∈ (0, E∗(λ)).

(b) lim
E→0+

s+(λ,E) = r and lim
E→E∗

s+(λ,E) = c, where r is the unique zero

of F in (b, c) (see, (8)).

The following lemma locate all possible nontrivial solutions.

Lemma 2 Let u be a nontrivial solution of (1). Then

u ∈ A+1 ∪ Ã
+
1 ∪
⋃
k≥1

B+(k), and 0 ≤ u′(0) ≤ E∗(λ) = (p
′λF (c))1/p.

According to this lemma, for all fixed λ > 0 and p > 1, we shall look
for the solutions of problem (1) with respect to their derivative at the origin;
u′(0) = E ∈ [0, E∗(λ)].
For λ > 0, p > 1 and E ∈ [0, E∗(λ)], let

X+(λ,E) = {s > 0 : E
p − p′λF (ξ) > 0 , ∀ξ ∈ (0, s)} .

By Lemma 1, it follows that

X+(λ,E) =



(0, c) if E = E∗
(0, s+(λ,E)) if 0 < E < E∗,
(0, r) if E = 0

and therefore,

r+(λ,E) := supX+(λ,E) =



c if E = E∗
s+(λ,E) if 0 < E < E∗,
r if E = 0 ,

(24)

and one deduces from Lemma 1 the following

∂r+
∂E
(λ,E) > 0, ∀λ > 0, ∀E ∈ (0, E∗(λ)), (25)

lim
E→0+

r+(λ,E) = r, and lim
E→E∗

r+(λ,E) = c . (26)
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Define, for any p > 1, λ > 0 the time map T+ by

T+(λ,E) :=

∫ r+(λ,E)
0

(Ep − p′λF (ξ))−1/pdξ, E ∈ [0, E∗(λ)], (27)

with the convention T+(λ, 0) = +∞ (resp. T+(λ,E∗(λ)) = +∞) if the integral
in (27) diverges.
Arguing as in Guedda and Veron [11], it follows that

• For each λ > 0 and E ∈ (0, E∗(λ)), problem (1) admits a solution u ∈ A
+
1

satisfying u′(0) = E if and only if T+(λ,E) = 1/2, and in this case the
solution is unique and its sup-norm is equal to r+(λ,E).

• For each λ > 0, problem (1) admits a solution u ∈ A+1 satisfying u
′(0) =

E∗(λ) if and only if T+(λ,E∗(λ)) = 1/2, and in this case the solution is
unique and its sup-norm is equal to c.

• For each λ > 0, problem (1) admits a solution u ∈ Ã+1 satisfying u
′(0) =

E∗(λ) if and only if T+(λ,E∗(λ)) < 1/2, and in this case the solution is
unique and its sup-norm is equal to c.

• For each λ > 0 and n ∈ N∗, problem (1) admits a solution u ∈ B+n if and
only if nT+(λ, 0) = 1/2, and in this case the solution is unique and its
sup-norm is equal to r.

• For each λ > 0 and n ∈ N∗, problem (1) admits a solution u ∈ B̃+n if and
only if nT+(λ, 0) < 1/2, and in this case v is an other solution in B̃

+
n if

and only if v ∈ Cl(u), and the sup-norm of each solution is equal to r.

A simple change of variables shows that,

T+(λ,E) = r+(λ,E)

∫ 1
0

(Ep − p′λF (r+(λ,E)ξ))
−1/pdξ, (28)

which can be written as,

T+(λ,E) = (r+(λ,E)/E)

∫ 1
0

(1− p′λF (r+(λ,E)ξ)/E
p)−1/pdξ. (29)

Also, observe that one has from the definition of s+(λ,E), (Lemma 1, Assertion
(iii)), Ep = λp′F (r+(λ,E)), so, (28) may be written as,

T+(λ,E) = (λp
′)−1/p

∫ r+(λ,E)
0

(F (r+(λ,E))− F (ξ))
−1/pdξ. (30)

For any p > 1 and x ∈ [r, c] let us define S+(x) by

S+(x) :=

∫ x
0

(F (x) − F (ξ))−1/pdξ ∈ [0,+∞].
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Thus, (30) may be written as,

T+(λ,E) = (λp
′)−1/pS+(r+(λ,E)). (31)

The limits of the time map T+(λ, ·) are the aim of the following.

Lemma 3 (i) S+(r) = +∞ if and only if 1 < p ≤ 2, and S+(c) = +∞ if and
only if 1 < p ≤ 2.

(ii) lim
E→0+

T+(λ,E) = (λp
′)−1/pS+(r) and lim

E→E∗
T+(λ,E) = (λp

′)−1/pS+(c).

Proof of (i). By (3) and (8), one has

lim
x→r

F (r) − F (x)

r − x
= f(r) > 0 .

Thus, there exist δ > 0 and M > 0 such that

F (r) − F (x) > M(r − x), for all x ∈ (r − δ, r) .

Therefore,∫ r
r−δ

dx

(F (r) − F (x))1/p
< M−1/p

∫ r
r−δ

dx

(r − x)1/p
< +∞ for all p > 1 .

On the other hand, using L’Hopital’s rule twice and (15) it follows that

lim
x→0+

F (0)− F (x)

−x2
=
f ′(0)

2
< 0 .

Thus, there exist ε > 0, m− < 0 and M− < 0 such that

m− ≤
F (0)− F (x)

−x2
≤M−, for all x ∈ (0, ε) .

Therefore,

(−m−)
−1/p

∫ ε
0

dx

x2/p
≤

∫ ε
0

dx

(F (0)− F (x))1/p
≤ (−M−)

−1/p

∫ ε
0

dx

x2/p
.

The first part of Assertion (i) follows from F (r) = F (0) = 0 and the well-known
fact ∫ ε

0

dx

x2/p
< +∞ if and only if p > 2.

The second part may be proved similarly. In fact, using L’Hopital’s rule twice
and (15) it follows that

lim
x→c−

F (c)− F (x)

(c− x)2
= −
f ′(c)

2
> 0.
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Thus

M
−1/p
+

∫ c
c−ε

dx

(c− x)2/p
≤

∫ c
c−ε

dx

(F (c)− F (x))1/p
≤ m−1/p+

∫ c
c−ε

dx

(c− x)2/p

for some strictly positive constantsM+,m+ and ε. Therefore, the second asser-
tion of (i) follows from the well-known fact∫ c

c−ε

dx

(c− x)2/p
< +∞ if and only if p > 2.

Proof of (ii). The value of the limits follows by passing to the limit in (31)
as E tends to 0 and E∗ respectively. Then Lemma 3 is proved. ♦

To study the exact number of solutions of (1) we need to know the exact
variations of the time map T+(λ, ·) over all its definition domain (0, E∗(λ)).
These variations are the aim of the following,

Lemma 4 If 1 < p ≤ 2, for all λ > 0 the time map T+(λ, ·) admits a unique
critical point; a minimum. If p > 2, for all λ > 0 either the time map T+(λ, ·)
is strictly increasing or admits a unique critical point; a minimum in (0, E∗(λ)).

Proof By (31), recall that for all λ > 0 and E ∈ (0, E∗(λ)).

T+(λ,E) = (λp
′)−1/pS+(r+(λ,E)).

On the other hand, by (25) and (26), for each fixed λ > 0, the function E 7→
r+(λ,E) is an increasing C

1−diffeomorphism from (0, E∗(λ)) onto (r, c), where
r is the unique zero of F in (b, c). A differentiation yields

∂T+

∂E
(λ,E) = (λp′)−1/p ×

∂r+

∂E
(λ,E) × S′+(r+(λ,E)).

Thus, to study the variations of T+(λ, ·) in (0, E∗(λ)) it suffices to study those
of S+(·) in (r, c). One has

S+(ρ) =

∫ ρ
0

{F (ρ)− F (u)}−1/pdu, ρ ∈ (r, c)

and

S′+(ρ) =
1

pρ

∫ ρ
0

Hp(ρ)−Hp(u)

{F (ρ)− F (u)}(p+1)/p
du, ρ ∈ (r, c) , (32)

where

Hp(u) = pF (u)− uf(u), for all u ∈ [0, c] and p > 1 . (33)

To study the sign of the derivative S′+(·) we need to study that of expression

Hp(ρ)−Hp(u) for all 0 < u < ρ and r < ρ < c .
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So, a careful analysis of the variations of Hp(·) is required. One has

H ′p(u) = (p− 1)f(u)− uf
′(u), for all u ∈ [0, c] and p > 1 (34)

and
H ′′p (u) = (p− 2)f

′(u)− uf ′′(u), for all u ∈ [0, c] and p > 1 . (35)

By (2) it follows that

Hp(0) = H
′
p(0) = 0, for all p > 1 , (36)

and by (2) and (4), it follows that

Hp(c) > 0, for all p > 1, (37)

and by (15),
H ′p(c) > 0, for all p > 1. (38)

Now, let us look closely to the special case where p = 2. By (9), it follows
that

H ′′2 (u) ≤ 0, for all u ∈ (0, u0] ,

and by (36) it follows that

H ′2(u) ≤ 0, for all u ∈ [0, u0] . (39)

By (11) it follows that there exists a unique α ∈ [0, u0) such that

H2(u) = H
′
2(u) = 0 for all u ∈ [0, α] (40)

H2(u) < 0 and H
′
2(u) < 0 for all u ∈ (α, u0] .

On the other hand, by (10) it follows that H ′′2 (u) ≥ 0, for all u ∈ [u0, c), and by
(38) and (40) there exist β and γ in (u0, c) such that

u0 < β ≤ γ < c

H ′2(u) < 0, for all u ∈ [u0, β)

H ′2(u) = 0, for all u ∈ [β, γ]

H ′2(u) > 0, for all u ∈ (γ, c] .

Therefore, regarding (36) and (39), there exists a unique δ ∈ (γ, c) such that

H2(u) < 0, for all u ∈ [u0, β]

H2(u) = H2(β) < 0, for all u ∈ [β, γ]

H2(u) < 0, for all u ∈ [γ, δ) and H2(δ) = 0

H2(u) > 0, for all u ∈ (δ, c] .

Thus, for all fixed ρ ∈ (0, α],

H2(ρ)−H2(u) = 0, for all u ∈ (0, ρ), (41)
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and for all fixed ρ ∈ (α, γ]

H2(ρ)−H2(u) < 0 for all u ∈ (0,min(ρ, β)), (42)

and for all fixed ρ ∈ [δ, c),

H2(ρ)−H2(u) > 0 for all u ∈ (0, ρ). (43)

Notice that to obtain (41)-(43) the starting conditions were conditions (9), (10)
and (11). In contrast, if p 6= 2, H ′′p changes sign in (0, u0) since by (9), f

′′ is of
constant sign in (0, u0) and by (16), (17) and (18), f

′ changes sign in (0, u0).
This leads us to consider the additional conditions (6) and (7) for all p > 1, and
therefore

H ′′p (u) ≤ 0, for all u ∈ (0, u0], and p > 1 (44)

with strict inequality in an open interval Ip ⊂ (0, u0), and

H ′′p (u) ≥ 0, for all u ∈ [u0, c) and p > 1 . (45)

Let us emphasize that (6) and (7) are automatically satisfied if p = 2. In
fact they are reduced to (9)-(11). So, (6) and (7) do not consist as additional
conditions for the special case where p = 2.
By (36) and (44) it follows that there exists a unique αp ∈ [0, u0) such that

Hp(u) = H
′
p(u) = 0, for all u ∈ [0, αp] , (46)

Hp(u) < 0, H
′
p(u) < 0, for all u ∈ (αp, u0] . (47)

By (38) and (45) it follows that for all p > 1, there exist βp and γp in (u0, c)
such that

u0 < βp ≤ γp < c

H ′p(u) < 0, for all u ∈ [u0, βp) (48)

H ′p(u) = 0, for all u ∈ [βp, γp] (49)

H ′p(u) > 0, for all u ∈ (γp, c] . (50)

Therefore, there exists a unique δp ∈ (γp, c) such that

Hp(u) < 0, for all u ∈ [u0, βp] (51)

Hp(u) = Hp(βp) < 0, for all u ∈ [βp, γp] (52)

Hp(u) < 0, for all u ∈ [γp, δp) and Hp(δp) = 0 (53)

Hp(u) > 0, for all u ∈ (δp, c]. (54)

This implies that: for all p > 1 and all fixed ρ ∈ (0, αp],

Hp(ρ)−Hp(u) = 0, for all u ∈ (0, ρ), (55)

and for all fixed ρ ∈ (αp, γp],

Hp(ρ)−Hp(u) < 0, for all u ∈ (0,min(ρ, βp)) , (56)
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and for all fixed ρ ∈ [δp, c),

Hp(ρ)−Hp(u) > 0, for all u ∈ (0, ρ) . (57)

Notice that
Hp(r) = pF (r) − rf(r) = −rf(r) < 0 .

Thus, by (46), (47), (53) and (54) it follows that

αp < r < δp, for all p > 1. (58)

By (57) it follows that

S′+(ρ) > 0 for all ρ ∈ [δp, c) ⊂ (r, c). (59)

It remains to study the variations of S+(·) on the interval (r, δp). Notice that
one has to distinguish two cases

αp < r < γp < δp < c , (60)

γp ≤ r < δp < c . (61)

It is easy to see that if (60) holds, then

S′+(ρ) < 0 for all ρ ∈ (r, γp]. (62)

In fact, this follows by (55), (56), (52) and (32). Now, we will show in the case
(60) (resp. case (61)) that S′+ admits at most one zero in (γp, δp) (resp. in
(r, δp)).
Easy computations show that for all ρ ∈ (r, c),

S′′+(ρ) =
p+ 1

(pρ)2

∫ ρ
0

(Hp(ρ)−Hp(u))2

{F (ρ)− F (u)}(2p+1)/p
du+

1

pρ2

∫ ρ
0

Φp(ρ)− Φp(u)

{F (ρ)− F (u)}(p+1)/p
du

where Φp(u) := −p(p+ 1)F (u) + 2puf(u)− u2f ′(u), for all u ∈ (0, c).
Let K be a real number. Thus, for all ρ ∈ (r, c),

pρ2S′′+(ρ) + pρKS
′
+(ρ) (63)

=

∫ ρ
0

Ψp(ρ)−Ψp(u)

{F (ρ)− F (u)}(p+1)/p
du+

p+ 1

p

∫ ρ
0

(Hp(ρ)−Hp(u))2

{F (ρ)− F (u)}(2p+1)/p
du

where Ψp(u) = Φp(u) + KHp(u), for all u ∈ (0, c). Choose K = p + 1. Thus
Ψp(u) = uH

′
p(u), for all u ∈ (0, c).

Next, in the case (60) (resp. case (61)), we split the first integral in (63) as
follows∫ ρ

0

Ψp(ρ)−Ψp(u)

{F (ρ)− F (u)}(p+1)/p
du (64)

=

∫ βp
0

ρH ′p(ρ)− uH
′
p(u)

{F (ρ)− F (u)}(p+1)/p
du+

∫ γp
βp

ρH ′p(ρ)− uH
′
p(u)

{F (ρ)− F (u)}(p+1)/p
du

+

∫ ρ
γp

ρH ′p(ρ)− uH
′
p(u)

{F (ρ)− F (u)}(p+1)/p
du
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for all ρ ∈ (γp, δp) (resp. for all ρ ∈ (r, δp) ⊂ (γp, δp)).
By (50), (46), (47) and (48) the first integral in (64) is strictly positive, and

by (49) and (50) the second one is also strictly positive.
By (45) it follows that H ′p is increasing in (γp, δp). Using (50) it follows that

for all ρ ∈ (γp, δp) (resp. ρ ∈ (r, δp)),

0 < H ′p(u) ≤ H
′
p(ρ) for all u ∈ (γp, ρ) ⊂ (γp, δp).

Therefore, ρH ′p(ρ) − uH
′
p(u) ≥ 0, for all u ∈ (γp, ρ). Thus, the third integral in

(64) is positive. It follows that

ρS′′+(ρ) + (p+ 1)S
′
+(ρ) > 0, for all ρ ∈ (γp, δp), (resp. ρ ∈ (r, δp)) ,

which implies that S+ is convex in a neighborhood of each of its critical points
lying in (γp, δp) (resp. in (r, δp)). Thus, S

′
+ vanishes at most once in (γp, δp)

(resp. in (r, δp)) for all p > 1. Therefore; regarding (59), it follows that S+
is either strictly increasing in (r, c) or strictly decreasing in (r, sp) for some
sp ∈ (r, δp) and then strictly increasing in (sp, c). For the special case 1 < p ≤ 2,
by Lemma 3 one has

lim
ρ→r+

S+(ρ) = lim
ρ→c−

S+(ρ) = +∞.

Thus, the first possibility above cannot occur, and in this case S+ admits a
unique critical point which is a minimum. Therefore, Lemma 4 is proved. ♦

5 Proofs of main results

Assume that 1 < p ≤ 2. By Lemma 3 and 4, for all fixed λ > 0, the time map
T+(λ, ·) admits a unique critical point which is a minimum in (0, E∗(λ)) and
satisfies

lim
E→0+

T+(λ,E) = lim
E→E∗

T+(λ,E) = +∞.

Also, by Lemma 3

lim
ρ→r+

S+(ρ) = lim
ρ→c−

S+(ρ) = +∞,

and by the proof of Lemma 4, S+ admits a unique critical point, a minimum
in (r, c) at r∗, say. Therefore, based upon the fact that for all λ > 0, r+(λ, ·)
is strictly increasing from (0, E∗(λ)) onto (r, c), it follows that there exists a
unique Ẽ = Ẽ(λ) ∈ (0, E∗(λ)) such that r∗ = r+(λ, Ẽ(λ)). Thus, by (31), for
all E ∈ (0, E∗(λ))

T+(λ, Ẽ(λ)) = (p′λ)−1/pS+(r∗)

≤ (p′λ)−1/pS+(r+(λ,E)) = T+(λ,E),

hence, T+(λ, ·) attains its unique global minimum value at Ẽ(λ) ∈ (0, E∗(λ)).
It follows that
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• If (p′λ)−1/pS+(r∗) > (1/2), the equation T+(λ,E) = (1/2) in the variable
E ∈ (0, E∗(λ)) admits no solution.

• If (p′λ)−1/pS+(r∗) = (1/2), the equation T+(λ,E) = (1/2) in the variable
E ∈ (0, E∗(λ)) admits a unique solution; Ẽ(λ).

• If (p′λ)−1/pS+(r∗) < (1/2), the equation T+(λ,E) = (1/2) in the variable
E ∈ (0, E∗(λ)) admits exactly two solutions.

Hence, Theorem 2.1 is proved if we let λ0 = (2S+(r∗))
p/p′. ♦

Now, assume that p > 2 and let us prove Theorem 2.2. By the assumption

ν = (2S+(c))
p/p′ < (2S+(r))

p/p′ = λ1,

it follows that, for all fixed λ > 0,

lim
E→E∗

T+(λ,E) < lim
E→0
T+(λ,E).

According to Lemma 4, it follows that T+(λ, ·) admits a unique critical point; a
minimum. Thus, as in the case where 1 < p ≤ 2, there exists a unique r∗ ∈ (r, c)
and a unique Ẽ = Ẽ(λ) ∈ (0, E∗(λ)) such that

min
r≤ρ≤c

S+(ρ) = S+(r∗), and

min
0≤E≤E∗

T+(λ,E) = T+(λ, Ẽ(λ)) = (p
′λ)−1/pS+(r∗).

Define

J0 = {u ∈ C1([0, 1]) : u 6= 0 and u′(0) = 0}

J1(λ) = {u ∈ C1([0, 1]) : 0 < u′(0) < E∗(λ)}

J2(λ) = {u ∈ C1([0, 1]) : u′(0) = E∗(λ)}.

According to Lemma 5, each nontrivial solution to (1) belongs to J0 ∪ J1(λ) ∪
J2(λ). So, let us look for the nontrivial solutions in J1(λ).

• If (p′λ)−1/pS+(r∗) > 1/2, the equation T+(λ,E) = 1/2 in the variable
E ∈ (0, E∗(λ)) admits no solution. Thus, if 0 < λ < µ := (2S+(r∗))p/p′,
problem (1) admits no solution in J1(λ).

• If (p′λ)−1/pS+(r∗) = 1/2, the equation T+(λ,E) = 1/2 in the variable
E ∈ (0, E∗(λ)) admits a unique solution; Ẽ(λ). Thus, if λ = µ, problem
(1) admits a unique solution vλ in J1(λ), and this solution belongs to A

+
1 .

• If (p′λ)−1/pS+(r∗) < 1/2 < (p′λ)−1/pS+(c), the equation T+(λ,E) = 1/2
in the variable E ∈ (0, E∗(λ)) admits exactly two solutions. Thus, if
µ < λ < ν, problem (1) admits exactly two solutions vλ, wλ in J1(λ), and
they belong to A+1 .
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• If (p′λ)−1/pS+(c) = 1/2, the equation T+(λ,E) = 1/2 in the variable
E ∈ (0, E∗(λ)) admits a unique solution; E1 < Ẽ(λ). Thus, if λ = ν,
problem (1) admits a unique solution vλ in J1(λ), and it belongs to A

+
1 .

• If (p′λ)−1/pS+(c) < 1/2 < (p′λ)−1/pS+(r), the equation T+(λ,E) = 1/2
in the variable E ∈ (0, E∗(λ)) admits a unique solution; E1 < Ẽ(λ). Thus,
if ν < λ < λ1, problem (1) admits a unique solution vλ in J1(λ), and it
belongs to A+1 .

• If (p′λ)−1/pS+(r) ≥ 1/2, the equation T+(λ,E) = 1/2 in the variable
E ∈ (0, E∗(λ)) admits no solution. Thus, if λ ≥ λ1, problem (1) admits
no solution in J1(λ).

Now, let us look for the nontrivial solutions in J2(λ). For all λ > 0,

T+(λ,E∗(λ)) = 1/2 if and only if (p
′λ)−1/pS+(c) = 1/2 .

Thus, problem (1) admits a solution in J2(λ) ∩A
+
1 if and only if λ = ν, and in

this case the solution is unique. For all λ > 0,

T+(λ,E∗(λ)) < 1/2 if and only if (p
′λ)−1/pS+(c) < 1/2 .

Thus, problem (1) admits a solution in J2(λ) ∩ Ã
+
1 if and only if λ > ν, and in

this case the solution is unique.

Now let us look for the nontrivial solutions in J0. Let n ∈ N∗. For all λ > 0,

nT+(λ, 0) = 1/2 if and only if n(p
′λ)−1/pS+(r) = 1/2 .

Thus, problem (1) admits a solution in J0 ∩ B+n if and only if λ = λn, and in
this case the solution is unique. For all λ > 0,

nT+(λ, 0) < 1/2 if and only if n(p
′λ)−1/pS+(r) < 1/2 .

Thus, problem (1) admits a solution uλ,n in J0 ∩ B̃+n if and only if λ > λn, and
in this case each function u in Cl(uλ,n) is a solution to (1). Therefore, Theorem
2.2 is proved. ♦

To prove Theorems 2.3, 2.4 and 2.5, the same reasoning works. However,
for Theorems 2.4 and 2.5, one has

lim
E→0
T+(λ,E) < lim

E→E∗
T+(λ,E).

Thus, according to Lemma 4, T+(λ, ·) may have a unique critical point; a min-
imum, or may be strictly increasing. These two alternatives lead for Theorem
2.4 to the possibilities A and B, and for Theorem 2.5 to the possibilities C and
D. ♦
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6 Open questions

1. For p > 2, Theorems 2.4 and 2.5 provide alternative results. Do there
exist some sufficient conditions ensuring that possibility A (resp. B, C,
D) holds? Can one find an example of f such that possibility A (resp. B,
C, D) holds? Or maybe among the two alternatives Theorem 2.4 (resp.
Theorem 2.5) provides, the same one holds always?

2. In the literature, there are some examples of nonlinearities g(λ, u) such
that the structure of the solution set of (1) does change when p varies (as
that studied in this paper) but in others it does not change; for example
as that studied by Addou and Benmezäı [4] for g(λ, u) = λ exp(u).

Thus, we ask the question of providing sufficient or necessary conditions
on g insuring that the structure of (at least) the set of (positive) solutions
of problem (1) does not change when p varies.

7 Appendix

In this section, we prove Lemma 2 which is a consequence of the following two
lemmas.

Lemma 5 Let u be a nontrivial solution of (1). Then

u ≥ 0 in [0, 1] and 0 ≤ u′(0) ≤ E∗(λ) = (p
′λF (c))1/p.

Moreover,

• If 0 ≤ u′(0) < E∗(λ), then max0≤x≤1 u(x) < c.

• If u′(0) = E∗(λ) , then max0≤x≤1 u(x) = c.

Lemma 6 Let u be a nontrivial solution of (1). Then

(a) u′(0) ∈ (0, E∗(λ)) implies u ∈ A
+
1 ,

(b) u′(0) = E∗(λ) implies u ∈ A
+
1 ∪ Ã

+
1 ,

(c) u′(0) = 0 implies u ∈
⋃
k≥1B

+(k).

Proof of Lemma 5. Assume that there exists x0 ∈ (0, 1) such that

u(x0) = min
0≤x≤1

u(x) < 0 and u′(x0) = 0 .

The variations of F imply that F (u(x0)) < 0. On the other hand, by the energy
relation (see [7, Lemma 7])

|u′(x)|p = |u′(0)|p − p′λF (u(x)), for all x ∈ [0, 1],
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it follows that
0 = |u′(x0)|

p = |u′(0)|p − p′λF (u(x0)).

Thus, F (u(x0)) = (1/p
′λ)|u′(0)|p ≥ 0. A contradiction. Therefore u ≥ 0 in

[0, 1]. Let x∗ ∈ (0, 1) be such that u(x∗) = max0≤x≤1 u(x). By the energy
relation, it follows that

0 = |u′(x∗)|
p = |u′(0)|p − p′λF (u(x∗)).

Thus, u(x∗) is a positive zero of the function s 7→ |u′(0)|p−p′λF (s). By Lemma
1 this function vanishes at least once if and only if 0 ≤ |u′(0)| ≤ E∗(λ). Since,
u ≥ 0 in [0, 1] it follows that u′(0) ≥ 0. Thus |u′(0)| = u′(0) and therefore
0 ≤ u′(0) ≤ E∗(λ).
Assume that u′(0) = 0 and there exists x∗ ∈ (0, 1) such that u(x∗) =

max0≤x≤1 u(x) ≥ c. Thus, there exists x0 ∈ (0, 1) such that u(x0) = c. By
the energy relation, it follows that

0 ≤ |u′(x0)|
p = |u′(0)|p − p′λF (u(x0)) = −p

′λF (c).

Thus, F (c) ≤ 0, which contradicts hypothesis (5). Therefore, u′(0) = 0 implies
that max0≤x≤1 u(x) < c.
Assume that 0 < u′(0) < E∗(λ) = (p

′λF (c))1/p, and there exists x∗ ∈ (0, 1)
such that u(x∗) = max0≤x≤1 u(x) ≥ c. Thus, there exists x0 ∈ (0, 1) such that
u(x0) = c. By the energy relation, it follows that

0 ≤ |u(x0)|
p = |u′(0)|p − p′λF (u(x0)) = |u

′(0)|p − p′λF (c).

Thus, F (c) ≤ (1/p′λ)|u′(0)|p which is impossible since u′(0) < E∗(λ) im-
plies that (1/p′λ)|u′(0)|p < F (c). Therefore, 0 < u′(0) < E∗(λ) implies that
max0≤x≤1 u(x) < c.
Assume that u′(0) = E∗(λ) = (p

′λF (c))1/p. Let x∗ ∈ (0, 1) be such that
max0≤x≤1 u(x) = u(x∗) and u

′(x∗) = 0. By the energy relation it follows that

0 = |u′(x∗)|
p = |u′(0)|p − p′λF (u(x∗)) = p

′λF (c)− p′λF (u(x∗)) .

Thus, F (c) = F (u(x∗)) and therefore u(x∗) = c since F (c) > F (x) for all x ≥ 0
and x 6= c. Lemma 5 is proved. ♦

Proof of Lemma 6. Each assertion is a consequence of several steps. If u is
a nontrivial solution of (1) and satisfying u′(0) ∈ (0, E∗(λ)), then Assertion (a)
is an immediate consequence of the following steps:

(a1) For all x∗ ∈ (0, 1), u′(x∗) = 0 implies u(x∗) = s+(u′(0)) ∈ (r, c).

(a2) For all x1, x2 ∈ (0, 1), x1 < x2, u′(x1) = u′(x2) = 0 implies u ≡ s+(u′(0))
in [x1, x2].

(a3) The derivative u′ vanishes exactly once in (0, 1).
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(a4) The solution u is symmetric with respect to 1/2.

If u is a nontrivial solution of (1) and satisfying u′(0) = E∗(λ), then Assertion
(b) is an immediate consequence of the following steps:

(b1) For all x∗ ∈ (0, 1), u′(x∗) = 0 implies u(x∗) = c.

(b2) For all x1, x2 ∈ (0, 1), x1 < x2, u′(x1) = u′(x2) = 0 implies u ≡ c in
[x1, x2].

(b3) There exist x1, x2 ∈ (0, 1), such that x1 ≤ x2, and for all x ∈ (0, 1),

u′(x) = 0, if and only if x ∈ [x1, x2].

(b4) There exist x1, x2 ∈ (0, 1), such that 0 < x1 ≤ x2 < 1, and u′ > 0 on
(0, x1), u

′ ≡ 0 on [x1, x2], and u′ < 0 on (x2, 1).

(b5) The solution u is symmetric with respect to 1/2.

If u is a nontrivial solution of (1) and satisfying u′(0) = 0, then Assertion
(c) is an immediate consequence of the following steps:

(c1) For all x∗ ∈ (0, 1), u′(x∗) = 0 implies u(x∗) = 0 or u(x∗) = r.

(c2) Each local maxima of u is a strict one.

(c3) There are finitely many critical points at which u attains its maximum
value; r.

(c4) If u attains its maximum value at the n points of the strictly increasing
sequence (xi)1≤i≤n then for all i ∈ {1, · · · , n} there exists ai ≤ bi in [0, 1]
such that

xi < ai ≤ bi < xi+1, , for all i ∈ {1, · · · , n− 1}, (65)

0 = a0 ≤ b0 < x1 and xn < an ≤ bn = 1 , (66)

u ≡ 0 on [ai, bi] for all i ∈ {0, · · · , n}, (67)

u′ > 0 on (bi, xi+1) for all i ∈ {0, · · · , n− 1}, (68)

u′ < 0 on (xi, ai) for all i ∈ {1, · · · , n}, (69)

bi + ai+1 = 2xi+1, for all i ∈ {0, · · · , n− 1}, (70)

u|[bi,ai+1], is symmetric with respect to xi+1 for i ∈ {0, · · · , n− 1}, (71)

u|[bi,ai+1], is a translation of u|[b0,a1], for all i ∈ {0, · · · , n− 1} . (72)

The proofs of all these steps are simple and therefore omitted. Full details can
be found in the author’s doctoral thesis [9].

Acknowledgments. Many thanks to Professors P. Korman, S.-H. Wang and
J. Wei for sending me some of their publications.
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Addendum: May 3, 2000.

In this addendum we answer the question about alternative results for Theorems
2.4 and 2.5. We shall prove that for p > 2, Possibility B of Theorem 2.4 and
Possibility D of Theorem 2.5 never happen. Therefore, the diagram in Fig. 3
does not occur. That is, for p > 2 the upper branch has always a turning point
(which is unique).
The alternatives in Theorems 2.4 and 2.5 come from the alternative situation

on the time map T+(λ, ·). Indeed, Lemma 4 states that for all p > 2 and λ > 0,
either the time map T+(λ, ·) is strictly increasing or it admits a unique critical
point; a minimum in (0, E∗(λ)).
We shall prove that for all p > 2 and all λ > 0, T+(λ, ·) admits at least one

minimum in (0, E∗(λ)). Therefore, it admits a unique critical point for all p > 1
(according to the first part of Lemma 4) and it is never strictly increasing on
(0, E∗(λ)). As a consequence, for all p > 2, Possibility B of Theorem 2.4 and
Possibility D of Theorem 2.5 do not occur. To prove this statement, it suffices
to show that:

Lemma. S′+(r) = −∞ and S
′
+(c) = +∞ for all p > 2.

Proof. Since F (r) = F (0) = 0, the integral in the expression

S′+(r) =
1

pr

∫ r
0

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

du

has two singularities: one at 0 and one at r. So, we shall write

S′+(r) =
1

pr
(I0 + Ir),

where

I0 =

∫ r/2
0

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

du , Ir =

∫ r
r/2

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

du .

Next we prove that I0 = −∞ and Ir ∈ [−∞,+∞), so that S′+(r) = −∞.

Proof of I0 = −∞. Using l’Hopital’s rule twice it follows that

lim
u→0

F (u)

u2
=
f ′(0)

2
< 0 .

This last inequality follows from (15). Therefore,

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

=
Hp(r) −Hp(u)

(−F (u)
u2
)1+

1
p

·
1

u2(1+
1
p )
≈

Hp(r)

(− f
′(0)
2 )

1+ 1p
·
1

u2(1+
1
p )
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for all u ∈ (0, ε) and for some ε > 0. Since 2(1 + 1
p
) > 1 and

Hp(r)

(− f
′(0)
2 )

1+ 1p
=

−rf(r)

(− f
′(0)
2 )

1+ 1p
< 0

it follows that ∫ r/2
0

Hp(r)

(− f
′(0)
2 )

1+ 1p
·
1

u2(1+
1
p )
du = −∞

which proves that I0 = −∞.

Proof of Ir ∈ [−∞,+∞). We distinguish two cases.
Case H ′p(r) 6= 0. Since

lim
u→r

Hp(r)−Hp(u)

r − u
= H ′p(r) 6= 0

and

lim
u→r

F (r) − F (u)

r − u
= f(r) > 0 ,

it follows that

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

=
(
Hp(r)−Hp(u)

r−u )

(F (r)−F (u)r−u )1+
1
p

·
1

(r − u)
1
p

≈
H ′p(r)

(f(r))1+
1
p

·
1

(r − u)
1
p

for all u ∈ (r − ε, r) and for some ε > 0. Since 1
p
< 1 and

H′p(r)

(f(r))1+(1/p)
6= 0,

∫ r
r/2

H ′p(r)

(f(r))1+
1
p

·
1

(r − u)
1
p

du ∈ (−∞,+∞)

which proves that Ir ∈ [−∞,+∞).

Case H ′p(r) = 0. From equations (46)-(50), it follows that βp ≤ r ≤ γp.
First assume that βp 6= r. Then in a left neighborhood of r the integrand

function is identically zero. That is, there exists ε > 0 such that

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

= 0

for all u ∈ (r − ε, r). Therefore,

∫ r
r−ε

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

du = 0 .

So, the integral Ir presents no singularity at r and Ir ∈ (−∞,+∞).
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Now assume that r = βp. Then, by (46)-(48) Hp(r) − Hp(u) ≤ 0 for all
u ∈ (0, r). Therefore,∫ r

r/2

Hp(r) −Hp(u)

(F (r) − F (u))1+
1
p

du ∈ [−∞, 0],

which proves that Ir ∈ [−∞,+∞). Therefore, S′(r) = −∞.

Now, we shall prove that S′(c) = +∞. Since

lim
u→c

Hp(c)−Hp(u)

c− u
= H ′p(c) = −cf

′(c) > 0 ,

because of (15), and

lim
u→c

F (c)− F (u)

(c− u)2
= −
f ′(c)

2
> 0 ,

it follows that

Hp(c)−Hp(u)

(F (c)− F (u))1+
1
p

=
(
Hp(c)−Hp(u)

c−u )

(F (c)−F (u)(c−u)2 )
1+ 1p

·
1

(c− u)1+
2
p

≈
(−cf ′(c))

(− f
′(c)
2 )

1+ 1p
·

1

(c− u)1+
2
p

for all u ∈ (c− ε, c) and for some ε > 0. Since 1+ 2
p
> 1 and (−cf ′(c))

(− f
′(c)
2 )

1+ 1
p
> 0, it

follows that ∫ c
0

(−cf ′(c))

(− f
′(c)
2 )

1+ 1p
·

1

(c− u)1+
2
p

du = +∞,

which proves that S′(c) = +∞. Therefore, the present proof is complete, and
the claim of the addendum is proved. ♦


