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EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL

LAPLACIAN SYSTEMS WITH CRITICAL GROWTH

JEZIEL N. CORREIA, CLAUDIONEI P. OLIVEIRA

Abstract. In this article, we show the existence of positive solution to the
nonlocal system

(−∆)su + a(x)u =
1

2∗s
Hu(u, v) in RN ,

(−∆)sv + b(x)v =
1

2∗s
Hv(u, v) in RN ,

u, v > 0 in RN ,

u, v ∈ Ds,2(RN ).

We also prove a global compactness result for the associated energy functional
similar to that due to Struwe in [26]. The basic tools are some information

from a limit system with a(x) = b(x) = 0, a variant of the Lion’s principle

of concentration and compactness for fractional systems, and Brouwer degree
theory.

1. Introduction

In this article, we study the existence of positive solutions for the nonlocal elliptic
system

(−∆)su+ a(x)u =
1

2∗s
Hu(u, v) in RN ,

(−∆)sv + b(x)v =
1

2∗s
Hv(u, v) in RN ,

u, v > 0 in RN ,

u, v ∈ Ds,2(RN ) ,

(1.1)

with s ∈ (0, 1), N > 2s, Hu and Hv are the partial derivatives of the function H,
where H(u, v) ∈ C1(R2

+,R) is a homogeneous function satisfying suitable conditions
that will be presented throughout later. The fractional Laplacian (−∆)s, of a
smooth function u : RN → R, is defined by

(−∆)su(x) := C(N, s) P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,
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where P.V. is a commonly used abbreviation for “in the Cauchy principal value
sense” and C(N, s) > 0 denotes the normalization constant. The work space
Ds,2(RN ) is defined as the completion of u ∈ C∞c (RN ) with respect to the Gagliardo
semi-norm

[u] :=
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

According to [24, Propositions 3.4 and 3.6], we have that

‖u‖2 = |(−∆)s/2u|2L2 = [u]2,

by omitting the normalization C(N, s). Notice that this space can be also charac-
terized as

Ds,2(RN ) :=
{
u ∈ L2∗s (RN ); [u] < +∞

}
,

where 2∗s = 2N/(N − 2s) is the fractional critical Sobolev exponent. For an ele-
mentary introduction to the fractional Laplacian and fractional Sobolev spaces, we
refer the interested readers to [22, 24] and references therein.

In recent years, the fractional Laplace operator has received attention, for both
its applicability and for its purely mathematical properties. This operator can be
seen as the infinitesimal generators of Lévy stable processes (see [4]) and arises in
several areas such as physics, biology, anomalous diffusion, chemistry, and finance;
see [4, 5, 18, 20]. For more details and applications, see [9, 17, 28, 29, 30] and the
references therein.

In the case s = 1, u = v, and H(u, u) = |u|2∗ with 2∗ = 2N/(N − 2), system
(1.1) reduces to the critical Schrödinger equation

−∆u+ a(x)u = u
N+2
N−2 in RN ,

u ∈ D1,2(RN ), u ≥ 0, N ≥ 3,
(1.2)

which was studied by Benci and Cerami in the seminal paper [6]. In this article,
we prove that (1.2) does not have a ground state solution and this fact generates
some additional difficulties. To overcome these difficulties, the authors investigate
the behavior of a Palais-Smale sequence estimate of the energy levels where the
Palais-Smale condition fails. In that article, they proved that if N ≥ 3 and ‖a‖N/2
is small enough, then the problem (1.2) has at least one positive solution. After
this pioneering work, several other authors studied problems related to (1.2); see for
example [2, 7, 8, 11, 13, 19, 21, 23] and references therein. Correia and Figueiredo
[13] studied the following version of problem (1.2) for the fractional Laplacian,

(−∆)su+ a(x)u = |u|2
∗
s−2u in RN ,

u > 0, in RN ,

u ∈ Ds,2(RN ).

(1.3)

They first proved a global compactness result for fractional Laplacian in RN , and
then, by the compactness result above, and the Linking Theorem, they obtained
the existence of high energy solutions for (1.3), provided that a(x) ≥ 0 in RN and

|a|LN/2s ≤ S(22s/N − 1),
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where S is the best constant for the Sobolev embedding Ds,2(RN ) ↪→ L2∗s (RN );
that is,

S := inf
u∈Ds,2(RN )\{0}

∫
RN |(−∆)s/2u|2 dx
(
∫
RN |u|2

∗
sdx)2/2∗s

. (1.4)

If a(x) ≡ 0, problem (1.3) reduces to

(−∆)su = |u|2
∗
s−2u in RN ,

u > 0, in RN ,

u ∈ Ds,2(RN ).

(1.5)

It is known that problem (1.5) has the positive solution

Φδ,b(x) = c
( δ

δ2 + |x− b|2
)(N−2s)/2

, x, b ∈ RN , δ > 0, (1.6)

and satisfies

‖Φδ,b‖2 = S, |Φδ,b|2∗s = 1. (1.7)

Moreover, all positive solutions of (1.5) can be obtained by translation and scale
changes, see [12].

Recently, Figueiredo and Silva [15] considered a variant of the Benci and Cerami’s
problem for the system of equations

−∆u+ a(x)u =
1

2∗
Ku(u, v) in RN ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN ,

u, v > 0 in RN ,

u, v ∈ D1,2(RN ),

(1.8)

where the nonlinearity K(u, v) ∈ C1(R2
+,R) is a homogeneous function with certain

assumptions (for more details see [14]). In that article, using the same techniques
introduced by Benci and Cerami [6], they obtained the existence of high energy
solutions for system (1.8), provided that a(x), b(x) ≥ 0 in RN and

s2
0|a|LN/2 + t20|b|LN/2 < SK(22/N − 1),

where SK denote the best constant of the embedding D1,2(RN ) × D1,2(RN ) ↪→
L2∗(RN )× L2∗(RN ); that is,

SK := inf
u,v∈D1,2(RN )\{0}

∫
RN [|∇u|2 + |∇v|2]dx

(
∫
RN K(u, v)dx)2/2∗

,

with s0, t0 positives constant such that the pair (s0Ψδ,y, t0Ψδ,y) reaches SK (see
[14, Lemma 3]) and Ψδ,y are Talenti functions (see [1, 27]). Motivated by the works
mentioned above, mainly by the ideas found in Benci and Cerami [6], Correia and
Figueiredo [13] and Figueiredo and Silva [15], and that a bibliography review did
not find any paper dealing with (1.1), we decided to investigate the this class of
systems. This article concerns the existence of positive solution for system (1.1).
However, we would like to point out that some estimates made in [6, 13, 15] are not
immediate for our case because of the nonlocal character of fractional Laplacian.
Some refined estimates were necessary, see Section 3 and Section 4.

In this article, we consider the following assumptions on H = H(`, t):
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(H0) H is 2∗s-homogeneous, that is,

H(θ`, θt) = θ2∗sH(`, t), for each θ > 0, (`, t) ∈ R2
+;

(H1) there exists c1 > 0 such that

|H`(`, t)|+ |Ht(`, t)| ≤ c1(`2
∗
s−1 + t2

∗
s−1) for each (`, t) ∈ R2

+;

(H2) ∇H(0, 1) = ∇H(1, 0) = (0, 0);
(H3) H(`, t) > 0 for each `, t > 0;
(H4) H`(`, t) ≥ 0, Ht(`, t) ≥ 0 for each (`, t) ∈ R2

+;

(H5) the 1-homogeneous function Ψ(`2
∗
s , t2

∗
s ) = H(`, t) is concave in R2

+.

On the functions a, b : RN → R, we assume the following conditions:

(H6) The functions a, b are positive in a set of positive measure;
(H7) a, b ∈ Lq(RN ) for all q ∈ [p1, p2] with 1 < p1 < N/2s < p2 and p2 <

N/(4s−N) if N < 4s;
(H8) `20|a|LN/2s(RN ) + t20|b|LN/2s(RN ) < SH(22s/N − 1).

In assumption (H8), the expression SH denotes the best constant of the immer-
sion Ds,2(RN )×Ds,2(RN ) ↪→ L2∗s (RN )× L2∗s (RN ), namely

SH := inf
u,v∈Ds,2(RN )\{0}

∫
RN [|(−∆)s/2u|2 + |(−∆)s/2v|2]dx

(
∫
RN H(u, v)dx)2/2∗s

.

Moreover, by [3, Lemma 2.3] there are `0 and t0 positive such that SH is attained
by (`0Φδ,b, t0Φδ,b) and

MHSH = S, (1.9)

where MH = max`2+t2=1H(`, t)2/2∗s = H(`0, t0)2/2∗s .
To state the main result this article, we consider the energy functional of calss

C1, J : Ds,2(RN )×Ds,2(RN )→ R, given by

J (u, v) =
1

2
‖(u, v)‖2 +

1

2

∫
RN

(a(x)u2 + b(x)v2)dx− 1

2∗s

∫
RN

H(u, v)dx,

where ‖(u, v)‖2 = ‖u‖2 + ‖v‖2 is the norm in the space Ds,2(RN )×Ds,2(RN ) and

J ′(u, v)(ϕ,ψ) =

∫
RN

[(−∆)s/2u(−∆)s/2ϕ+ (−∆)s/2v(−∆)s/2ψ]dx

+

∫
RN

[a(x)uϕ+ b(x)vψ]dx− 1

2∗s

∫
RN

[Hu(u, v)ϕ+Hv(u, v)ψ]dx

for all (ϕ,ψ) ∈ Ds,2(RN )×Ds,2(RN ). We have the following existence result.

Theorem 1.1. Assume that (H0)–(H8) hold. Then (1.1) has a positive solution
(u0, v0) ∈ Ds,2(RN )×Ds,2(RN ) with

s

N
S
N/2s
H < J (u0, v0) <

2s

N
S
N/2s
H .

In some sense, the main result of this article expands the study made in [6, 13,
15], because we are considering a version of a paper for the fractional Laplacian.
Moreover, we prove the version for fractional system in RN of Struwe’s Global
Compactness result [26], which may be useful also in other context and has never
appeared in the literature, to the best of our knowledge.

Before we finish this introduction, let us comment on some difficulties encoun-
tered in problem (1.1).
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• The “double” lack of compactness due to the unboundedness of the domain,
and the presence of the critical Sobolev exponent, which is related to the
fact that embedding Ds,2(RN ) ↪→ L2∗s (RN ) is not compact. Thus, the
associated energy functional does not satisfy the Palais-Smale condition in
general.
• The extension to nonlocal system involves some technical difficulties which

are overcome with some refined estimates, as can be seen in Lemma 3.1,
Theorem 3.2, and Section 4.

This article is organized as follows. In Section 2, we study the limit system
associated with (1.1). In Section 3, we give the complete descriptions for the Palais-
Smale (PS) sequences for the functional J . In Section 4, we prove some technical
lemmas. In Section 5, we show the main result.

2. Limit problem

In this section, we give some results involving the limit problem that will be
useful in our approach. We start with example of the function H(u, v) that satisfies
the conditions (H0)–(H5).

Let H be the function

H(u, v) := a|u|2
∗
s +

∑
αi+βi=2∗s

bi|u|αi |v|βi + c|v|2
∗
s ,

where a, bi, c ∈ R, αi + βi = 2∗s, αi, βi ≥ 1, i ∈ I with I a finite subset of N. Then
H satisfies conditions (H0)–(H5).

From the homogeneity condition (H0), have the so called Euller identity,

(u, v) · ∇H(u, v) = 2∗sH(u, v). (2.1)

Let us introduce the limit problem associated with (1.1),

(−∆)su =
1

2∗s
Hu(u, v) in RN ,

(−∆)sv =
1

2∗s
Hv(u, v) in RN ,

u, v > 0 in RN ,

u, v ∈ Ds,2(RN )

(2.2)

whose associated energy functional J∞ : Ds,2(RN )×Ds,2(RN )→ R is

J∞(u, v) =
1

2
‖(u, v)‖2 − 1

2∗s

∫
RN

H(u, v)dx.

The next lemma states that the functional associated with the limit problem satis-
fies the Palais-Smale condition.

Lemma 2.1 ((PS)-condition for J∞). Let (un, vn) be sequence (PS)c for J∞.
Then

(a) The sequence (un, vn) is bounded in Ds,2(RN )×Ds,2(RN );
(b) If (un, vn) ⇀ (u, v) in Ds,2(RN )×Ds,2(RN ), then J ′∞(u, v) = 0;

(c) If c ∈ (−∞, sN S
N/2s
H ), the J∞ satisfies the (PS)c condition, i.e, up to a

subsequence

(un, vn)→ (u, v) in Ds,2(RN )×Ds,2(RN ).
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Proof. (a) Since J∞(un, vn)→ c and J ′∞(un, vn)→ 0, and using (2.1), there exists
d > 0 such that

d+ ‖(un, vn)‖ ≥ J∞(un, vn)− 1

2∗s
J∞(un, vn)(un, vn) =

s

N
‖(un, vn)‖2 + on(1);

thus
s

N
‖(un, vn)‖2 + on(1) ≤ d+ ‖(un, vn)‖ .

which proves part (a).
(b) Since (un, vn) ⇀ (u, v) in Ds,2(RN ) × Ds,2(RN ), up to a subsequence, we

have

(un, vn)→ (u, v) in Lqloc(RN )× Lqloc(RN ),

(un, vn)→ (u, v) a.e. in RN × RN .
Using a denseness argument we obtain∫
RN

Hu(un, vn)ϕdx+

∫
RN

Hv(un, vn)ψ dx→
∫
RN

Hu(u, v)ϕdx+

∫
RN

Hv(u, v)ψ dx

for all ϕ,ψ ∈ Ds,2(RN ), which implies (b).
(c) Consider the sequence (wn, zn) = (un − u, vn − v) and note that

on(1) = J ′∞(un, vn)(un, vn) = ‖(un, vn)‖2− 1

2∗s

∫
RN

[Hu(un, vn)un+Hv(un, vn)vn] dx

or

on(1) = ‖(wn, zn)‖2 + ‖(u, v)‖2 − 1

2∗s

∫
RN

Hu(wn + u, zn + v)(wn + u)dx

− 1

2∗s

∫
RN

Hv(wn + u, zn + v)(zn + v) dx .

From [3, Lemma 7.2], we have

‖(wn, zn)‖2 + ‖(u, v)‖2 − 1

2∗s

∫
RN

Hu(wn, zn)wn dx−
1

2∗s

∫
RN

Hv(wn, zn)zn dx

− 1

2∗s

∫
RN

Hu(u, v)u dx− 1

2∗s

∫
RN

Hv(u, v)v dx = on(1)

Now using (b) and (2.1) we have

‖(wn, zn)‖2 −
∫
RN

H(wn, zn)dx = on(1).

Up to a subsequence, we conclude that there exists L ≥ 0 such that

lim
n→+∞

‖(wn, zn)‖2 = lim
n→+∞

∫
RN

H(wn, zn)dx = L.

Suppose, by contradiction, that L > 0. Using the inequality

SH

(∫
RN

H(wn, zn)dx
)2/2∗s

≤ ‖(wn, zn)‖2

we obtain
L ≥ SHL2/2∗s =⇒ L ≥ SN/2sH .

Since J∞(u, v) = s
N ‖(u, v)‖2 ≥ 0 and

c =
s

N
‖(wn, zn)‖2 + J∞(u, v) + on(1),
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it follows that

c =
s

N
‖(wn, zn)‖2 + J∞(u, v) + on(1) ≥ s

N
‖(wn, zn)‖2 + on(1) ≥ s

N
L ≥ s

N
S
N/2s
H ,

which is a contradiction. Therefore, L = 0 and so ‖un − u‖2 → 0 and ‖vn − v‖2 →
0. �

3. A compactness result

We start this section by establishing the following technical lemma for J∞ which
will be useful for proving our compactness theorem.

Lemma 3.1. Let (un, vn) be a (PS)c sequence for the functional J∞ with
(un, vn) ⇀ (0, 0) and (un, vn) 6→ (0, 0). Then, there are sequences (Rn) ⊂ R+,
(xn) ⊂ RN and (u0, v0) ∈ Ds,2(RN ) × Ds,2(RN ) nontrivial solution of (S∞) and
a sequence (τn, ζn) which is (PS)c̃ for the J∞ such that, up to a subsequence of
(un, vn), we have

τn(x) = un(x)−R
N−2s

2
n u0(Rn(x− xn)) + on(1),

ζn(x) = vn(x)−R
N−2s

2
n v0(Rn(x− xn)) + on(1).

Proof. Let (un, vn) ⊂ Ds,2(RN )×Ds,2(RN ) be a (PS)c sequence for the functional
J∞, i.e.,

J∞(un, vn)→ c and J ′∞(un, vn)→ 0. (3.1)

From Lemma 2.1(a), we obtain that (un, vn) is bounded in Ds,2(RN )× Ds,2(RN ).
Since (un, vn) ⇀ (0, 0) and (un, vn) 6→ (0, 0), by the Lemma 2.1(c) it follows that

c ≥ s

N
S
N/2s
H .

Note that

c+ on(1) = J∞(un, vn)− 1

2∗s
J ′∞(un, vn)(un, vn)

=
s

N

∫
RN

[
|(−∆)s/2un|2 + |(−∆)s/2vn|2

]
dx,

which implies

lim
n→+∞

s

N

∫
RN

[
|(−∆)s/2un|2 + |(−∆)s/2vn|2

]
dx ≥ SN/2sH . (3.2)

Let L be a number such that B2(0) is covered by L balls of radius 1, (Rn) ⊂ R,
(xn) ⊂ RN such that

sup
y∈RN

∫
B
R
−1
n

(y)

[
|(−∆)s/2un|2 + |(−∆)s/2un|2

]
dx

=

∫
B
R
−1
n

(xn)

[
|(−∆)s/2un|2 + |(−∆)s/2vn|2

]
dx

=
S
N/2s
H

2L
.

We define the sequence

(wn(x), zn(x)) =
(
R

2s−N
2

n un

( x

Rn
+ xn

)
, R

2s−N
2

n vn

( x

Rn
+ xn

))
.
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Using a change of variable, we can prove that∫
B1(0)

[
|(−∆)s/2wn|2 + |(−∆)s/2zn|2

]
dx

=
S
N/2s
H

2L

= sup
y∈RN

∫
B1(y)

[
|(−∆)s/2wn|2 + |(−∆)s/2zn|2

]
dx.

Now, for each (Φ1,Φ2) ∈ Ds,2(RN )×Ds,2(RN ), we define

(Φ̃1,n, Φ̃2,n)(x) =
(
R
N−2s

2
n Φ1(Rn(x− xn)), R

N−2s
2

n Φ2(Rn(x− xn))
)

which satisfies∫
RN

[
(−∆)s/2un(−∆)s/2Φ̃1,n + (−∆)s/2vn(−∆)s/2Φ̃2,n

]
dx

=

∫
RN

[
(−∆)s/2wn(−∆)s/2Φ1 + (−∆)s/2zn(−∆)s/2Φ2

]
dx

(3.3)

and ∫
RN

[Hu(un, vn)Φ̃1,n +Hv(un, vn)Φ̃2,n]dx

=

∫
RN

[Hw(wn, zn)Φ1 +Hzn(wn, zn)Φ2]dx.

(3.4)

These limits yield that

J∞(wn, zn)→ c and J ′∞(wn, zn)→ 0. (3.5)

From Lemma 3.1, there exists (u0, v0) ∈ Ds,2(RN )×Ds,2(RN ) such that, up to
a subsequence, (un, vn) ⇀ (u0, v0) in Ds,2(RN )×Ds,2(RN ) and J ′∞(u0, v0) = 0.

As a consequence from following variant of the Concentration-Compactness Li-
ons’s Lemma [3, Lemma 4.3], we obtain∫

RN
H(wn, zn)φdx→

∫
RN

H(u0, v0)φdx+
∑
j∈J

φ(xj)νj , ∀φ ∈ C∞0 (RN ) (3.6)

and

|(−∆)s/2wn|2 + |(−∆)s/2zn|2

⇀ µ+ σ

≥ |(−∆)s/2u0|2 + |(−∆)s/2v0|2 +
∑
j∈J

φ(xj)µj +
∑
j∈J

φ(xj)σj ,∀φ ∈ C∞0 (RN )

for some {xj}j∈J ⊂ RN and for some {νj}j∈J , {µj}j∈J , {σj}j∈J ⊂ R+ with

SHν
2/2∗s
j ≤ µj + σj , where J is at most a countable set. Indeed, J is finite. To see

this, consider φ ∈ C∞0 (RN ) such that 0 ≤ φ(x) ≤ 1, for all x ∈ RN , φ(x) = 0 for
all x ∈ Bc2(0) and φ(x) = 1 for all x ∈ B1(0). Now fix xj ∈ RN , j ∈ J and define

φρ(x) = φ(
x−xj
ρ ), for each ρ > 0. Thus, 0 ≤ φρ(x) ≤ 1, for all x ∈ RN , φρ(x) = 0
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for all x ∈ Bc2ρ(xj) and φρ(x) = 1 for all x ∈ Bρ(xj). We have that (wnφρ, znφρ) is

bounded in Ds,2(RN )×Ds,2(RN ) and J ′∞(wn, zn)(wnφρ, znφρ) = on(1). Then∫
RN

(−∆)s/2wn(−∆)s/2(wnφρ)dx+

∫
RN

(−∆)s/2zn(−∆)s/2(znφρ)dx

=

∫
RN

Hw(wn, zn)(wnφρ)dx+

∫
RN

Hz(wn, zn)(znφρ)dx+ on(1).

(3.7)

As∫
RN

(−∆)s/2wn(−∆)s/2(wnφρ) dx dy +

∫
RN

(−∆)s/2zn(−∆)s/2(znφρ) dx dy

=

∫
R2N

(wn(x)− wn(y))2φρ(y)

|x− y|N+2s
dx dy

+

∫
R2N

(wn(x)− wn(y))(φρ(x)− φρ(y))wn(x)

|x− y|N+2s
dx dy

+

∫
R2N

(zn(x)− zn(y))2φρ(y)

|x− y|N+2s
dx dy

+

∫
R2N

(zn(x)− zn(y))(φρ(x)− φρ(y))zn(x)

|x− y|N+2s
dx dy,

(3.8)

it is easy to verify that∫
R2N

(wn(x)− wn(y))2φρ(y)

|x− y|N+2s
dx dy +

∫
R2N

(zn(x)− zn(y))2φρ(y)

|x− y|N+2s
dx dy

=

∫
RN
|(−∆)s/2wn|2φρ(y)dy +

∫
RN
|(−∆)s/2zn|2φρ(y)dy

→
∫
RN

φρ(y)dµ+

∫
RN

φρ(y)dσ as n→ +∞

(3.9)

and∫
RN

φρ(y)dµ+

∫
RN

φρ(y)dσ → µ({xj}) + σ({xj}) = µj + σj as ρ→ 0. (3.10)

Also, by Hölder inequality∣∣∣ ∫
R2N

(wn(x)− wn(y))(φρ(x)− φρ(y))wn(x)

|x− y|N+2s
dx dy

∣∣∣
≤
∫
R2N

|wn(x)− wn(y)||φρ(x)− φρ(y)||wn(x)|
|x− y|N+2s

dx dy

≤ C1

(∫
R2N

|φρ(x)− φρ(y)|2|wn(x)|2

|x− y|N+2s
dx dy

)1/2

(3.11)

and ∣∣∣ ∫
R2N

(zn(x)− zn(y))(φρ(x)− φρ(y))zn(x)

|x− y|N+2s
dx dy

∣∣∣
≤
∫
R2N

|zn(x)− zn(y)||φρ(x)− φρ(y)||zn(x)|
|x− y|N+2s

dx dy

≤ C2

(∫
R2N

|φρ(x)− φρ(y)|2|zn(x)|2

|x− y|N+2s
dx dy

)1/2

.

(3.12)



10 J. N. CORREIA, C. P. OLIVEIRA EJDE-2022/79

Arguing as in [32, Lemma 3.6], we see that

lim
ρ→0

lim
n→+∞

∫
R2N

|φρ(x)− φρ(y)|2|wn(x)|2

|x− y|N+2s
dx dy = 0, (3.13)

lim
ρ→0

lim
n→+∞

∫
R2N

|φρ(x)− φρ(y)|2|zn(x)|2

|x− y|N+2s
dx dy = 0. (3.14)

On the other hand, by (2.1) we have∫
RN

Hw(wn, zn)(wnφρ)dx+

∫
RN

Hz(wn, zn)(znφρ)dx

=

∫
RN
∇H(wn, zn) · (wnφρ, znφρ)

= 2∗s

∫
RN

H(wn, zn)φρdx→ 2∗s

∫
RN

φρ(y)dν

(3.15)

and ∫
RN

φρ(y)dν → ν({xj}) = νj as ρ→ 0. (3.16)

From (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15) and (3.16), it follows
that

SHν
2/2∗s
j ≤ µj + σj ≤ 2∗sνj .

Since that νj > 0, we see that S
N/2s
H ≤ (µj + σj)

N/2s ≤ Cνj ,
∑
j∈J ν

2/2∗s
j <∞ and

so νj does not converge to zero, which means that J is finite.
From now on, we denote by J = {1, 2, . . . ,m} and Γ ⊂ RN the set given by

Γ = {xj ∈ {xj}j∈J ; |xj | > 1},

with (xj given by (3.6). Note that we can consider xj , j = 1, . . . ,m, belonging to Γ,
otherwise, we choose the smallest distance point for zero in this set. We are going
to show that (u0, v0) 6= (0, 0). Suppose, by contradiction, that (u0, v0) = (0, 0).
Then, by (3.6) we have∫

RN
H(wn, zn)φdx→ 0, ∀φ ∈ C∞0 (RN \ {x1, x2, . . . , xm}). (3.17)

Since (φ1,n, φ2,n) = (φwn, φzn) with φ ∈ C∞0 (RN \ {x1, x2, . . . , xm}) is bounded, we
obtain J ′∞(wn, zn)(φ1,n, φ2,n) = on(1); that is,∫

RN
[(−∆)s/2wn(−∆)s/2φ1,n + (−∆)s/2zn(−∆)s/2φ2,n]dx

− 1

2∗s

∫
RN

Hw(wn, zn)φ1,ndx−
1

2∗s

∫
RN

Hz(wn, zn)φ2,ndx = on(1),

(3.18)

or ∫
R2N

(wn(x)− wn(y))(φ1,n(x)wn(x)− φ1,n(y)wn(y))

|x− y|N+2s
dx dy

+

∫
R2N

(zn(x)− zn(y))(φ2,n(x)(zn(x)− φ2,n(y)zn(y))

|x− y|N+2s
dx dy

− 1

2∗s

∫
RN

Hw(wn, zn)φ1,ndx−
1

2∗s

∫
RN

Hz(wn, zn)φ2,ndx = on(1).

(3.19)
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But the above equality is equivalent to∫
R2N

wn(x)
(wn(x)− wn(y))(φ(x)− φ(y))

|x− y|N+2s
dx dy

+

∫
R2N

φ(y)
(wn(x)− wn(y))2

|x− y|N+2s
dx dy

+

∫
R2N

zn(x)
(zn(x)− zn(y))(φ(x)− φ(y))

|x− y|N+2s
dx dy

+

∫
R2N

φ(y)
(zn(x)− zn(y))2

|x− y|N+2s
dx dy −

∫
RN

H(wn, zn)φdx = on(1).

Then∣∣∣ ∫
R2N

φ(y)
|wn(x)− wn(y)|2

|x− y|N+2s
dx dy +

∫
R2N

φ(y)
|zn(x)− zn(y)|2

|x− y|N+2s
dx dy

∣∣∣
=
∣∣∣ ∫

RN
H(wn, zn)φdx−

∫
R2N

wn(x)
(wn(x)− wn(y))(φ(x)− φ(y))

|x− y|N+2s
dx dy

−
∫
R2N

zn(x)
(zn(x)− zn(y))(φ(x)− φ(y))

|x− y|N+2s
dx dy + on(1)

∣∣∣
≤
∣∣∣ ∫

RN
H(wn, zn)φdx

∣∣∣+
∣∣∣ ∫

R2N

wn(x)
(wn(x)− wn(y))(φ(x)− φ(y))

|x− y|N+2s
dx dy

∣∣∣
+
∣∣∣ ∫

R2N

zn(x)
(zn(x)− zn(y))(φ(x)− φ(y))

|x− y|N+2s
dx dy

∣∣∣+ on(1)

≤
∣∣∣ ∫

RN
H(wn, vn)φdx

∣∣∣+ ‖wn‖
(∫

R2N

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

)1/2

+ ‖zn‖
(∫

R2N

|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

)1/2

+ on(1).

(3.20)
Now, we show that ∫

R2N

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy = on(1), (3.21)∫

R2N

|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy = on(1). (3.22)

For this, let R be a positive number such that supp(φ) ⊂ BR(0) and write R2N as

R2N =
[
(RN \BR(0))× (RN \BR(0))

]
∪
[
BR(0)× (RN \BR(0))

]
∪
[
(RN \BR(0))×BR(0)

]
= Ω1 ∪ Ω2 ∪ Ω3.

Thus, we have∫
R2N

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

=

∫
Ω1

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy +

∫
Ω2

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

+

∫
Ω3

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

(3.23)
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and∫
R2N

|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

=

∫
Ω1

|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy +

∫
Ω2

|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

+

∫
Ω3

|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy.

(3.24)

We will prove (3.23), the case (3.24) follows in an analogous way. To do this we
estimate each integral in (3.23). Since φ = 0 in RN \BR(0), we have∫

Ω1

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy = 0. (3.25)

Using |φ| ≤ C1, |∇φ| ≤ C2 and using the mean value theorem, we infer that∫
Ω2

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

=

∫
BR(0)

|wn(x)|2dx
∫
{y∈RN :|x−y|≤R}

|φ(x)− φ(y)|2

|x− y|N+2s
dy

+

∫
BR(0)

|wn(x)|2dx
∫
{y∈RN :|x−y|>R}

|φ(x)− φ(y)|2

|x− y|N+2s
dy

≤ C|∇φ|2L∞(RN )

∫
BR(0)

|wn(x)|2dx
∫
{y∈RN :|x−y|≤R}

1

|x− y|N+2s−2
dy

+ C

∫
BR(0)

|wn(x)|2dx
∫
{y∈RN :|x−y|>R}

1

|x− y|N+2s
dy

= CR2−2s

∫
BR(0)

|wn(x)|2dx+ CR−2s

∫
BR(0)

|wn(x)|2dx = on(1).

(3.26)

Moreover, for the integral on Ω3, we have∫
Ω3

|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

=

∫
RN\BR(0)

|wn(x)|2dx
∫
{y∈BR(0):|x−y|≤R}

|φ(x)− φ(y)|2

|x− y|N+2s
dy

=

∫
RN\BR(0)

|wn(x)|2dx
∫
{y∈BR(0):|x−y|>R}

|φ(x)− φ(y)|2

|x− y|N+2s
dy =: T 1

R + T 2
R .

(3.27)

It is not difficult to verify that if (x, y) ∈ (RN \ BR(0)) × BR(0) and |x − y| ≤ R,
then |x| ≤ 2R, thus

T 1
R =

∫
RN\BR(0)

|wn(x)|2dx
∫
{y∈BR(0):|x−y|≤R}

|φ(x)− φ(y)|2

|x− y|N+2s
dy

≤ C|∇φ|2L∞(RN )

∫
B2R(0)

|wn(x)|2dx
∫
{z∈BR(0):|z|≤R}

1

|z|N+2s−2
dz

= CR2−2s

∫
B2R(0)

|wn(x)|2dx = on(1).

(3.28)
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Note that, there exists k > 4 such that

Ω3 =
[
(RN \BR(0))× (BR(0))

]
∪ [BkR(0)× (BR(0))] ∪

[
(RN \BkR(0))×BR(0)

]
.

Therefore, ∫
BkR(0)

|wn(x)|2dx
∫
{y∈BR(0):|x−y|>R}

|φ(x)− φ(y)|2

|x− y|N+2s
dy

≤ C
∫
BkR(0)

|wn(x)|2dx
∫
{z∈RN :|z|>R}

1

|z|N+2s
dz

= CR−2s

∫
BkR(0)

|wn(x)|2dx = on(1).

(3.29)

If (x, y) ∈ (RN \BkR(0))×BR(0), then

|x− y| ≥ |x| − |y| ≥ kR

2
−R >

|x|
2
,

and using Hölder’s inequality, we obtain∫
RN\BkR(0)

|wn(x)|2dx
∫
{y∈BR(0):|x−y|>R}

|φ(x)− φ(y)|2

|x− y|N+2s
dy

≤ C
∫
RN\BkR(0)

dx

∫
{y∈BR(0):|x−y|>R}

|wn(x)|2

|x− y|N+2s
dy

≤ CRN
∫
RN\BkR(0)

|wn(x)|2

|x|N+2s
dx

≤
(∫

RN\BkR(0)

|wn(x)|2
∗
sdx
)2/2∗s

(∫
RN\BkR(0)

|x|−(N+2s)
2∗s

2∗s−2

) 2∗s−2

2∗s

≤ Ck−N
(∫

RN\BkR(0)

|wn(x)|2
∗
sdx
)2/2∗s

≤ Ck−N .

(3.30)

From (3.29) and (3.30), we obtain

T 2
R ≤ Ck−N + on(1). (3.31)

Combining (3.20)-(3.28) and (3.31), we deduce that

lim sup
n→+∞

∫
RN
|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

= lim
k→+∞

lim sup
n→+∞

∫
RN
|wn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy = 0

and

lim sup
n→+∞

∫
RN
|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy

= lim
k→+∞

lim sup
n→+∞

∫
RN
|zn(x)|2 |φ(x)− φ(y)|2

|x− y|N+2s
dx dy = 0.

Combining (3.18), (3.20), (3.21), (3.22), and (3.17), we conclude that∫
R2N

φ(y)
|wn(x)− wn(y)|2

|x− y|N+2s
dx dy +

∫
R2N

φ(y)
|zn(x)− zn(y)|2

|x− y|N+2s
dx dy → 0 (3.32)
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for all φ ∈ C∞0 (RN \ {x1, . . . , xm}), which leads to∫
RN
|(−∆)s/2wn|2φdx+

∫
RN
|(−∆)s/2zn|2φdx = on(1). (3.33)

Let ρ ∈ R be a number that satisfies 0 < ρ < min{dist(Γ, B̄1(0), 1)}. We will
show that ∫

B1+ρ(0)\B1+
ρ
3

(0)

[|(−∆)s/2wn|2 + |(−∆)s/2zn|2]dx→ 0. (3.34)

To do this, we consider φ ∈ C∞0 (RN ) such that 0 ≤ φ(x) ≤ 1 and φ(x) = 1 if

x ∈ B1+ρ(0). If φ̃ = φ|RN\{x1,...,xm}, follows by (3.33) that

0 ≤
∫
B1+ρ(0)\B1+

ρ
3

(0)

[|(−∆)s/2wn|2 + |(−∆)s/2zn|2]dx

≤
∫
B1+ρ(0)

[|(−∆)s/2wn|2 + |(−∆)s/2zn|2]dx

=

∫
B1+ρ(0)

[|(−∆)s/2wn|2 + |(−∆)s/2zn|2]φ̃dx

≤
∫
RN

[|(−∆)s/2wn|2 + |(−∆)s/2zn|2]φ̃dx→ 0,

which implies that (3.34) occurs.
Let Φ ∈ C∞0 (RN ) be such that 0 ≤ Φ(x) ≤ 1, |∇Φ| ≤ 2 for all x ∈ RN and

Φ(x) =

{
1, x ∈ B1+ ρ

3
(0),

0, x ∈ Bc
1+ 2ρ

3

(0)

and consider the sequence (Φ1,n,Φ2,n) given by

(Φ1,n(x),Φ2,n(x)) = (Φ(x)wn(x),Φ(x)zn(x)).

Using (3.21) and (3.22), we have∫
RN\B1+ρ(0)

|(−∆)s/2Φ1,n|2dx+

∫
RN\B1+ρ(0)

|(−∆)s/2Φ2,n|2dx

≤ 2

∫
(RN\B1+ρ(0))×RN

|wn(y)|2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
(RN\B1+ρ(0))×RN

|Φ(y)|2|wn(x)− wn(y)|2

|x− y|N+2s
dx dy

≤ 2

∫
(RN\B1+ρ(0))×RN

|zn(y)|2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
(RN\B1+ρ(0))×RN

|Φ(y)|2|zn(x)− zn(y)|2

|x− y|N+2s
dx dy

= on(1) + 2

∫
RN\B1+ρ(0)

Φ(x)2|(−∆)s/2wn(x)|2dx

+ on(1) + 2

∫
RN\B1+ρ(0)

Φ(x)2|(−∆)s/2zn(x)|2dx

= on(1).

(3.35)
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Similarly, we can obtain the estimate∫
B1+ρ(0)\B1+

ρ
3

(0)

|(−∆)s/2Φ1,n|2dx+

∫
B1+ρ(0)\B1+

ρ
3

(0)

|(−∆)s/2Φ2,n|2dx

≤ 2

∫
(B1+ρ(0)\B1+

ρ
3

(0))×RN

wn(x)2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
(B1+ρ(0)\B1+

ρ
3

(0))×RN

Φ(y)2|wn(x)− wn(y)|2

|x− y|N+2s
dx dy

+ 2

∫
(B1+ρ(0)\B1+

ρ
3

(0))×RN

zn(x)2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
(B1+ρ(0)\B1+

ρ
3

(0))×RN

Φ(y)2|zn(x)− zn(y)|2

|x− y|N+2s
dx dy

≤ 2

∫
B1+ρ(0)×RN

wn(x)2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
(B1+ρ(0)\B1+

ρ
3

(0))×RN

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy

+ 2

∫
B1+ρ(0)×RN

zn(x)2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
(B1+ρ(0)\B1+

ρ
3

(0))×RN

|zn(x)− zn(y)|2

|x− y|N+2s
dx dy

= 2

∫
B1+ρ(0)×RN

wn(x)2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
B1+ρ(0)\B1+

ρ
3

(0)

|(−∆)s/2wn|2dx

+ 2

∫
B1+ρ(0)×RN

zn(x)2|Φ(x)− Φ(y)|2

|x− y|N+2s
dx dy

+ 2

∫
B1+ρ(0)\B1+

ρ
3

(0)

|(−∆)s/2zn|2dx

= on(1),

(3.36)

where in the last equality we made use of estimates (3.21), (3.22), and (3.34).
Since (Φ1,n,Φ2,n) is bounded in Ds,2(RN )×Ds,2(RN ), we derive that∫
B1+ρ(0)\B1+

ρ
3

(0)

(−∆)s/2wn(−∆)s/2Φ1,ndx+

∫
B1+

ρ
3

(0)

(−∆)s/2wn(−∆)s/2Φ1,ndx

+

∫
B1+ρ(0)\B1+

ρ
3

(0)

(−∆)s/2zn(−∆)s/2Φ2,ndx+

∫
B1+

ρ
3

(0)

(−∆)s/2zn(−∆)s/2Φ2,ndx

− 1

2∗s

∫
B1+ρ(0)\B1+

ρ
3

(0)

Φ1,nHw(wn, zn)dx− 1

2∗s

∫
B1+

ρ
3

(0)

Φ1,nHw(wn, zn)dx
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− 1

2∗s

∫
B1+ρ(0)\B1+

ρ
3

(0)

Φ2,nHz(wn, zn)dx− 1

2∗s

∫
B1+

ρ
3

(0)

Φ2,nHz(wn, zn)dx = on(1),

which implies∫
B1+ρ(0)\B1+

ρ
3

(0)

(−∆)s/2wn(−∆)s/2Φ1,ndx+

∫
B1+

ρ
3

(0)

|(−∆)s/2Φ1,n|2dx

+

∫
B1+ρ(0)\B1+

ρ
3

(0)

(−∆)s/2zn(−∆)s/2Φ2,ndx+

∫
B1+

ρ
3

(0)

|(−∆)s/2Φ2,n|2 dx

− 1

2∗s

∫
B1+ρ(0)\B1+

ρ
3

(0)

Φ1,nHw(wn, zn)dx− 1

2∗s

∫
B1+

ρ
3

(0)

Φ1,nHw(Φ1,n,Φ1,n)dx

− 1

2∗s

∫
B1+ρ(0)\B1+

ρ
3

(0)

Φ2,nHz(wn, zn)dx− 1

2∗s

∫
B1+

ρ
3

(0)

Φ2,nHz(Φ2,n,Φ2,n)dx

= on(1).

(3.37)
Note that from Hölder inequality, (3.35) and (3.36) we obtain∫

B1+ρ(0)\B1+
ρ
3

(0)

[
(−∆)s/2wn(−∆)s/2Φ1,n + (−∆)s/2zn(−∆)s/2Φ2,n

]
dx

= on(1).

(3.38)

Moreover, combining (2.1) and (3.17) we deduce∫
B1+ρ(0)\B1+

ρ
3

(0)

Φ1,nHw(wn, zn)dx+

∫
B1+ρ(0)\B1+

ρ
3

(0)

Φ2,nHz(wn, zn)dx

= on(1).

(3.39)

From (3.37), (3.38), and (3.39), we obtain∫
B1+

ρ
3

(0)

|(−∆)s/2Φ1,n|2dx+

∫
B1+

ρ
3

(0)

|(−∆)s/2Φ2,n|2 dx

− 1

2∗s

∫
B1+

ρ
3

(0)

Φ1,nHw(Φ1,n,Φ1,n)dx− 1

2∗s

∫
B1+

ρ
3

(0)

Φ2,nHz(Φ2,n,Φ2,n)dx = on(1).

Note that ∫
RN

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx

=

∫
B1+

ρ
3

(0)

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx

=

∫
B1+ρ(0)\B1+

ρ
3

(0)

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx

+

∫
B1+

ρ
3

(0)

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx

= on(1) +

∫
B1+

ρ
3

(0)

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx .
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Using (2.1), we obtain∫
RN

H(Φ1,n,Φ2,n)dx

=

∫
B1+ρ(0)

H(Φ1,n,Φ2,n)dx

=

∫
B1+ρ(0)\B1+

ρ
3

(0)

H(Φ1,n,Φ2,n)dx+

∫
B1+

ρ
3

(0)

H(Φ1,nΦ2,n)dx,

from where we deduce∫
RN

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx−
∫
RN

H(Φ1,n,Φ2,n)dx = on(1),

i.e.,

‖Φ1,n‖2 + ‖Φ2,n‖2 −
∫
RN

H(Φ1,n,Φ2,n)dx = on(1).

From the definition of SH , we have

(‖Φ1,n‖2 + ‖Φ2,n‖2)
[
1− 1

S
2∗s/2
H

[‖Φ1,n‖2 + ‖Φ2,n‖2]2
∗
s−2
]

= ‖Φ1,n‖2 + ‖Φ2,n‖2 −
1

S2∗s/2
[‖Φ1,n‖2 + ‖Φ2,n‖2]2

∗
s

≤
∫
RN

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx−
∫
RN

H(Φ1,n,Φ2,n)dx

= on(1).

(3.40)

On the other hand,

‖Φ1,n‖2 + ‖Φ2,n‖2

=

∫
B1+ρ(0)\B1+

ρ
3

(0)

|(−∆)s/2Φ1,n|2dx+

∫
B1+

ρ
3

(0)

|(−∆)s/2Φ1,n|2dx

+

∫
B1+ρ(0)\B1+

ρ
3

(0)

|(−∆)s/2Φ2,n|2dx+

∫
B1+

ρ
3

(0)

|(−∆)s/2Φ2,n|2dx

= on(1) +

∫
B1+

ρ
3

(0)

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx.

Since Φ1,n = wn, Φ2,n = zn in B1+ ρ
3
(0) and that B1+ ρ

3
(0) ⊂ B2(0), we obtain

‖Φ1,n‖2 + ‖Φ2,n‖2 ≤ on(1) +

∫
B2(0)

[|(−∆)s/2Φ1,n|2 + |(−∆)s/2Φ2,n|2]dx,

which implies

‖Φ1,n‖2 + ‖Φ2,n‖2 ≤ on(1) +

∫
⋃L
k=1 B1(yk)

[|(−∆)s/2zn|2 + |(−∆)s/2wn|2]dx

≤ on(1) +

L∑
k=1

∫
B1(yk)

[|(−∆)s/2wn|2 + |(−∆)s/2zn|2]dx

≤ on(1) + L sup
y∈RN

∫
B1(y)

[|(−∆)s/2wn|2 + |(−∆)s/2wn|2]dx
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≤ on(1) +
S
N/2s
H

2
.

Then (
‖Φ1,n‖2 + ‖Φ2,n‖2

)1/2

≤ on(1) +
SN/4s√

2
,

i.e.,

(‖Φ1,n‖+ ‖Φ2,n‖)2∗s−2 ≤ on(1) +
(SN/4s√

2

)2∗s−2

or

on(1)−
(SN/4s√

2

)2∗s−2

≤ −(‖Φ1,n‖2 + ‖Φ2,n‖2)2∗s−2. (3.41)

Using (3.40) and (3.41), we have that

(‖Φ1,n‖2 + ‖Φ2,n‖2)
[
1 + on(1)− 1

S
2∗s/2
H

(SN/4sH√
2

)2∗s−2]
= (‖Φ1,n‖2 + ‖Φ2,n‖2)

{
1 +

1

S
2∗s/2
H

[
on(1)−

(SN/4sH√
2

)2∗s−2]}
≤ (‖Φ1,n‖2 + ‖Φ2,n‖2)

[
1− 1

S
2∗s/2
H

(‖Φ1,n‖2 + ‖Φ2,n‖2)2∗s−2
]

= on(1).

But the equality

N

4s
(2∗s − 2)− 2∗s

2
=
N

4s

( 4s

N − 2s

)
− N

N − 2s
= 0

implies

(‖Φ1,n‖2 + ‖Φ2,n‖2)
[
1−

(1

2

)(2∗s−2)/2]
≤ on(1),

and then (Φ1,n,Φ2,n)→ (0, 0) in Ds,2(RN )×Ds,2(RN ). Since wn = Φ1,n, zn = Φ2,n

in B1(0), we deduce that

0 ≤
∫
B1(0)

[|(−∆)s/2wn|2 + |(−∆)s/2zn|2]dx = ‖Φ1,n‖2 + ‖Φ2,n‖2,

which implies∫
B1(0)

[
|(−∆)s/2wn|2 + |(−∆)s/2zn|2

]
dx→ 0 as n→∞.

But this convergence contradicts that∫
B1(0)

[
|(−∆)s/2wn|2 + |(−∆)s/2zn|2

]
dx =

S
N/2s
H

2L
, ∀n ∈ N.

Therefore, (u0, v0) 6= (0, 0).
Now we show that there is (τn, ζn) ∈ Ds,2(RN )×Ds,2(RN ) such that (τn, ζn) is

a (PS)c̃ sequence for J∞ satisfying

τn(x) = un(x)−R(N−2s)/2
n u0(Rn(x− xn)) + on(1),

ζn(x) = vn(x)−R(N−2s)/2
n v0(Rn(x− xn)) + on(1),
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up to a subsequence of (un, vn). For this, we consider ψ ∈ C∞0 (RN ) such that
0 ≤ ψ(x) ≤ 1 for all x ∈ RN and

ψ(x) =

{
1, if x ∈ B1(0),

0, if x ∈ Bc2(0)

and consider (τn, ζn) a sequence defined by

τn(x) = un(x)−R(N−2s)/2
n u0(Rn(x− xn))ψ(R̄n(x− xn)), (3.42)

ζn(x) = vn(x)−R(N−2s)/2
n v0(Rn(x− xn))ψ(R̄n(x− xn)), (3.43)

where (R̄n) satisfies R̃n = Rn
R̄n
→∞. From (3.42) and (3.43), we obtain

R(2s−N)/2
n τn(x) = R(2s−N)/2

n un(x)− u0(Rn(x− xn))ψ(R̄n(x− xn)),

R(2s−N)/2
n ζn(x) = R(2s−N)/2

n vn(x)− v0(Rn(x− xn))ψ(R̄n(x− xn)).

Making a change of variable, we conclude that

R(2s−N)/2
n τn

( z

Rn
+ xn

)
= R(2s−N)/2

n un

( z

Rn
+ xn

)
− u0ψ

( z

R̃n

)
,

R(2s−N)/2
n ζn

( z

Rn
+ xn

)
= R(2s−N)/2

n vn

( z

Rn
+ xn

)
− v0ψ

( z

R̃n

)
.

Now we define

τ̃n = R(2s−N)/2
n τn

( z

Rn
+ xn

)
and ζ̃n = R(2s−N)/2

n ζn

( z

Rn
+ xn

)
.

Since

wn(x) = R(2s−N)/2
n un

( x

Rn
+ xn

)
and zn(x) = R(2s−N)/2

n vn

( x

Rn
+ xn

)
implies

τ̃n(z) = wn(z)− u0(z)ψ
( z

R̃n

)
, (3.44)

ζ̃n(z) = zn(z)− v0(z)ψ
( z

R̃n

)
. (3.45)

If

ψn(z) = ψ
( z

R̃n

)
(3.46)

then

ψn(z) =

{
1, if z ∈ BR̃n(0),

0, if z ∈ Bc
2R̃n

(0).

From (3.45), (3.44) and (3.46), we derive that

τ̃n(z) = wn(z)− u0(z)ψn(z),

ζ̃n(z) = zn(z)− v0(z)ψn(z).
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The result is proved if we show that u0ψn → u0 in Ds,2(RN ) and v0ψn → v0 in
Ds,2(RN ), and that (wn, zn) is a (PS)c̃ sequence for J∞. For this, we note that

‖u0ψn − u0‖2

=

∫
RN
|(−∆)s/2(u0ψn − u0)|2dx

=

∫
R2N

|u0(x)ψn(x)− u0(x)− u0(y)ψn(y) + u0(y)|2

|x− y|N+2s
dx dy

=

∫
R2N

|u0(x)(ψn(x)− ψn(y)) + (ψn(y)− 1)(u0(x)− u0(y))|2

|x− y|N+2s
dx dy

≤ 4

∫
R2N

|u0(x)|2|ψn(x)− ψn(y)|2

|x− y|N+2s
dx dy

+ 4

∫
R2N

|ψn(y)− 1|2|u0(x)− u0(y)|2

|x− y|N+2s
dx dy.

(3.47)

Arguing as in the proof of (3.21), if we replace wn by u0, and φ by ψn, since
supp(ψn) ⊂ B2R̃(0), we can see that∫

R2N

|u0(x)|2|ψn(x)− ψn(y)|2

|x− y|N+2s
dx dy = on(1). (3.48)

Moreover, taking into account that |ψn − 1| ≤ 2, |ψn − 1| → 0 a.e. in RN and
u0 ∈ Ds,2(RN ), the Dominated Convergence Theorem implies that∫

R2N

|ψn(y)− 1|2|u0(x)− u0(y)|2

|x− y|N+2s
dx dy = on(1). (3.49)

Combining (3.47), (3.48), and (3.49), we obtain u0ψn → u0 in Ds,2(RN ). Similarly
arguing, we obtain v0ψn → v0 in Ds,2(RN ). Hence,

τ̃n(z) = wn(z)− u0(z) + on(1),

ζ̃n(z) = zn(z)− v0(z) + on(1).

Since wn → u0 in Ds,2(RN ), zn → v0 in Ds,2(RN ), wn → u0 in RN and zn → v0,
by [10, Lemma 2.2],∫
RN
|(−∆)s/2wn|2dx =

∫
RN
|(−∆)s/2u0|2dx+

∫
RN
|(−∆)s/2(wn − u0)|2dx+ on(1),∫

RN
|(−∆)s/2zn|2dx =

∫
RN
|(−∆)s/2v0|2dx+

∫
RN
|(−∆)s/2(zn − v0)|2dx+ on(1).

By [3, Lemma 7.2], we have∫
RN

H(wn, zn)dx =

∫
RN

H(u0, v0)dx+

∫
RN

H(wn − u0, zn − v0)dx+ on(1)

which implies that

J∞(τn, ζn) = J∞(wn, zn)− J∞(u0, v0) + on(1).

Therefore, J∞(τn, ζn)→ c̃ as n→ +∞, where c̃ = c−J∞(u0, v0). Moreover, using
Hölder’s inequality and [3, Lemma 7.2] a direct calculation gives us

‖J ′∞(τ̃n, ζ̃n)− J ′∞(wn, zn) + J ′∞(u0, v0)‖(D×D)′ → 0.
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Since (u0, v0) is a nontrivial critical point of J∞, we conclude that

J ′∞(τ̃n, ζ̃n) = J ′∞(wn, zn) + J ′∞(u0, v0) + on(1) = J ′∞(wn, zn) + on(1).

Since

0 ≤ ‖J ′∞(τn, ζn)‖(D×D)′ ≤ ‖J ′∞(τ̃n, ζ̃n)‖(D×D)′ ,

it follows that J ′∞(τn, ζn)→ 0 and the proof of Lemma 3.1 is complete. �

The next result is a version of nonlocal global compactness result for a fractional
Laplacian system in RN of the result due to Struwe that can be found in [26].

Theorem 3.2 (A global compactness result). Let (un, vn) be a (PS)c sequence for
J with (un, vn) ⇀ (u0, v0) in Ds,2(RN ) × Ds,2(RN ). Then, up to a subsequence,
(un, vn) satisfies either,

(a) (un, vn)→ (u0, v0) in Ds,2(RN )×Ds,2(RN ) or,
(b) there exists k ∈ N and nontrivial solutions (z1

0 , ζ
1
0 ), (z2

0 , ζ
2
0 ), . . . , (zk0 , ζ

k
0 ) for

the system (2.2), such that

‖(un, vn)‖2 → ‖(u0, v0)‖2 +

k∑
j=1

‖(zj0, ζ
j
0)‖2,

J (un, vn)→ J (u0, v0) +

k∑
j=1

J∞(zj0, ζ
j
0).

Proof. From the weak convergence and a density argument, we have that (u0, v0)
is a critical point of J . Suppose that (un, vn) 6→ (u0, v0) in Ds,2(RN ) × Ds,2(RN )
and let (w1

n, z
1
n) ⊂ Ds,2(RN ) × Ds,2(RN ) be the sequence given by (w1

n, z
1
n) =

(un − u0, vn − v0). Then by hypothesis, (w1
n, z

1
n) ⇀ (0, 0) in Ds,2(RN )×Ds,2(RN )

and (w1
n, v

1
n) 6→ (0, 0). Applying [16, Lema 4.6] and [3, Lemma 7.2], we obtain

J∞(w1
n, z

1
n) = J (un, vn)− J (u0, v0) + on(1), (3.50)

J ′∞(w1
n, z

1
n) = J ′(un, vn)− J ′(u0, v0) + on(1). (3.51)

Then, we conclude from (3.50) and (3.51) that (w1
n, z

1
n) is a (PS)c1 sequence for

J∞. Hence, by Lemma 3.1, there are sequences Rn,1 ⊂ R, xn,1 ⊂ RN , (z1
0 , ζ

1
0 ) ∈

Ds,2(RN )×Ds,2(RN ) nontrivial solution for the system (2.2) and a (PS)c2 sequence
(w2

n, z
2
n) ⊂ Ds,2(RN )×Ds,2(RN ) for J∞ such that

w2
n(x) = w1

n(x)−R(N−2s)/2
n,1 z1

0(Rn,1(x− xn,1)) + on(1),

z2
n(x) = z1

n(x)−R(N−2s)/2
n,1 ζ1

0 (Rn,1(x− xn,1)) + on(1).

If we define

Φ1
n(x) = R

(2s−N)/2
n,1 w1

n

( x

Rn,1
+ xn,1

)
Ψ1
n(x) = R

(2s−N)/2
n,1 z1

n

( x

Rn,1
+ xn,1

)
,

w̃2
n(x) = R

(2s−N)/2
n,1 w2

n

( x

Rn,1
+ xn,1

)
,

z̃2
n(x) = R

(2s−N)/2
n,1 z2

n

( x

Rn,1
+ xn,1

)
,
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then we have

w̃2
n(x) = Φ1

n(x)− z1
0(x) + on(1), (3.52)

z̃2
n(x) = Ψ1

n(x)− ζ1
0 (x) + on(1), (3.53)

‖Φ1
n‖ = ‖w1

n‖, ‖Ψ1
n‖ = ‖z1

n‖, (3.54)∫
RN

H(Φ1
n,Ψ

1
n)dx =

∫
RN

H(w1
n, z

1
n)dx. (3.55)

Hence,

J∞(Φ1
n,Ψ

1
n) = J∞(w1

n, z
1
n), (3.56)

J ′∞(Φ1
n,Ψ

1
n)→ 0 in (Ds,2(RN )×Ds,2(RN ))′. (3.57)

By (3.56) and (3.57) and from item (a) of Lemma 2.1, we have that (Φ1
n,Ψ

1
n) is a

bounded sequence in Ds,2(RN )×Ds,2(RN ) and, up to a subsequence, we have

(Φ1
n,Ψ

1
n) ⇀ (z1

0 , ζ
1
0 ) in Ds,2(RN )×Ds,2(RN ) (3.58)

Again, using [16, Lema 4.6] and [3, Lemma 7.2], we obtain

J∞(w̃2
n, z̃

2
n) = J∞(Φ1

n,Ψ
1
n)− J∞(z1

0 , ζ
1
0 ) + on(1)

= J (un, vn)− J (u0, v0)− J∞(z1
0 , ζ

1
0 ) + on(1),

(3.59)

J ′∞(w̃2
n, z̃

2
n) = J ′∞(Φ1

n,Ψ
1
n)− J ′∞(z1

0 , ζ
1
0 ) + on(1). (3.60)

If (w̃2
n, z̃

2
n)→ (0, 0) in Ds,2(RN )×Ds,2(RN ) the proof is complete for k = 1, because

in this case, we have

‖(un, vn)‖2 → ‖(u0, v0)‖2 + ‖(z1
0 , ζ

1
0 )‖2.

Moreover, using continuity of J∞, we obtain

J (un, vn)→ J (u0, v0) + J∞(z1
0 , ζ

1
0 ).

If (w̃2
n, z̃

2
n) 6→ (0, 0) in Ds,2(RN ) × Ds,2(RN ), by (3.52)-(3.53) and (3.58) we have

(w̃2
n, z̃

2
n) ⇀ (0, 0) in Ds,2(RN ) × Ds,2(RN ), and using (3.59)and(3.60) we conclude

that (w̃2
n, z̃

2
n) is a (PS)c2 sequence for J∞.

By Lemma 3.1, there are sequences (Rn,2) ⊂ R, (xn,2) ⊂ RN , (z2
0 , ζ

2
0 ) ∈

Ds,2(RN )×Ds,2(RN ) nontrivial solutions of (2.2), and a (PS)c3 sequence (w3
n, z

3
n) ⊂

Ds,2(RN )×Ds,2(RN ) for J∞ such that

w3
n(x) = w̃2

n(x)−R(N−2s)/2
n,2 z2

0 (Rn,2(x− xn,2)) + on(1)

z3
n(x) = z̃2

n(x)−R(N−2s)/2
n,2 ζ2

0 (Rn,2(x− xn,2)) + on(1).

If

Φ2
n(x) = R

(2s−N)/2
n,2 w̃2

n

( x

Rn,2
+ xn,2

)
,

Ψ2
n(x) = R

(2s−N)/2
n,2 z̃2

n

( x

Rn,2
+ xn,2

)
,

w̃3
n(x) = R

(2s−N)/2
n,2 w3

n

( x

Rn,2
+ xn,2

)
,

z̃3
n(x) = R

(2s−N)/2
n,2 z3

n

( x

Rn,2
+ xn,2

)
,
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then

w̃3
n(x) = Φ2

n(x)− z2
0(x) + on(1), (3.61)

z̃3
n(x) = Ψ2

n(x)− ζ2
0 (x) + on(1). (3.62)

Arguing as before, we conclude that

‖(w̃3
n, z̃

3
n)‖2 = ‖(un, vn)‖2 − ‖(u0, v0)‖2 − ‖(z1

0 , ζ
1
0 )‖2 − ‖(z2

0 , ζ
2
0 )‖2 + on(1), (3.63)

J∞(w̃3
n, z̃

3
n) = J (un, vn)− J (u0, v0)− J∞(z1

0 , ζ
1
0 )− J∞(z2

0 , ζ
2
0 ) + on(1), (3.64)

J ′∞(w̃3
n, z̃

3
n) = J ′∞(Φ2

n,Ψ
2
n)− J ′∞(z2

0 , ζ
2
0 ) + on(1). (3.65)

If (w̃3
n, z̃

3
n) → (0, 0) in Ds,2(RN ) × Ds,2(RN ), the proof is complete for k = 2,

because in this case ‖(w̃3
n, z̃

3
n)‖2 → 0 and from (3.63), we have

‖(un, vn)‖2 → ‖(u0, v0)‖2 +
2∑
j=1

‖(zj0, ζ
j
0)‖2.

Similarly, if (w̃3
n, z̃

3
n) → (0, 0) in Ds,2(RN ) × Ds,2(RN ) then the continuity of J∞

assures us that J∞(w̃3
n, z̃

3
n)→ 0, and by (3.64) we obtain

J (un, vn)→ J (u0, v0) +

2∑
j=1

J∞(zj0, ζ
j
0).

If (w̃3
n, z̃

3
n) 6→ (0, 0) in Ds,2(RN ) × Ds,2(RN ), we can repeat the same arguments

before and we can find (z1
0 , ζ

1
0 ), (z2

0 , ζ
2
0 ), . . . , (zk−1

0 , ζk−1
0 ) nontrivial solutions for the

system (2.2) satisfying

‖(w̃kn, z̃kn)‖2 = ‖(un, vn)‖2 − ‖(u0, v0)‖2 −
k−1∑
j=1

‖(zj0, ζ
j
0)‖2 + on(1), (3.66)

J∞(w̃kn, z̃
k
n) = J (un, vn)− J (u0, v0)−

k−1∑
j=1

J∞(zj0, ζ
j
0) + on(1). (3.67)

From the definition of constant SH , we obtain(∫
RN

H(zj0, ζ
j
0)dx

)2/2∗s
SH ≤ ‖(zj0, ζ

j
0)‖2, j = 1, 2, . . . , k − 1. (3.68)

Since (zj0, ζ
j
0) is a nontrivial solution of (2.2), for j = 1, 2, . . . , k − 1, we have

‖(zj0, ζ
j
0)‖2 =

∫
RN

H(zj0, ζ
j
0)dx.

Hence,

− ‖(zj0, ζ
j
0)‖ ≤ −SN/2sH , j = 1, 2, . . . , k − 1. (3.69)

From (3.66) and (3.69), we have

‖(w̃kn, z̃kn)‖2 = ‖(un, vn)‖2 − ‖(u0, v0)‖2 −
k−1∑
j=1

‖(zj0, ζ
j
0)‖2 + on(1)

≤ ‖(un, vn)‖2 − ‖(u0, v0)‖2 −
k−1∑
j=1

S
N/2s
H + on(1)

= ‖(un, vn)‖2 − ‖(u0, v0)‖2 − (k − 1)S
N/2s
H + on(1).
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Since (un, vn) is bounded in Ds,2(RN )×Ds,2(RN ) for k sufficient large, we conclude
that (w̃kn, z̃

k
n)→ (0, 0) in Ds,2(RN )×Ds,2(RN ) and the proof is complete. �

The following two corollaries are immediate consequences of Theorem 3.2.

Corollary 3.3. Let (un, vn) be a (PS)c sequence for J with c ∈
(
0, sN S

N/2s
H

)
.

Then, up to a subsequence, (un, vn) converges strongly in Ds,2(RN )×Ds,2(RN ).

Proof. Since (un, vn) is bounded in Ds,2(RN )×Ds,2(RN ), we have

(un, vn) ⇀ (u0, v0) in Ds,2(RN )×Ds,2(RN )

and a denseness argument implies that J ′(u0, v0) = 0. Suppose, by contradiction,
that

(un, vn) 6→ (u0, v0) in Ds,2(RN )×Ds,2(RN ).

From Theorem 3.2, there are nontrivial solutions (z1
0 , ζ

1
0 ), (z2

0 , ζ
2
0 ), . . . , (zk0 , ζ

k
0 ) of

system (2.2) and k ∈ N such that

‖(un, vn)‖2 → ‖(u0, v0)‖2 +

k∑
j=1

‖(zj0, ζ
j
0)‖2,

J (un, vn)→ J (u0, v0) +

k∑
j=1

J∞(zj0, ζ
j
0).

By (2.1), we have

J (u0, v0)

=
1

2
‖(u0, v0)‖2 +

1

2

∫
RN

(a(x)u2
0 + b(x)v2

0)dx− 1

2∗s

∫
RN

H(u0, v0)dx

=
1

2
‖(u0, v0)‖2 +

1

2

(∫
RN

H(u0, v0)dx− ‖(u0, v0)‖2
)
− 1

2∗s

∫
RN

H(u0, v0)dx

=
(1

2
− 1

2∗s

) ∫
RN

H(u0, v0)dx

=
s

N

∫
RN

H(u0, v0)dx ≥ 0.

Then

c = J (u0, v0) +

k∑
j=1

J∞(zj0, ζ
j
0) ≥

k∑
j=1

J∞(zj0, ζ
j
0) ≥ ks

N
S
N/2s
H ≥ s

N
S
N/2s
H

which contradicts c ∈ (0, sN S
N/2s
H ). �

The next corollary tells us that the functional J satisfies the Palais-Smale con-
dition.

Corollary 3.4. The functional J : Ds,2(RN )×Ds,2(RN )→ R satisfies the Palais-

Smale condition in
(
s
N S

N/2s
H , 2s

N S
N/2s
H

)
.

Proof. Let (un, vn) ⊂ Ds,2(RN )×Ds,2(RN ) be a sequence such that

J (un, vn)→ c and J ′(un, vn)→ 0.

Since (un, vn) is bounded in Ds,2(RN )×Ds,2(RN ), up to a subsequence, we have

(un, vn) ⇀ (u0, v0) in Ds,2(RN )×Ds,2(RN ).
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Moreover, J (u0, v0) ≥ 0. Suppose, by contradiction,that

(un, vn) 6→ (u0, v0) in Ds,2(RN )×Ds,2(RN ).

From Theorem 3.2, there are nontrivial solutions (z1
0 , ζ

1
0 ), (z2

0 , ζ
2
0 ), .., (zk0 , ζ

k
0 ) of sys-

tem (2.2), and a k ∈ N such that

‖(un, vn)‖2 → ‖(u0, v0)‖2 +

k∑
j=1

‖(zj0, ζ
j
0)‖2,

J (un, vn)→ J (u0, v0) +

k∑
j=1

J∞(zj0, ζ
j
0) = c.

Since J (u0, v0) ≥ 0, it follows that k = 1 and (z1
0 , ζ

1
0 ) cannot change sign. Hence,

c = J (u0, v0) + J∞(u0, v0) = J (u0, v0) +
s

N
S
N/2s
H .

By the definition of SH , J ′(u0, v0) = 0, and

J (u0, v0) =
s

N

∫
RN

H(u0, v0)dx

we have
2s

N
S
N/2s
H ≤ J (u0, v0) +

s

N
S
N/2s
H = c,

which contradicts c ∈ ( sN S
N/2s
H , 2s

N S
N/2s
H ). �

Corollary 3.5. Let (un, vn) be a (PS)c sequence for J with

c ∈
(ks
N
S
N/2s
H ,

(k + 1)s

N
S
N/2s
H

)
,

where k ∈ N. Then the weak limit (u0, v0) of (un, vn) is not trivial.

Proof. Suppose, by contradiction, that (u0, v0) ≡ (0, 0). Since c > 0, it follows that
(un, vn) 6→ (0, 0) in Ds,2(RN ) × Ds,2(RN ). By Theorem 3.2, up to a subsequence,
we obtain

‖(un, vn)‖2 → ‖(u0, v0)‖2 +

k∑
j=1

‖(zj0, ζ
j
0)‖2 =

k∑
j=1

‖(zj0, ζ0)‖2,

J (un, vn)→ J (u0, v0) +

k∑
j=1

J∞(zj0, ζ
j
0) =

k∑
j=1

J∞(zj0, ζ
j
0) = c ≥ (k + 1)s

N
S
N/2s
H

which contradicts c ∈ (ksN S
N/2s
H , (k+1)s

N S
N/2s
H ). �

Next we consider the functional f : Ds,2(RN )×Ds,2(RN )→ R given by

f(u, v) := ‖(u, v)‖2 +

∫
RN

(a(x)u2 + b(x)v2)dx

and the manifold M⊂ Ds,2(RN )×Ds,2(RN ) given by

M :=
{

(u, v) ∈ Ds,2(RN )×Ds,2(RN ) :

∫
RN

H(u, v)dx = 1
}
.
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Remark 3.6. Note that if (un, vn) ⊂M satisfies

f(un, vn)→ c and f ′|M(un, vn)→ 0,

then the sequence (wn, zn) ⊂ Ds,2(RN )×Ds,2(RN ), where

(wn, zn) =
(
c(N−2s)/4sun, c

(N−2s)/4svn
)

satisfies J (wn, zn)→ s
N c

N/2s and J ′(wn, zn)→ 0.

The remark above combined with Corollary 3.4 leads us to the following result.

Corollary 3.7. Suppose that there are a sequence (un, vn) ⊂ M, and a number
c ∈

(
SH , 2

2s/NSH
)

such that f(un, vn) → c and f ′|M(un, vn) → 0. Then, up to a

subsequence, (un, vn)→ (u0, v0) in Ds,2(RN )×Ds,2(RN ) for some

(u0, v0) ∈ Ds,2(RN )×Ds,2(RN ).

rom Corollaries 3.4 and 3.7 we have the following result.

Corollary 3.8. Suppose that there are a sequences (un, vn) ⊂ M and a number
c ∈

(
SH , 2

2s/NSH
)

such that f(un, vn) → c and f ′(un, vn) → 0. Then J has a

critical point (w0, z0) ∈ Ds,2(RN )×Ds,2(RN ) with J (w0, z0) = s
N c

N/2s.

4. Technical lemmas

In this subsection, we prove some properties of the function Φδ,b given in (1.6).
Note that

(Φδ,b,Φδ,b) ⊂ Σ := {(u, v) ∈ Ds,2(RN )×Ds,2(RN ) : u, v ≥ 0}. (4.1)

Moreover, making a change of variable we can prove that

Φδ,b ∈ Lq(RN ) for q ∈
( N

N − 2s
, 2∗s
]
, ∀δ > 0, ∀b ∈ RN . (4.2)

Lemma 4.1. For each b ∈ RN , we have

(i) ‖Φδ,b‖H1,∞(RN ) → 0 as δ → +∞;
(ii) ‖Φδ,b‖H1,∞(RN ) → +∞ as δ → 0;

(iii) |Φδ,b|q → 0 as δ → 0, for all q ∈ ( N
N−2s , 2

∗
s);

(iv) |Φδ,b|q → +∞ as δ →∞, for all q ∈ ( N
N−2s , 2

∗
s).

Proof. Using the definition of Φδ,b, we have

|∇Φδ,b(x)| = Cδ
N−2s

2

[δ2 + |x− b|2]
N−2s+2

2

,

where C is a positive constant. Thus

‖Φδ,b‖H1,∞(RN ) = C̃δ−
N+2−2s

2 , C̃ > 0

and consequently (i) and (ii) follow. Now, note that

|Φδ,b|qq = Ĉqδ
q(2s−N)

2 +N

∫
RN

( 1

1 + |z|2
) q(N−2s)

2

dz, Ĉ > 0,

and so, for all q ∈ ( N
N−2s , 2

∗
s), (iii) and (iv) follow. �
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Lemma 4.2. For each ε > 0, we have∫
RN\Bε(0)

|(−∆)s/2Φδ,0|2dx→ 0, as δ → 0.

The proof of the above lemma can be found in [13, Lemma 4.2].

Lemma 4.3. Assume condition (H7). Then:

(i) for each ε > 0, there are δ = δ(ε) > 0 and δ̄ = δ̄(ε) > 0 such that

sup
b∈RN

f(`0Φδ,b, t0Φδ,b) < SH + ε, ∀δ ∈ (0, δ] ∪ [δ̄,∞);

(ii) for each δ > 0, we have

lim
|b|→+∞

f(`0Φδ,b, t0Φδ,b) = SH .

Proof. (i) Consider b ∈ RN , q ∈ (N2s , p2] and t ∈ (1,+∞) with 1
q + 1

t = 1. By a

simple calculations,
N

N − 2s
< 2t < 2∗s.

Since Φδ,b ∈ Ld(RN ) for all d ∈
(

N
N−2s , 2

∗
s

)
, we obtain |Φδ,b|2 ∈ Lt(RN ). Then,

using Hölder’s inequality and a change of variable, we have∫
RN

a(x)|Φδ,b|2dx ≤ |a|q
(∫

RN

∣∣ cδ(N−2s)/2

[δ2 + |x− b|2](N−2s)/2

∣∣2tdx)1/t

= |a|q
(∫

RN

∣∣ cδ(N−2s)/2

[δ2 + |z|2](N−2s)/2

∣∣2tdz)1/t

= |a|q
(∫

RN
|Φδ,0|2tdz

)1/t

= |a|q|Φδ,0|22t, ∀b ∈ RN .

Arguing in the same way, we have∫
RN

b(x)|Φδ,b|2dx ≤ |b|q|Φδ,0|22t, ∀b ∈ RN .

From Lemma 4.1(iii), given ε > 0 there exists δ = δ(ε) > 0 such that

sup
b∈RN

f(`0Φδ,b, t0Φδ,b) ≤ SH +
ε

2
+
ε

2
≤ SH + ε, ∀δ ∈ (0, δ].

On the other hand, suppose q ∈ [p1,
N
2s ) with t ∈ (1,+∞) and 1

q + 1
t = 1. In these

conditions we have 2t− 2∗s > 0, |Φδ,y|2
∗
s ∈ L1(RN ) and for δ > 1, |Φδ,y| ∈ L∞(RN ),

and so |Φδ,y|2 ∈ Lt(RN ). Thus, using Hölder’s inequality with exponents q and t
and remembering that ‖Φδ,0‖2∗s = 1, we deduce

`20

∫
RN

a(x)|Φδ,y|2dx ≤ `20|a|q
(∫

RN
|Φδ,0|2tdz

)1/t

= `20|a|q|Φδ,0|
2t−2∗
t∞

(∫
RN
|Φδ,0|2

∗
sdx
)1/t

≤ `20|a|qCδ
2s−N

2

2t−2∗s
t , ∀b ∈ RN .

(4.3)
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Once ( 2s−N
2 )(

2t−2∗s
t ) < 0, given ε > 0, there is δ̄ = δ̄(ε) > 1 such that

δ
2s−N

2

2t−2∗s
t <

ε

2`20C|a|q
∀δ ∈ [δ̄,∞). (4.4)

Arguing in the same way, we have

t20

∫
RN

b(x)|Φδ,b|2dx ≤ t20|a|qCδ
2s−N

2

2t−2∗s
t , ∀b ∈ RN . (4.5)

Combining (4.3), (4.4), and (4.5), we obtain

`20 sup
b∈RN

∫
RN

a(x)|Φδ,b|2dx <
ε

2
, ∀δ ∈ [δ̄,∞),

t20 sup
b∈RN

∫
RN

b(x)|Φδ,b|2dx <
ε

2
, ∀δ ∈ [δ̄,∞).

Therefore,

f(`0Φδ,, t0Φδ,) =

∫
RN
|(−∆)s/2`0Φδ,b|2dx+

∫
RN
|(−∆)s/2t0Φδ,b|2dx

+ `20

∫
RN

a(x)|Φδ,b|2dx+ t20

∫
RN

b(x)|Φδ,b|2dx

< SH + ε, ∀b ∈ RN , ∀δ ∈ [δ̄,∞).

(ii) Since

f(`0Φδ,b, t0Φδ,b) =

∫
RN
|(−∆)s/2`0Φδ,b|2dx+

∫
RN
|(−∆)s/2t0Φδ,b|2dx

+ `20

∫
RN

a(x)|Φδ,b|2dx+ t20

∫
RN

b(x)|Φδ,b|2dx

= SH + `20

∫
RN

a(x)|Φδ,b|2dx+ t20

∫
RN

b(x)|Φδ,b|2dx,

it suffices to prove that

lim
|b|→∞

(
`20

∫
RN

a(x)|Φδ,b|2dx+ t20

∫
RN

b(x)|Φδ,b|2dx
)

= 0, ∀δ > 0. (4.6)

Note that given ε > 0, there are k1, k2 > 0 such that(∫
RN\Bρ(0)

a(x)N/2sdx
)2s/N

< ε, ∀ρ > k1, (4.7)(∫
RN\Bρ(0)

|Φδ,b|2
∗
sdx
)1/2∗s

=
(∫

RN\Bρ(0)

|Φδ,0|2
∗
sdz
)1/2∗s

< ε, ∀ρ > k2. (4.8)

Let k0 = max{k1, k2} and consider

k0 < 2ρ < |b| (ρ fixed) (4.9)

and note that

Bρ(0) ∩Bρ(b) = ∅. (4.10)

Using Hölder’s inequality with exponents N/2s and N/(N − 2s), and taking into
account (4.7), (4.8), (4.9), and (4.10), we obtain∫

RN
a(x)|Φδ,b|2dx
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≤
(∫

RN\(Bρ(0)∪Bρ(b))

aN/2sdx
)2s/N(∫

RN\(Bρ(0)∪Bρ(b))

|Φδ,b|2
∗
sdx
)N−2s

N

+
(∫

Bρ(0)

aN/2sdx
)2s/N(∫

Bρ(0)

|Φδ,b|2
∗
sdx
)N−2s

N

+
(∫

Bρ(b)

aN/2sdx
)2s/N(∫

Bρ(b)

|Φδ,b|2
∗
sdx
)N−2s

N

≤
(∫

RN\Bρ(0)

aN/2sdx
)2s/N(∫

RN\Bρ(b)

|Φδ,b|2
∗
sdx
)N−2s

N

+
(∫

RN
aN/2sdx

)2s/N(∫
RN\Bρ(b)

|Φδ,b|2
∗
sdx
)N−2s

N

+
(∫

RN\Bρ(0)

aN/2sdx
)2s/N(∫

RN
|Φδ,b|2

∗
sdx
)N−2s

N

< εε2 + ε2|a|N/2s + ε.

Arguing similarly for the second part of (4.6), we obtain∫
RN

b(x)|Φδ,b|2dx < εε2 + ε2|b|N/2s + ε

and the proof is complete. �

Lemma 4.4. Under Assumption (H8),

sup
δ>0,b∈RN

f(`0Φδ,b, t0Φδ,b) < 22s/NSH .

Proof. Using the definition of F , Hölder’s inequality with N/2s and N/(N − 2s),
and condition (H8), we obtain

sup
δ>0,b∈RN

f(`0Φδ,b, t0Φδ,b) ≤ SH + `20|a|N/2s + t20|b|N/2s

< SH + SH(22s/N − 1) = 22s/NSH . �

In what follows, we consider the function

ξ(x) =

{
0, if |x| < 1

1, if |x| ≥ 1

and define κ : Ds,2(RN )×Ds,2(RN )→ RN+1 by

κ(u, v) =
1

SH

∫
RN

( x
|x|
, ξ(x)

)
[`20|(−∆)s/2u|2+t20|(−∆)s/2v|2]dx = (β(u, v), γ(u, v)),

where

β(u, v) =
1

SH

∫
RN

x

|x|
[`20|(−∆)s/2u|2 + t20|(−∆)s/2v|2]dx,

γ(u, v) =
1

SH

∫
RN

ξ(x)[`20|(−∆)s/2u|2 + t20|(−∆)s/2v|2]dx.

Lemma 4.5. If |b| ≥ 1/2, then

β(Φδ,b,Φδ,b) =
b

|b|
+ oδ(1) as δ → 0.
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Proof. By Lemma 4.2, there is δ̂ > 0 such that∣∣∣β(Φδ,b,Φδ,b)−
1

SH

∫
Bε(b)

x

|x|
[`20|(−∆)s/2Φδ,b|2 + t20|(−∆)s/2Φδ,b|2dx]

∣∣∣
=
∣∣∣`20 + t20
SH

∫
RN\Bε(b)

x

|x|
|(−∆)s/2Φδ,b|2

∣∣∣
≤ `20 + t20

SH

∫
Bε(b)

|(−∆)s/2Φδ,b|2dx < ε,

(4.11)

for all δ ∈ (0, δ̂). On the other hand, for ε > 0 sufficiently small and |b| > 1/2, we
have ∣∣ x

|x|
− b

|b|
∣∣ < 4ε, ∀x ∈ Bε(x),

and so∣∣∣ b|b| − `20 + t20
SH

∫
Bε(b)

x

|x|
|(−∆)s/2Φδ,b|2dx

∣∣∣ < 4ε+ ε, ∀δ ∈ (0, δ̂). (4.12)

From (4.11) and (4.12), it follows that∣∣β(Φδ,b,Φδ,b)−
b

|b|
∣∣ ≤ ∣∣∣β(Φδ,b,Φδ,b)−

`20 + t20
SH

∫
Bε(b)

x

|x|
|(−∆)s/2Φδ,b|2dx

∣∣∣
+
∣∣∣`20 + t20
SH

∫
Bε(b)

x

|x|
|(−∆)s/2Φδ,b|2 −

b

|b|

∣∣∣
< Cε, ∀δ ∈ (0, δ̂).

This completes the proof. �

Now we define the set

= = {(u, v) ∈M;κ(u, v) = (0,
1

2
)}.

Lemma 4.6. The set = is not empty.

Proof. Since that Φδ,0 is an odd function and Br(0) is symmetric, we have that
β(Φδ,0,Φδ,0) = 0. From Lemma 4.2, we see that

γ(Φδ,0,Φδ,0)→ 0 as δ → 0. (4.13)

On the other hand

γ(Φδ,0,Φδ,0) = 1− `20 + t20
SH

∫
B1(0)

|(−∆)s/2Φδ,0|2dx, (4.14)

and moreover, by [24, Proposition 2.2], we see that∫
B1(0)

|(−∆)s/2Φδ,0|2dx ≤
∫
B1(0)

|∇Φδ,0|2dx

≤ Cδ2s−2

∫
B1(0)

|z|2

[1 + |z|2]N−2s+2
dz

≤ C̃δ2s−2 → 0, as δ → +∞.

(4.15)

Combining (4.14) and (4.15) we have

γ(Φδ,0,Φδ,0)→ 1, as δ → +∞. (4.16)

By (4.13) and (4.16) there is δ1 > 0 such that (Φδ1,0,Φδ1,0) ∈ =. �
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Lemma 4.7. The number c0 = inf(u,v)∈= f(u, v) satisfies the inequality c0 > SH .

Proof. Since = ⊂M, we have

SH ≤ c0. (4.17)

Suppose, by contradiction, that SH = c0. By Ekeland variational principle [31],
there is (un, vn) ∈ Ds,2(RN )×Ds,2(RN ) such that∫

RN
H(un, vn)dx = 1, τ(un, vn)→

(
0,

1

2

)
, (4.18)

f(un, vn)→ SH , f ′|M(un, vn)→ 0. (4.19)

Then, (un, vn) is bounded in Ds,2(RN ) × Ds,2(RN ), and, up to a subsequence,
(un, vn) ⇀ (ū, v̄) in Ds,2(RN )×Ds,2(RN ).

If (wn, zn) = (S
N−2s

4s

H un, S
N−2s

4s

H vn) and (w̄, z̄) = (S
N−2s

4s

H ū, S
N−2s

4s

H v̄), we see that
(wn, zn) ⇀ (w̄, z̄) in Ds,2(RN ) ×Ds,2(RN ), and so, by (4.19) and Remark 3.6, we
obtain

J (wn, zn)→ s

N
S
N
2s

H and J ′(wn, zn)→ 0.

We are going to show that (w̄, z̄) ≡ (0, 0). First of all, note that

(un, vn) 6→ (ū, v̄) in Ds,2(RN )×Ds,2(RN ), (4.20)

because otherwise (ū, v̄) 6= (0, 0) and

SH ≤
∫
RN
|(−∆)s/2ū|2dx+

∫
RN
|(−∆)s/2v̄|2dx

<

∫
RN
|(−∆)s/2ū|2dx+

∫
RN
|(−∆)s/2v̄|2dx+

∫
RN

a(x)|ū|2dx+

∫
RN

b(x)|v̄|2dx

= SH ,

which is a contradiction. Thus, (wn, zn) 6→ (w̄, z̄) in Ds,2(RN ) × Ds,2(RN ) and,
since (wn, zn) is a (PS)c sequence for J , by Theorem 3.2, we have

J (wn, zn)→ J (w̄, z̄) +

k∑
j=1

J∞(uj0, v
j
0) =

s

N
S
N
2s

H .

Using J ′(uj0, v
j
0) = 0, we obtain

J (w̄, z̄) = 0, k = 1, uj0, v
j
0 > 0, J∞(w̄, z̄) =

s

N

∫
RN

H(w̄, z̄)dx, (4.21)

which implies that (w̄, z̄) = (0, 0). Then (wn, zn) is a (PS)c sequence for J
such that (wn, zn) ⇀ (0, 0), (wn, zn) 6→ (0, 0),

∫
RN a(x)|wn|2dx = on(1) and∫

RN b(x)|zn|2dx = on(1). Therefore,

s

N
S
N
2s

H + on(1) = J (wn, zn)

= J∞(wn, zn) +

∫
RN

a(x)|wn|2dx+

∫
RN

b(x)|zn|2dx

= J∞(wn, zn) + on(1)

(4.22)

and

‖J ′∞(wn, zn)‖(D×D)′ ≤ ‖J ′(wn, zn)‖(D×D)′ + on(1). (4.23)



32 J. N. CORREIA, C. P. OLIVEIRA EJDE-2022/79

From (4.22) and (4.23) we conclude that (wn, zn) is a (PS)c sequence for J∞ and
by Lemma 3.1, there are sequences (Rn) ⊂ R, (xn) ⊂ RN , u1

0, v
1
0 nontrivial solution

of (2.2) and (τn, ζn) a (PS)c sequence for J∞ such that

wn(x) = τn(x) +R
N−2s

2
n u1

0(Rn(x− xn)) + on(1),

zn(x) = ζn(x) +R
N−2s

2
n v1

0(Rn(x− xn)) + on(1).

Setting

τ̃n(x) = R
N−2s

2
n u1

0(Rn(x− xn)) and ζ̃n(x) = R
N−2s

2
n v1

0(Rn(x− xn))

and making change of variable, we have

J ′∞(τ̃n, ζ̃n)(ϕ1, ϕ2) = J ′∞(u1
0, v

1
0)(ϕ1,n, ϕ2,n) = 0,

for all (ϕ1, ϕ2) ∈ Ds,2(RN )×Ds,2(RN ) and for all n ∈ N; thus (τ̃n, ζ̃n) is a solution

of (2.2), for all n ∈ N. Moreover, from definition of (τ̃n, ζ̃n) and by (4.21), we
obtain

τ̃n(x) = ζ̃n(x) = c
( δn
δ2
n + |x− bn|2

)N−2s
2

, x ∈ RN .

Therefore,

un(x) = τn(x) + Φδn,bn(x) + on(1) and vn(x) = ζn(x) + Φδn,bn(x) + on(1),

where

τn(x) = S
4s

N−2s

H τn(x), ζn(x) = S
4s

N−2s

H ζn(x),

Φδn,bn(x) = S
4s

N−2s

H τ̃n(x) = S
4s

N−2s

H ζ̃n(x).

By (4.21), we derive that τn → 0 and ζn → 0 in Ds,2(RN ), which implies that
τn → 0 and ζn → 0 in Ds,2(RN ). Therefore, from (4.18), we have(

0,
1

2

)
+ on(1) = κ(un, vn) = κ(Φδn,bn ,Φδn,bn)

which implies that

(i) β(Φδn,bn ,Φδn,bn)→ 0,
(ii) γ(Φδn,bn ,Φδn,bn)→ 1/2.

Passing to a subsequence, one of the following cases must occur.

(a) δn → +∞ when n→ +∞;
(b) δn → δ 6= 0 when n→ +∞;
(c) δn → 0 and bn → b when n→ +∞ with |b| < 1/2;
(d) δn → 0 when n→ +∞ and |bn| ≥ 1/2 for n sufficiently large.

Suppose that (a) is true. Then

γ(Φδn,bn ,Φδn,bn) = 1− `20 + t20
SH

∫
B1(0)

|(−∆)s/2Φδn,bn |2dx

and by Lemma 4.1 we deduce that

|γ(Φδn,bn ,Φδn,bn)− 1| = `20 + t20
SH

∫
B1(0)

|(−∆)s/2Φδn,bn |2dx = on(1)

which contradicts (ii).
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Suppose that (b) is true. In this case we may suppose that |bn| → +∞ because
if bn → b, we can prove that

Φδn,bn → Φδ,b in Ds,2(RN ).

Since τn, ζn → 0 in Ds,2(RN ) and un = τn+Φδn,bn+on(1), vn = ζn+Φδn,bn+on(1),
we see that (un, vn) converges in Ds,2(RN )×Ds,2(RN ) but this is a contradiction
with (4.20). Hence,

γ(Φδn,bn ,Φδn,bn) =
`20 + t20
SH

∫
B1(0)

|(−∆)s/2Φδn,bn |2dx

=
`20 + t20
SH

∫
RN\B1(0)

|(−∆)s/2Φδn,bn |2dx

= 1− `20 + t20
SH

∫
B1(−bn)

|(−∆)s/2Φδn,0|2dx.

(4.24)

Applying Lebesgue’s theorem we can show that∫
B1(−bn)

|(−∆)s/2Φδn,0|2dx→ 0 as n→ +∞

and from (4.24) we obtain γ(Φδn,bn ,Φδn,bn)→ 1, as n→ +∞, which again contra-
dicts (ii).

Suppose that (c) is true. Note that

γ(Φδn,bn ,Φδn,bn) =
`20 + t20
SH

∫
B1(0)

|(−∆)s/2Φδn,bn |2dx

=
`20 + t20
SH

∫
RN\B1(0)

|(−∆)s/2Φδn,bn |2dx

= 1− `20 + t20
SH

∫
B1(−bn)

|(−∆)s/2Φδn,0|2dx.

(4.25)

Therefore, using again the Lebesgue theorem, we deduce that

lim
n→+∞

`20 + t20
SH

∫
B1(−bn)

|(−∆)s/2Φδn,0|2dx = 1

From (4.25) we obtain γ(Φδn,bn ,Φδn,bn)→ 0, which again contradicts (ii).
Suppose that (d) is true. Since |bn| ≥ 1/2 for n large, we have that bn 6→ 0 in

RN . From Lemma 4.5 we have

β(Φδn,bn ,Φδn,bn) =
bn
|bn|

+ on(1).

Thus, β(Φδn,bn ,Φδn,bn) 6→ 0, which contradicts (i). So, SH < c0 and the proof is
complete. �

Lemma 4.8. There is δ1 ∈ (0, 1/2) such that

(a) f(`0Φδ1,b, t0Φδ1,b) <
c0+SH

2 , ∀b ∈ RN ;

(b) γ(Φδ1,b,Φδ1,b) < 1/2 for all b ∈ RN such that |b| < 1/2;

(c) |β(Φδ1,b,Φδ1,b)− b
|b| | < 1/4 for all b ∈ RN such that |b| ≥ 1/2.
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Proof. From Lemma 4.3, we can choose ε = c0−SH
2 > 0, δ2 < min{δ, 1/2}, and

conclude that

f(`0Φδ3,b, t0Φδ3,b) ≤ sup
b∈RN

f(`0Φδ3,b, t0Φδ3,b) < SH +
c0 − SH

2
=
c0 + SH

2
, (4.26)

for all b ∈ RN . Now by the definition of ξ and Lemma 4.1, we have

γ(Φδ,b,Φδ,b) = 1− `0 + t0
SH

∫
B1(−b)

|(−∆)s/2Φδ,0|2dz.

and by Lebesgue Theorem

`0 + t0
SH

∫
B1(−b)

|(−∆)s/2Φδ,0|2dz → 1,

thus γ(Φδ,b,Φδ,b) → 1 as δ → 0. The above convergence assures us that there is

δ̂ > 0 such that γ(Φδ,b,Φδ,b) <
1
2 for all δ ∈ (0, δ̂). Choosing δ4 < min{δ̂, 1/2} we

have

γ(Φδ4,b,Φδ4,b) <
1

2
, ∀b ∈ RN with |b| < 1

2
. (4.27)

Furthermore, by Lemma 4.5, there is δ̃ > 0 such that∣∣∣∣β(Φδ,b,Φδ,b)−
b

|b|

∣∣∣∣ < 1

4
, ∀δ ∈ (0, δ̃), with |b| ≥ 1

2
.

Thus, choosing δ5 < min{δ̃, 1/2} we obtain∣∣β(Φδ5,b,Φδ5,b)−
b

|b|
∣∣ < 1

4
, ∀b ∈ RN , with |b| ≥ 1

2
. (4.28)

Finally, choosing δ1 = min{δ3, δ4, δ5} the result follows from (4.26), (4.27), and
(4.28). �

Lemma 4.9. There is δ2 > 0 such that

(a) f(`0Φδ2,b, t0Φδ2,b) <
c0+SH

2 for all b ∈ RN ;

(b) γ(Φδ2,b,Φδ2,b) >
1
2 for all b ∈ RN .

Proof. Given ε = c0−SH
2 > 0, by Lemma 4.3, we can choose δ3 > max{δ, 1/2} such

that

f(`0Φδ3 , t0Φδ3) ≤ sup
b∈RN

f(`0Φδ3 , t0Φδ3) <
SH + c0

2
, ∀b ∈ RN . (4.29)

On other hand,

γ(Φδ,b,Φδ,b) = 1− `20 + t20
SH

∫
B1(−b)

|(−∆)s/2Φδ,0|2dx

and applying [24, Proposition 2.2] and Lemma 4.1 see that∫
B1(−b)

|(−∆)s/2Φδ,0|2dx→ 0 as δ → +∞.

Thus, for each b ∈ RN , γ(Φδ,b,Φδ,b) → 1 as δ → +∞; hence, there is δ̂ > 0 such
that

γ(Φδ,b,Φδ,b) >
1

2
, ∀δ ∈ (δ̂,+∞).
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Choosing δ4 > max{δ̂, 1/2}, we have

γ(Φδ4,b,Φδ4,b) >
1

2
, ∀b ∈ RN . (4.30)

Now, choosing δ2 = max{δ3, δ4} the result follows of (4.29) and (4.30). �

Lemma 4.10. There is R > 0 such that

(a) f(`0Φδ,b, t0Φδ,b) <
c0+SH

2 for all b for which |b| ≥ R and δ ∈ [δ1, δ2];
(b) (β(Φδ,b,Φδ,b)|b)RN > 0 for all b for which |b| ≥ R and δ ∈ [δ1, δ2].

Proof. From Lemma 4.3 assuming δ = c0−SH
2 > 0, we can find R1 > 0, big enough,

such that

f(`0Φδ,b, t0Φδ,b) < SH + δ =
SH + c0

2
, ∀b : |b| ≥ R1, and δ ∈ [δ1, δ2], (4.31)

and item (a) follows.
Now, for each b ∈ RN we consider the sets (RN )+

b = {x ∈ RN ; (x|b)RN > 0}
and (RN )−b = RN \ (RN )+

b . Since ε varies in the compact set [δ1, δ2], we can prove
there is R2 > 0 big enough and r ∈ (0, 1

4 ) such that the following things are true if

|b| ≥ R2 and |b− b0| = 1
2 ,

Br(b0) = {x ∈ RN ; |b− b0| < r} ⊂ (RN )+
b .

Initially, note that for every x ∈ Br(b0), we have

|(−∆)s/2Φδ,b|2

=

∫
RN

|Φδ,b(x)− Φδ,b(y)|2

|x− y|N+2s
dy

≥
∫
B r

2
(b)\B r

4
(b)

∣∣ cδ
N−2s

2

[δ2+|x−b|2]
N−2s

2

− cδ
N−2s

2

[δ2+|y−b|2]
N−2s

2

∣∣2
|x− y|N+2s

dy

≥
∫
B r

2
(b)\B r

4
(b)

cδN−2s
1

( 7
8 )N+2s

∣∣∣ 1

[δ2
2 + 9

16 ]N−2s
2

− 1

[δ2
1 + 1

64 ]
N−2s

2

∣∣∣2dy := H1 > 0.

Thus,

(β(Φδ,b,Φδ,b)|b)RN

≥ `20 + t20
SH

{∫
Br(b0)

(x|b)
|x|

H1dx+

∫
(RN )−b

(x|b)
|x|
|(−∆)s/2Φδ,b|2dx

}
≥ `20 + t20

SH

{
|b|
∫
Br(b0)

(x|b)
|x||b|

H1dx− |b|
∫

(RN )−b

|(−∆)s/2Φδ,b|2dx
}

≥ `20 + t20
SH

{
|b|C1

∫
Br(b0)

H1

|x|
dx− |b|

∫
(RN )−b

|(−∆)s/2Φδ,b|2dx
}

=
`20 + t20
SH

{
|b|H2 − |b|

∫
(RN )−b

|(−∆)s/2Φδ,b|2dx
}
,

(4.32)

where

H2 := C1

∫
Br(b0)

H1

|x|
dx.
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Moreover, using [24, Propositin 2.2] and spherical coordinates, we deduce that∫
(RN )−b

|(−∆)s/2Φδ,b(x)|2dx ≤
∫
BcR2

(b)

|(−∆)s/2Φδ,b(x)|2dx

≤ C2

∫
BcR2

(b)

|(−∆)s/2Φδ,b(x)|2dx

≤ C2

∫
BcR2

(0)

|(−∆)s/2Φδ,0(x)|2dx

≤ C2δ
2s−2

∫
BcR2

(0)

|z|
(1 + |z|2)N+2s+2

dz

= C3δ
N−2sR

−(N+2−4s)
2 ,

where we can choose R2 > 0 large, such that for all b ∈ RN with |b| > R2, we have∫
(RN )−b

|(−∆)s/2Φδ,b(x)|2dx < H2. (4.33)

Therefore, from (4.32) and (4.33), it follows that

(β(Φδ,b,Φδ,b)|b) ≥
`20 + t20
SH

|b|
{
H2 −

∫
(RN )−b

|(−∆)s/2Φδ,b(x)|2dx
}
> 0, (4.34)

for all |b| > R2 and for all δ ∈ [δ1, δ2]. Now, choosing R = max{R1, R2} the result
of (4.31) and (4.34). �

5. Proof of main theorem

To prove Theorem 1.1, we first fix some notation and give some more technical
lemmas. Consider the set

V := {(b, δ) ∈ RN × (0,∞) : |b| < R and δ ∈ (δ1, δ2)},

where δ1, δ2 and R are given by Lemmas 4.8, 4.9, and 4.10, respectively.
Let Q : RN × (0,∞)→ Ds,2(RN ) be the continuous function given by

Q(b, δ) = Φδ,b.

With the above notation, we define the sets

Θ := {(Q(b, δ), Q(b, δ)) : (b, δ) ∈ V},

H := {h ∈ C(Σ ∩M) : h(u, v) = (u, v), ∀(u, v) ∈ Σ ∩M : f(`0u, t0v) <
c0 + SH

2
},

Γ := {A ⊂ Σ ∩M : A = h(Θ), h ∈ H}.

Note that Θ ⊂ Σ ∩ M, Θ = Q(V) × Q(V) is compact and H 6= 0, because the
identity function is in H.

Lemma 5.1. Let F : V → RN+1 be the function defined by

F(b, δ) = (κ ◦ (Q,Q))(b, δ) =
`20 + t20
SH

∫
RN

( x
|x|
, ξ(x)

)
|(−∆)s/2Φb,δ|2 dx.

Then the topological degree is d(F ,V, (0, 1/2)) = 1.
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Proof. Define Z : [0, 1]× V → RN+1 the homotopy by

Z(t, (b, δ)) = tF(b, δ) + (1− t)IV(b, δ)

where I is the identity operator. Using Lemma 4.8 and Lemma 4.9, we can show
that (0, 1/2) /∈ Z([0, 1]× (∂V)), i.e.,

tβ(Φb,δ,Φb,δ) + (1− t)b 6= 0, ∀t ∈ [0, 1] and ∀(b, δ) ∈ ∂V (5.1)

or

tγ(Φb,δ,Φb,δ) + (1− t)δ 6= 1

2
, ∀t ∈ [0, 1] and ∀(b, δ) ∈ ∂V. (5.2)

Since, (0, 1/2) /∈ Z([0, 1]×(∂V)), we have that d(F ,V, (0, 1/2)), d(Z(t, ·),V, (0.1/2))
is well defined and by properties of the topological degree

d(F ,V, (0, 1/2)) = d(IV ,V, (0, 1/2)).

Since (0, 1/2) ∈ V, we deduce that

d(F ,V, (0, 1/2)) = d(IV ,V, (0, 1/2)) = 1.

�

Lemma 5.2. If A ∈ Γ, then A ∩ = 6= ∅.

Proof. It is sufficient to prove that for all h ∈ H, there exists (b0, δ0) such that

(κ ◦ H ◦ (Q,Q))(b0, δ0) =
(
0,

1

2

)
.

Given h ∈ H, let Fh : V → RN+1 be the continuous function given by

Fh(b, δ) = (κ ◦ h ◦ (Q,Q))(b, δ).

Now we show that Fh = F in ∂V. Note that

∂V = Π1 ∪Π2 ∪Π3, (5.3)

where

Π1 := {(b, δ1) : |b| ≤ R}, Π2 := {(b, δ2) : |b| ≤ R},
Π3 := {(b, δ3) : |b| = R and δ ∈ [δ1, δ2]}.

If (b, δ) ∈ Π1, then (b, δ) = (b, δ1). and by Lemma 4.8-(a), we have

f(`0Q(b, δ), t0Q(b, δ)) = f(`0Q(b, δ1), t0Q(b, δ1))

= f(`0Φδ1,b, t0Φδ1,b)

<
SH + c0

2
, ∀(b, δ) ∈ Π1.

(5.4)

If (b, δ) ∈ Π2, then (b, δ) = (b, δ2), and by Lemma 4.9(a), we have

f(`0Q(b, δ), t0Q(b, δ)) = f(`0Q(b, δ2), t0Q(b, δ2))

= f(`0Φδ2,b, t0Φδ2,b)

<
SH + c0

2
, ∀(b, δ) ∈ Π2.

(5.5)

If (b, δ) ∈ Π3, then |b| = R and δ ∈ [δ1, δ2] and by Lemma 4.10(a), we obtain

f(`0Q(b, δ), t0Q(b, δ)) = f(`0Φδ,b, t0Φδ,b) <
SH + c0

2
, ∀(b, δ) ∈ Π3. (5.6)
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Combining (5.3), (5.4), (5.5), and (5.6), we obtain

f(`0Φδ,b, t0Φδ,b) <
SH + c0

2
, ∀(b, δ) ∈ ∂V.

Thus,

Fh(b, δ) = (κ ◦ h ◦ (Q,Q))(b, δ)

= (κ ◦ h)(Q(b, δ), Q(b, δ))

= κ(h((Q(b, δ), Q(b, δ))))

= κ((Q(b, δ), Q(b, δ)))

= (κ ◦ (Q,Q))(b, δ)

= F(b, δ), ∀(b, δ) ∈ ∂V.

Since (0, 1/2) /∈ F(∂V), we obtain

d(Fh,V, (0, 1/2)) = d(F ,V, (0, 1/2)).

By Lemma 5.1, we have

d(Fh,V, (0, 1/2)) = d(F ,V, (0, 1/2)) = 1,

and there is (b0, δ0) ∈ V such that

Fh(b0, δ0) = (κ ◦ h ◦ (Q,Q))(b0, δ0) =
(
0,

1

2

)
and the proof is complete. �

Proof of Theorem 1.1. We define the number

c = inf
A∈Γ

max
(u,v)∈A

f(u, v)

and for each q ∈ R, we define the set

fq := {(u, v) ∈ Σ ∩M : f(u, v) ≤ q}.

We start our analysis by noting that

SH < c < 22s/NSH . (5.7)

In fact, by Lemma 4.4,

c = inf
A∈Γ

max
(u,v)∈A

f(u, v) ≤ max
(u,v)∈Θ

f(u, v)

≤ sup
(b,δ)∈RN×(0,+∞)

f(`0Φδ,b, t0Φδ,b) < 22s/NSH .

On the other hand, by Lemmas 4.7 and 5.2, we obtain

SH < c0 = inf
(u,v)∈=

f(u, v)

= inf
A∈Γ

max
(u,v)∈A

f(u, v)

≤ sup
(b,δ)∈RN×(0,+∞)

f(`0Φδ,b, t0Φδ,b) < 22s/NSH ,

(5.8)

from where it follows (5.7).
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Using the definition of c, there exists the sequence (un, vn) ∈ Σ ∩M such that
f(un, vn) → c. Suppose, by contradiction, that f ′|M(un, vn) 6→ 0. Then, there
exists (unj , vnj ) ⊂ (un, vn) such that

‖f ′|M(unj , vnj )‖∗ ≥ C > 0, ∀j ∈ N.

By a deformation Lemma [31], there exists a continuous application η : [0, 1]×Σ∩
M→ Σ ∩M and ε0 > 0 such that

(a) η(0, (u, v)) = (u, v);
(b) η(t, (u, v)) = (u, v) for all (u, v) ∈ f c−ε0∪{(Σ∩M)\f c+ε0} and all t ∈ [0, 1];
(c) η(1, f c+ε0/2) ⊂ f c−ε0/2.

From the definition of c, there exists Ã ∈ Γ such that

c ≤ max
(u,v)∈Ã

f(u, v) < c+
ε0
2
,

where

Ã ⊂ f c+
ε0
2 . (5.9)

Since Ã ∈ Γ we have Ã ⊂ (Σ ∩M) and there exists h ∈ H such that

h(Θ) = Ã. (5.10)

From the definition of η, we have

η(1, Ã) ⊂ (Σ ∩M). (5.11)

Let h∗ : (Σ∩M)→ (Σ∩M) be the function given by h∗(u, v) = η(1, h(1, v)). Note
that h∗ ∈ C(Σ ∩M,Σ ∩M).

We are going to show that

f c+ε0 \ f c−ε0 ⊂ f22s/NSH \ f (SH+c0)/2. (5.12)

Indeed, given (u, v) ∈ f c+ε0 \ f c−ε0 , we have

c− ε0 < f(u, v) ≤ c+ ε0

and by (5.7), for ε0 sufficiently small, we obtain

c− ε0 < f(u, v) ≤ c+ ε0 < 22s/NSH .

Now, combining Lemma 4.7 with (5.8), we have

SH + c0
2

< c0 − ε0 < c− ε0 < 22s/NSH ,

SH + c0
2

< c0 − ε0 ≤ c− ε0 < f(u, v)

which implies (u, v) ∈ f22s/NSH \ f (SH+c0)/2, from where it follows (5.12).
Consider (u, v) ∈ (Σ ∩M) such that

f(u, v) <
SH + c0

2
. (5.13)

Then h(u, v) = (u, v) and from (5.13), we have that

(u, v) 6∈ f22s/NSH \ f
SH+c0

2

and by (5.12), we have (u, v) 6∈ f c+ε0 \ f c−ε0 . Thus,

(u, v) ∈ f c−ε0 ∪ {(Σ ∩M) \ f c+ε0}
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and by (b), we obtain η(1, (u, v)) = (u, v). Therefore,

h∗(u, v) = η(1, h(u, v)) = η(1, (u, v)) = (u, v),

which shows that h∗ ∈ H, and so,

h∗(Θ) = η(1, h(Θ)) = η(1, Ã) ∈ Γ.

Hence,
c = inf

A
max

(u,v)∈A
f(u, v) ≤ max

(u,v)∈A
f(u, v). (5.14)

On the other hand, by (c) and (5.9), we obtain

η(1, Ã) ⊂ η(1, f c+
ε0
2 ) ⊂ f c−

ε0
2 .

That is,

f(u, v) ≤ c− ε0
2
, ∀(u, v) ∈ η(1, Ã),

which implies that

max
(u,v)∈η(1,Ã)

f(u, v) ≤ c− ε0
2
,

which is a contradiction. Therefore, we must have

f(un, vn)→ c and f ′|M(un, vn)→ 0

and from Corollary 3.7, up to a subsequence, we have un → u0, vn → v0 in
Ds,2(RN ), and satisfies

f(u0, v0) = c and f ′|M(u0, v0) = 0.

By Corollary 3.8, J has a critical point (w0, z0) ∈ Ds,2(RN )×Ds,2(RN ) such that

J (w0, z0) =
s

N
cN/2s,

and by (5.7), we obtain

s

N
S
N
2s

H < J (w0, z0) <
2s

N
S
N
2s

H .

The positivity of (w0, z0) is a consequence of maximum principle that can be see in
[25, Proposition 2.17]. �
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