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FLUX APPROXIMATION

QINGLING ZHANG

Communicated by Jesus Ildefonso Diaz

Abstract. We study the stability of Riemann solutions to pressureless Euler

equations with Coulomb-type friction under the nonlinear approximation of

flux functions with one parameter. The approximated system can be seen as
the generalized Chaplygin pressure Aw-Rascle model with Coulomb-type fric-

tion, which is also equivalent to the nonsymmetric system of Keyfitz-Kranzer

type with generalized Chaplygin pressure and Coulomb-type friction. Com-
pared with the original system. The approximated system is strictly hyper-

bolic, which has one eigenvalue genuinely nonlinear and the other linearly

degenerate. Hence, the structure of its Riemann solutions is much different
from the ones of the original system. However, it is proven that the Riemann

solutions to the approximated system converge to the corresponding ones to
the original system as the perturbation parameter tends to zero, which shows

that the Riemann solutions to the nonhomogeneous pressureless Euler equa-

tions is stable under such kind of flux approximation. In a word, we not only
analyze the mechanism of the occurrence of the delta shocks, but also gener-

alize the result about the stability of Riemann solutions with respect to flux

perturbation from the well-known homogeneous case to the nonhomogeneous
case.

1. Introduction

Non-strictly hyperbolic systems have important physical background, which are
also difficult and interesting in mathematics. Many people have studied them and
is well known that their Cauchy problem usually does not have a weak L∞-solution.
A typical example of this is the Cauchy problem for pressureless Euler equations
(which is also called as zero pressure flow or transportation equations) [15, 36].
Therefore, the measure-value solution should be introduced to this nonclassical
situation, such as delta shock wave [4, 30, 33] and singular shock [18, 21], which
can also provide a reasonable explanation for some physical phenomena. However,
the mechanism for the formation of delta shock wave cannot be fully understood,
although the necessity of delta shock wave is obvious for Riemann solutions to some
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non-strictly hyperbolic systems. Now there are some related results for homogenous
equations [4, 27], but few results have been shown for nonhomogeneous equations.

In this article, we are mainly concerned with zero pressure flow with Coulomb-
type friction

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = βρ,
(1.1)

where the state variable ρ > 0, u denote the density and velocity, respectively, and
β is a frictional constant.

The motivation for studying (1.1) comes from the violent discontinuities in shal-
low flows with large Froude number [11]. It can also be derived directly from the
so-called pressureless Euler/Euler-Possion systems [22]. Moreover, system (1.1) can
also be obtained formally from the model proposed by Brenier et al. [3] to describe
the sticky particle dynamics with interactions. Recently, the Riemann problem and
shadow wave for (1.1) have been studied in [25] and [10]. Remarkably, in [25], it
is shown that the Riemann problem for the nonhomogeneous equations (1.1) has
delta shock wave solutions in some situations.

Delta shock wave is a kind of nonclassical nonlinear wave on which at least one of
the state variables becomes a singular measure. Korchinski [19] firstly introduced
the concept of the δ-function into the classical weak solution in his unpublished
Ph.D. thesis. In 1994, Tan, Zhang and Zheng [33] considered some 1-D reduced
system and discovered that the form of δ-functions supported on shocks was used
as parts in their Riemann solutions for certain initial data. Since then, delta shock
wave has been widely investigated, see [2, 20, 30] and references cited therein.

The formation of delta shock wave has been extensively studied by the vanishing
pressure approximation for zero pressure flow [4, 27] and Chaplygin gas dynamics
[7, 29, 38]. Recently, the flux approximation with two parameters [39] and three
parameters [37] has also been carried out for zero pressure flow. In the present
paper, we consider the nonlinear approximation of flux functions for zero pressure
flow with Coulomb-type friction which has not attracted much attention before.

Specifically, we introduce the nonlinear approximation of flux functions for (1.1)
as follows:

ρt + (ρu)x = 0,

(ρ(u+ P ))t + (ρu(u+ P ))x = βρ,
(1.2)

where P is given by the state equation for generalized Chaplygin gas [1, 24, 29, 34]

P = − A

ρα
, A > 0, 0 < α < 1, (1.3)

with α a real constant and the parameter A sufficiently small. System (1.2) and
(1.3) can be seen as the generalized Chaplygin pressure Aw-Rascle model with
Coulomb-type friction. By taking u = w − P , (1.2) can be written as

ρt + (ρ(w − P ))x = 0,

(ρw)t + (ρw(w − P ))x = βρ,
(1.4)

with a pure flux approximation. Systems (1.4) and (1.3) can also be seen as the
nonsymmetric system of Keyfitz-Kranzer type with generalized Chaplygin pressure
and Coulomb-type friction [13]. Recently, for β = 0, Cheng has showed that the
structure of Riemann solutions to (1.2) and (1.4) were very similar [5, 6].
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More precisely, we are only concerned with the Riemann problem, i.e. the initial
data

(ρ, u)(x, 0) =

{
(ρ−, u−), x < 0,

(ρ+, u+), x > 0,
(1.5)

where ρ± and u± are all given constants.
In this article, we will find that the delta shock wave also appears in the Riemann

solutions to (1.2) for some specific initial data. We are interested in how the delta-
shock solution of (1.2) and (1.5) develops under the influence of the Coulomb-type
friction. The advantage of this kind source term is in that (1.2) can be written in a
conservative form such that exact solutions to the Riemann problem (1.2) and (1.5)
can be constructed explicitly. We shall see that the Riemann solutions to (1.2) and
(1.5) are not self-similar any more, in which the state variable u varies linearly along
with the time t under the influence of the Coulomb-type friction. In other words, the
state variable u− βt remains unchanged in the left, intermediate and right states.
In some situations, the delta-shock wave appears in Riemann solutions to (1.2) and
(1.5). In order to describe the delta-shock wave, the generalized Rankine-Hugoniot
conditions are derived and the exact position, propagation speed and strength of
the delta shock wave are obtained completely. It is shown that the Coulomb-type
friction term make contact discontinuities, shock waves, rarefaction waves and delta
shock waves for Riemann solutions bend into parabolic shapes.

Furthermore, it is proven rigorously that the limits of Riemann solutions to (1.2)
and (1.5) converge to the corresponding ones to (1.1) and (1.5) when the perturba-
tion parameter A tends to zero. In other words, the Riemann solutions (1.1) and
(1.5) is stable with respect to the nonlinear approximations of flux functions in the
form of (1.2). Actually, for the case α = 1 in (1.3), system (1.2) becomes the Chap-
lygin pressure Aw-Rascle model with Coulomb-type friction [23]. Similar result can
be easily got, so we do not focus on it here. Moreover, the results got in this paper
can also be generalized to the nonsymmetric system of Keyfitz-Kranzer type (1.4)
with the same generalized Chaplygin pressure and Coulomb-type friction.

This article is organized as follows. In section 2, we describe simply the solutions
to the Riemann problem (1.1) and (1.5) for completeness. In Section 3, the approx-
imated system (1.2) is reformulated into a conservative form and some general
properties of the conservative form are obtained. Then, the exact solution to the
Riemann problem for the conservative form is constructed explicitly, which involves
the delta shock wave. Furthermore, the generalized Rankine-Hugoniot conditions
are established and the exact position, propagation speed and strength of the delta
shock wave are given explicitly. In Section 4, the generalized Rankine-Hugoniot
conditions and three kinds of Riemann solutions to the approximated system (1.2)
and (1.5) are given. Furthermore, it is proven rigorously that the delta-shock wave
is indeed a week solution to the Riemann problem (1.2) and (1.5) in the sense of
distributions. In Section 5, the limit of Riemann solutions to the approximated
system (1.2) is taken by letting the perturbation parameter A tends to zero, which
is identical with the corresponding ones to the original system. Finally, conclusions
and discussions are drawn in Section 6.

2. Preliminaries

In this section, we simply describe the results on the Riemann problem (1.1) and
(1.5), which can be referred to [25] for details.
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Let us first state some known facts about elementary waves of the given system.
The system (1.1) is weakly hyperbolic with double eigenvalues λ1 = λ2 = u. Let us
first look for a solution to (1.1) when initial data are constants, (ρ(x, 0), u(x, 0)) =
(ρ0, u0). For smooth solutions, one can substitute ρt from the first equation of (1.1)
into the second one and eliminate ρ from it by division (provided that we are away
from a vacuum state). So, we have now the equation ut + uux = β that can be
solved by the method of characteristics: u = u0 +βt, x = x0 +u0t+

1
2βt

2. The first
equation then becomes ρt + (u0 + βt)ρx = 0 with a solution ρ = ρ0 on each curve
x = x0+u0t+

1
2βt

2. So, the solution for constant initial data is (ρ, u) = (ρ0, u0+βt).
For the case u− < u+, there is no characteristic passing through the region

{(x, t) : u−t+
1
2βt

2 < x < u+t+
1
2βt

2}, so the vacuum should appear in the region.
The solution can be expressed as

(ρ, u)(x, t) =


(ρ−, u− + βt), −∞ < x < u−t+ 1

2βt
2,

vacuum, u−t+ 1
2βt

2 < x < u+t+ 1
2βt

2,

(ρ+, u+ + βt), u+t+ 1
2βt

2 < x <∞.
(2.1)

For the case u− = u+, it is easy to see that the two states (ρ±, u± + βt) can
be connected by a contact discontinuity x = u±t + 1

2βt
2. So the solution can be

expressed as

(ρ, u)(x, t) =

{
(ρ−, u− + βt), x < u−t+ 1

2βt
2,

(ρ+, u+ + βt), x > u+t+ 1
2βt

2,
(2.2)

For the case u− > u+, the characteristics originating from the origin overlap in
the domain {(x, t) : u+t+ 1

2βt
2 < x < u−t+ 1

2βt
2}, which means that there exists

singularity. A solution containing a weighted δ-measure supported on a curve will
be constructed.

To define the measure solution as above, like as in [4, 30], the two-dimensional
weighted δ-measure p(s)δS supported on a smooth curve S = {(x(s), t(s)) : a ≤
s ≤ b} should be introduced as

〈p(s)δS , ψ(x(s), t(s))〉 =

∫ b

a

p(s)ψ(x(s), t(s))

√
x′(s)

2
+ t′(s)

2
ds, (2.3)

for any ψ ∈ C∞0 (R × R+). For convenience, we usually select the parameter s = t

and use w(t) =
√

1 + x′(t)2p(t) to denote the strength of delta shock wave from
now on.

Let x = x(t) be a discontinuity curve, we consider a piecewise smooth solution
of (1.1) in the form

(ρ, u)(x, t) =


(ρ−, u− + βt), x < x(t),

(w(t)δ(x− x(t)), uδ(t)), x = x(t),

(ρ+, u+ + βt), x > x(t),

(2.4)

in which uδ(t) is the assignment of u on this delta shock wave curve and uδ(t)−βt is
assumed to be a constant. The delta shock wave solution of the Riemann problem
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(1.1) and (1.5) must obey the following generalized Ranking-Hugoniot conditions:

dx(t)

dt
= σ(t) = uδ(t),

dw(t)

dt
= σ(t)[ρ]− [ρu],

d(w(t)uδ(t))

dt
= σ(t)[ρu]− [ρu2] + βw(t),

(2.5)

and the over-compressive entropy condition

λ(ρ+, u+) < σ(t) < λ(ρ−, u−), namely u+ + βt < uδ(t) < u− + βt. (2.6)

In (2.5), it should be remarkable that

[ρu] = ρ+(u+ + βt)− ρ−(u− + βt), [ρu2] = ρ+(u+ + βt)2 − ρ−(u− + βt)2.

Through solving (2.5) with x(0) = 0, w(0) = 0, we obtain

uδ(t) = σ(t) = σ0 + βt,

x(t) = σ0t+
1

2
βt2,

w(t) = −√ρ−ρ+(u+ − u−)t,

(2.7)

with

σ0 =

√
ρ−u− +

√
ρ+u+√

ρ− +
√
ρ+

.

It is easy to prove that the delta shock wave solution (2.4) with (2.7) satisfy the
system (1.1) in the distributional sense. That is to say, the equalities

〈ρ, ψt〉+ 〈ρu, ψx〉 = 0,

〈ρu, ψt〉+ 〈ρu2, ψx〉 = −〈βρ, ψ〉,
(2.8)

hold for any test function ψ ∈ C∞0 (R×R+), in which

〈ρu, ψ〉 =

∫ ∞
0

∫ ∞
−∞

ρ̂0û0ψ dx dt+ 〈w(t)uδ(t)δS , ψ〉,

with

ρ̂0 = ρ− + [ρ]H(x− σt), û0 = u− − βt+ [u]H(x− σt).
From the above discussions, we can conclude that the Riemann problem (1.1)

and (1.5) can be solved by three kinds of solutions: one contact discontinuity, two
contact discontinuities with the vacuum state between them (see Figure 1), or the
delta shock wave connecting two states (ρ±, u± + βt) (see Figure 2).

3. Riemann problem for a modified conservative system of (1.2)

In this section, we are devoted to the study of the Riemann problem for a con-
servative system of (1.2) in detail. Let us introduce the new velocity v(x, t) =
u(x, t)− βt, then the system (1.2) can be reformulated into a conservative form as

ρt + (ρ(v + βt))x = 0,

(ρ(v + P ))t + (ρ(v + P )(v + βt))x = 0.
(3.1)

In fact, the change of variable was introduced by Faccanoni and Mangeney [12]
to study the shock and rarefaction waves of the Riemann problem for the shallow
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Figure 1. The Riemann solution to (1.1) and (1.5) when β > 0.
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Figure 2. The delta shock wave solution to (1.1) and (1.5) when
u+ < u− and σ0 > 0.

water equations with a Coulomb-type friction. Here, we use this transformation to
study the delta shock wave for the system (1.2).

Now we want to deal with the Riemann problem for the conservative system
(3.1) with the same Riemann initial data (1.5),

(ρ, v)(x, 0) =

{
(ρ−, u−), x < 0,

(ρ+, u+), x > 0.
(3.2)

We shall see hereafter that the Riemann solutions to (1.2) and (1.5) can be ob-
tained immediately from the Riemann solutions to (3.1) and (3.2) by using the
transformation of state variables (ρ, u)(x, t) = (ρ, v + βt)(x, t).

System (3.1) can be rewritten in the quasi-linear form(
1 0

v + P + ρP ′ ρ

)(
ρ
v

)
t

+

(
v + βt ρ

(v + P + ρP ′)(v + βt) ρ(2v + βt+ P )

)(
ρ
v

)
x

=

(
0
0

)
.

(3.3)

It can be derived directly from (3.3) that the conservative system (3.1) has two
eigenvalues

λ1(ρ, v) = v + βt− Aα

ρα
, λ2(ρ, v) = v + βt,
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whose corresponding right eigenvectors are by

r1 = (ρ,−Aα
ρα

)T , r2 = (1, 0)T .

So (3.1) is strictly hyperbolic for ρ > 0. Moreover, ∇λ1 · r1 6= 0 and ∇λ2 · r2 = 0.
Then it can be concluded that λ1 is genuinely nonlinear whose associated waves are
shock waves denoted by S1 or rarefaction waves denoted by R1. Then the Riemann
invariants along the characteristic fields may be chosen as

w = v − A

ρα
, z = v,

which should satisfy ∇w · r1 = 0 and ∇z · r2 = 0, respectively. For details about
above elementary waves, one can refer to [28, 32] to see how to solve the Riemann
problem.

Let us draw our attention on the elementary waves for the system (3.1) in detail.
We first consider the rarefaction wave which is a one-parameter family of states
connecting a given state. This kind of continuous solution satisfying the system
(3.1) can be obtained by determining the integral curves of the first characteristic
fields. It is worthwhile to notice that the 1-Riemann invariant is conserved in the
1-rarefaction wave.

For a given left state (ρ−, u−), the 1-rarefaction wave curve R1(ρ−, v−) in the
phase plane, the set of states connected on the right, should satisfy R1(ρ−, u−):

dx

dt
= λ1(ρ, v) = v + βt− Aα

ρα
,

v − A

ρα
= u− −

A

ρα−
= w−,

λ1(ρ−, u−) ≤ λ1(ρ, v).

(3.4)

By differentiating v with respect to ρ in the second equation in (3.4), we have

dv

dρ
= − Aα

ρα+1
< 0,

d2v

dρ2
=
Aα(α+ 1)

ρα+2
> 0.

Thus, the 1-rarefaction wave is made up of the half-branch of R1(ρ−, u−) satisfying
v ≥ u− and ρ ≤ ρ−, which is convex in the (ρ, v) plane.

Let us compute the solution (ρ, v) at a point in the interior of the 1-rarefaction
wave, then it follows from the first equation in (3.4), we have

v − Aα

ρα
=
x

t
− βt. (3.5)

By combining (3.5) with the second equation in (3.4), we obtain

(ρ, v)(x, t) =
(( A(1− α)

x
t − βt− w−

)1/α
,
x
t − βt− αw−

1− α

)
. (3.6)

Let us return our attention on the shock wave which is a piecewise constant
discontinuous solution, satisfying the Rankine-Hugoniot conditions and the entropy
condition. Here the Ranking-Hugoniot conditions can be derived in a standard
method as in [28], since the parameter t only appears in the flux functions in the
conservative system (3.1). For a bounded discontinuity at x = x(t), let us denote



8 Q. ZHANG EJDE-2019/??

σ(t) = x′(t), then the Ranking-Hugoniot conditions for the conservative system
(3.1) can be expressed as

−σ(t)ρ+ [ρ(v + βt)] = 0,

−σ(t)[ρ(v + P )] + [ρ(v + P )(v + βt)] = 0,
(3.7)

where [ρ] = ρr − ρl with ρl = ρ(x(t)− 0, t), ρr = ρ(x(t) + 0, t), in which [ρ] denote
the jump of ρ across the discontinuity, etc. It is clear that the propagation speed
of the discontinuity depends on the parameter t, which is obviously different from
classical hyperbolic conservation laws.

If σ(t) 6= 0, then it follows from (3.7) that

ρrρl(vr − vl)
(

(vr −
A

ραr
)− (vl −

A

ραl
)
)

= 0, (3.8)

from which we have vr = vl or vr − A
ραr

= vl − A
ραl

.

Thus, for a given left state (ρ−, u−), with the latex entropy condition in mind,
the 1-shock wave curve S1(ρ−, u−) in the (ρ, v) plane which is the set of states
connected on the right, should satisfy S1(ρ−, u−):

σ1(t) =
ρv − ρu−
ρ− ρ−

+ βt,

v − A

ρα
= u− −

A

ρα−
= w−,

ρ > ρ−, v < u−,

(3.9)

which indicates the 1-rarefaction wave and 1-shock wave are different branch of the
same curve.

Moreover, from (3.8), for a given left state (ρ−, u−), the 2-contact discontinuity
curve J(ρ−, u−) in the (ρ, v) plane which is the set of states connected on the right,
should satisfy J(ρ−, u−):

σ(t) = v + βt = u− + βt. (3.10)

-

6
ρ

v

III

II I

S1
J

R1

Sδ

u− − A
ρα−

u−

(ρ−,u−)

Figure 3. The (ρ, v) phase plane for the conservative system (3.1).
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Let us now consider the Riemann problem (3.1) and (3.2). In the (ρ, v) phase
plane, for a given left state (ρ−, u−), the set of states connected on the right consist
of the 1-rarefaction waveR1(ρ−, u−), the 1-shock wave S1(ρ−, u−) and the 2-contact
discontinuity curve J(ρ−, u−). It is clear to see that R1(ρ−, u−) has the line Sδ :
v = u− − A

ρα−
and S1(ρ−, u−) has the positive v-axis as their asymptotic lines,

respectively.
In view of the right state (ρ+, u+) in different positions, one wants to construct

the unique global Riemann solution of (3.1) and (3.2). However, as in [13], if
u+ ≤ u− − A

ρα−
is satisfied, the Riemann solution of (3.1) and (3.2) can not be

constructed by using only the elementary waves including shocks, rarefaction waves
and contact discontinuities. In this nonclassical situation, the concept of delta shock
wave should be introduced such as in [13, 14, 34] and be discussed later.

Draw all the curves R1(ρ−, u−), S1(ρ−, u−) J(ρ−, u−) and Sδ in the the (ρ, v)
phase plane, thus the phase plane is divided into three regions I, II and III (See
Figure 3), where

I = {(ρ, v)|v ≥ u−},

II = {(ρ, v)|u− −
A

ρα−
< v < u−},

III = {(ρ, v)|v ≤ u− −
A

ρα−
}.

According to the right state (ρ+, u+) in different regions, the unique global Rie-
mann solution of (3.1) and (3.2) can be constructed connecting two constant states
(ρ−, u−) and (ρ+, u+)

If (ρ+, u+) ∈ I, namely u+ > u−, then the Riemann solution consists of 1-
rarefaction wave R1 and a 2-contact discontinuity J with an intermediate constant
state (ρ∗, v∗) determined uniquely by

v∗ −
A

ρα∗
= u− −

A

ρα−
= w−,

u+ = v∗.

(3.11)

which immediately leads to

(
A

ρα∗
, v∗) = (u+ − u− +

A

ρα−
, u+), (3.12)

or

(ρ∗, v∗) =
(( A

(u+ − u− + A
ρα−

)1/α
, u+

)
, (3.13)

Thus, the Riemann solution of (3.1) and (3.2) can be expressed as

(ρ, v)(x, t) =


(ρ−, u−), x < x−1 (t),

R1, x−1 (t) < x < x+1 (t),

(ρ∗, v∗), x+1 (t) < x < x2(t),

(ρ+, u+), x > x2(t),

(3.14)

in which

x−1 (t) = (u− −
A

ρα−
)t+

1

2
βt2, x+1 (t) = (v∗ −

A

ρα∗
)t+

1

2
βt2, (3.15)
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x2(t) = u+t+
1

2
βt2, (3.16)

and the state (ρ1, u1) in R1 can be calculated by (3.6).
If (ρ+, u+) ∈ II, namely u−− A

ρα−
< u+ < u−, then the Riemann solution consists

of a 1-shock wave S1 and a 2-contact discontinuity J with an intermediate constant
state (ρ∗, v∗) determined uniquely by (3.13). Thus, the Riemann solution of (3.1)
and (3.2) can be expressed as

(ρ, v)(x, t) =


(ρ−, u−), x < x1(t),

(ρ∗, v∗), x1(t) < x < x2(t),

(ρ+, u+), x > x2(t),

(3.17)

in which the position of S1 is given by

x1(t) =
ρ∗v∗ − ρ−u−
ρ∗ − ρ−

t+
1

2
βt2, (3.18)

and x2(t) is given by (3.16).
On the other hand, when (ρ+, u+) ∈ III, namely u+ ≤ u− − A

ρα−
, then there

exist a nonclassical situation where the Cauchy problem does not own a weak L∞-
solution. In order to solve the Riemann problem (3.1) and (3.2) in the framework
of nonclassical solution, a solution containing a weighted δ-measure supported on
a curve should be defined such as in [4, 23, 30]. In what follows, let us provide
the definition of delta shock wave solution to the Riemann problem (3.1) and (3.2).
One can also refer to [8, 9, 16, 17] about the more exact definition of generalized
delta shock wave solution for related systems with delta measure initial data.

Definition 3.1. Let (ρ, v) be a pair of distributions in which ρ has the form of

ρ(x, t) = ρ̂(x, t) + w(x, t)δS , (3.19)

in which ρ̂, v ∈ L∞(R×R+). Then (ρ, v) is called as the delta shock wave solution
to the Riemann problem (3.1) and (3.2) if it satisfies

〈ρ, ψt〉+ 〈ρ(v + βt), ψx〉 = 0,

〈ρ(v + P )), ψt〉+ 〈ρ(v + P )(v + βt)), ψx〉 = 0,

for any ψ ∈ C∞0 (R×R+). Here we take

〈ρ(v + P )(v + βt)), ψ〉

=

∫ ∞
0

∫ ∞
−∞

(ρ̂(v − A

ρ̂α
)(v + βt))ψ dx dt+ 〈w(t)vδ(t)(vδ(t) + βt)δS , ψ〉,

as an example to explain the inner product, in which we use the symbol S to express
the smooth curve with the Dirac delta function supported on it, vδ is the value of
v and A

ρα is equal to zero on this delta shock wave S.

With the above definition, if (ρ+, u+) ∈ III and u+ < u−− A
ρα−

, a piecewise smooth

solution of the Riemann problem (3.1) and (3.2) should be introduced in the form

(ρ, v)(x, t) =


(ρ−, u−), x < x(t),

(w(t)δ(x− x(t)), vδ), x = x(t),

(ρ+, u+), x > x(t),

(3.20)
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where x(t), w(t) and σ(t) = x′(t) denote respectively the location, weight and
propagation speed of the delta shock, and vδ indicates the assignment of v on this
delta shock wave. It is remarkable that the value of v should be given on the delta
shock curve x = x(t) such that the product of ρ and v can be defined in the sense
of distributions. When u+ = u−− A

ρα−
, it can be discussed similarly and we omit it.

The delta shock wave solution of the form (3.20) to the Riemann problem (3.1)
and (3.2) should obey the generalized Rankine-Hugoniot conditions

dx(t)

dt
= σ(t) = vδ + βt,

dw(t)

dt
= σ(t)[ρ]− [ρ(v + βt)],

d(w(t)vδ)

dt
= σ(t)[ρ(v − A

ρα
)]− [ρ(v − A

ρα
)(v + βt)],

(3.21)

with initial data x(0) = 0 and w(0) = 0. In addition, for the unique solvability
of the above Cauchy problem, it is necessary to require that the value of vδ to
be a constant along the trajectory of delta shock wave (see [9] for details). The
derivation process of the generalized Rankine-Hugoniot conditions is similar to that
in [25, 26, 31] and we omit it here. To ensure the uniqueness of Riemann solutions,
an over-compressive entropy condition for the delta shock wave should be assumed
as

λ1(ρ+, u+) < λ2(ρ+, u+) < σ(t) < λ1(ρ−, u−) < λ2(ρ−, u−), (3.22)

such that we have

u+ < vδ < u− −
A

ρα−
, (3.23)

which implies that all the characteristics on both sides of the delta shock are in-
coming.

It follows from (3.21) that

dw(t)

dt
= vδ(ρ+ − ρ−)− (ρ+u+ − ρ−u−), (3.24)

vδ
dw(t)

dt
= vδ

(
(ρ+u+ − ρ−u−)− (

A

ρα−1+

− A

ρα−1−
)
)

− (ρ+u
2
+ − ρ−u2−) +

(Au+
ρα−1+

− Au−

ρα−1−

)
,

(3.25)

Therefore,

(ρ+ − ρ−)v2δ −
(
2(ρ+u+ − ρ−u−)− (

A

ρα−1+

− A

ρα−1−
)
)
vδ + (ρ+u

2
+ − ρ−u2−)

−
(Au+
ρα−1+

− Au−

ρα−1−

)
= 0,

(3.26)

For convenience, let us denote

w0 =

√
ρ+ρ−(u+ − u−)

(
(u+ − u−)− (

A

ρα+
− A

ρα−
)
)

+
1

4

( A

ρα−1+

− A

ρα−1−

)2
− 1

2

( A

ρα−1+

− A

ρα−1−

)
> 0,

(3.27)
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If ρ+ 6= ρ−, with the entropy condition (3.22) in mind, one can obtain directly
from (3.26) that

vδ =
ρ+u+ − ρ−u− + w0

ρ+ − ρ−
, (3.28)

which enables us to obtain

σ(t) = vδ + βt, x(t) = vδt+
1

2
βt2, w(t) = w0t. (3.29)

Otherwise, if ρ+ = ρ−, then

vδ =
1

2
(u+ + u− −

A

ρα−
). (3.30)

In this particular case, we obtain

σ(t) =
1

2
(u+ + u− −

A

ρα−
) + βt, x(t) =

1

2
(u+ + u− −

A

ρα−
)t+

1

2
βt2,

w(t) = (ρ−u− − ρ+u+)t.

(3.31)

4. Riemann problem for the approximated system (1.2)

In this section, let us return to the Riemann problem (1.2) and (1.5). If (ρ+, u+) ∈
I, the Riemann solutions to (1.2) and (1.5) R1 + J can be represented as

(ρ, u)(x, t) =


(ρ−, u− + βt), x < x−1 (t),

(ρ1, v1 + βt), x−1 (t) < x < x+1 (t),

(ρ∗, v∗ + βt), x+1 (t) < x < x2(t),

(ρ+, u+ + βt), x > x2(t),

(4.1)

where x−1 (t), x+1 (t) and x2(t) are given by (3.15) and (3.16) respectively, and the
states (ρ1, v1) and (ρ∗, v∗) can be calculated as (3.6) and (3.13). Let us use Figure
4(a) to illustrate this situation in detail, where all the characteristics in the rarefac-
tion wave fans R1 and the contact discontinuity curve J are curved into parabolic
shapes.

If (ρ+, u+) ∈ II, the Riemann solutions to (1.2) and (1.5) S1+J can be represented
as

(ρ, u)(x, t) =


(ρ−, u− + βt), x < x1(t),

(ρ∗, v∗ + βt), x1(t) < x < x2(t),

(ρ+, u+ + βt), x > x2(t),

(4.2)

where x1(t) and x2(t) are given by (3.18) and (3.16) respectively and the states
(ρ∗, v∗) can be calculated as (3.13). Let us use Figure 4(b) to illustrate this situation
in detail, where both the shock wave curve S1 and the contact discontinuity curve
J are curved into parabolic shapes.

Analogously, if (ρ+, u+) ∈ III, namely u+ ≤ u−− A
ρα−

, then we can also define the

weak solutions to the Riemann problem (1.2) and (1.5) in the sense of distributions
below.

Definition 4.1. Let (ρ, u) be a pair of distributions in which ρ has the form of
(3.19), then it is called as the delta shock wave solution to the Riemann problem
(1.2) and (1.5) if it satisfies

〈ρ, ψt〉+ 〈ρu, ψx〉 = 0,

〈ρ(u+ P )), ψt〉+ 〈ρu(u+ P )), ψx〉 = −〈βρ, ψ〉,
(4.3)
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for any ψ ∈ C∞0 (R×R+), in which

〈ρu(u+ P )), ψ〉 =

∫ ∞
0

∫ ∞
−∞

(ρ̂u(u− A

ρ̂α
))ψ dx dt+ 〈w(t)(uδ(t))

2δS , ψ〉,

and uδ(t) is the assignment of u on this delta shock wave curve.

-

6

(ρ−, u− + βt)

(ρ∗, v∗ + βt)

(ρ+, u+ + βt)

R1

J

0 x

t

(a) u− − A
ρα−

< u− < u+

t

-

6t

x0

S1

J
(ρ∗, v∗ + βt)

(ρ+, u+ + βt)

(ρ−, u− + βt)

(b) u− − A
ρα−

< u+ < u−

Figure 4. The Riemann solution to (1.2) and (1.5) when u− −
A
ρα−

< u+ and β > 0, where (ρ∗, v∗) is given by (3.13).

With the above definition in mind, if u+ < u−− A
ρα−

is satisfied, then we look for

a piecewise smooth solution to the Riemann problem (1.2) and (1.5) in the form

(ρ, u)(x, t) =


(ρ−, u− + βt), x < x(t),

(w(t)δ(x− x(t)), uδ(t)), x = x(t),

(ρ+, u+ + βt), x > x(t),

(4.4)

It is worthwhile to notice that uδ(t)− βt is assumed to be a constant based on the
result in Sect.2. With the similar analysis and derivation as before, the delta shock
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wave solution of the form (4.4) to the Riemann problem (1.2) and (1.5) should also
satisfy the following generalized Rankine-Hugoniot conditions

dx(t)

dt
= σ(t) = uδ(t),

dw(t)

dt
= σ(t)[ρ]− [ρu],

d(w(t)uδ(t))

dt
= σ(t)[ρ(u− A

ρα
)]− [ρu(u− A

ρα
)] + βw(t).

(4.5)

in which the jumps across the discontinuity are

[ρu] = ρ+(u+ + βt)− ρ−(u− + βt), (4.6)

[ρu(u− A

ρα
)] = ρ+(u+ + βt)(u+ + βt− A

ρα+
)− ρ−(u− + βt)(u− + βt− A

ρα−
). (4.7)

To ensure the uniqueness of a solution to the Riemann problem (1.2) and (1.5),
the over-compressive entropy condition for the delta shock wave

u+ + βt < uδ(t) < u− −
A

ρα−
+ βt. (4.8)

should also be assumed when u+ < u− − A
ρα−

.

As before, we can also obtain x(t), σ(t) and w(t) from (4.5) and (4.8) together.
In brief, we have the following theorem to depict the Riemann solution to (1.2) and
(1.5) when the Riemann initial data (1.5) satisfy u+ < u− − A

ρα−
and ρ+ 6= ρ−.

Theorem 4.2. If both u+ < u− − A
ρα−

and ρ+ 6= ρ− are satisfied, then the delta

shock solution to the Riemann solutions to (1.2) and (1.5) can be expressed as

dx(t)

dt
= σ(t) = uδ(t),

dw(t)

dt
= σ(t)[ρ]− [ρu],

d(w(t)uδ(t))

dt
= σ(t)[ρ(u− A

ρα
)]− [ρu(u− A

ρα
)] + βw(t).

(4.9)

in which

σ(t) = uδ(t) = vδ + βt, x(t) = vδt+
1

2
βt2, w(t) = w0t, (4.10)

where w0 and vδ are given by (3.27) and (3.28) respectively.

Let us check briefly that the above constructed delta shock wave solution (4.9)
and (4.10) satisfy (1.2) in the sense of distributions. The proof of this theorem is
completely analogs to the one in [25, 26]. Therefore, we only state the main steps
for the proof of the second equality in (4.3) for completeness. Actually, one can
deduce that

I =

∫ ∞
0

∫ ∞
−∞

(ρ(u− A

ρα
)ψt + ρu(u− A

ρα
)ψx) dx dt

=

∫ ∞
0

∫ x(t)

−∞
(ρ−(u− + βt− A

ρα−
)ψt + ρ−(u− + βt)(u− + βt− A

ρα−
)ψx)dxdt
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+

∫ ∞
0

∫ ∞
x(t)

(ρ+(u+ + βt− A

ρα+
)ψt + ρ+(u+ + βt)(u+ + βt− A

ρα+
)ψx)dxdt

+

∫ ∞
0

w0t(vδ + βt)(ψt(x(t), t) + (vδ + βt)ψx(x(t), t))dt.

It can be derived from (4.10) that the curve of delta shock wave is given by

x(t) = vδt+
1

2
βt2. (4.11)

-

6t

x

δS

(ρ−, u− + βt) (ρ+, u+ + βt)

0
(a) β > 0

-

6t

x

δS

(ρ−, u− + βt) (ρ+, u+ + βt)

0

(b) β < 0

Figure 5. The delta shock wave solution to (1.1) and (1.2) when
u+ < u−− A

ρα−
and vδ > 0, where vδ is given by (3.28) for ρ− 6= ρ+

and (3.30) for ρ− = ρ+.

For β > 0 (see Figure 5(a)), there exists an inverse function of x(t) globally in
the time t, which may be written in the form

t(x) =

√
v2δ
β2

+
2x

β
− vδ
β
.

Otherwise, for β < 0 (see Figure 5(b)), there is a critical point (− v2δ
2β ,−

vδ
β ) on the

delta shock wave curve such that x′(t) change its sign when across the critical point.
Thus, the inverse function of x(t) is needed to find respectively for t ≤ − vδβ and
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t > − vδβ , which enable us to have

t(x) =

−
√

v2δ
β2 + 2x

β −
vδ
β , t ≤ −vδβ ,√

v2δ
β2 + 2x

β −
vδ
β , t > − vδβ .

(4.12)

Without loss of generality, let us assume that β > 0 for simplicity. Actually, the
other situation can be dealt with similarly. Under our assumption, it follows from
(4.11) that the position of delta shock wave satisfies x = x(t) > 0 for all the time.
It follows from (4.10) that

dψ(x(t), t)

dt
= ψt(x(t), t) +

dx(t)

dt
ψx(x(t), t)

= ψt(x(t), t) + (vδ + βt)ψx(x(t), t)

= ψt(x(t), t) + uδ(t)ψx(x(t), t).

By interchanging the order of integration and using integration by parts, we have

I =

∫ ∞
0

∫ ∞
t(x)

ρ−(u− + βt− A

ρα−
)ψt dt dx

+

∫ ∞
0

∫ ∞
t(x)

ρ−(u− + βt)(u− + βt− A

ρα−
)ψx dt dx

+

∫ ∞
0

∫ t(x)

0

ρ+(u+ + βt− A

ρα+
)ψt dt dx

+

∫ ∞
0

∫ t(x)

0

ρ+(u+ + βt)(u+ + βt− A

ρα+
)ψxdtdx

+

∫ ∞
0

w0t(vδ + βt)dψ(x(t), t)

=

∫ ∞
0

(
ρ+(u+ + βt(x)− A

ρα+
)− ρ−(u− + βt(x)− A

ρα−
)
)
ψ(x, t(x))dx

+

∫ ∞
0

(
ρ−(u− + βt)(u− + βt− A

ρα−
)

− ρ+(u+ + βt)(u+ + βt− A

ρα+
)
)
ψ(x(t), t)dt

−
∫ ∞
0

∫ ∞
t(x)

βρ−ψ dt dx−
∫ ∞
0

∫ t(x)

0

βρ+ψ dt dx

−
∫ ∞
0

w0(vδ + 2βt)ψ(x(t), t)dt

=

∫ ∞
0

C(t)ψ(x(t), t)dt− β(

∫ ∞
0

∫ x(t)

−∞
ρ−ψdxdt+

∫ ∞
0

∫ ∞
x(t)

ρ+ψdxdt),

(4.13)

in which

C(t) = (ρ+(u+ + βt− A

ρα+
)− ρ−(u− + βt− A

ρα−
))(vδ + βt)

+ (ρ−(u− + βt)(u− + βt− A

ρα−
)− ρ+(u+ + βt)(u+ + βt− A

ρα+
))

− w0(vδ + 2βt).

(4.14)
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By tedious calculations, we have

C(t) = −βw0t = −βw(t). (4.15)

Thus, it can be concluded from (4.13) and (4.15) together that the second equality
in (4.3) holds in the sense of distributions. The proof is complete.

Remark 4.3. If both u+ < u− − A
ρα−

and ρ+ = ρ− are satisfied, then the delta

shock solution to the Riemann problem (1.2) and (1.5) can be expressed in the form
(4.4) where

σ(t) = uδ(t) =
1

2
(u+ + u− −

A

ρα−
) + βt, x(t) =

1

2
(u+ + u− −

A

ρα−
)t+

1

2
βt2,

w(t) = (ρ−u− − ρ+u+)t.

(4.16)
The proof is completely similar to the above proofs, so we omit it.

Remark 4.4. If u+ = u− − A
ρα−

, then the delta shock solution to the Riemann

problem (1.2) and (1.5) can also be expressed as the form in Theorem 4.2 and
Remark 4.3. The process of proof is easy and we omit it.

5. Flux approximation limits of Riemann solutions to (1.2)

In this section, we are concerned that the flux approximation limits of Riemann
solutions to (1.2) and (1.5) converge to the corresponding ones to (1.1) and (1.5) or
not when the perturbation parameter A tends to zero. According to the relations
between u− and u+, we will divide our discussion into the following three cases:
u− < u+, u− = u+, and u− > u+.

Case 1: u− < u+. In this case, (ρ+, u+) ∈ I in the (ρ, v) plane, so the Riemann
solutions to (1.2) and (1.5) R1 + J is given by (4.1), where x−1 (t), x+1 (t) and x2(t)
are given by (3.15) and (3.16) respectively and the states (ρ1, v1) and (ρ∗, v∗) can
be calculated as (3.6) and (3.13). From (3.6) and (3.13) we have

lim
A→0

ρ1 = lim
A→0

( A(1− α)
x
t − βt− w−

)1/α
= 0,

lim
A→0

ρ∗ = lim
A→0

( A

u+ − u− + A
ρα−

)1/α
= 0,

which indicate the occurrence of the vacuum states. Furthermore, the Riemann
solutions to (1.2) and (1.5) converge to

lim
A→0

(ρ, u)(x, t) =


(ρ−, u− + βt), x < u−t+ 1

2βt
2,

vacuum, u−t+ 1
2βt

2 < x < u+t+ 1
2βt

2,

(ρ+, u+ + βt), x > u+t+ 1
2βt

2,

(5.1)

which is exactly the corresponding Riemann solutions to the pressureless Euler
equations with the same source term and the same initial data.

Case 2: u− = u+. In this case, (ρ+, u+) is on the J curve in the (ρ, v) plane, so
the Riemann solutions to (1.2) and (1.5) is

(ρ, u)(x, t) =

{
(ρ−, u− + βt), x < u−t+ 1

2βt
2,

(ρ+, u+ + βt), x > u+t+ 1
2βt

2,
(5.2)
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which is exactly the corresponding Riemann solutions to the pressureless Euler
equations with the same source term and the same initial data.

Case 3: u− > u+.

Lemma 5.1. If u− > u+, there exists A1 > A0 > 0, such that (ρ+, u+) ∈ II as
A0 < A < A1, and (ρ+, u+) ∈ III as A ≤ A0.

Proof. If (ρ+, u+) ∈ II, then 0 < u− − A
ρα−

< u+ < u−, which gives ρα−(u− − u+) <

A < ρα−u−. Thus we take A0 = ρα−(u− − u+) and A1 = ρα−u−, then (ρ+, u+) ∈ II
as A0 < A < A1 and (ρ+, u+) ∈ III as A ≤ A0.

When A0 < A < A1, (ρ+, u+) ∈ II in the (ρ, v) plane, so the Riemann solution
to (1.2) and (1.5) is given by (4.2), where x1(t) and x2(t) are given by (3.18) and
(3.16) respectively and the states (ρ∗, v∗) can be calculated as (3.13). From (3.13)
we have

lim
A→A0

ρ∗ = lim
A→A0

( A

u+ − u− + A
ρα−

)1/α
= lim
A→A0

( ρ−A

A−A0

)1/α
=∞.

�

Furthermore, we have the following result.

Lemma 5.2. Let dx1(t)
dt = σ1(t), dx2(t)

dt = σ2(t), then

lim
A→A0

v∗ + βt = lim
A→A0

σ1(t) = lim
A→A0

σ2(t)

= (u− −
A0

ρα−
)t+ βt = u+ + βt =: σ(t),

(5.3)

lim
A→A0

∫ x2(t)

x1(t)

ρ∗dx = ρ−(u− − u+)t, (5.4)

lim
A→A0

∫ x2(t)

x1(t)

ρ∗(v∗ + βt)dx = ρ−(u− − u+)(u+ + βt)t. (5.5)

Proof. Equality (5.3) is obviously true. We will only prove (5.4) and (5.5). Note
that

lim
A→A0

∫ x2(t)

x1(t)

ρ∗dx = lim
A→A0

ρ∗(x2(t)− x1(t))

= lim
A→A0

ρ∗(u+ −
ρ∗v∗ − ρ−u−
ρ∗ − ρ−

)t = ρ−(u− − u+)t,

lim
A→A0

∫ x2(t)

x1(t)

ρ∗(v∗ + βt)dx = (u+ + βt) lim
A→A0

∫ x2(t)

x1(t)

ρ∗dx

= ρ−(u− − u+)(u+ + βt)t.

The proof is complete. �

From Lemma 5.2 it follows that the curves of the shock wave S1 and the contact
discontinuity J will coincide when A tends to A0 and the delta shock wave will form.
Next we arrange the values which gives the exact position, propagation speed and
strength of the delta shock wave according to Lemma 5.2.

Using (5.4) and (5.5), we let

w(t) = ρ−(u− − u+)t, (5.6)
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w(t)uδ(t) = ρ−(u− − u+)(u+ + βt)t. (5.7)

Then
uδ(t) = (u+ + βt), (5.8)

which is equal to σ(t). Furthermore, by letting dx(t)
dt = σ(t), we have

x(t) = u+t+
1

2
βt2. (5.9)

From (5.6)-(5.9), we can see that the quantities defined above are exactly con-
sistent with those given by (3.27)-(3.31) or (4.10) in which we take A = A0. Thus,
it uniquely determines that the limits of the Riemann solutions to the system (1.2)
and (1.5) when A→ A0 in the case (ρ+, u+) ∈ II is just the delta shock solution of
(1.2) and (1.5) in the case (ρ+, u+) ∈ Sδ, where Sδ is actually the boundary between
the regions II and III. So we obtain the following results in the case u+ < u−.

Theorem 5.3. If u+ < u−, for each fixed A with A0 < A < A1, (ρ+, u+) ∈
II, assuming that (ρ, u) is a solution containing a shock wave S1 and a contact
discontinuity J of (1.2) and (1.5) constructed in Section 4, it follows that when
A→ A0, the solution (ρ, u) converges to a delta shock wave solution of (1.2), and
(1.5) when A = A0.

When A ≤ A0, (ρ+, u+) ∈ III, so the Riemann solutions to (1.2) and (1.5) is
given by (4.4) with (4.10) or (4.16), which is a delta shock wave solution. It is easy
to see that when A→ 0, for ρ+ 6= ρ−,

x(t)→ σ0t+
1

2
βt2, w(t)→ √ρ+ρ−(u− − u+)t, σ(t) = uδ(t)→ σ0 + βt,

where

σ0 =

√
ρ−u− +

√
ρ+u+√

ρ− +
√
ρ+

,

for ρ+ = ρ−,

x(t)→ 1

2
(u+ + u−)t+

1

2
βt2, w(t)→ ρ+(u− − u+)t,

σ(t) = uδ(t)→
1

2
(u+ + u−) + βt,

which is exactly the corresponding Riemann solution to the pressureless Euler equa-
tions with the same source term and the same initial data [25]. Thus, we have the
following result.

Theorem 5.4. If u+ < u−, for each fixed A < A0, (ρ+, u+) ∈ III, assuming that
(ρ, u) is a delta shock wave solution of (1.2) and (1.5) which is constructed in
Section 4, it is obtained that when A → 0, (ρ, u) converges to a delta shock wave
solution to the pressureless Euler equations with the same source term and the same
initial data [25].

We summarize the main result in this section as follows.

Theorem 5.5. As the perturbed parameter A → 0, the Riemann solutions to the
approximated nonhomogeneous system (1.2) tend to the three kinds of Riemann
solutions to the nonhomogeneous pressureless Euler equations with the same source
term and the same initial data, which include a delta shock wave and a vacuum
state. That is to say, the Riemann solutions to the transportation equations with
Coulomb-type friction is stable under this kind of flux perturbation.
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6. Conclusions and discussions

It can be seen from the above discussions that the limits of solutions to the
Riemann problem (1.2) and (1.5) converge to the corresponding ones of the Riemann
problem (1.1) and (1.5) as A → 0. The approximated system (1.2) is strictly
hyperbolic. Although the characteristic field for λ1 is genuinely nonlinear, the
characteristic field for λ2 is still linearly degenerate and (1.2) still belongs to the
Temple class. Thus, this perturbation does not totally change the structure of
Riemann solutions to (1.1).

If we also consider the approximation of the flux functions for (1.1) in the form

ρt + (ρu)x = 0,

(ρ(u+
1

1− α
P ))t + (ρu(u+ P ))x = βρ,

(6.1)

where P is also given by (1.3). We can check that (6.1) has two different eigenvalues

λ = u ±
√
αAρ−αu, and the characteristic fields for both the two eigenvalues are

genuinely nonlinear. Hence, (6.1) is strictly hyperbolic and by simple calculation,
it can be seen that (6.1) does not belong to the Temple class anymore. It is
clear to see that the Riemann solutions for the approximated system (6.1) have
completely different structures from those for the original system (1.1). Similar to
[26, 27, 29, 31, 34], we can construct the Riemann solutions to the Riemann problem
(6.1) and (1.5) in all situations and prove them converge to the corresponding ones
to the Riemann problem (1.1) and (1.5) as A→ 0.
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