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CARATHÉODORY PERTURBATION OF A SECOND-ORDER
DIFFERENTIAL INCLUSION WITH CONSTRAINTS

SAÏDA AMINE, RADOUAN MORCHADI, SAÏD SAJID

Abstract. We prove the existence of local solutions for the second-order vi-

ability problem

ẍ(t) ∈ f(t, x(t), ẋ(t)) + F (x(t), ẋ(t)), x(t) ∈ K.

Here K is a closed subset of Rn, F is an upper semicontinuous multifunction

with compact values contained in the subdifferential of a convex proper lower
semicontinuous function V , and f is a Carathéodory function.

1. Introduction

This paper concerns the second-order nonconvex viability problem

ẍ(t) ∈ f(t, x(t), ẋ(t)) + F (x(t), ẋ(t))

(x(0), ẋ(0)) = (x0, v0)

x(t) ∈ K.

(1.1)

Where F is a globally upper semicontinuous multifunction, cyclically monotone,
i.e. F (x, y) ⊂ ∂V (y), defined from K ×U into the subset of all nonempty compact
subset of Rn; f is a Carathéodory function from R ×K × U to Rn, where K is a
closed subset of Rn, U is an open subset of Rn and ∂V is the subdifferential of a
lower semicontinuous and convex function from U into Rn.

Existence of solutions of differential inclusions with upper semicontinuous and
cyclically monotone right-hand side was first established by Bressan, Cellina and
Colombo [6]. It has been proved the existence of local solutions of a first order
problem without constraints: ẋ(t) ∈ F (x(t)). The approach is based on some tech-
nics related to the subdifferential properties applied to approximate solutions. To
avoid the difficulty of the weak convergence of the derivatives of such approximate
solutions, authors rely on the basic relation

d

dt
(V (x(t))) = ‖ẋ(t)‖2.

Regarding the existence of viable solutions of second-order upper semicontinuous
differential inclusions without convexity, we refer to Lupulescu [10, 11], where two
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results are given in this subject: the first deals with the problem (1.1) where f ≡ 0;
while the second studies problem (1.1), but without constraint, i.e. K = Rn.

The first work in the second-order viability problem, was done by Cornet and
Haddad [8], the authors were subject concerned by a problem with upper semicon-
tinuous right-hand side, not cyclically monotone but convex. This research program
was pursued by some works, see [4, 12]. For the nonconvex case, existence results
may be found in [1, 9, 13].

It is known that viability problems require tangential conditions. So far as
we know, for a second-order viability problem, most of the time, authors use the
second-order contingent set

AK(x, y) =
{
z ∈ Rn : lim

h→0+
inf

dK(x + hy + 1
2h2z)

h2

2

= 0
}

introduced by Ben-Tal. In the present paper we prove the existence solutions to
(1.1) assuming the tangential condition: For all (t, x, y) ∈ I ×K × U , there exists
w ∈ F (x, y) such that

lim inf
h→0+

1
h2

dK(x + hy +
h2

2
w +

∫ t+h

t

f(τ, x, y)dτ) = 0.

This condition is also used by Lupulescu [10] with f ≡ 0.

2. Notation and statement of the main result

Let Rn be the n-dimensional Euclidean space with scalar product 〈 ; 〉 and norm
‖ ‖. Let K be a closed subset of Rn, U be a nonempty open subset of Rn and
denote Ω = K × U . For each x ∈ Rn we denote by dK(x) the distance from x to
K. For r > 0, B(x, r) stands for the ball centered at x with radius r and B(x, r)
its closure, B is the unit ball of Rn.

Let F be a multifunction from Ω into the set of all nonempty compact subsets
of Rn. Let f be a function from R× Ω into Rn . Assume that F and f satisfy the
following conditions:

(A1) F is upper semicontinuous, i.e. for all (x, y) and for every ε > 0 there exists
δ > 0 such that F (x′, y′) ⊆ F (x, y) + εB, whenever ‖(x, y)− (x′, y′)‖ ≤ δ;

(A2) There exists a convex proper and lower semicontinuous function V : Rn →
Rn such that F (x, y) ⊂ ∂V (y), where ∂V denotes the subdifferential of the
function V ;

(A3) f : R × Ω → Rn is a Carathéodory function, i.e. for each (x, y) ∈ Ω, t →
f(t, x, y) is measurable and for all t ∈ R, (x, y) → f(t, x, y) is continuous;

(A4) There exists m ∈ L2(R) such that ‖f(t, x, y)‖ ≤ m(t) for all (t, x, y) ∈ R×Ω;
(A5) (Tangential condition) For all (t, x, v) ∈ R × Ω, there exists w ∈ F (x, v)

such that

lim inf
h→0+

1
h2

dK

(
x + hv +

h2

2
w +

∫ t+h

t

f(τ, x, v)dτ
)

= 0.

Let (x0, y0) ∈ Ω. Assuming that F and f satisfy (A1)–(A5), we shall prove the
following result.

Theorem 2.1. There exist T > 0 and an absolutely continuous x : [0, T ] → Rn for
which ẋ is also absolutely continuous such that

ẍ(t) ∈ f(t, x(t), ẋ(t)) + F (x(t), ẋ(t)) a.e. t ∈ [0, T ]
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(x(0), ẋ(0)) = (x0, y0)

x(t) ∈ K ∀t ∈ [0, T ].

3. Proof of the main result

We begin by recalling the following result which was proved in [6], and will be
used in the second step of the proof of the main result.

Lemma 3.1. Let V be a convex proper lower semicontinuous function such that
F (x, y) ⊂ ∂V (y), for any (x, y) ∈ Ω. Then there exist r = rx,y > 0 and M =
Mx,y > 0 such that

‖F (x, y)‖ = sup
z∈F (x,y)

‖z‖ ≤ M on B((x, y), r)

and V is Lipschitz continuous on B(y, r) with constant M .

Let r and M be the real numbers defined in the Lemma above, and such that
B(y0, r) ⊂ U . Choose T1 > 0 such that∫ T1

0

(m(s) + M + 1) ds <
r

3
. (3.1)

Set
T2 = min

{ r

3(M + 1)
,

2r

3(‖y0‖+ r)
}
. (3.2)

In the sequel, we denote by Ω0 the compact set (K ×B(y0, r))∩B((x0, y0), r) and
choose T such that

T ∈]0,min{T1, T2}] . (3.3)
The following result will be used for proving the viability property of the solutions
to (1.1).

Lemma 3.2. Let F and f satisfy assumptions (A1)–(A5). Then for each ε > 0
there exists η ∈]0, ε[ such that for each (t, x, v) in [0, T ] × Ω0, there exist w in
F (x, v) + ε

T B and h in [η, ε]; that is,(
x + hv +

h2

2
w +

∫ t+h

t

f(τ, x, v)dτ
)
∈ K.

Proof. Let (t, x, v) ∈ [0, T ]× Ω0, let ε > 0. Since F is upper semicontinuous, then
there exists δ(x,v) > 0 such that

F (y, u) ⊂ F (x, v) +
ε

T
B ∀(y, u) ∈ B((x, v), δ(x,v)). (3.4)

On the other hand, for all (s, y, u) ∈ [0, T ]×Ω0, by the tangential condition, there
exist h(s,y,u) ∈]0, ε] and c ∈ F (y, u) such that

dK

(
y + h(s,y,u)u +

h2
(s,y,u)

2
c +

∫ s+h(s,y,u)

s

f(τ, y, u)dτ
)

< h2
(s,y,u)

ε

4T
.

Consider the subset

N(s, y, u) =
{
(l, a, b) ∈ R× (Rn)2 : dK

(
a + h(s,y,u)b +

h2
(s,y,u)

2
c

+
∫ l+h(s,y,u)

l

f(τ, a, b)dτ
)

< h2
(s,y,u)

ε

4T

}
.
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Since ‖f(l, a, b)‖ ≤ m(l) for all (l, a, b) ∈ R×Ω, the dominated convergence theorem
shows that the function

(l, a, b) → a + h(s,y,u)b +
h2

(s,y,u)

2
c +

∫ l+h(s,y,u)

l

f(τ, a, b)dτ

is continuous. So that, the function

(l, a, b) → dK(a + h(s,y,u)b +
h2

(s,y,u)

2
c +

∫ l+h(s,y,u)

l

f(τ, a, b)dτ)

is continuous and consequently the subset N(s, y, u) is open. Moreover, since
(s, y, u) belongs to N(s, y, u), there exists a ball B((s, y, u), η(s,y,u)) with radius
η(s,y,u) < δ(x,v) and contained in N(s, y, u). Therefore, the compactness of [0, T ]×
Ω0 implies that it can be covered by q such balls B((si, yi, ui), η(si,yi,ui)). For
simplicity, put

h(si,yi,ui) := hi, η(si,yi,ui) := ηi, η := min
i=1,...,q

hi > 0.

Let (t, x, v) ∈ [0, T ]×Ω0. Since (t, x, v) belongs to one of the balls B((si, yi, ui), ηi),
there exist xi ∈ K and ci ∈ F (yi, ui) such that∥∥ci −

2
h2

i

(xi − x− hiv −
∫ t+hi

t

f(τ, x, v) dτ)
∥∥

≤ 1
h2

i

dK(x + hiv +
h2

i

2
ci +

∫ t+hi

t

f(τ, x, v) dτ) +
ε

4T
≤ ε

2T
.

Let us set

w =
2
h2

i

(xi − x− hiv −
∫ t+hi

t

f(τ, x, v) dτ),

then

(x + hiv +
h2

i

2
w +

∫ t+hi

t

f(sτ, x, v)dτ) ∈ K and ‖ci − w‖ ≤ ε

2T
.

Since (t, x, v) ∈ B((si, yi, ui), ηi) and ηi < δ(x,v), relation (3.4) implies

F (yi, ui) ⊂ F (x, v) +
ε

2T
B;

so that w ∈ F (x, v) + ε
T B. Hence the Lemma is proved. �

Now, we are able to prove the main result. Our approach consists of constructing,
in a first step, a sequence of approximate solutions and deduce, in a second step,
from available estimates that a subsequence converges to a solution of (1.1).

Step 1. Construction of approximate solutions. Let (x0, y0) ∈ Ω0 and ε > 0.
By Lemma 3.2, there exist η > 0, h0 in [η, ε] and w0 in F (x0, y0) + ε

T B such that

(
x0 + h0y0 +

h2
0

2
w0 +

∫ h0

0

f(τ, x0, y0)dτ
)
∈ K.

Put

x1 = x0 + h0y0 +
h2

0

2
w0 +

∫ h0

0

f(τ, x0, y0)dτ and y1 = y0 + h0w0.
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Since w0 ∈ F (x0, y0) ⊂ B(0,M +1), ‖f(t, x0, y0)‖ ≤ m(t), by (3.1), (3.2), we obtain

‖x1 − x0‖ =
∥∥h0y0 +

h2
0

2
w0 +

∫ h0

0

f(τ, x0, y0) dτ
∥∥

≤ T‖y0‖+
T

2
‖w0‖+ ‖

∫ h0

0

f(τ, x0, y0) dτ‖

≤ T‖y0‖+
∫ T

0

(M + 1 + m(τ))dτ

≤ T‖y0‖+
r

3
≤ r,

and
‖y1 − y0‖ = ‖h0w0‖ ≤ T‖w0‖ <

r

3
< r

and thus (x1, y1) ∈ Ω0. By induction, for p ≥ 2 and for every i = 1, . . . , p − 1, we
construct (hi, (xi, yi), wi) in [η, ε]× Ω0 × Rn such that

∑p−1
i=0 hi ≤ T and

xi = (xi−1 + hi−1yi−1 +
h2

i−1

2
wi−1 +

∫ hi−2+hi−1

hi−2

f(τ, xi−1, yi−1) dτ) ∈ K;

yi = yi−1 + hi−1wi−1;

wi ∈ F (xi, yi) +
ε

T
B.

Since hi ∈]η, ε[ there exists an integer s, such that
s−1∑
i=0

hi < T ≤
s∑

i=0

hi.

In what follows, choose ε small such that
s−1∑
i=0

h2
i

2
≤

s−1∑
i=0

hi < T.

For all p = 1, . . . , s− 1 define (hp)p ⊂ [η, ε], (xp, yp)p ⊂ Ω0, and (wp)p as follows

xp = (xp−1 + hp−1yp−1 +
h2

p−1

2
wp−1 +

∫ hp−2+hp−1

hp−2

f(τ, xp−1, yp−1) dτ) ∈ K;

yp = yp−1 + hp−1wp−1;

wp ∈ F (xp, yp) +
ε

T
B.

Claim: For p = 1, . . . , s− 1, the points (xp, yp) are in Ω0.
Indeed, by definition of (xp, yp), we have

xp = x0 +
p−1∑
i=0

hiyi +
p−1∑
i=0

h2
i

2
wi +

∫ h0

0

f(τ, x0, y0) dτ +
p−1∑
i=1

∫ Pi
j=0 hj

Pi−1
j=0 hj

f(τ, xi, yi) dτ ;

yp = yp−1 + hp−1wp−1;

wp ∈ F (xp, yp) +
ε

T
B.

Hence

‖yp − y0‖ ≤ ‖
p−1∑
i=0

hiwi‖ ≤ T (M + 1) ≤ r

3
≤ r, (3.5)
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and

‖xp − x0‖

=
∥∥ p−1∑

i=0

hiyi +
p−1∑
i=0

h2
i

2
wi +

∫ h0

0

f(τ, x0, y0) dτ +
p−1∑
i=1

∫ Pi
j=0 hj

Pi−1
j=0 hj

f(τ, xi, yi) dτ
∥∥

≤ (‖y0‖+
r

3
)

p−1∑
i=0

hi + (M + 1)
p−1∑
i=0

h2
i

2
+

∫ T

0

m(τ) dτ.

Since
p−1∑
i=0

hi ≤ T and
p−1∑
i=0

h2
i

2
≤ T,

by (3.1)–(3.3), we have

‖xp − x0‖ ≤ (‖y0‖+
r

3
)T +

∫ T

0

(M + 1 + m(τ)) dτ,

‖xp − x0‖ ≤ T (‖y0‖+
r

3
) +

r

3
≤ r;

(3.6)

hence (xp, yp)p ⊂ Ω0 which proves the claim.
For any nonzero integer k and for q = 1, . . . , s denote by hk

q a real associated to
ε = 1

k and (t, x, y) = (hk
q−1, xq, yq) given by Lemma 3.2. Let the sequence (τ q

k )k

defined by

τ0
k = 0, τ s

k = T,

τ q
k = hk

0 + · · ·+ hk
q−1;

and consider the sequence of functions (xk(.))k defined on each interval [τ q−1
k , τ q

k [
by

xk(t) = xq−1 + (t− τ q−1
k )yq−1 +

(t− τ q−1
k )2

2
wq−1

+
∫ t

τq−1
k

(t− τ)f(τ, xq−1, yq−1)dτ ;

xk(0) = x0.

Step 2. Convergence of approximate solutions. By the definition of xk, for
all t ∈ [τ q−1

k , τ q
k [ we have

ẋk(t) = yq−1 + (t− τ q−1
k )wq−1 +

∫ t

τq−1
k

f(τ, xq−1, yq−1)dτ ;

ẍk(t) = wq−1 + f(t, xq−1, yq−1).

Hence by (3.5) and (3.6) we have the estimates

‖ẍk(t)‖ ≤ ‖wq−1‖+ ‖f(t, xq−1, yq−1)‖ ≤ M + 1 + m(t); (3.7)

‖ẋk(t)‖ = ‖ẋk(τ q−1
k ) +

∫ t

τq−1
k

ẍk(τ))dτ‖;

‖ẋk(t)‖ ≤ ‖yq−1‖+
∥∥∫ T

0

(M + 1 + m(τ))dτ
∥∥
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≤ ‖yq−1‖+
r

3
≤ ‖y0‖+

2r

3
;

and

‖xk(t)‖ = ‖xk(τ q−1
k ) +

∫ t

τq−1
k

ẋk(τ))dτ‖

≤ ‖xq−1‖+
∫ T

0

(‖y0‖+
2r

3
)dτ

≤ ‖x0‖+ T‖y0‖+ (1 +
2T

3
)r.

By (3.7) one has ∫ T

0

‖ẍk(t)‖2dt ≤
∫ T

0

(M + 1 + m(t))2dt.

Then the sequence (ẍk(.))k is bounded in L2([0, T ], Rn) and (ẋk(.))k is equiuni-
formly continuous. Moreover, we see that (xk(.))k is equi-Lipschitzian, hence equiu-
niformly continuous. Therefore, the sequence (ẍk(.))k is bounded in L2([0, T ], Rn),
(ẋk(.))k and (xk(.))k are bounded in C([0, T ], Rn) and equiuniformly continuous,
hence, by [3, Theorem 0.3.4] there exist a subsequence, still denoted by (xk(.))k

and an absolutely continuous function x : [0, T ] → Rn such that

(i) xk converges uniformly to x;
(ii) ẋk converges uniformly to ẋ;
(iii) ẍk converges weakly in L2([0, T ], Rn) to ẍ.

The family of approximate solutions xk satisfies the following property.

Proposition 3.3. For every t ∈ [0, T [ there exits q ∈ {1, . . . , s} such that

lim
k→∞

dgrF

(
xk(t), ẋk(t); ẍk(t)− f(t, xk(τ q−1

k ), ẋk(τ q−1
k ))

)
= 0

Proof. Let t ∈ [0, T ]. By construction of τ q
k , there exists q ∈ 1, . . . s such that

t ∈ [τ q−1
k , τ q

k [ and (τ q
k )k converges to t. Moreover, for q = 1, . . . s

ẍk(t)− f(t, xk(τ q−1
k ), ẋk(τ q−1

k )) = wq−1 ∈ F (xk(τ q−1
k ), ẋk(τ q−1

k )) +
1

kT
B,

then

lim
k→∞

dgrF ((xk(t), ẋk(t)); ẍk(t)− f(t, xk(τ q−1
k ), ẋk(τ q−1

k )))

≤ lim
k→∞

(‖xk(t)− xk(τ q−1
k )‖+ ‖ẋk(t)− ẋk(τ q−1

k )‖+
1

kT
).

Since ‖ẍk(t)‖ ≤ M + 1 + m(t) , ‖ẋk(t)‖ ≤ ‖y0‖ + 2r
3 and (τ q

k )k converges to t, it
follows that

lim
k→∞

‖xk(t)− xk(τ q−1
k )‖ = lim

k→∞
‖ẋk(t)− ẋk(τ q−1

k )‖ = 0,

hence
lim

k→∞
dgrF

(
(xk(t), ẋk(t)); ẍk(t)− f(t, xk(τ q−1

k ), ẋk(τ q−1
k ))

)
= 0.

This completes the proof. �
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Since xk → x uniformly, ẋk → ẋ uniformly, ẍk → ẍ weakly in L2([0, T ], Rn) and
(f(., xk(τ q−1

k ), ẋk(τ q−1
k )))k converges to f(., x(.), ẋ(.)) in L2([0, T ]; Rn) and F is

upper semicontinuous, then by [3, Theorem 1.4.1], x is a solution of the convexified
problem

ẍ(t) ∈ f(t, x(t), ẋ(t)) + co(F (x(t), ẋ(t))) a.e. on [0, T ];

x(0) = x0, ẋ(0) = y0.

Consequently for all t ∈ [0, T ] we have

ẍ(t)− f(t, x(t), ẋ(t)) ∈ ∂V (ẋ(t)) (3.8)

Proposition 3.4. The application x is a solution of (1.1).

Proof. By (3.8) and [7, Lemma 3.3], we obtain

d

dt
(V (ẋ(t))) = 〈ẍ(t), ẍ(t)− f(t, x(t), ẋ(t))〉 a.e in [0, T ];

therefore,

V (ẋ(T ))− V (y0) =
∫ T

0

‖ẍ(τ)‖2dτ −
∫ T

0

〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉dτ. (3.9)

On the other hand, for q = 1, . . . , s and t ∈ [τ q−1
k , τ q

k [,(
ẍk(t)− f(t, xk(τ q−1

k ), ẋk(τ q−1
k ))

)
∈ F (xk(τ q−1

k ), ẋk(τ q−1
k )) +

1
kT

B.

Then (
ẍk(t)− f(t, xk(τ q−1

k ), ẋk(τ q−1
k ))

)
∈ ∂V (ẋk(τ q−1

k ) +
1

kT
B,

hence, there exists bq ∈ B such that(
ẍk(t)− f(t, xk(τ q−1

k ), ẋk(τ q−1
k )) +

1
kT

bq

)
∈ ∂V (ẋk(τ q−1

k ). (3.10)

Properties of the subdifferential of a convex function imply that for every z in
∂V (ẋk(τ q−1

k ), we have

V (ẋk(τ q
k ))− V (ẋk(τ q−1

k )) ≥ 〈ẋk(τ q
k )− ẋk(τ q−1

k ); z〉. (3.11)

Then by (3.10)

V (ẋk(τ q
k ))− V (ẋk(τ q−1

k ))

≥ 〈ẋk(τ q
k )− ẋk(τ q−1

k ); ẍk(t)− f(t, xk(τ q−1
k ), ẋk(τ q−1

k )) +
1

kT
bq〉;

thus

V (ẋk(τ q
k ))− V (ẋk(τ q−1

k ))

≥ 〈
∫ τq

k

τq−1
k

ẍk(τ)dτ ; ẍk(t)− f(t, xk(τ q−1
k ), ẋk(τ q−1

k )) +
1

kT
bq〉 .
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Since ẍk is constant in [τ q−1
k , τ q

k [, it follows that

V (ẋk(τ q
k ))− V (ẋk(τ q−1

k )) ≥
∫ τq

k

τq−1
k

〈ẍk(τ); ẍk(τ)〉dτ

−
∫ τq

k

τq−1
k

〈ẍk(τ); f(t, xk(τ q−1
k ), ẋk(τ q−1

k ))〉dτ

+
∫ τq

k

τq−1
k

〈ẍk(τ);
1

kT
bq〉dτ ;

hence we have

V (ẋk(T ))− V (y0)

≥
∫ T

0

‖ẍk(τ)‖2dτ −
s∑

q=1

∫ τq
k

τq−1
k

〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉dτ

+
s∑

q=1

1
kT

∫ τq
k

τq−1
k

〈ẍk(τ); bq〉dτ.

(3.12)

Claim: The sequence
( ∑s

q=1

∫ τq
k

τq−1
k

〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉dτ)k converges

to
∫ T

0
〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉dτ .

Proof. Since [0, T ] =
⋃s

q=1[τ
q−1
k , τ q

k ], we have

∥∥ s∑
q=1

∫ τq
k

τq−1
k

〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉dτ −
∫ T

0

〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉dτ
∥∥

= ‖
s∑

q=1

∫ τq
k

τq−1
k

(〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉 − 〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉)dτ‖

≤
s∑

q=1

∫ τq
k

τq−1
k

‖〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉 − 〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉‖dτ .

Since
s∑

q=1

∫ τq
k

τq−1
k

‖〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉 − 〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉‖dτ

≤
s∑

q=1

∫ τq
k

τq−1
k

‖〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉 − 〈ẍk(τ); f(τ, xk(τ), ẋk(τ))〉‖dτ

+
s∑

q=1

∫ τq
k

τq−1
k

‖〈ẍk(τ); f(τ, xk(τ), ẋk(τ))〉 − 〈ẍk(τ); f(τ, x(τ), ẋ(τ))〉‖dτ

+
s∑

q=1

∫ τq
k

τq−1
k

‖〈ẍk(τ); f(τ, x(τ), ẋ(τ))〉 − 〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉‖dτ

=
s∑

q=1

∫ τq
k

τq−1
k

‖〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉 − 〈ẍk(τ); f(τ, xk(τ), ẋk(τ))〉‖dτ
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+
∫ T

0

‖〈ẍk(τ); f(τ, xk(τ), ẋk(τ))〉 − 〈ẍk(τ); f(τ, x(τ), ẋ(τ))〉‖dτ

+
∫ T

0

‖〈ẍk(τ); f(τ, x(τ), ẋ(τ))〉 − 〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉‖dτ,

it follows that∥∥ s∑
q=1

∫ τq
k

τq−1
k

〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉dτ −
∫ T

0

〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉dτ
∥∥

=
s∑

q=1

∫ τq
k

τq−1
k

‖〈ẍk(τ); f(τ, xk(τ q−1
k ), ẋk(τ q−1

k ))〉 − 〈ẍk(τ); f(τ, xk(τ), ẋk(τ))〉‖dτ

+
∫ T

0

‖〈ẍk(τ); f(τ, xk(τ), ẋk(τ))〉 − 〈ẍk(τ); f(τ, x(τ), ẋ(τ))〉‖dτ

+
∫ T

0

‖〈ẍk(τ); f(τ, x(τ), ẋ(τ))〉 − 〈ẍ(τ); f(τ, x(τ), ẋ(τ))〉‖dτ .

Since f is a Carathéodory function, xk and ẋk are uniformly lipschitz continuous,
‖ẍk(s)‖ ≤ M + 1 + m(s), m ∈ L2([0, T ], Rn), xk → x, ẋk → ẋ uniformly and ẍk

→ ẍ weakly in L2([0, T ], Rn) then the last term converges to 0. Hence the claim is
proved. �

Since

lim
k→∞

s∑
q=1

1
k

∫ τq
k

τq−1
k

〈ẍk(τ); bq〉dτ = 0,

by passing to the limit as k →∞ in (3.12) and using the continuity of the function
V on the ball B(y0, r), we obtain the estimate

V (ẋ(T ))− V (y0) ≥ lim
k→∞

sup
∫ T

0

‖ẍk(τ)‖2dτ −
∫ T

0

< ẍ(τ); f(τ, x(τ), ẋ(τ) > dτ.

Moreover, by (3.8), we have

‖ẍ‖22 ≥ lim
k→∞

sup ‖ẍk‖22,

and by the weak lower semicontinuity of the norm, it follows that

‖ẍ‖22 ≤ lim
k→∞

inf ‖ẍk‖22.

Hence limk→∞ ‖ẍk‖22 = ‖ẍ‖22, i.e. ((ẍk))k converges to ẍ strongly in L2([0, T ], Rn).
So that there exists a subsequence ẍk which converges pointwisely almost every
where to ẍ. In view of Proposition 3.3, we conclude that

dgrF (x(t), ẋ(t), ẍ(t)− f(t, x(t), ẋ(t))) = 0 a.e. t ∈ [0, T ].

Since the graph of F is closed, we have

ẍ(t) ∈ f(t, x(t), ẋ(t)) + F (x(t), ẋ(t)) a.e. t ∈ [0, T ].

Finally, let t ∈ [0, T ]. Recall that there exits (τ q
k )k such that limk→∞ τ q

k = t for all
t ∈ [0, T ]. Since lim

k→∞
‖x(t)− xk(τ q

k )‖ = 0, xk(τ q
k ) ∈ K and K is closed, by passing

to the limit for k →∞ we obtain x(t) ∈ K. This completes the proof. �
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