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CARATHEODORY PERTURBATION OF A SECOND-ORDER
DIFFERENTIAL INCLUSION WITH CONSTRAINTS

SAIDA AMINE, RADOUAN MORCHADI, SAID SAJID

ABSTRACT. We prove the existence of local solutions for the second-order vi-
ability problem

i(t) € f(t,x(t),4(t) + F(x(t), &(2), «(t) € K.
Here K is a closed subset of R™, F' is an upper semicontinuous multifunction

with compact values contained in the subdifferential of a convex proper lower
semicontinuous function V, and f is a Carathéodory function.

1. INTRODUCTION

This paper concerns the second-order nonconvex viability problem
i(t) € f(t,x(t), &(t) + F(x(t), #(1))
(2(0),2(0)) = (20, vo) (1.1)
z(t) € K.

Where F' is a globally upper semicontinuous multifunction, cyclically monotone,
ie. F(z,y) C OV (y), defined from K x U into the subset of all nonempty compact
subset of R"; f is a Carathéodory function from R x K x U to R", where K is a
closed subset of R™, U is an open subset of R™ and 9V is the subdifferential of a
lower semicontinuous and convex function from U into R"™.

Existence of solutions of differential inclusions with upper semicontinuous and
cyclically monotone right-hand side was first established by Bressan, Cellina and
Colombo [6]. It has been proved the existence of local solutions of a first order
problem without constraints: &(t) € F'(z(t)). The approach is based on some tech-
nics related to the subdifferential properties applied to approximate solutions. To
avoid the difficulty of the weak convergence of the derivatives of such approximate
solutions, authors rely on the basic relation

d .
(V@) = llz@)1*,

Regarding the existence of viable solutions of second-order upper semicontinuous
differential inclusions without convexity, we refer to Lupulescu [10, [IT], where two
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results are given in this subject: the first deals with the problem where f = 0;
while the second studies problem , but without constraint, i.e. K = R™.

The first work in the second-order viability problem, was done by Cornet and
Haddad [8], the authors were subject concerned by a problem with upper semicon-
tinuous right-hand side, not cyclically monotone but convex. This research program
was pursued by some works, see [4, [12]. For the nonconvex case, existence results
may be found in [I} @] [T3].

It is known that viability problems require tangential conditions. So far as
we know, for a second-order viability problem, most of the time, authors use the
second-order contingent set

172
Ag(z,y) = {z e R": Jiminf dx(@+ f%{Jr 2h2) 0}
introduced by Ben-Tal. In the present paper we prove the existence solutions to
assuming the tangential condition: For all (t,z,y) € I x K x U, there exists
w € F(x,y) such that

2

1 i t+h
I}Lrilg}f ﬁdK(l’ + hy + ?w + /t f(r,2,y)dr) = 0.

This condition is also used by Lupulescu [10] with f = 0.

2. NOTATION AND STATEMENT OF THE MAIN RESULT

Let R™ be the n-dimensional Euclidean space with scalar product ( ; ) and norm
Il I|. Let K be a closed subset of R™, U be a nonempty open subset of R and
denote Q = K x U. For each x € R"™ we denote by dg (z) the distance from z to
K. For r > 0, B(x,r) stands for the ball centered at z with radius r and B(z,7)
its closure, B is the unit ball of R™.

Let F' be a multifunction from 2 into the set of all nonempty compact subsets
of R™. Let f be a function from R x € into R™ . Assume that F' and f satisfy the
following conditions:

(Al) F is upper semicontinuous, i.e. for all (z,y) and for every € > 0 there exists
d > 0 such that F(2/,y') C F(x,y) + B, whenever ||(z,y) — (z/,¢')|| < §;

(A2) There exists a convex proper and lower semicontinuous function V : R" —
R™ such that F(x,y) C OV (y), where OV denotes the subdifferential of the
function V;

(A3) f:R x Q — R"™is a Carathéodory function, i.e. for each (z,y) € Q, t —
f(t,z,y) is measurable and for all ¢t € R, (z,y) — f(¢,z,y) is continuous;

(A4) There exists m € L*(R) such that || f(¢, z,y)|| < m(t) for all (t,z,y) € RxQ;

(A5) (Tangential condition) For all (¢,z,v) € R x Q, there exists w € F(z,v)
such that

2

o 1 h t+h
l}lfgéﬂf ﬁdK (x + hv + S + /t f(r, z, ’U)dT) =0.

Let (x0,y0) € Q. Assuming that F' and f satisfy (A1)—(A5), we shall prove the
following result.
Theorem 2.1. There exist T > 0 and an absolutely continuous x : [0,T] — R™ for

which & is also absolutely continuous such that

B(t) € f(t,a(t),&(t) + F(z(t),#(t)) a.e. t € [0,T]
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(z(0),2(0)) = (20 o)
z(t) e K Vte|0,T).

3. PROOF OF THE MAIN RESULT

We begin by recalling the following result which was proved in [6], and will be
used in the second step of the proof of the main result.

Lemma 3.1. Let V' be a convex proper lower semicontinuous function such that
F(z,y) C OV (y), for any (z,y) € Q. Then there exist 1 = 15, > 0 and M =
My, > 0 such that

1E(z,y)ll = sup |zl <M on B((z,y),7)

z€F (z,y)

and V' is Lipschitz continuous on B(y,r) with constant M.

Let r and M be the real numbers defined in the Lemma above, and such that
B(yo,r) C U. Choose Ty > 0 such that

Ty
/ (m(s) + M +1)ds < ©. (3.1)
0

Set 5
r r

) . 3.2
1) 5ol 7)) 32
In the sequel, we denote by Qq the compact set (K x B(yo,7)) N B((zo,y0),r) and

choose T such that

Tg:min{g(

T E}O, min{Tl, TQ}] . (33)
The following result will be used for proving the viability property of the solutions

to .

Lemma 3.2. Let F and f satisfy assumptions (A1)-(A5). Then for each € > 0
there exists n €]0,e[ such that for each (t,z,v) in [0,T] x o, there exist w in
F(x,v) + %B and h in [n,€]; that is,

h2 t+h
(J:—&—hv—l—?w—i—/ f(r,z,v)dr) € K.
t
Proof. Let (t,z,v) € [0,T] x Qq, let € > 0. Since F is upper semicontinuous, then
there exists d(,.) > 0 such that

F(y,u) C Fz,v) + %B Y(y,u) € B((2,0),6(.0)). (3.4)

On the other hand, for all (s,y,u) € [0,T] x Qo, by the tangential condition, there
exist hsyu) €]0,€] and ¢ € F(y,u) such that
2

h sth(s,y,u)
(s,y,u) 2 <
dy <y + his,yuu + 9 c+ /g f(r.y, u)dT) < h(S;yﬂL) AT

Consider the subset
2

h
N(s,y,u) ={(1,a,b) € R x (R") : dic(a+ hayub+ (Ty“)c

l+h(s,y‘u) 9 5
+/l f(T, a, b)dT) < h(svy,u)r}.
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Since || f(I, a,b)|| < m(l) for all (I, a,b) € RxQ, the dominated convergence theorem
shows that the function
2

h( ) Ih(s,y,u)
(I,a,b) = a+ h(sy.ub+ %e + /l f(r,a,b)dr

is continuous. So that, the function
2 b
y 4y — ar(a+ N,y u + ———c+ T, Q, T
l,a,b) —d Psapah + =3 f(r,a,b)d
l

is continuous and consequently the subset N(s,y,u) is open. Moreover, since
(s,y,u) belongs to N(s,y,u), there exists a ball B((s,y,u),(s,y,u)) With radius
Ns,yu) < O(z,v) and contained in N(s,y,u). Therefore, the compactness of [0,77] x
Qo implies that it can be covered by ¢ such balls B((si, ¥, i), (s, y;,u:))- FOr
simplicity, put
hisipn) = his Mspyiw) 7= 0 := min hy > 0.

Let (t,z,v) € [0,T] x Q. Since (¢, x,v) belongs to one of the balls B((s;, ys, ui), ),
there exist x; € K and ¢; € F(y;, u;) such that

2 t+h;
Hci*ﬁ(xi*fﬂ*hﬂ/*/ f(r,a,0)dr)
i t
1 2 ths £ €
<fL?dK(x+th+cz+/t f(T,x,v)dT)+E§2—T.
Let us set
9 t+h;
w:ﬁ(xz—m—hzv—/ f(r,x,v)dr),
i t
then
h? fhi £
(m—l—hiv—l——lw—I—/ f(st,z,0)dr) € K and ||¢; —w| < —.
2 ; 2T
Since (t,z,v) € B((si,Yi, ui),n:) and 1; < 0(z.,4), relation (3.4) implies
3
F(y;,u;) C F(z,v) + ﬁB;
so that w € F'(x,v) + &B. Hence the Lemma is proved. O

Now, we are able to prove the main result. Our approach consists of constructing,
in a first step, a sequence of approximate solutions and deduce, in a second step,
from available estimates that a subsequence converges to a solution of (|1.1)).

Step 1. Construction of approximate solutions. Let (zg,y0) € Qo and £ > 0.
By Lemma there exist 7 > 0, ho in [n,¢] and wg in F(zg,y0) + =B such that

2 ho

h
(zo0 + hoyo + ?Owo + f(r,20,0)d7) € K.
0

Put

2 ho

h
1 = 2o + hoyo + ?Owo + f(1,20,90)dT and y1 = yo + howo.
0
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Since wo € F(zo,y0) C B(0, M+1), || f(t,z0,y0)| < m(t), by (3.1), (3.2), we obtain

1 — 2ol = ||hoyo + ?Owo +/ f(m, @0, y0) dr|
0
T ho
< Tlyoll + G luall 4 1 | F(ryz0,0)
0

T
< T|yoll +/ (M + 14 m(7))dr
0

)
< Tllwoll + 5 <.

and -
1 = woll = lhowol| < Tlwoll < 5 <7

and thus (z1,y1) € Qo. By induction, for p > 2 and for every i = 1,...,p — 1, we
construct (h;, (;,y;),w;) in [n,e] X Qo x R™ such that Ef;ol h; <T and

h2 hi—o+h;_1
v = (xic1 +hi1yi1 + ’2 wi— 1+/ f(T,2i-1,yi-1)d7) € K;
h

Yi = Y1 T hi—1wi—1;

i—2

£
w; € F(x,y;) + TB'

Since h; €]n, €[ there exists an integer s, such that

s—1 s
=0 =0

In what follows, choose € small such that

RE
=0
p)p C

Forallp=1,...,s—1 define (h [, ], (ps Yp)p C Qo, and (wp), as follows
h . hp_2+hy_1

zp—(xp 1+hp 1yp 1+ 2 wp 1+/ f(T7xp—17yp—1)dT) EK;

h

p—2
Yp = Yp—1 + hp_1wp_1;
€
wy € Fxp, yp) + TB.
Claim: For p=1,. — 1, the points (z,,y,) are in Q.
Indeed, by deﬁn1t1on of (xp,yp), we have

p—$0+zhzyz+2*wz / f(7, 20, 90) dT+Z/“h f(r, i, i) dr;

Yp = Yp—1 + hpflwpfh
g
wy € F(zp, yp) + TB'

Hence
p—1

lyp = yoll < 11D hawill < T(M +1) <
=0

IN
-

(3.5)

w3
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and
pr - 1'0“
p—1 p—1 h2 ho p—1 23:0 h;
= ||Zhiyi+ziwi+/ f(T,xo,yo)dT+Z/ ‘ F(ry @i ys) dr|
] 1 2 0 . Yy
1=0 1=0 i—1 Z]:() y
r p1 p—l Iy T
S(HZJOH"'g)ZM-F(M—l—l)Z?Z / m(r) dr.
i=0 i—0 0
Since

=D

p—1 p—1 B2
;mgTam ;Eéﬂ

by 7, we have

T
r
ey = oll < (laoll + T+ [ (M + 1+ m(r)dr
0 (3.6)
T, T
lzp — zoll < T(luoll +5) + 5 <7
hence (zp, yp)p C Qo which proves the claim.
For any nonzero integer k£ and for ¢ = 1,..., s denote by h’; a real associated to

e = ¢ and (t,z,y) = (hh_|, x4,y,) given by Lemma Let the sequence (77)
defined by

T = he + o+ hy g

and consider the sequence of functions (xj(.))x defined on each interval [Tg_l, il
by
- t—7ih)2
w(t) = g1+ (t =1 ygor + %wq—l

t
+ / 1(t - T)f(T> $q—1>yq71)d7'§
TIZ—

z;(0) = zo.

Step 2. Convergence of approximate solutions. By the definition of zy, for
all t € [777", 7] we have

t
T (t) = yg—1 + (t — T,Zfl)wq,l +/ f(T wg—1,Yq—1)dT;
T;jfl

l‘k(t) = Wqg-1 + f(taxq—la yq—1)~
Hence by (3.5 and (3.6)) we have the estimates
[k < llwg—rll + [1f( 2g-1, g2 < M + 1+ m(); (3.7)
t

e O = Wen(si ™+ [t

Tk

le @l < gl + | / (M + 1+ m(r))dr|
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< Mol + & < ol + 2,
= (|Yq—1 3_y0 37

and

i ()] = llzw (™) + /H k(7)) dr |

k

T
2r
<llegal+ [ (ol + 5 )ar

2T
< flzoll + Tllgoll + (1 + =)

By (3.7) one has
T T
/ i (1)]|2dt g/ (M + 1+ m(t))2dt.
0 0

Then the sequence (#(.))x is bounded in L?([0,T],R") and (ix(.))s is equiuni-
formly continuous. Moreover, we see that (zy(.))x is equi-Lipschitzian, hence equiu-
niformly continuous. Therefore, the sequence (#(.))x is bounded in L2([0, T], R"),
(2x(.))x and (xg(.))x are bounded in C(]0,T],R™) and equiuniformly continuous,
hence, by [3, Theorem 0.3.4] there exist a subsequence, still denoted by (z(.))x
and an absolutely continuous function z : [0,7] — R™ such that
(i) xj converges uniformly to x;
(ii) @) converges uniformly to &;
(iii) @) converges weakly in L%([0,T],R"™) to .

The family of approximate solutions xj, satisfies the following property.

Proposition 3.3. For every t € [0,T] there exits g € {1,...,s} such that
Jim g (wn(8), dx (1) 8 (1) — f(Ean(rl ), dn(rf 1)) =0

Proof. Let t € [0,T]. By construction of 7}/, there exists ¢ € 1,...s such that
te [Tg_l,T}g[ and (7)x converges to t. Moreover, for ¢ =1,...s
1

[k

() = F(t () dn(r ) = wemr € Flan(ri ™) an(mh) +
then
Jim dgep (2 (t), (8); dn(8) = f(E (), du(rl 1))
1
W)

Since [|#c(t)]| < M + 1+ m(t) , [lir(t)]| < lvoll + & and (7{)r converges to ¢, it
follows that

< Jim (an(®) = or(rf )+ ) = a () +

Jim [l (6) — ()] = T () — dx(rf )] =0,

hence
kh—{go dgTF((xk(t)wi'k(t)); -;L.'k:(t) - f(t7xk(7-lg_1)7j3k(7-lg_l))) =0.

This completes the proof. [
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Since x, — z uniformly, &y — @ uniformly, &, — & weakly in L2([0,T],R") and
(FCoazn(m ), ae (T 1)k converges to f(.,z(.),#(.)) in L*([0,T];R™) and F is
upper semicontinuous, then by [3l Theorem 1.4.1], « is a solution of the convexified
problem

Z(t) € f(t,z(¢t),2(t)) + co(F(z(t),z(¢))) a.e. on [0,T7;
2(0) = zo,  #(0) = yo.
Consequently for all ¢ € [0,T] we have
() — f(t,x(t),x(t)) € OV (2(t)) (3.8)
Proposition 3.4. The application x is a solution of .
Proof. By and [7, Lemma 3.3], we obtain

%(V(fb(t))) = (&), #(t) — f(t, =(t),2(t)) a.ein [0,T];

therefore,

T

T
V(@(T)) — V(yo) = / () |2dr - / @(r): fr,x(r), d(r))dr. (3.9)

On the other hand, for g =1,...,sand t € [7,3_1,7,3[,

(6®) = P an(r ) i) € Flan(rd™) () + ,%TB.
Then
(500) = (™)) € OV (@n(ri ™) + =B,
hence, there exists b, € B such that
(ik(t) — fta(rf ), an () + lc]ii“bq> € AV (i (). (3.10)

Properties of the subdifferential of a convex function imply that for every z in
AV (i (m171), we have

V(in(r) = V(ar(ri™h) = () — dn(ri7); 2). (3.11)
Then by
V(aw(r])) = V(ae(r )
> (an (1) — @ ({1 )sdn(t) — f(tap(rd ), dn(rlh)) + %bq%

thus
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Since #y, is constant in [77 "', 77, it follows that
u
V() - V() = [ i)
Tk

hence we have

V(&r(T)) = V(o)

/||xk ) dT—Z/qlxk Flr (™). ()

Claim: The sequence (Y = 1fq ER(); f(ry ak (7071, a (78 1)))dr ), converges
to fo (1,2(7),2(7)))dr.

Proof. Since [0,T] = U, _ [ 7], we have

T
HZ/q (@R () £ za( ), dn(r] )))dT—/O (#(7); f(r, 2(7), &(7)))dr||

Iy / :’;«afk(f) Fron (™) ir(rf ) = (@) £, i)

< Z/:i 1@k (7); f(r, (), du (T2 ))) — (@(7); f(1,2(7), &(7))) || dr
Since
Z/:i (& (T); f(m, e (rd ), &6 (T2 7)) — (&(7); f(m,2(7), &(7)))||dT
: Z/ i (7); £(ry ()i (7 0)) = Gin(7)s £ (7, mn(7), (7))
*Z/, G (7): £(7,20(7), k(7)) — (k(7); (7, 2(7), (7)) |dr
+Z/:i @k (T); f(r,2(7), 2(7))) — (&(7); f(r,2(7), @(7)))||dT
q=1"Tk
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+/0 12 (7); f (7, 2x(7), &1(7))) = (En(7); £ (7, 2(7), &(7))) |7
T
+/0 [Gw (7); f (7, (7), &(7))) = (@(7); f(7,2(7), &(7)))[|d,

it follows that

s e .
H;/Tgl@k(ﬁ;f(f,xk(ﬂ?1),:'ck(7,31))>d7—/0 G (r); f(rm(r), i ()7 |

q
Tk

:Z/ w (7); f (s an () (™)) = (En(7); f(r (), (7)) | dr

q—1
q=1""Tk

T

+/0 12 (7); £ (7, 2x(7), 81 (7))) = (En(7); £ (7, 2(7), &(7))) | dT
T

+/0 [ (7); £ (7, 2(7), &(7))) — (&(7); f (7, 2(7), (7)) l|d -

Since f is a Carathéodory function, xj and &) are uniformly lipschitz continuous,
llik(s)] < M + 1+ m(s), m € L?>([0,T),R"), x), — z, &) — & uniformly and &
— & weakly in L?([0,7],R™) then the last term converges to 0. Hence the claim is
proved. (I

Since

k—oo

s q
. (% .
lim ; z /T;i’l (Zk(7);bg)dT =0,

by passing to the limit as £ — oo in (3.12)) and using the continuity of the function
V on the ball B(yp,r), we obtain the estimate

V(&(T)) = V(yo) > kli_)n;() sup /OT |ix (7)||PdT — /OT < &(r); f(ryz(1), () > dr.
Moreover, by , we have
I3 > i sup 3,
and by the weak lower semicontinuity of the norm, it follows that
3 < Jim_inf )3
Hence limg o ||#%]|3 = ||#]|3, i-e. ((ix))x converges to @ strongly in L2([0,T], R™).

So that there exists a subsequence Zj which converges pointwisely almost every
where to &. In view of Proposition [3.3] we conclude that

dgrr(z(t),2(t),2(t) — f(t,z(t),£(t))) =0 ae. t€[0,T)].
Since the graph of F' is closed, we have
Z(t) € f(t,x(t),z(t)) + F(x(t),z(t)) a.e. t €[0,T7.

Finally, let t € [0, T]. Recall that there exits (1) such that limy_. 77 = ¢ for all
t €10,7). Since klim lz(t) — zx(r])|| = 0, 2k (1) € K and K is closed, by passing

to the limit for k¥ — oo we obtain z(¢t) € K. This completes the proof. O
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