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Behaviour near the boundary for solutions of
elasticity systems *

V. N. Domingos Cavalcanti

Abstract

In this article we study the behaviour near the boundary for weak
solutions of the system

o — pAu— (A + p)V(a(z) divu) = h,

with u(z,t) = 0 on the boundary of a domain Q € R™, and u(z,0) = u°,
o' (2,0) = u* in Q. We show that the Sobolev norm of the solution in an

e-neighbourhood of the boundary can be estimated independently of €.

1 Introduction

Let © be a bounded domain in R™ with a C3-boundary T, and let v(x) be the
unit exterior normal of I' at a point . For T' > 0, we denote by @ the finite
cylinder 2x]0,T[, and by X its lateral boundary I'x]0,T[. For an open subset
Ty of T, 3¢ denotes I'yx]0,T[. For each € > 0, w. denotes the e-neighbourhood
of I'y in € defined by

Wwe = U B(z,e)NQ,

x€ly

where B(z,¢) is the open ball with center z and radius e. Functional spaces
and their inner products are denoted as follows

H = [L*(Q)]", (u,v)g = zn:(ui,vi),;z(g) Yu,v € H
i=1
V=[Hy(@",  (wo)v=> (Vu, V)2 YuveV.

i=1
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This article is concerned with the behaviour near the boundary for weak
solutions of the system

v — pAu— A+ p)V(a(z)divu) =h in Q
u=0 on X (1.1)
u(0) =u’, W(0)=u' in Q,
with
{u®ur,h} € V x H x L(0,T; H), (1.2)
where A, u > 0 are the Lamé constants, and o € C*(Q) is a real function such
that for all z in Q and some g, a(z) > ag > 0.

Recall that if u is the unique solution of the above system, for the energy
function

o (2) div u(t) 32 o)

B(t) = Ll O + Ly + 252

there exists a positive constant ¢ such that

sup E(t) <cEp,
t€[0,T

where
Eo = luolly + [u' 13 + 17l 310 1.11) - (1.3)

We shall prove that the H norm of the solution u of (1.1) in an e-neighbour-
hood of the boundary can be estimated independently of €. It will be done
by studying first the behaviour of Vu in the same neighbourhood. We use
the method developed by J.P. Puel and C. Fabre [7] for solutions of the wave
equation, which is an extension of the multipliers method introduced by F.
Rellich for elliptic equations and used by C. Morawetz in hyperbolic equations.
Their method was also applied to Schrodinger equations, and to equations for
vibrating beams (cf. C. Fabre [4] and C. Fabre - J. P. Puel [6]).

The interest in the above result lies in the fact that this estimate, combined
with other results, allow us to obtain the boundary control as the limit of internal
controls. Then, provided that the internal controls exist we obtain the boundary
control passing to the limit as e — 0. This is a way of getting boundary control
when we only have the guarantee that the system is internal controllable.

To use this kind of argument is a powerful tool since we act where it is
convenient and then pass to the limit. In this direction we can cite the work by
M. E. Bradley and M. A. Horn [1] where they control the Von Kdrmén system
w"” — 2 Aw’ + A?w + b(xz)w’ = [w, x(w)], by showing that the boundary control
which stabilizes its solution when « # 0 also stabilizes the solution to the system
obtained in the limit as v — 0. Here y is a parameter which is proportional to
the thickness of the Von Kéarman plate.
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2 Geometrical Properties of (2

Using the fact that  is a bounded domain of R" with a C®—boundary I, we
obtain the following lemma.

Lemma 2.1 There exist open sets Uy,...U,, and a positive constant g which
satisfy

e For each ¢ in |0, o[, Wz C U:il U;, where W, denotes the closure of w. in
R™.

o For each © € w. NU;, there exists a unique (y,z) € (I' N U;)x]0,¢[ such
that x =y — zv(y); i =1,...,m.

o There are functions F;l s x — (w,2), C?-diffeomorphisms defined from
we NU; onto their image; 1 =1,...,m.

Proof. Due to the regularity of I', which is the C3-boundary of Q, by M. Do
Carmo [2] (section 2.7, proposition 1) for each point p € I" and X, : U — T,
a C3-parametrization of a neighbourhood of p, there exist a neighbourhood
W, C X,(U) of pin T and ¢, > 0 such that the segments of the normal lines
through points ¢ € W), with center at ¢ and length 2¢,, are disjoint; that is,
W), has a tubular neighbourhood.

Considering 0 < 2r, < &, where By, (p)C By, W, = B, NT and B, is an
open set of R™ we obtain:

a=qurcaul( B,
pel

Using the compactness of ), there exist pi, ..., pm, such that
m
rclJB.,, ()
i=1

Defining
. 1,
Ui = Ba, (pi); i=1,...,m and 50:§mm{rpl,...,rpm},

we conclude that for every ¢ €]0,¢q], Wz C U;Zl U;.
On the other hand, we observe that for each p; € T the related C3- parametriza-
tion X; implies that the function

Fi: X, YT nU)%|0,e[— we NU;
(wvz> = Fi(wVZ) = Xl(w> - ZN%(U))v
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where € €]0,e9[ and N;(w) is the normal vector at point X;(w), is a C3-
diffeomorphism.

Moreover, according to the choice of the open sets U; we conclude that for
every x € w. NU; where ¢ €]0,¢g] there exist a unique normal projection y of x
on I' and unique z €]0, e[ such that z = y — zv(y). O

Remark. It follows from the above lemma that if z € w. N U; for sufficiently
small e, the normal projection of  onto I' is uniquely defined. Furthermore,

where F;(w, z) = X;(w) — 2N;(w).

Lemma 2.2 Let det JF;(w, z) denote the determinant of the Jacobian matriz
of F; at (w,z). Then

(i) there exist positive constants g, m, M, such that ¥V(w, z) € Xi_l(I‘ NU;) x
[07 60];

m < |det JF;(w,z)| < M

(i) | det JF;(w,0)| = 1, Vw € X; YT N U;)
(iii) the function (w,z) — |det JF;(w, 2)| is a C-function.

(iv) for function v on w:NU;, define H(w,2) = (voF;)(w,2). Ifv € H(weNU;)
then

%ﬁ(w,z) = —Vu(F;(w, 2)) - v(F;(w,0). (2.1)

Proof. Since F;(w,z) = X;(w) — zN;(w) it follows that |det JF;(w,0)| =
||N;(w)|| and consequently |det JF;(w,0)| = 1, Yw € X; Y(I' N U;). Besides,
taking into account the regularity of the boundary of €2, we get that det JF;(w, 2)
is a C'—function. For a &; > 0 small enough we obtain that det JF;(w, z) does
not change its sign on ]0,¢;[, which allow us to conclude (iii). Combining the
two results obtained in (ii) and (iii) we get (i). Finally, from the regularity
of the functions F;(w, z), observing that a%Fik (w,z) = —N;, (w) and from the
identity

0 "L v 0
aZ(UOF kga— %‘Flk(wvz)v

which holds for regular functions v, we obtain (iv). O
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3 Fundamental Identity

In this section we prove an identity that is essential in the proof of our main
result.

Lemma 3.1 If u = (uy,...,un) s the solution of (1.1)-(1.2), for every vector
valued function g € W (Q,R"™) collinear to the normal vector on T', we have

- /au@@gkd dt+uz / (Vui - V(div g))u; e d

Myl Oz Oxy, Oz
Qi 8 i 0g;
20\ + ) Z / %d T dt
i,j=1
+()\+,u)/ az)divu(u - V(div g)) dz dt (3.1)
Q

= 22/ hi(Vu, - g)dxdt + Z/ hiu;divg dzx dt
i=17@ i=1 Y@
- 8’111 2 . 2
"’NZ/ |E| g - vdldt + (A+u)/2a(a:)(dzvu) g-vdldt
()\—f—,u)/ Va - g(dlvu) drdt — 22/ Y(Vu;(T) - g) dx
—|—2Z/ ) (Vu;(0 dx—Z/ T)div gdx
+Z/ 0)divgdz.

Proof. For initial data {u®,u!,h} € [H(2) x H2(Q)]” xV x L'(0,T;V) let
2Vu-g = (2Vus-g,...,2Vun - g)

where

2Vu; - g = 22 8%

Multiplying (1.1) by 2Vu - g we obtain

Z/ ui (2Vu; - g) dx dt — ,LLZ/ Au;(2Vu, - g) dz dt
i i=17/@

—(A+p Z/ oz, x)divu) (2Vu; - g) dedt (3.2)
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:Z/ hi (2Vu; - g) dz dt.
i=17Q

Integrating by parts with respect to ¢, by Gauss Theorem,
2216/ uf (Vu; - g) dxdt
= 22/ ) (Vu(T) - g) d — 22/ ) (Vu(0) - g)dz (3.3)
+ Z / % div gdxdt.

Using the fact that
= r 34
Oxy, oy M (34)

by Green and Gauss Theorems we have

—,uzn:/ Au;(2Vu, - g)dx dt (3.5)

= _“Z/ |V, |® div g da dt + 24 Z /g;tlgg;gikd dt
j j

i,7,k=1

ui) g-vdldt.
v

‘“Eé(a

Finally, by (3.4) and by Gauss theorem we have

—(A+p) Z/ o (a(z) divu) (2Vu; - g) da dt (3.6)

2(A+ ) ;/Qa dlvua%(dlvu)gkdacdt

8“1 89 k

20 + /a div dxdt.
H 121 Q 8$k 8{1)

)\—l—,u)/a dlvu g-vdldt.
by

= —(A+np) /Q(dlvu )~g)dmdt—()\—l—u)/Q(divu)Qa(m)divgdacdt

+(A+ p) /a dlvu g-vdldt.
b
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" Ou; 0
+2(A + ) Z /Qa(m) divu 8;; 8?6 dxdt.
i,k=1 v

—2(A+ p) /2: a(z) (divu)? g - vdldt.

Replacing (3.3), (3.5) and (3.6) in (3.2) it follows that
22/ ) (Vuy(T) - x—22/ ) (Vu;(0) - g) da (3.7)
—l—Z/ dlvgdacdt uZ/ |Vul| divgdxdt
~ Ou; Ou; Ogi, Ou;
+2“AZ /8m18xk8%d v dt — Z/( ) -vdldt

—(A+p) /Q (divu)?® (Va(z) - g) dzdt — (A + p) /Q (divu)? a(z) div g dz dt

2(A+ p) Z/ aw 8% ggkd dt—(>\+ﬂ)/ a(x) (divu)® g - vdldt

i,k=1 x
= Z/ h; (2Vu; - g) dx dt.
i=17Q
ng

Let udivg = (up divg,...,u,divg), where u; divg = Z 1 Uigg . Now, multi-
plying (1.1) by udiv g we get

Z/ u; U divgdmdt—,uZ/ Au;u; div g dx dt
; ~ Jq

A+ p Z/ 8331 z) div u) u; div g dz dt (3.8)

= Z/hiuidivgdxdt.
i=17@

Using integration by parts we obtain

Z / w!u div g da dt (3.9)
Z/ T)u;, (T dlvgdm—Z/ 0)divgdx.
—Z/ [uf|? div g da dt .
i=17Q
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and by Green’s Theorem
n
—uZ/ Au;u; div gdz dt (3.10)
i—1 Y@

= HZ/ |VUi|2dngdxdt+,uZ/Vui'V(divg)uidxdt.
i=17Q i=17@Q

Since u = 0 on I', by Gauss Theorem we have

—(A+p) Z/ D, z)divu) u; divgde dt (3.11)
= ()\—i—,u)/ o(z) (div u)? div g dadt
Q
+(A+ 1) / az) (divu)u - V (divg) dedt.
Q

Then, from (3.8)-(3.11), it follows that
Z/ T)u;, (T dwgdm—Z/ 0) div g dx
—Z/ |u;|2divgdxdt+u2/ |V, |® div g da dt (3.12)
i=17Q i=17Q

+,uz /Q Vu; -V (div g) u; de dt + (A + p) /Q o(z) (divw)? div g da dt

+(A+p) / a(z) (divu)u - V (div g) dz dt
Q
= Z/ hiu; div g dz dt
i=17Q

Adding (3.7) and (3.12), and using that [H{(Q) N H2(Q)]" x V x LY(0,T;V)
is dense in V x H x L*(0,T;V), we obtain (3.1). O

Lemma 3.2 Let u be the solution of (1.1) with initial data satisfying (1.2),
and let v, = 0,u, where {0, }1<r<m is a C° partition of the unity relative to
the open sets Uy, ..., Up. Then v, = (Upy,..., 0, ) s the solution to

v — puAv, — A+ p)V(a(z)dive,) = h,  in Q
v, =0 on X (3.13)
v,(0) = 0,u°, v.(0) = O,u’ on Q,
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where
hy = 0,.h —2uV0, - Vu— pulb, — (A + p)a(z)divuVl, — (A + p)V(a(z)u - V6,.)

and suppv, C U, x [0,T]. Furthermore, if €y is the minimum between the two
epsilons found in Lemmas 2.1 and 2.2, the function

T n
% fO fwaﬁUT Zi:l |vgh (IE, t) : V(p(.’l?))|2 dz dt, € 6]07 80]
T n v,
Io frmU,p Sy || dUdt e=0,

v
where F.(W, x]0,¢[) = w: NU,, is continuous on [0, &o).

Gle) =

Proof. The continuity of G on [0, £¢] follows from Lemma 2.2. O

Lemma 3.3 Let § be a positive number. Then there exists a real number y&
10,8, and there exist positive decreasing functions p. € W>(0,¢), where € =
0 + 7, such that

1
p(e) =0 ple)=0 and p.= —5 in [0,4]. (3.14)
Furthermore,
C. C
|1pellLoe(0,e) < C1, NlpellLe=(o,e) < ?2, 1P| Lo (0,6) < 8—; (3.15)

for positive constants C1,C4y,Cs, and
v [° 9
5/0 Ip” (2)?22dz = % (3.16)

Proof. Let v be the positive value when solving for z in
z 1z 9

1+3+§§F=§. (3.17)

Then v = <\/Z - 1) 3§ which belongs to the interval ]0,d[. Put & = v+ 4, and
define p. : [0,¢] — R, by

1= %, z €[0,4]
PE(Z)—{ L@+ —2)?, ze[5,5+].

Then p. € W2°(0,¢e) and satisfies (3.14),(3.15). To show that p. satisfies
(3.16), we use (3.17) as follows
oy 4
2
z=dz
L 7252

,_y 15
2 [ epa -
0
2
v i
14+ L4 1
( +'5*‘&P)

v |2

N~

&le
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4 Behaviour of the Solution v in w.x]0,T]

Our goal in this section, which contains the main result of this work, is to
study the behaviour of the solution u of the elasticity system given in (1.1) in
x]0,T7.

Theorem 4.1 There exist positive constants C' and €g such that every solution
u of (1.1) where (1.2) holds with aq < p/(3n(X+ p)) satisfies

—Z/ |Vu1 z,t) - v(p(z)) > drdt < cEy Ve €]0,¢0].

Furthermore, C' and £y depend only on the positive number T, the function a(z),
the geometry of 2, and the Lamé constants.

Proof. Without loss of generality assume that I'o = I'. Let u be the solution
of (1.1) and define v, = 6,u where {0, }1<,<m is a C* partition of the unity
relative to the open sets Uy, ..., U,, given in lemma 2.1. According to Lemma
3.2, v, is the solution of (3.13) and the function G is continuous on [0, £o]. Let
do € [0, 0] be a value such that

G(dp) = max G(e).

e€[0,e0]

If 5o = 0, we obtain

max G(e)
€€[0,e0] Z / /FmU

But, considering the trace theory developed by M. Milla Miranda [9], we get

avn | Ou;
ov Dov

2
Ovr,

dal’ dt .
ov

and consequently,

a“’ dr dt .

max G(e
€€[0,e0]

On the other hand, proceeding as in J. L. Lions [8] (chapter IV - pages 224, 225),
that is, using the multiplier method, we obtain that % €eLi(%),i=1,2,...,n

and
n LT
> |k

max G(e) < cEp.
e€0,e0]

2
811,1‘

dl'dt S CEQ .

Then, we conclude that



EJDE-1997/12 V. N. Domingos Cavalcanti 11

If dp €)%, €0, we have

max G(e Vo, (z,t)|? de dt < cE,
B OO EN [ IWetaor i<

where c, in both cases, is the desired constant. We can then restrict ourselves
to the case 0 < dp < 3.

As dg > 0, according to lemma 3.3, there exists a real number v €]0, §o[. Put
€ = 7 + do, then there exists a decreasing function p. € W2°°(0,¢) such that

1
pe(e) =0, pl(e)=0, and p.L= 5 in [0, o] (4.1)
0

and (3.15) and (3.16) are satisfied. Let us consider now the following vector
valued function

ge(z) = pe(2)v(y), =z €w:NU,, where z=y—2v(y). (4.2)
Noting that 68—; = —u;, we have
09, Ov;

S (@) = (b)) (@) + o) 5 (@), @€ e
So, we obtain

div ge(2) = —pL(2) + p=(2) divv(p(z)), 2z € we

and

V(div ge)(z) = pl (2)v(p(x)) — p(2) div(v(p(z)) + pe(2)V(div v(p(x))) -

Next, we use identity (3.1) taking as function g the family of functions g.
defined in (4.2), replacing u by v, the solution of (3.13) and observing that
suppv, C U, x [0,T].

From the above equalities, Lemma 2.2, and taking into account that F,. (W, x]0,e[) =

we X U, we get by lemma 3.1 the following expression

x|, /
—,uZ/ / / ’( (w, z,t)0,, (w, 2, t)| det JF,.(w, 2)|dz dw dt

+(A+p Z/ / z)pl (2) div v, (v, - v(p(z))) dz dt

2

(w,2,t)| |det JE.(w,z)|dzdwdt  (4.3)
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where R; is given by

8vr Ovy, Ov;
o Z / /MU G G G (o)) d

ij} 1

—NZ / L . ) (Yo, - V(div v(p(z))))v,, dz dt

Ov,, Ov;
e E:I/ /wEﬁUr 2) diver oz, O (p(x)) dx dt
)\ +u / / d1v Ur(Ur . V(div V(p(x)))) da dt
weNU,-

7 8’{}7’1 A~
_22/0 /W /0 pe(2)hy, (W, 2,t) . (w, 2, )0y, (w, 2, )| det JF,.(w, 2)|dz dw dt

n T e R
+Z/ / / pe(2) divv(F.(w, 0))h,, (w, z,t)| det JFy.(w, z)|dz dw dt

+ (A + ()| div v, |*}p. (0)dD dt

L+ ) / / p2(2)(Va(a) - v(p(2)))] div vy ? de dt
:(w,z,T)|detJF,«(w,z)|dzdw

+2zn: / / () (1, 2, T) 22

_22/ / pe(2) 0y, (w, 2 0)88 (w, z,0)| det JF,.(w, z)|dz dw

_ Z / 2) div v(p(x))vl, (T)o,, (T) da

+ Z / z) div v (p(x))v}, (0)v,, (0) d

WenU,

and Rj is given by

—ui//r/ps die w(Fy,0)) 2 a0, 2, )0, (0,2, 1,)

| det JFy(w, 2)|dz dw dt

20\ + p) Z/ / / ol (z )divvr(Fr(w,z),t)aggi (w, 2, 1) x

v;(Fr(w,0))|det JF,.(w, 2)|dz dw dt
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T
s [ e aivrp@) dives (o) de d
—Z/ / / pL(2)hr, (W, 2, )0, (w, 2, t)| det JE,(w, 2)|dz dw dt

+;/wamw pE()vr, (Thor (T) do Xn:/ (0)vr, (0) da .

‘-UsﬁUp

Note that the expression for R; collects the terms which involves p.(z) and the
expression Ry the terms related to pL(z).

Taking into account the regularity of the functions «, p. and of the normal
vector v, and considering that

Ovy,
ov

= 9r|r% and divu,|r = 0.|p divulr (4.4)

we have a positive constant Cy such that |R;| < C1Ey.
On the other hand, observing that:

gz;z (z) = _381); (w, 2)v;j (Fy(w,0)) + Doy, Dy, w
where
V. D, w = Z 8’07«1 W
Dy, ri 8wk j7
we can write
div o, (z i (Fr(w,0)) + Dydy, Dy w}. (4.5)

Using the Holder inequality, we have

|0y, (w, 2, 1)|* < 2 ds.

From this inequality, and using in (4.5) an analogous argument to the one used
by C. Fabre and J. P. Puel in [6] (page 196) we conclude that there exists Co > 0
such that

|Ra| < C2Ey. (4.6)

From (4.3), (4.4) and (4.6) we find a positive constant C5 independent of ¢,
do and u for which,

s [, [ e

ayl

(w, z,t r(w, z)|dz dw dt 4.7
) (w, )]
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IN

n T e N
8'U’I‘i ~
uZ/ / / p;'(z)g(w,z,t)v,«i(w,z,t)|det JF.(w, z)| dz dw dt

—(A+p) / / z)div o, (v, - v(p(z))) dedt + C3Ey.
w:NU,

But using (4.5) we have

—Otp / /w » 2)div o (vn - v(p())) da dt (4.8)
o 00, .
_ ) Z / / / 01/ (2) 25 (0,2, O, 0, (0, 2,1)

vi(Fr(w,0))| det JF,(w, 2)| dz dw dt

o [ | (10, )p(2) S Dt Do

=1

(O (w, 2,t) - V(Fr(w,0)))| det JFy(w, )| dz dw dt .

Using the Cauchy-Schwarz inequality and (4.1) we prove that

arn S [ [ et e B s e w0

i,j=1

Op; (w, 2 t)uj( r(w, 0))|det JF.(w, z)| dz dw dt (4.9)
‘ (w, 2)| dz dw dt}/? x

< (vt wann(t ///5 3 w2, 1)

{7/ / / le N2 |0r, (w, 2, t)|?| det JF,(w, 2)| dz dw dit}/?

Oil

< A+ u)alnG(60)1/2( G(8) + C4E)Y/?,

where the last inequality comes from (3.16) and the identity

O, (w, z,t)| det JF. (w, z)|V/?

B # 0y,
N /0 0z

()| det T (22 [ 15,0) 5 det T (,5) ) ds.

Now, using an analogous argument to the one used in C. Fabre and J.P. Puel
[6](page 197) we get

N+ S0 Sy S J alFre(w, 2))pY (2)[Dasr, Do, w] %
(0p (w, 2,t) - v(Fr(w,0)))| det JF,.(w, z)| dzdw dt | < C5Ep . (4.10)
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So, by (4.8)-(4.10) we have

—(A+p) / / o (2) div vy (vy - v(p(x))) dx dt (4.11)
< ()\ + /L)OtlnG((S()) + Cg()\ + ,u)anG((So) EO% + C7Ey .

Proceeding in the same way we did to obtain (4.9) we get

DN WEEE

< §MG(50) + CsMG(50)1/2Eé/ 2 (4.12)

, 00, (w, z,t)| det JF.(w, z)| dz dw dit

Finally, using the fact that p.(z) < 0 we have

S [, [

> 2uG(8) . (4.13)

2

(w,z,t)| |det JF-(w, z)| dz dw dt

Replacing the inequalities (4.11)-(4.13) in (4.7) we obtain

1 3 (A
2[1,G(50) [Z - Zn%al} S CgG(50)1/2 Eé/Q + CloEo .

Since a1 < m, there exists (o > 0 such that

3,04

1
0 -
<Co<4 1 p

and consequently there exists C' > 0, independent of €, u and dg such that

max G(e) < CEp.
€€[0,e0]

So, in any case, there exists C' > 0 independent of €, u and Jg such that

1< [T
-> / / Yoy, (2,8) - v(p(x))|? da dt
Ei:l 0 w:NU,
< C{lluol? + lusldy + 11| s Ve €10,20] -

But since uw = Y - v, Theorem 4.1 is proved. ]
From the above theorem we obtain the following result.
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Theorem 4.2 There exist positive constants C' and €¢ such that every solution

u of (1.1) where (1.2) holds with oy < m satisfies

1 < (T
) Z/ |ui(37’t)|2 dzx dt < CEy,Ve €]0,¢e0] .
=170 Jwe

Furthermore, C and €g depend only on the real positive number T, the function
a(z), the geometry of Q, and the Lamé constants.

Proof. Letu = (uy,...,u,) be the solution of (1.1) with (1.2) and let g9 be the
minimum between the two epsilons found in Lemmas 2.1 and 2.2. Considering
{0:},<,<,, @ C° partition of the unity relative to the open sets Uy,...,Ur,

given in Lemma 2.1 we obtain w = > /" uf,. Then, for every ¢ €]0,e¢] we
obtain

T T m
/ lui(z,t)|> dedt = / / |Zu19,«|2 dx dt
0 We 0 w

e r=1

m T
C’11Z/ / w216, | da dt
=170 weNU,-
Cn;/o /MUVP |ug|? de dt
m T €
= C11Z/ / / [4; (w, 2, )| det JFy (w, 2)| dz dw dt
r=170 » /0

m T 5
< C122/ / /|7li(w,z,t)|2dzdwdt, (4.14)
—Jo Jw. Jo

where @;(w, z,t) = u;(F(w, z),t). Since

IN

IN

. = 0,
G (w, z,t) —/0 s (w, s, t)ds,

it follows that )

ds.

i

Os

(w, 5,1)

z
i (w, 2, D) < /

0

Consequently from (4.14) we have

T
/ lu;(z,t)|* d dt
0

: m T € Z | 9iis )2 )
< C / / / z/ —(w,s,t)| ds)dzdwdt
12; 0 »J0 ( 0 83(
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2

wst dsdz dw dt

IN

aul
wst

2 €
ds dw dt)(/ zdz)
0

=%z///
= 01352;/0 //O |Vui(Fr(w,s),t) - v(E.(w,0))[? ds dw dt

where the last equality comes from (2.1). Therefore,

T m T
/ / lui(z, )P dedt < Cy4e® Z / / |Vui(z,t) - v(p(x))|* dz dt
0 we =170 weNU,-

T
C14€? / |V, (2,t) - v(p(x))|? da dt .
0 We

IN

Then, we obtain the desired result from Theorem 4.1, in view of
I 17
5_3/ i (2, 0)| da dt < cmg/ Vus(z, 1) - v(p(2)) 2 da dt.
0 We 0 we
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