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EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL
LAPLACIAN SYSTEMS WITH CRITICAL GROWTH

JEZIEL N. CORREIA, CLAUDIONEI P. OLIVEIRA

ABSTRACT. In this article, we show the existence of positive solution to the
nonlocal system

1
(=A)Y°u+ a(z)u = 2—*Hu(u7 v) in RV,
S
1 N
— Hy(u,v) inRY,

2

(—=A)*v + b(z)v =

u,v>0 in RN,

u,v € DVERN).
We also prove a global compactness result for the associated energy functional
similar to that due to Struwe in [26]. The basic tools are some information
from a limit system with a(z) = b(z) = 0, a variant of the Lion’s principle
of concentration and compactness for fractional systems, and Brouwer degree
theory.

1. INTRODUCTION

In this article, we study the existence of positive solutions for the nonlocal elliptic
system
1 .
(=A)Y’u+ a(zx)u = 2—*Hu(u, v) inRY,

S

(~A)v + by = o Hy(w,v) inRY, 5

2*

S

u,v >0 inRN,
u,v € DS’Q(RN)7

with s € (0,1), N > 2s, H, and H, are the partial derivatives of the function H,
where H(u,v) € C'(R%,R) is a homogeneous function satisfying suitable conditions
that will be presented throughout later. The fractional Laplacian (—A)®, of a
smooth function v : RN — R, is defined by

(=A)*u(z) := C(N,s)P.V. /RN Wdy,
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where P.V. is a commonly used abbreviation for “in the Cauchy principal value
sense” and C(N,s) > 0 denotes the normalization constant. The work space
D*2(RY) is defined as the completion of u € C2°(RY) with respect to the Gagliardo

semi-norm
)|2 1/2
//]Rzz\f |£L’— |N+2s dl‘dy)

According to [24, Propositions 3.4 and 3.6], we have that
ul® = [(=8)*?ul72 = [u]?,

by omitting the normalization C'(N,s). Notice that this space can be also charac-
terized as

D2(RY) == {u € L% (RY); [u] < +o0},

where 2% = 2N/(N — 2s) is the fractional critical Sobolev exponent. For an ele-
mentary introduction to the fractional Laplacian and fractional Sobolev spaces, we
refer the interested readers to [22] [24] and references therein.

In recent years, the fractional Laplace operator has received attention, for both
its applicability and for its purely mathematical properties. This operator can be
seen as the infinitesimal generators of Lévy stable processes (see [4]) and arises in
several areas such as physics, biology, anomalous diffusion, chemistry, and finance;
see [4, [ [I8], 20]. For more details and applications, see [9] [17, 28] 29, [30] and the
references therein.

In the case s = 1, u = v, and H(u,u) = |u|?" with 2* = 2N/(N — 2), system
reduces to the critical Schrédinger equation

—Au+a(z)u =u~—2 in RV,

(1.2)
u € DY(RY), u>0, N>3,

which was studied by Benci and Cerami in the seminal paper [6]. In this article,
we prove that does not have a ground state solution and this fact generates
some additional difficulties. To overcome these difficulties, the authors investigate
the behavior of a Palais-Smale sequence estimate of the energy levels where the
Palais-Smale condition fails. In that article, they proved that if N > 3 and |la|y/2
is small enough, then the problem has at least one positive solution. After
this pioneering work, several other authors studied problems related to ; see for
example [2] [7, 8, 111, 13} 19, 21} 23] and references therein. Correia and Figueiredo
[13] studied the following version of problem for the fractional Laplacian,

(=A)u+ a(z)u = [u|*?u in RV,
u>0, inRY, (1.3)
u € D*2(RN).

They first proved a global compactness result for fractional Laplacian in RY, and
then, by the compactness result above, and the Linking Theorem, they obtained
the existence of high energy solutions for (1.3), provided that a(x) > 0 in R and

|a|pxs2e < S(225/N 1),
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where S is the best constant for the Sobolev embedding D*?(RY) — L2 (RY);
that is,
Jor [(=8)*2ul? da

S = w0} (o [P 222 (1.4)
If a(xz) = 0, problem reduces to
(=A)*u = |u/*"2u in RY,
u>0, inRY, (1.5)
u € D*2(RN).
It is known that problem has the positive solution
Ds5.(z) = C(M)(N%)/?’ z,beRYN, §>0, (1.6)
and satisfies
[@spll> =S, |®sp]2: = 1. (1.7)

Moreover, all positive solutions of can be obtained by translation and scale
changes, see [12].

Recently, Figueiredo and Silva [I5] considered a variant of the Benci and Cerami’s
problem for the system of equations

—Au+ a(z)u = 2i*Ku(u, v) in RY,
Ao+ b(z)o = - K in RN
—Av + b(x)v = > »(u,v) in RY, (1.8)

u,v >0 inRN,

u,v € DH2(RY),
where the nonlinearity K (u,v) € C*(R%,R) is a homogeneous function with certain
assumptions (for more details see [14]). In that article, using the same techniques

introduced by Benci and Cerami [6], they obtained the existence of high energy
solutions for system (1.8)), provided that a(x),b(z) > 0 in RY and

solalnz + tg[blpase < Sk (22N — 1),
where Sk denote the best constant of the embedding DV2(RY) x DL2(RYN) —
L¥ (RY) x L2 (RN); that is,
) Jan [[Vul? + [Vo?]dz
in
uweD 2 ®RVN\(0} ([on K (u,v)dx)?/2" 7

Sk =

with sg,to positives constant such that the pair (soWUs,,t0Vs,) reaches Sk (see
[14, Lemma 3]) and ¥;,, are Talenti functions (see [1, 27]). Motivated by the works
mentioned above, mainly by the ideas found in Benci and Cerami [6], Correia and
Figueiredo [I3] and Figueiredo and Silva [I5], and that a bibliography review did
not find any paper dealing with , we decided to investigate the this class of
systems. This article concerns the existence of positive solution for system .
However, we would like to point out that some estimates made in [0}, [13] [I5] are not
immediate for our case because of the nonlocal character of fractional Laplacian.
Some refined estimates were necessary, see Section [3] and Section [
In this article, we consider the following assumptions on H = H (¢, t):
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(HO) H is 2*-homogeneous, that is,
H(00,0t) = 6% H((,t), for each 6 > 0, ({,t) € R%;

(H1) there exists ¢; > 0 such that

|Hy(0,8)] + | He(€,1)] < ey (071 44271 for each (4,1) € R%;
(H2) VH(0,1) = VH(1,0) = (0,0);
(H3) H(¢,t) > 0 for each £,t > 0;
(H4) Hy(¢,t) >0, Hy({,t) > 0 for each (£,t) € R?;
(H5) the 1-homogeneous function W(¢2:,#%:) = H((,t) is concave in R2.
On the functions a,b: RN — R, we assume the following conditions:
(H
(

6) The functions a, b are positive in a set of positive measure;
HT7) a,b € LYRY) for all ¢ € [p1,pe] with 1 < p; < N/2s < py and py <
N/(4s— N) if N < 4s;
(H8) £3|alpn/zs gy + tg\b|LN/zs(RN) < Sp(228/N —1).
In assumption (HS), the expression Sy denotes the best constant of the immer-
sion D*2(RN) x DH2(RY) < L% (RN) x L% (RY), namely

[ Tl e
u,veD*2(RN)\{0} fRN (u,v)dx)?/2

Moreover, by [3l Lemma 2.3] there are £y and ¢y positive such that Sy is attained
by (f@@g’mtoq)(;’b) and
MySy =5, (1.9)
where My = maxgp oy H((,1)2/% = H(ly, t9)%/%.
To state the main result this article, we consider the energy functional of calss
Ch, J : D*2(RN) x D*2(RY) — R, given by
1 1 1
T (u,v) = 5[ (w,0)||* + */ (a(z)u® + b(z)v®)de — | H(u,v)dz,
2 RN 2*
where ||(u,v)||? = ||ul|? + ||v]||* is the norm in the space D* 2(]RN) D*2(RY) and

T o)) = [ ) T2u(=8)"2+ (~A)u(=8) 2yl

+ /}R la(e)up -+ b(a)ouldz ~ 21 / (H (u, v)0 + Hoy (u, v)]dz

for all (¢,v) € D2(RN) x D*2(RY). We have the following existence result.

Theorem 1.1. Assume that (HO)—(H8) hold. Then (1.1) has a positive solution
(ug,vg) € D*2(RN) x D*2(RN) with

S s 2s s
ngﬂ < J(ug,vo) < ng/Q .

In some sense, the main result of this article expands the study made in [6], T3]
15], because we are considering a version of a paper for the fractional Laplacian.
Moreover, we prove the version for fractional system in R™ of Struwe’s Global
Compactness result [26], which may be useful also in other context and has never
appeared in the literature, to the best of our knowledge.

Before we finish this introduction, let us comment on some difficulties encoun-

tered in problem ([1.1)).
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e The “double” lack of compactness due to the unboundedness of the domain,
and the presence of the critical Sobolev exponent, which is related to the
fact that embedding D*?(RY) < L% (R") is not compact. Thus, the
associated energy functional does not satisfy the Palais-Smale condition in
general.

e The extension to nonlocal system involves some technical difficulties which
are overcome with some refined estimates, as can be seen in Lemma [3.1]
Theorem and Section

This article is organized as follows. In Section [2) we study the limit system
associated with . In Section we give the complete descriptions for the Palais-
Smale (PS) sequences for the functional 7. In Section [4f we prove some technical
lemmas. In Section [5] we show the main result.

2. LIMIT PROBLEM

In this section, we give some results involving the limit problem that will be
useful in our approach. We start with example of the function H (u,v) that satisfies
the conditions (HO)—(H5).

Let H be the function

H(u,v) :=alu

i, |Bi + C"U 2:7

v

T Y b
a;i+Bi=2}
where a,b;,c € R, o, + 8; = 2%, «;, 8, > 1, i € Z with 7 a finite subset of N. Then

H satisfies conditions (HO0)—(H5).
From the homogeneity condition (HO), have the so called Euller identity,

(u,v) - VH(u,v) = 25 H(u,v). (2.1)
Let us introduce the limit problem associated with (1.1]),
1
(—A)u = ?Hu(u,v) in RY,
A)S 1 : N
(—A)*v = EHu(uw) in R™, (2.2)

u,v >0 in RN,
u,v € D¥2(RY)

whose associated energy functional 7., : D¥2(RY) x D*2(RY) — R is
1

T (1, 0) = %H(U,U)HQ _ 1 /RN H(u, v)dz.

The next lemma states that the functional associated with the limit problem satis-
fies the Palais-Smale condition.

Lemma 2.1 ((PS)-condition for Jx). Let (un,vy) be sequence (PS). for Js.
Then

(a) The sequence (uy,vy) is bounded in D*2(RN) x D*2(RN);

(b) If (Un,vn) = (u,v) in DS2(RY) x D2(RN), then J. (u,v) = 0;

(¢) If ¢ € (—o0, %Sg/%), the Jw satisfies the (PS). condition, i.e, up to a

subsequence

(tn,vp) = (u,v)  in DS2(RY) x DH2(RY).
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Proof. (a) Since Joo (Un, vn) — ¢ and J2 (un, vy) — 0, and using ([2.1)), there exists
d > 0 such that

1
d+ H(umvn)” > jOO(umvn) - 7\700(unavn)(unavn) = iH(unyvn)H2 + On(l);

2 N

thus

S
(s vn) [P 4 0 (1) < d =+ [[(wn, va)I-

which proves part (a).
(b) Since (un,v,) — (u,v) in DS2(RY) x D*2(RY), up to a subsequence, we
have

(RN) x L2

loc

(RY),

(tn,vn) = (u,v) a.e. in RN x RY.

(U, vpn) = (u,v) in LE

loc

Using a denseness argument we obtain
Hu(un,vn)gadx+/ Hy(up,vp) de — / H,(u, v)godx—k/ H,(u,v)¢ dx
RN RN RN RN

for all ¢, € D*2(RY), which implies (b).
(c) Consider the sequence (wy, 2n) = (un — u, v, — v) and note that

1
on(1) = jéo(unavn)(umvn) = H(unavn)”2*27 /RN [H o (U, U )t A+ H oy (U, )0 ] de

or
1
on(1) = [[(wn, z0)I” + [l (w, 0)|” = /RN Hy(wn + 1, 20 +v)(wn + u)de

1
- = Hy(wy + uy zp, +0) (25 +v) dx.
2% Jrn~

From [3| Lemma 7.2], we have

1 1
| (W 2) I* + | (, )]|% — 2—*/ Hy(wp, 2p)wp dz — — H,(wn, 2n)2n dz
s JRN

*
s JRN

1 1
- — H,(u,v)udr — —/ H,(u,v)vdx = o,(1)
2: RN 2: RN

Now using (b) and we have

) = [ Hlnz)de = on()

Up to a subsequence, we conclude that there exists L > 0 such that

lim ||(wp,2,))*> = lim H(wy,, zp)dx = L.

n—-+oo n—-+oo RN

Suppose, by contradiction, that L > 0. Using the inequality

2/27
Su ([ Hwnz)de) < wnsz0)?

RN
we obtain

L>SyL?% — L > sN/*.
Since Joo (u,v) = %[|(u,v)||* > 0 and

‘= %Il(wn, )| + Too (1, v) + 0n(1),
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it follows that

S S S S oN/2s
c= N”(wnv'zn)Hz + Joo(u,v) + 0n(1) = N‘|(wnvzn)||2 +on(1) = NL 2 NSH )
which is a contradiction. Therefore, L = 0 and so ||u, —ul|* = 0 and ||v,, —v[|*> —
0. (]

3. A COMPACTNESS RESULT

We start this section by establishing the following technical lemma for 7., which
will be useful for proving our compactness theorem.

Lemma 3.1. Let (up,v,) be a (PS). sequence for the functional Jo, with
(tUn,vn) — (0,0) and (upn,vn) 4 (0,0). Then, there are sequences (R,) C RT,
(r,) C RN and (ug,vg) € DS2(RY) x D%2(RN) nontrivial solution of (Ss) and
a sequence (Tp, (,) which is (PS)z for the Jx such that, up to a subsequence of
(un,vn), we have
N—2s
Tn(x) = up(z) — R 2 uo(Rp(z — x,)) + 0,(1),
N—2s
Cn(x) =vp(x) — R 2 vo(Rp(z — ) + 0n(1).
Proof. Let (un,v,) C D*2(RN) x DS2(RY) be a (PS). sequence for the functional
Too, 1.€.,
Too(Un,vp) = ¢ and T2 (up,v,) — 0. (3.1)
From Lemma a), we obtain that (u,,v,) is bounded in D*2(RY) x D*2(RY).
Since (un, vn) — (0,0) and (up, v,) # (0,0), by the Lemma ¢) it follows that

S oN/2s
c> =S

Note that

1
c+ On(]-) = joo(unavn) - ?jéo(unvvn)(unavn)

= 2 [ APl 4 |(~A) 20, ] d,
N Jan
which implies
lim = [ [(=A)%u, | + [(—A) v, ] de > SN/ (3.2)

n—+oo N RN

Let L be a number such that Bs(0) is covered by L balls of radius 1, (R,) C R,
(z,) C RN such that

e / [[(=A)* 2w, [? + |(=A)* %, [?] da
veRN JB, ()

— [ AP (-2 0, e
BR;I (:Eﬂ)

Sg/Qs

2L
We define the sequence

(wn (@), 20 (1)) = (szzNun(Ri + mn),Rff%an(Rin I xn))




8 J. N. CORREIA, C. P. OLIVEIRA EJDE-2022/79

Using a change of variable, we can prove that

/ (=) Pwn[* + |[(=A)"?2,[*] dx
B1(0)

Sg/2s

2L

i / [(=A) 2w, |2 + (= A)*22, ] da.
yERN J B (y)

Now, for each (®1, ®5) € D*2(RY) x D*2(RY), we define

N—2s

~ ~ N-—2s N—2s
(D10 B2.0)(@) = (B 7 @1(Ru(w = 20)), R ? @2(Ru(w — 70)))
which satisfies

R ESEETESE PR ENENENEE S
RN

(3.3)
= / [(fA)S/zwn(—A)s/Qcp1 + (fA)S/zzn(fA)s/%I)g} dx
RN
and
/ [Hu(unavn)(i)l,n + Hv(unavn)(i)Q,n]dx
RY (3.4)
:/ [Hy (W, 2n)P1 + H,, (W, 2,) Po]d.
RN
These limits yield that
Too(Wny 2n) = ¢ and T (wy, 2,) — 0. (3.5)

From Lemma there exists (ug,vg) € D*2(RY) x D%2(RY) such that, up to
a subsequence, (U, v,) — (ug,vp) in D¥2(RN) x D*2(RN) and J (ug,vo) = 0.

As a consequence from following variant of the Concentration-Compactness Li-
ons’s Lemma [3, Lemma 4.3], we obtain

H(wp, zp)pdr — /]RN H (ug, vo)p dr + Z o(x;)vj, Vo€ CF(RYN)  (3.6)

RY jeJ
and
[(=A)Pw,* + [(—A)* 22,
—~puto
> [(=A)*2ug|? + [(—A)*Puo? + > dlasus + > dlaj)o;, Ve € C°(RY)
jeJ jes

for some {z;};e; C RY and for some {v;}jes, {1j}jes,{0j}jes C RT with
SHU§/2: < pj + 04, where J is at most a countable set. Indeed, J is finite. To see
this, consider ¢ € C§°(RY) such that 0 < ¢(z) < 1, for all z € RN, ¢(z) = 0 for
all x € B§(0) and ¢(z) = 1 for all z € B1(0). Now fix z; € RV, j € J and define

¢p(x) = ¢(*), for each p > 0. Thus, 0 < ¢,(z) < 1, forall z € RN, ¢,(z) =0
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for all z € BS,(z;) and ¢,(z) = 1 for all z € B,(x;). We have that (w,d,, 2n9),) is
bounded in D*2(RY) x D*2(RY) and T (wn, 2n)(Wn@p, 2ndp) = 0n(1). Then

/(—A)S/an(—A)S/Q(wn%)dI+/ (=8)"22,(=2)"* (200 )d
RN RN

(3.7)
= Hw(wn,zn)(wn¢p)d$+/ Hz(wnazn)(znd)p)dx+On(1)'
RN RN
As
[ -yt dedy + [ (-8 (-8 200,) do dy
RN RN
_ (wn (@) — wa(y))*¢p(y) -
_/sz | — y|NF2 drdy
T (33)
(2n(2) = 20(¥))*¢p(y)
“ L e
| ) D) ) g,
it is easy to verify that
Lo it et [ S dedy
= [ AP,y + [ 181"z o)y (39)
RN RN

— /RN op(y)dp + /RN ¢p(y)do asn — 400
and
/ 6oyt + / bo(w)do — p({e;}) + o({as}) = s+ 05 asp—0. (3.10)
RN RN

Also, by Holder inequality

wn — ¢P qj)ﬂ Wp (T
¢p x)— ¢p 2 Wy (T 2 1/2
<Cl(/R2N| ( )|x_§/1)v+|28 ()] dody)
and
Z” — z’ﬂ ¢p (bp Znx
zn(2) — zn(y)ll@ Zn(T
/Rm |2n () (|;|_,;/(|N)+25 p(W]zn( )|dxdy (3.12)

§C2</RQN [9p(2) — Doy )220 ()| dxdy)lﬂ.

o=y
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Arguing as in [32], Lemma 3.6], we see that

o [60(®) = Gp(W)[*|wn ()2 _
gg% nll}IEoo R2N |(E — y\N+25 de dy N 07 (313)
g |60(2) = 6 (W) |20 (@) ? _

Pontoe fron g W (314

On the other hand, by (2.1)) we have

Hy(wn, 2n) (wndp)dz + H.(wn, 2n)(2n¢p)dx

RN RN
= o VH(wn, 2n) - (Wn@p, 2n®p) (3.15)
=2 [ Hnz)opde 2 [ o,
RN RN
and
/]RN oo(y)dv — v({z;}) =v; asp—0. (3.16)

From (3.8), 3.9), @.10), @.11), @.12), @.13), (3.14), (3.15) and (.10), it follows

that

2/2F

SHZ/] s < wi+oj < 2:Vj.

Since that v; > 0, we see that Sg/QS < (uj +0;)N?* < Cuy, djed ]/]2/2.’2 < oo and
so v; does not converge to zero, which means that J is finite.
From now on, we denote by J = {1,2,...,m} and I' C RY the set given by

= {z; € {z;}jes;|z;| > 1},

with (z; given by . Note that we can consider x;, j = 1,...,m, belonging to I,
otherwise, we choose the smallest distance point for zero in this set. We are going
to show that (ug,v9) # (0,0). Suppose, by contradiction, that (ug,v9) = (0,0).
Then, by we have

H(wn, zn)pdz — 0, Yo e COMRN\ {z1,x0,...,2,}). (3.17)
RN

Since (¢1,n, P2,n) = (Pwn, P2,) With ¢ € C{)’O(RN \{z1,22,...,2,}) is bounded, we
obtain JL (wn, zn) (P10, P2.n) = 0,(1); that is,

/ (=AY 2w (=AY 261+ (~ D)2 (~A) g ]de
RN

1 1 (3.18)
5 /. Hy(wy, 2n)p1,ndx — 5 o H., (W, 2p)p2.ndr = 0,(1),
or
/]R?N (wy(z) — wn(y))(qls;z(zngf) — 1.0 (Y)wn(y)) dz dy
(2n (@) — 20 (Y)) (D20 (@) (20 () — P20 (y) 20 (y))
+/RQN o — |V dx dy (3.19)

1 1
- — H,(wp, zn) 1 nde — — H,(wp, zn) b2 ndx = 0, (1).
2: RN ’ 2: ]RN ’
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But the above equality is equivalent to

[ onta) Bl = aD)(O() 00D o,

‘.’E _ y|N+25

(wn(2) — wa(y))?
+ [ ot dudy

(z2n(7) — 20 (y)) (0(x) — ¢(y))
+ /R2N zn () 7 — g dz dy

(zn(m) 2n(y )) — 0
+ /Rw qﬁ(y)W dx dy — - H(wp, zn)d dz = o, (1).

Then
U)n n Zn\T) — Zn 2
’/IR{?N | y|N+§?Z)| dx dy + on ¢(y)|g(giy|]\,fi)| dz dy’
@) - )66 — o)
| [ Hwzsde= [ ) ke dr dy

[ ) o= ) =00 4y, )

|z — y[NF2s
2y (n(@) = o) (O() = 0w) dy\

S‘ H(wy, zp) qua:’Jr‘/
N

R R2N |l‘—y|N+23
+] [ =@ ; f% fi) D) gy iy 100

<| RNH(wn,vn¢dx\+|\wn\\(4N| i )

lal( [ @RSl o) o).

h h (3.20)
Now, we show that
2
/1;21\7 [ ( )|2W dzdy = 0,(1), (3.21)
/RZN Jzn (@ )|2W dz dy = 0, (1). (3.22)

For this, let R be a positive number such that supp(¢) C Br(0) and write R?Y as
R*N = [(RY\ Br(0)) x (RV \ Br(0))] U [Br(0) x (R™ \ Bg(0))]
U [(RY \ Br(0)) x Br(0)]
=0; UQyUQs.

Thus, we have

2
A2N | ( )|2 |¢( ) yNS_Q)J dr dy

|x —

o |.’L‘ |N+2s ‘SL’—y|N+2S

+/Q. jwon (2 )|2dedy

|z
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and
[ P 4,
:/91 |zn(x)|2(dedy+/92 |zn(x)|2Wdazdy (3.24)
+ /Q 3 |zn(z)|2|¢|’fz ;lf,%)f dr dy.

We will prove (3.23)), the case (3.24)) follows in an analogous way. To do this we
estimate each integral in ([3.23). Since ¢ = 0 in RY \ Bg(0), we have

|2|¢(33) — o)

[ — g dzdy = 0. (3.25)

|wn(x)
(951

Using |¢| < C1, |V¢| < Cs and using the mean value theorem, we infer that

|2|¢(9€) — o)

o, o g ey
o(z) — ¢(y)|?
= [t | 0w) = S,
Br(0) {yeRN:|z—y|<R} |z -y
o(z) — o(y)|?
s funpas [ 10) ~ W) 4y
BRr(0) {yeRN:|z—y|>R} ‘J} - y| (326)
1
<CIVo ey [ fwala) P ey
e ED Ba(®) {yeRNjo—y|<R) [ — Y[V 272
1
+C |wn(x)|2dx/ ———dy
Br(0) (yeRN:|a—y|>R) |2 — Y|V T28
= C’RQ_QS/ |wy, () [2dx + CR_2S/ |w, (z)|2dz = 0,(1).
Br(0) Br(0)
Moreover, for the integral on 3, we have
2
R
2
) —
-/ wn(o)de [ [0lz) = S 4, (3.27)

RN\Br(0) {veBr(O):la—y|<R} 1T =Yl

p(x) — B(y)?
:/ |wn(x)|2dm/ prSice dy = Tp + T4
RN\ BR(0) {y€Br(0):ja—y|>R} T =Y

It is not difficult to verify that if (z,y) € (RN \ Bg(0)) x Bg(0) and |z —y| < R,
then |z| < 2R, thus

[¢(z) — ¢(y)|?
TB%:/ |wn(:c)|2d:17/ )W
RN\ Br(0) {y€BR(0):|]z—y|<R} |z -yl

1
< CIVe[.. / w (x)|2dx/ _ 1 (328
EED o) {2€BR(0):|sl<Ry |2V T2 (329

_ (JRHS/ o (2)[2dz = on (1),
Bar(0)
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Note that, there exists k > 4 such that
Q3 = [(RY\ Br(0)) x (Br(0))] U[Brr(0) x (Br(0))] U [(RY \ Bxr(0)) x Br(0)] .

Therefore,

Bir(0) (yeBRO)|a—y|>R) T —y[NT2s

1
<C |w (x)|2dx/ ——dz 3.29
Ben(0) {2€RN:|z|>R} |2V T2 (3.29)

_ CR‘25/ (o (2)2dz = op(1).
Byr(0)

If (z,y) € (RN \ Bxr(0)) x Br(0), then

kR T
-yl > e~y > B g 2
2 2

and using Hoélder’s inequality, we obtain
RN\ Big(0) (veBr(O):la—y|>R}y T = Y[+
2
RN\ B (0) {y€BR(0):|z—y|>R} |z —yl )

N |wn ()2

N\Byr(0) |CE
. N2/ (N2 2\ B
< (/ |wn () Qde) (/ |~ )2272) =
RN\ B (0) RN\ By r(0)

. N2/2
< Ck‘N(/ fw ()| dx) <ok,
RN\Br(0)

From (3.29) and (3.30)), we obtain
T <CE™N +0,(1). (3.31)
Combining ({3.20)-(3.28) and (3.31)), we deduce that

limsup/ |wn(m)|2dedy
RN

n——+oo |$ — y|N+25

o |6@) — oW,
=t Ty [ o @) dedy =0

and

limsup/ \zn(m)|2Mdﬂcdy
RN

n—-+o0o |17 - y|N+25

_ 2
= lim limsup/RN |Z"(x)|2w dx dy = 0.

k—+00 n—+oo

Combining (3.18)), (3.20), (3.21), (3.22), and (3.17)), we conclude that
2
Wy (x) — wy,
/ ¢(y)| (x) = wa(y)|
R2N

o=y

|Zn(x) B Zn(y)|2
dad ) Ul drdy — 0 (3.32
vdy+ | o(y) g Gy (3.32)
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for all ¢ € C3°(RN \ {z1,...,%m}), which leads to
/ |(=2)* 2w, *¢ da + / [(=A)*2z,* ¢ da = 0,(1). (3.33)
RN RN

Let p € R be a number that satisfies 0 < p < min{dist(I', B1(0),1)}. We will
show that

/ (=AY 2w 2 + |(—A)/ 22, [2]dz — 0. (3.34)
Bl+p(0)\B1+§ (0)

To do this, we consider ¢ € C5°(R™) such that 0 < ¢(z) < 1 and ¢(z) = 1 if
HARS Bl+p(0). If ¢ = ¢|RN\{$17_“7%.M}7 follows by ‘) that

0< / (=) 2w ? + [(~A)*/22,, ] da
Bl+p(0)\Bl+§(O)
<[ A o |(-a) T, s
Bl+ﬂ(0)
- / [I(_A)S/2wn|2 + |<_A)s/22n|2]édx
B14,(0)

< / [[(=A)* 2w, |? + |(—A)* %2, |} ¢dx — 0,
RN

which implies that (3.34) occurs.
Let ® € C5°(RY) be such that 0 < ®(x) <1, [V®| < 2 for all z € RY and

P ]-7 T e BlJrg(O)a
@) =10, T € BY 4, (0)
3

and consider the sequence (@1 ,,, P2 ) given by
(P10 (2), Pon(2)) = (P(z)wn (), D(2)20 ().
Using (3.21) and (3.22), we have
/ (—A)20, , Pdz +/ (—A)*2B, , [2da
RN\ B14,(0) RN\B14,(0)
< 2/ [wa (y)]* () — @(y)[?
T J(RN\B14,(0) xRN |z — y|NF2s
o 2(5)/% o (2) — ()
(RN\ By 4 ,(0)) xRN | — y|NF2s
2 _ 2
< @10 0
(RN\ B4 ,(0)) xRN |z — y|N+2s (3.35)
+2/ |®(y)‘2|2n(m) _Zn(y)l
(RN\B14,(0)) xRN |z — y|N+2s

—oU+2 [ @A) () e
RN\B1,(0)

dx dy

2
dx dy

2
dx dy

on(1) +2 / B(2)?|(— D)2z () P
RN\Bi14,(0)

= 0,(1).



EJDE-2022/79 FRACTIONAL SYSTEMS SYSTEMS WITH CRITICAL GROWTH 15

Similarly, we can obtain the estimate

|(—A)s/2<1>17n|2d1: +/ |(—A)S/2<I)27n|2dx
B140(0\By 1 £(0)

wa (@)0(z) - D)l
ERFIE

O (y)?|wn(z) — wa(y)]
|z — y[N+2s

Zn ()% 2(2) — B(y)|*
|z — g+

O (y)*|2n(z) — 2n(y)l
o — y|N+2s

/Bl+p(0)\31+§ (0)

< 2/ dx dy
(Bl+p(0)\31+§(0))XRN

2
+ 2/ dx dy
(Bi+5(0)\By 4 £ (0)) xRY

+ 2/ dx dy
(Bi+5(0)\By 4 £ (0)) xRY

2
dx dy

12 /
(B1+p(0)\31+§(0))><RN
2 _
o (o 9() - 2()
B14,(0)xRN |z — y|NF2s

o) = wn (1)
o=y

2
dx dy

2
dx dy

+2 /
(Bi4p(0)\By 1 g (0)) xRN (3.36)

) (@ 0() — ()P
|z — y[Nt2s
B4, (0) xRN r—y

2n(2) = za(0)P
oy W

dx dy

vz f
(Bi+5(0)\By 4 £ (0)) xRY

2 _ 2
- wa(@0() ~ 2w
Bl+p(0)><]RN

o =¥

+ |(—A)s/2wn|2daj

J!
Bi4p(0\B, £(0)

N 2/ 2 (2)?]@(2) — 2(y)|”
Bl+p(0)><RN |£L. - y|N+2S

+ 2/ (—A)/22, Pda
Bl+ﬂ(0)\B1+§(0)
= o,(1),

where in the last equality we made use of estimates (3.21)), (3.22)), and (3.34).
Since (®1,,, P2,,) is bounded in D%?(RN) x D*2(RY), we derive that

dzx dy

(—A)S/%n(—A)S/?@LndH/ (=A)* 2w, (=A)* 2, dx

B1+§ (O)

+ / (—A) 22 (—A) 2Dy + / (=A) 22 (=AY 2By nda
Bl+ﬂ(0)\31+§(0) B1+§(0)

/Bl+p(0)\31+§ (0)

1
— i* Oy Hy (W, 2n)dx — —*/ Q1 Hy (W, 2,)dx
25 JB1s, (0\By 4 (0) 25 /B, 40
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1 1
. Dy, H, (W, 2, )dx — ?/ Do H, (Wy, 2,)dx = 0, (1),
Bl+p(0)\31+§(0) s /By p(0)
which implies
/ LAY (~A) 2By da +/ (—A)*2®, ,2dz
Bl+p(0)\31+§(0) B1+§(0)
+/ (=) 22, (~A)* /2Dy, da +/ [(~A) 2@y, % dx
B14,(0)\B,, £ (0) 142 (0)
1
1 By Hoy (1, 20)d7 — o= / By Ho (1,0, By,
25 JB1s, (0\By £ (0) By, 5(0)
1
~ ox q)Z,nHz(wna Zn)dx - 7*/ (b2,nHz(q)27n7 (b2,n)dl‘
25 JBLin(0\By, £ (0) )
= o0,(1).
(3.37)
Note that from Holder inequality, (3.35)) and (3.36) we obtain
/ [(*A)S/zw"(*A)s/z(ﬁLn + (*A)S/zzn(*A)s/z(p?y"]dx
Bi+(0\B, ¢ (0) (3.38)
= 0,(1).
Moreover, combining (2.1)) and ( - we deduce
/ <I>17nHw(wn,zn)dx+/ Dy H, (W, 2n)dz
Bl+p(0)\Bl+§(0) Bl+p(0)\Bl+§(0) (339)
=o0,(1).

From (3.37), (3-38)), and (3-39)), we obtain

/ (—A)/20, , Pdz +/ (=A)2®, |2 da
G (O

1 1
— 27* (I)l,nHw(q)l,na (I)Ln)dl‘ — 27*/ @27nHZ(¢2,n, @27n)d$ = On(l)
s B1+§(O) s /By, p(0)
Note that

(—A)* 2y [ d

[ a0,

RN

— [ AP
Bl+§ (0)

[(=2)*2@1 0> + [(—A)*/2@s,,

(=2)* 2@y, | da

A dx

/Bl+p(0)\B1+§(O)

[ AP (-8) s, Pl
142(0)

= on(l) */ I R
1+L 0
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Using ([2.1)), we obtain

H((I)l,vu (p2,n)d:17

RN

= / H(@Ln,(ﬁgm)dl‘
Bi14,(0)

= / H(‘I)Ln,q)g,n)dl‘—F/ H(@17n©27n)dx,
Bi4p(0\B, £ (0) B4 2(0)

from where we deduce
/ H(*A)S/Q‘I)l,n 2+ |(*A)S/2q)2,n|2}dx - H(®1,n, P2)dr = 0n(1),
RN RN

i.e.,
(@00l + (@22 = [ H@1 @2)d = 0,(1).
R

From the definition of Sg, we have

1 *_
(1210l + 122l [1 = 7110 + @277
H

= (|1, + [|[@2,nl* — ﬁ[llqhnll2 + (|20 (3.40)
< [ A P (8) 2 Plda — [ (1,0 )
= 0,(1).
On the other hand,
@1 + (|2,
- / (=A)2®, ,|2dx +/ (=A)/?D, , [2de
Bi15(0)\By ¢ (0) B142(0)
+f (AP Pdnt [ |(-8) 70, P
B140(0\By1 £ (0) Biye(0)

Hdux.

o+ [ AR (-8) s,
Bl+§(0)

Since @1, = wy, P2, =2, In Bl+§(0) and that BH%(O) C B3(0), we obtain

11,01 + |20l < 0n(1) +/ [(=2) 2@y * + [(—A)* 2Dy, |,

B2(0)

which implies

1210l 4 122,07 < 00(1) + [ (=) 220 + (=) 2w, da
U£:1Bl(yk)
L
<onV)+ D0 [ A 4 (-8)25, Plda
k=1 B1(yx)

<o0,(1)+ L sup / [|(—A)S/2wn|2 + |(—A)S/2wn|2]dx
Bi(y)

yERN
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SN/Qs
Son(l)‘i'Hi
2
Then
1/2 SN/4s
<I>n2+<1>n2> < on(1) + ;
(120l 4 122]7) < 00(1) + =2
ie.,
. GN/4s 2% —2
O ol + [|®2n])% 2 < 0 (1 +<7)
(1P1nll + [[®2,nl])* ™ < 0n(1) 7
or
GN/As\ 2;-2 2 2\2*% -2
o) = (Z5) S Il 12aal) (3.41)

Using (3.40) and (3.41)), we have that

1 SN/Aey2i-2
(110l + 120 ]2) [1 4+ 00(1) — —75 (P4 ]

S%E2\ V2
= ([|®1l* + ||<I>z,n||2){1 + S?j” [On(l) - (%)22_2]}

1
< (1R1nll* + [1®2,0]1) [1 - W(II‘PMII2 + P20
H

2)%2] = ou(1).

But the equality

N, 26 N/ 4s N
£(2572)757478(N—28)7N—2870

implies
) ) 15 (25 -2)/2
(21l + 122l [1 = (5) ] < 0nl0),
and then (1, ®2,) — (0,0) in D*2(RY) x D2(RYN). Since w,, = @1, 2, = P2,
in B1(0), we deduce that

0= / H(_A)S/QHMF + |(_A)S/22n|2]d33 = ||(I)1,n||2 + ||(I>2’n||27
B1(0)
which implies
/ {|(—A)S/2wn|2 + |(—A)S/2zn|2} dr — 0 asn— oo.
B1(0)

But this convergence contradicts that

/ [1(-2)72w, 2 4 |(~8)22, ") de = 2 yneN.
B1(0)

Therefore, (ug,vo) # (0,0).
Now we show that there is (7,,,(,) € D*2(RY) x D%?(RY) such that (7,,, () is
a (PS)z sequence for J,, satisfying

Tn(z) = up(z) — R%N_Qs)/Quo(Rn(x —xp)) + on(1),
Cu(x) = vp(z) — R%N72S)/2v0(Rn(x —Zn)) + 0n(1),
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up to a subsequence of (u,,v,). For this, we consider 1 € C{°(RY) such that
0 <(x) <1forall z € RN and

(1, ifxeBy(0),
vie) = {o, it z € BS(0)

and consider (7, (,) a sequence defined by

) — RN=29/ 204 (R, (2 — 2) ) (R (2 — ), (3.42)
— R%N_2S)/2’U0(Rn($ - xn))"/}(Rn(x - xn))? (343)

8

Tn(2) = up(

where (R,,) satisfies R,, = % — 00. From (3.42)) and (3.43]), we obtain

~—

vp(

R0 (0) = RZNPun () — o (Ru(x = 2n) )¢ (R (2 = 20)),
RE NP6 (2) = RE N P0,(2) = vo(Bu(x = 20))$(Ba(x — z0)).

Making a change of variable, we conclude that
_ z o z
RPN (b on) = R 2 () — o

R,
R%QS_N)/QCn(Ri +xn) _ R,(fs_N)/Zvn<Ri +$n) _ Uow(Ri)-

Now we define

Tn = ]?,S?S_N)/QT,Z(Ri + xn) and ¢, = R;QS_N)/QCn(Ri + xn>
n

n

Since

wp () = ]-35125_1\[)/21%(]%i + xn) and z,(z) = R;QS—N)/%TL(Ri + mn>

implies : "
Ful(2) = wp(2) — uo(z)w(Rin : (3.44)
Cnl2) = 2nl(2) — vo<z>w(Rin). (3.45)
If
o) =v(7) (3.46)
then

(2 {1, if z € By, (0)

0, ifz € B:, (0).

From (3.45)), (3.44]) and (3.46]), we derive that

7~'n(z) = wn(z) - UO(Z)%(Z)7
Cn(2) = 2n(2) = vo(2)thn (2)-
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The result is proved if we show that ugy, — ug in D*?(RY) and vytp,, — vp in
D*2(RY), and that (w,, 2,) is a (PS)z sequence for Ju. For this, we note that

[uotn — uol|?

= [ =82 uat, — w)Pds

_ / |uo (2)¥n () — uo(@) — uo(y)¥n(y) + uo(y)|
]RZN

|z —y|V+2e

2
dx dy

[ ) —n0) ¢ (440~ D) = 54D
= Jin EEyThsEs v
o () P () 1 (0)
<i [, R e dedy
— 2U xTr) — U 2
raf 1) tPle) P

Arguing as in the proof of (3.21)), if we replace w, by ug, and ¢ by 1, since
supp(¥n) C By(0), we can see that

/ [0 (@)P*[9n(@) = W 5 0 _ 1)) (3.48)
R2N

|J3 _ y|N+2s

Moreover, taking into account that |1, — 1| < 2, |, — 1| — 0 a.e. in RY and
ug € D¥2(RY), the Dominated Convergence Theorem implies that

/ ¥ (y) — 1[%|uo(z) — uo(y)|®
]RZN

lo — y|N+2s

dz dy = o,(1). (3.49)

Combining (3.47)), (3.48)), and (3.49)), we obtain ug,, — ug in D*2(RY). Similarly
arguing, we obtain vgt, — vy in D*2(R"Y). Hence,

Tn(2) = wp(2) — uo(2) + 0, (1),
Ca(2) = 20(2) — vo(2) + 0, (1).

Since w,, — ug in D*2(RY), 2, — vy in DS2(RN), w,, — up in RY and 2, — o,
by [10, Lemma 2.2],

L8y e = [ Ayl [ -8) 2w~ o)+ 0u(0),
RN RN

RN
L

By [3, Lemma 7.2], we have

(-8) 2zt = [ I8y ol [ 1(-8)2(en o)+ 0,(1)
RN RN

H(wy, zp)dx = H (ug,vo)dx + H(w,, — ug, zn, — vo)dzx + 0, (1)
RN RN RN

which implies that
Joo(’ﬂan) = Joo(wnazn) - joo(uo,'UO) + On(l)

Therefore, Joo(Tn,(n) — € as n — 400, where ¢ = ¢ — Joo(ug, vo). Moreover, using
Holder’s inequality and [3, Lemma 7.2] a direct calculation gives us

Hjéo(%mgn) - jo/o(wmzn) + jo/o(UO»UO)H(DXD)’ — 0.
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Since (ugp, vg) is a nontrivial critical point of 7., we conclude that

jo/o(%nagn) - jolo(wnyzn) + jolo(uO:QJO) + On(l) = jolo(wnyzn) + On(l)

Since
0< ||j<;o(Tna<n)H(D><D)’ < ||L7<;o(7~—na<n)‘|(’D><D)’a
it follows that J. (7, (,) — 0 and the proof of Lemma is complete. O

The next result is a version of nonlocal global compactness result for a fractional
Laplacian system in RY of the result due to Struwe that can be found in [26].

Theorem 3.2 (A global compactness result). Let (un,v,) be a (PS). sequence for
T with (Un,v,) — (ug,vo) in DS2(RN) x DS2(RN). Then, up to a subsequence,
(un,vy) satisfies either,
(@) (Un,vn) = (ug,vo) in D52(RN) x DS2(RN) or
(b) there exists k € N and nontrivial solutions (z§,(3), (22,¢2), ..., (28, ¢k) for
the system , such that

k
(e, o) 12 = [l (w0, w0) 17 + D (=3, I

Jj=1

k
j(unavn) — j(UQ,’Uo) + ZJOO<287<8)

j=1

Proof. From the weak convergence and a density argument, we have that (ug,vo)
is a critical point of J. Suppose that (u,,v,) % (uo,vo) in DH2(RYN) x D*2(RV)
and let (wl,zl) C D*2(RN) x DS2(RY) be the sequence given by (wl, zl) =

n»n

(U, — uo, vn — vg). Then by hypothesis, (w}, z) — (0,0) in D*2(RY) x DS2(RY)

and (wl,vl) 4 (0,0). Applying [16, Lema 4.6] and [3, Lemma 7.2], we obtain
Too Wy, 2) = T (U, 0n) — T (10, v0) + 0 (1), (3.50)
T (wy, Zi) = T (tn, vn) — T (10, v0) + 0n(1). (3.51)

Then, we conclude from r ) and (3.51) that (w),z}) is a (PS)., sequence for

Jso- Hence, by Lemma [3.1} there are sequences R w1 CR, zp1 C RN, (24,¢3) €
D*2(RY) x D%2(RY) nontrivial solution for the system (2.2)) and a (PS).., sequence
) C D32(RY) x D*2(RY) for J., such that

w? () = wh(x) — RO 222 (Rt (= w01)) + 0n(1),

(TL7Tl

2(x) = 21 (2) — RYY 22 (Rup (@ — 201)) + 0n(L).
If we define

1 _ p(2s—=N)/2 1 T

(bn(x) - Rn,l wn(Rn,l +xn,1)
s— x

W) = B (),
~9 (2s=N)/2_ 2( %

R ( nt);

@) = Rl (s
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then we have

W2 (x) = B (z) — 28 (x) + 0n(1), (3.52)
Zn(x) = Uy, (2) — (o) + 0n(1), (3.53)
1950l = llwnll, 1251l = llzall, (3.54)
/N H(®L, wl)de = N H(w}, 2} )da. (3.55)
Hence, ) ’
Too (@ V7)) = Too (Wp, 2), (3.56)
JL(®L Uy 0 in (DSHRY) x DH2(RY)). (3.57)

By (3.56) and (3.57) and from item (a) of Lemma we have that (&1, ¥l)is a

bounded sequence in D*2(RY) x D*2(RY) and, up to a subsequence, we have
(Pn, ¥3) = (2,Gg)  in DV*(RY) x D¥*(RY) (3.58)
Again, using [16] Lema 4.6] and [3, Lemma 7.2], we obtain
Too (W, Z3) = Too (P, ¥) = Too(20,Go) + 0n(1)

e (3.59)
= j(una Un) - j(u07UO) - joo(zoa CO) + On(l)a
Tao (@3, 20) = Too (B, 03) — T (2. Co) + 0n (D). (3.60)
If (w2,22) — (0,0) in D*2(RN) x D*2(RY) the proof is complete for k = 1, because

in this case, we have

oty v 12 = [l (a0 w0) 1 + 11 (20, Go) >

Moreover, using continuity of J,, we obtain
j(unvvn) - j(u()?vo) + JOO(Z(I)aC(%)
If (w2,22) 4 (0,0) in D*2(RYN) x D*2(RY), by (3.52)-(3.53) and (3.58)) we have

(w2,z2) — (0,0) in DS2(RY) x D*3(RY), and using (3.59)and(3.60) we conclude
that (w2,22) is a (PS)., sequence for Ju.

By Lemma there are sequences (R,2) C R, (z,2) C RY, (22,¢3) €
D*2(RY)x D*?(R") nontrivial solutions of (2.2), and a (PS),, sequence (w3, 23) C
D*2(RY) x D2(RY) for J. such that

wi(z) = @2(x) — LY 222 (Rua(e — 20.2)) + 0u(1)
23 (x) = 22(x) = RS 2@ (Ro2(x — 202)) + (1)
If
@ (e) = RE; 0 (5 + ),

Wiio) = RO

(o) = B2l

Zw) = R (s
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then
w2 (z) = B2 (z) — zg(z) + on(1), (3.61)
Zy(x) = Wi (x) — (5 (x) + on(1). (3.62)

Arguing as before, we conclude that
1@, Z)I1P = Nl (wns va) 12 = [l (w0, v0) I* = 11(20, o)1 = [1(=5, I + 0n (1), (3.63)
Too (W, 20) = T (tn, vn) = T (w0, v0) — Too (29, C) = Too (25, G§) +0n(1),  (3.64)
Tao (@, 23) = Too (97, 07) — T (25, G5) + 0n(1). (3.65)
If (w3,z3) — (0,0) in DQQ(RN) x D%2(RY), the proof is complete for k = 2,

n7 n

because in this case ||(w3,23)]|? — 0 and from (3.63]), we have

2
(e, 0) 12 = [l (w0, w0) I + D (=5, DI

j=1
Similarly, if (w3,z3) — (0,0) in D%2(RY) x DS2(RY) then the continuity of Ju
assures us that Ju (w03, 23) — 0, and by (3.64) we obtain

2
j(unavn) — j(“Ova) + ij(zg)vg(]))
j=1
If (w2,23) 4 (0,0) in DS2(RY) x DS2(RY), we can repeat the same arguments

before and we can find (2§, (}), (22, C3), . - -, (2671, ¢¥~1) nontrivial solutions for the
system ([2.2)) satisfying
(@5, Z)I* = [l (un, va)I* = [l (w0, v0) I — Z 1(5. G)II* + 0n (1), (3.66)

j=1

1
Too (25, C) + 0n(1). (3.67)
1

k
\.7 ('UJZ;ZZ) j(unavn) - j(u0700) -
J
From the definition of constant Sy, we obtain
o 2/2* o
(/ H Q) Sp < NG QIP =12 k-1 (3.68)
RN

Since (zg, Cg) is a nontrivial solution of (2.2)), for j =1,2,...,k — 1, we have

n%awsz%mm
RN
Hence,
.l < =S5*, j=1.2,.. k-1 (3.69)

From and -, we have
k—1
(@5, Z9)1% = 1l (s va) [P = | (o, wo) I = D [1(z5, G)II* + 0a(1)

Jj=1

k—1
N/2s
< wm, ) = o, 00) I = 3 85/ + 00 (1)
j=1

= [t va) I = [ (10, w0) 1> = (k = 1)Sy"** + 0 (1).
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Since (uy,, v, ) is bounded in D*2(RY) x D*2(RM) for k sufficient large, we conclude
that (wk,z%) — (0,0) in D*2(RY) x D*2(RY) and the proof is complete. O
The following two corollaries are immediate consequences of Theorem

Corollary 3.3. Let (uyn,vn) be a (PS). sequence for J with ¢ € (0, % SN/QS).
Then, up to a subsequence, (Un,v,) converges strongly in D*2(RN) x D* 2(RN),
Proof. Since (uy,,v,) is bounded in D2?(RY) x D%2(RY), we have

(tn, Un) = (ug,v0) in D*2(RYN) x D2(RY)
and a denseness argument implies that J'(ug,vg) = 0. Suppose, by contradiction,
that

(U, vn) # (ug,v0) in DH2(RY) x DH2(RY).
From Theorem there are nontrivial solutions (z3,¢3), (23,¢2), ..., (2§, ¢k) of
system (2.2) and k € N such that

k
(e o) 2 = [l (w0, w0) 17 + D 123, I

=1

k
j(unavn) — j(uovvo) + ZJOO<Z87<8)

Jj=1

By (2.1), we have

J (uo, vo)
1 1
=ﬂWwM”5/(W%%M m——/Ame
RN

= 2o, w0}l + 5 / H (g, vo)dz — | (o, )] (/ H (ug, v0)d

- — - / HUO,’UO

s
=~ | H (ug, vo)dz > 0.
Then
k k
j N N
= T (uo,v0) + Y Too(20:G) =Y Too(28,61) = —S ST
j=1 =1
which contradicts ¢ € (0, +; SN/QS). O

The next corollary tells us that the functional J satisfies the Palais-Smale con-
dition.
Corollary 3.4. The functional J : D*2(RY) x D$2(RY) — R satisfies the Palais-

Smale condition in (%Sg/%’ %Sg/%)_

Proof. Let (un,v,) C D¥2(RY) x D*2(RY) be a sequence such that
T (Un,vn) = ¢ and  J'(un,vs) — 0.
Since (un,v,) is bounded in D*2(RY) x D2(RY), up to a subsequence, we have
(tn,vn) = (ug,v0) in D*2(RY) x D2(RV).
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Moreover, J (ug,vg) > 0. Suppose, by contradiction,that
(tn,vn) £ (ug,v0) in DS2(RY) x DH2(RY).

From Theorem there are nontrivial solutions (23, ¢}), (23, ¢3), .., (2§, ¢¥) of sys-
tem (2.2)), and a k& € N such that

k
1 Cn, 0) 12 = [l (w0, w0) I + D (=, DI

J=1

k
T (tn,vn) = T (0, 00) + ¥ Too (25, G) = ¢

Jj=1

Since J (ug,vo) > 0, it follows that k = 1 and (2}, (}) cannot change sign. Hence,
c = J(ug,v0) + Joo (0, v0) = T (u0,v0) + SN/ZS

By the definition of Sy, J'(ug,vo) = 0, and

s
T (ug,v9) = N H(ug,vo)dx
N
we have
2 s s
;SN/Q <j(u0,vo)+ SN/2 =c,
which contradicts ¢ € (%Sg/257 2—]\‘?52/25). O

Corollary 3.5. Let (un,vy) be a (PS). sequence for J with

ks N/2s (k+ 1)3 N/2s
ce (TSh™ = Si'™),
where k € N. Then the weak limit (uo,vo) of (un,vy) is not trivial.

Proof. Suppose, by contradiction, that (ug,vo) = (0,0). Since ¢ > 0, it follows that
(Un,vp) 7 (0,0) in D*2(RV) x D%2(RY). By Theorem up to a subsequence,

we obtain

(et vn) [1* = [ (20, v0) ||2+Z|| (=9, OI* = ZII 25, G)lI%,

Jj=1

k
; +1)s s
I (un,vn) = T (1o, vo) +;~7w(zéa% Zjoo Q) =c> %55/2

which contradicts ¢ € (%Sg/%, ng/%). O
Next we consider the functional f : D%2(RY) x D*2(RY) — R given by
flu,v) := ||(u,v)|? —|—/ (a(x)u? + b(z)v?)dx
RN
and the manifold M C D*2(RY) x D*2(R") given by

M= {(u,w) € D¥2(RY) x D*2(RY) : - H(u,v)dx = 1}.
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Remark 3.6. Note that if (u,,v,) C M satisfies
f(un,vn) = ¢ and f/|/\/l(un7vn) -0,
then the sequence (wy, z,) C D¥2(RY) x D*2(RY), where
(W, 2n) = (C(N—Qs)/4sum C(N—Qs)/4s,un)
satisfies J (wn, 2,) = &cV/2% and J'(wn, 2,) — 0.

The remark above combined with Corollary [3.4] leads us to the following result.

Corollary 3.7. Suppose that there are a sequence (un,v,) C M, and a number
c € (Su,2%/NSy) such that f(un,v,) — ¢ and f'|pm(un,v,) — 0. Then, up to a
subsequence, (Un,vn) — (ug,vo) in DS2(RN) x DS2(RY) for some

(uo, vo) € D**(RY) x D**(RY).
rom Corollaries [3.4] and [3-7] we have the following result.

Corollary 3.8. Suppose that there are a sequences (un,v,) C M and a number
c e (SH,225/NSH) such that f(un,vn) — ¢ and f'(up,v,) — 0. Then J has a
critical point (wo, z9) € DS2(RN) x DH2(RN) with J(wo, 20) = ScN/2.

4. TECHNICAL LEMMAS

In this subsection, we prove some properties of the function ®s; given in (1.6).
Note that

(5., Bsp) C L= {(u,v) € D*(RY) x D*?(RY) : u,v > 0}. (4.1)
Moreover, making a change of variable we can prove that
N
®s, € LYRYN) for g € (m,2:}, V8 >0, Vb € RY. (4.2)

Lemma 4.1. For each b € RN, we have
(1) sl prrcomny — 0 as § — +oo;
(ii) ||Pspll 1,00 (rry — +00 as 6 — 0;
(ill) |@splq =0 asd — 0, forallg e (N%Qs, );
(iv) |®splq — +o0 as § — oo, for all g € (N%QS,Z:)

Proof. Using the definition of ®5;, we have

C(S N;ZS
[V®s.6(x)| = 5w
(62 + |z — b2 "5
where C is a positive constant. Thus
~ N+2-—2s ~
||<I>57b |H1,(x>(RN) =Cé" 2 , C>0
and consequently (7) and (i7) follow. Now, note that
(@52 éqéqm,N)JrN/ ( 1 )7Q(N{25)d &0
= 2 ) > )
oblg gy V1 + 2|2 :
and so, for all ¢ € (55,2}, (iii) and (iv) follow. O
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Lemma 4.2. For each € > 0, we have

/ [(=A)*2®s02dz — 0, asd — 0.
RN\ B(0)

The proof of the above lemma can be found in [I3] Lemma 4.2].

Lemma 4.3. Assume condition (HT). Then:
(i) for each € > 0, there are § = §(¢) > 0 and 6 = §(¢) > 0 such that

sup f(o®sp,t0Psp) < Sy +e¢, Ve (0,0]U [§,00);
beRN

(ii) for each § >0, we have

lim  f(lo®sp, toPsp) = Sh.

|b]—~+o00

Proof. (i) Consider b € RN, ¢ € (£, po] and t € (1,+00) with %4—% =1. Bya
simple calculations,

<2t < 2%,
N —2s s
Since ®5; € LYRN) for all d € (%2) we obtain [®s[2 € L{(RN). Then,

using Hoélder’s inequality and a change of variable, we have

6(N72s)/2 ot 1/t
20, < ¢
/]RN a(z)|Psp|"dz < Mq(/}RN ‘ 02+ |z — b|2](N_23)/2| dz)
5(N725)/2 1/t
=liho( | s oo 42)
Ry | [02 + |2[2](V—29)/2

1/t
—laly( [ 1osolaz)
RN

= |a|,|®s0l3;, VbeRN.

Arguing in the same way, we have
/ b(2)|®sp|*dz < |bly|Psol3, Vb ERN.
RN
From Lemma iii), given € > 0 there exists § = §(e) > 0 such that

€ €
sup f(lo®sp,t0Psp) < Su+ -+ =< Su+e Ve (0,4]
bERN 2 2

On the other hand, suppose g € [p1, &) with ¢ € (1,400) and % + 1 =1. In these

conditions we have 2t — 2* > 0, |®5,|%* € L*(RY) and for § > 1, |®5,| € L®(RN),
and so |®s,]? € LY(RY). Thus, using Hélder’s inequality with exponents ¢ and ¢
and remembering that [|®s0[l2x = 1, we deduce

1/t
& [ a@ls,Pde < laly( [ 1950d2)
RN RN
2t—2*
= Blaly@salt ([ 1200
RN

25— N 2t—2%

< Blal,06 = —F, VbeRN.

1
vag)(43)




28 J. N. CORREIA, C. P. OLIVEIRA EJDE-2022/79

Once (QSEN)(ﬁ) < 0, given ¢ > 0, there is § = 0(€) > 1 such that

2s— N 2t—2%

) Vo € [0,00). (4.4)

€
< —_—

205C aly
Arguing in the same way, we have

25— N 2t—2%

tg/ b(@)|®sp2de < £2]al,C6 T 75, Wb e RV (4.5)
RN

Combining (4.3), (4.4), and (4.5]), we obtain

22 sup / a(x)|®s 52 de < E, V6 € [0, 00),
beRN JRA 2

t2 sup / b(x)|®sp|2dz < E, V6 € [0, 00).
. 2

beERN
Therefore,
f(€0<1>5,,t0<1>57):/ |(—A)S/2€o<1>57b\2da:+/ [(=A)* 2D 4| da
RN RN
+eg/ a(a:)\tI)g,dex—!—tg/ b(w)| D502 d

RN RN

<Sy+e VbeRN VSe ), o00).
(ii) Since

F(loPsp, toPsp) = /N |(—A)s/2fo‘ba,b|2d$+/ [(=A)* 2D | da
R R

N

+f%/ a(z)|®57b\2dz+t3/ b(x)|@57b|2dx
RN RN

= Su +£3/ a(:c)|<1>57b|2d:c+t(2)/ b(x)|®s % dur,
RN RN
it suffices to prove that

lim (zg /RN a(x)|®s 4| de + 13 /RN b(m)\¢5’b|2dx) =0, V§>0. (4.6)

|b|] =00

Note that given € > 0, there are kq, ko > 0 such that

2s/N
(/ a(x)N/Qsdx) <€ Vp>ki, (4.7
RN\ B,(0)

LN/
( / 5.4 2sdx> - ( / 5.0
RN\ B, (0) RN\ B, (0)

Let ko = max{kj, k2} and consider

ko <2p < |b] (p fixed) (4.9)

N2
2sdz) <e Vp>ky (48)

and note that
B,(0) N B,(b) = 0. (4.10)
Using Holder’s inequality with exponents N/2s and N/(N — 2s), and taking into

account (4.7)), (4.8)), (4.9)), and (4.10]), we obtain
/ a(x)|®sp|*de
RN
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2s/N
< (/ aN/stx) (/ |D5.5
RN\ (B, (0)UB, (b)) RN\(B,(0)UB,(b))

N—2s

% da:) "

s/
() (g

2s/N . N
+ (/Bp(b) aN/Qde) (/Bﬂ(b) |‘1)6,b\25dx> N

2s

2s/N N N—2s
S (L )
RN\B, (0) RN\B, (b)
2s/N . N—2s
+ ( / aN/Qsda:) ( / |<I>5’b|28da:)
RN RN\B, (b)
N —2s

2:da:)

2s/N
+ (/ GN/2Sdf,C> (/ |¢5,b
RN\ B, (0) RN

< e+ €2|a|N/23 + €.

Arguing similarly for the second part of (4.6)), we obtain
/ b() |y |2 < c€® + | os + €
RN
and the proof is complete.

Lemma 4.4. Under Assumption (HS),

sup f(fO(I)(s’b, tO(I)(;yb) < 22S/NSH.
6>0,beRN

2:d1:)

N—

2s

29

Proof. Using the definition of F, Holder’s inequality with N/2s and N/(N — 2s),

and condition (H8), we obtain

sup  f(Lo®sp, toPsp) < Su + L5lalnj2s + 56| n/2s

§>0,beRN

< Sy 4 Sp2%/N —1)=22/Ng,.

In what follows, we consider the function
0, if|z] <1
§la) = {1, if |z > 1
and define x : D*2(RY) x D*2?(RN) — RN+ by

) = g [ (56 [BI-A) 2P + 3= 20 lde = (Bl 0). 3w 0),

||

where

Blu,v) = ¢ / 1G] (—0)*2ul + 83 (—A) 0 da,

~ Su

RN |7

o) = g [ S@IBI-AI 2 + (=)0 Pda.

Lemma 4.5. If |b| > 1/2, then

b
B(Psp, Psp) = ol +o05(1) asé —0.
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Proof. By Lemma there is & > 0 such that

1 T
5(@0nBs) = 5= [ BN s + l(-8) s
Su Jp.w) 2l
2+ t2 T
- |t / Ay 2, (4.11)
Su Jrv\s. o) |7]
Rl

/ ‘(—A)S/%I)(;’b‘zdl‘ <€,
Su Je.o)

for all § € (0,4). On the other hand, for € > 0 sufficiently small and |b] > 1/2, we
have

T b
|m — m‘ < d4de, Vzx € Be(x),
and so
b 2+t §
W OS—; : / %K—A)Sm@g,bﬁdx‘ <de+e, Vo€(0,9). (4.12)
Be(b)

From (4.11)) and (4.12), it follows that

b 02+ 2 T
1B(®s5, Psp) — 7| < ’6(‘1)5,67‘1’5717) o / —|(—A) 2Dy, 2d$‘

] Su B.(b) |z

02+ 12 x b

+‘ 0 0/ L (=N 2Pg |2 —

S Jp.w) |7 10|

< Ce, Ve (0,0).
This completes the proof. (I
Now we define the set
1

S = {(u,0) € Min(u,0) = (0, 5)}

Lemma 4.6. The set & is not empty.

Proof. Since that @50 is an odd function and B, (0) is symmetric, we have that
B(®s,0, Ps0) = 0. From Lemma we see that

Y(®s,0, Ps0) = 0 asd — 0. (4.13)
On the other hand
05 +to s/2 2
Y( P50, Ps0) =1 — [(=A)¥ 205 0| "du, (4.14)
Su JBi(0)

and moreover, by [24, Proposition 2.2], we see that

/ |(—A)S/2(I’5,0|2d1‘ S / |V(I)570|2d.73
B1(0) B1(0)

2
come [
Buo) L+ [2PJV 272

< Co*2 0, asd— +oo.

Combining (4.14) and (4.15) we have
Y (P50, Ps0) = 1, as d — +oo. (4.16)

By (4.13) and (4.16) there is §; > 0 such that (®s, 0, Ps,0) € S O

(4.15)
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Lemma 4.7. The number co = inf(, »)es f(u,v) satisfies the inequality co > Sg.
Proof. Since & C M, we have
Su < co. (4.17)

Suppose, by contradiction, that Sy = ¢9. By Ekeland variational principle [31],
there is (uy,,v,) € DS2(RY) x D*2(R¥Y) such that
1
H(up,vp)dz =1, 7(up,v,) — (0, 7), (4.18)
RN 2

Fun,vn) = S, flm(un,va) — 0. (4.19)

Then, (un,,v,) is bounded in D*2?(RY) x D*2(RY), and, up to a subsequence,
(tn,vn) = (4,9) in DS2(RN) x DS2(RN).
N-—2s N-—2s N—2s N—2s
If (wn,2n) = (Sg™ upn,Sy™ v,) and (w, 2) = (S™ u,Sy™ ¥), we see that
(Wn, 2n) — (W, 2) in D*2(RY) x D*2(RY), and so, by (#.19) and Remark we
obtain

T (W, 2n) — %Slg and J'(wy, zn) — 0.
We are going to show that (w,z) = (0,0). First of all, note that
(tn,vp) A (@,9) in DS2(RY) x DS2(RY), (4.20)
because otherwise (@, o) # (0,0) and

SHg/ |(7A)S/2ﬂ|2dsc+/ [(—A)*/206|2da
RN

RN
</ |(7A)S/2fa|2d9c+/ |(—A)S/217|2dx+/ a(x)\ﬂ|2dx+/ b(z)|o|*dx
RN RN RN RN
:SHa

which is a contradiction. Thus, (wy,z,) /4 (0,2) in D*2(RY) x D$2(RY) and,
since (wn, zn) is a (PS), sequence for 7, by Theorem we have

T (wp, z) = T (@0 2)+ij (ud vj)—iS%
ny~n ) j:100070_NH'
Using J'(ul,, v}) = 0, we obtain
T@,2) =0, k=1, wlvl>0, Ju(w2) = i/ H(w,5)dz,  (4.21)
N Jan

which implies that (w,z) = (0,0). Then (wy,z,) is a (PS). sequence for J
such that (wn,z,) = (0,0), (wn,2n) # (0,0), [on a(x)|wy]?dz = o0,(1) and
Jan b(2)|20|?d2 = 0,,(1). Therefore,

= joo(wnazn) +/

RN

a(z)[wn|Pdz + /RN b()| 2 Pz (4.22)

and
| T s (Wn, z0) | Dx Dy < NN T' (Wny 20) | (DxDY + On(1). (4.23)
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From (4.22) and (4.23) we conclude that (w,, z,) is a (PS). sequence for J,, and
by Lemma E there are sequences (R,,) C R, (z,,) C RY, u}, v} nontrivial solution
of (2.2) and (7, () a (PS). sequence for Jo such that

N—2s

wn(z) = Tn(z) + RHTU(I)(Rn(I - zn)) + On(l)v

N—2s

zn(x) = Gul(z) + RnTvé(Rn(a? —x,)) + on(1).
Setting

N—

2s ~ >
(@) = Rn? ug(Ro(x —2,)) and  (u(z) = Ra? vg(Ra(z — )
and making change of variable, we have
T o0 (P Gu) (91, 92) = T oo (4, 00) (91,0, 92.0) = 0,

for all (¢1,p2) € D**(RY) x D**(RY) and for all n € N; thus (7, C,) is a solution
of (2.2)), for all n € N. Moreover, from definition of (7,,(,) and by (4.21)), we
obtain

N-—2s
On :

aw) =a@ =e(mrympp) | e

Therefore,
un(x) = ﬁ(l’) + (I)&n,bn (SL’) + On(l) and Un(m) = Cin(x) + q)én,bn (.’E) + On(l)v

where
() = SH 7 1a(x), Cu(x) =S (),
B, 5, () = ST 7 Folw) = ST Cula).

By (4.21), we derive that 7, — 0 and {, — 0 in D*2(R"), which implies that
7o — 0 and (, — 0 in D*2(RY). Therefore, from (4.18)), we have

1
(07 5) + On(l) = Kf(“n,’vn) = K((I)(sn,bny(bén,bn)

which implies that

(1) B(®s,.b,> Ps,.0,) — 0,

(ii) (®s,,b,> Ps,,0,) — 1/2.
Passing to a subsequence, one of the following cases must occur.

(a) 6, — +oo when n — +o0;

(b) 8, — 0 # 0 when n — +o0;

(¢) 0p, — 0 and b, — b when n — +oo with [b] < 1/2;

(d) 8, — 0 when n — +oo and |b,| > 1/2 for n sufficiently large.
Suppose that (a) is true. Then
2+ 3

SH

YLs, b Lo b,) =1 — / [(~A) 205 4 |Pde
B1(0)

and by Lemma [.1] we deduce that

£%+t3 s/2 2
(@5, 1 Ps,.0,) — 1] = 0 (D)5, 5, Pdr = 0,(1)
H B1(0)

which contradicts (ii).
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Suppose that (b) is true. In this case we may suppose that |b,| — 400 because
if b, — b, we can prove that

®5, 5, = P55 in DVARY).

Since 7, ¢, — 0in DS’Q(RN) and u, =T+ Ps, b, +0n(1), v, = Cn+Ps b, +on(1),

n 09 LX)

we see that (un,v,) converges in D%2(RN) x D*2(RY) but this is a contradiction

with (4.20]). Hence,

02+ t2 ,
V(s b0 Po ) = — 0/ [(=A)* 25 4, |*da
B1(0)

SH s

02+ 2
- OStI ; AN\B (0) |(_A)S/2(I)‘Smbn|2dx (4'24)
1

0 + 15
=1- Os 0/ [(=A)2®5. o|*da.
H Bl(_bn)

Applying Lebesgue’s theorem we can show that

/ (~A)2,,
B1(—by)

and from (4.24)) we obtain v(®s, 5, , Ps, »,) — 1, as n — 400, which again contra-
dicts (ii).
Suppose that (c) is true. Note that

2dr =0 asn— 400

02412
(@5, 5, Bs, 5, ) = D10 / (=A)2D;, ;. [2da

2+ t2
~ 5t / (~A) 205, [de (4.25)

Therefore, using again the Lebesgue theorem, we deduce that

02 4 t32
lim 0t

—A) 205 oPdr =1
n>+too Sy /Bl(bn) I(=4) 3.0l

From (4.25) we obtain v(®s, s, , Ps,5,) — 0, which again contradicts (ii).
Suppose that (d) is true. Since |b,| > 1/2 for n large, we have that b, /4 0 in
RY. From Lemma we have

bn,
B(®s,,.6, Ps,.0,) = [on] + 0n(1).
Thus, 8(®s,, b, Ps, 5,) 7 0, which contradicts (i). So, Sy < ¢o and the proof is
complete. [

Lemma 4.8. There is §1 € (0,1/2) such that
(a) f(é()q)&,bath)zh,b) < %a Vb € RN;
(b) Y(Ps, b, Ps,.0) < 1/2 for all b € RY such that |b| < 1/2;
() 1B(Psy,5, ®s,0) — 17| < 1/4 for allb € RN such that |b] > 1/2.
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Proof. From Lemma [4.3] we can choose ¢ = 952 > 0, §, < min{d,1/2}, and
conclude that

co—Su co+Su

Flo®s,p,to®s,5) < sup f(loPsy b, toPsy ) < S+ ——F— = ———, (4.26)
beRN
for all b € RY. Now by the definition of ¢ and Lemma we have

B @s2) = 1= 2 [ 8) g,
H B1(-b)

and by Lebesgue Theorem

Lo + to
Su

[ Ieayas s -1,
B1(—b)

thus v(®s55, Psp) — 1 as & — 0. The above convergence assures us that there is
6 > 0 such that v(®sp, ®s5,) < i forall 6 € (0,0). Choosing &, < min{4,1/2} we
have

1 1
V(s Poup) < 5, Wb E RN with [b] < 3 (4.27)
Furthermore, by Lemma there is & > 0 such that
b 1 < 1
B(®sp, Psp) — —| < =, V3 €(0,6), with [b] > <.
' ’ |b] 4 2
Thus, choosing 85 < min{4,1/2} we obtain
b 1 1
|B(®s5.,0, Posp) — W <7 e RY, with |b] > 3 (4.28)

Finally, choosing §; = min{ds, 4,05} the result follows from (4.26]), (4.27), and
@29). 0

Lemma 4.9. There is 65 > 0 such that
() f(Lo®s,p,toPs,p) < L3 for all b€ RY;
(D) ¥(Psy,0, oy p) > & for allb e RN,

Proof. Given e = ©=51 > 0, by Lemma we can choose 83 > max{d,1/2} such
that

Sy +c
Flo®s,, to®s,) < sup f(lo®sy, to®s,) < “

, VbeRN. (4.29)
beERN 2

On other hand,
Z+13
Y(Psp, Psp) =1 — D/ (—A)*250*dae
Su JBi(-v)
and applying [24] Proposition 2.2] and Lemma see that

/ [(=A)2®50%dz — 0 as § — +oo.
Bi(-b)

Thus, for each b € RY, v(®s,, P55) — 1 as § — +oo; hence, there is § > 0 such
that

, Vo e (6, 400).

N |

Y(Ps,0, Pop) >



EJDE-2022/79 FRACTIONAL SYSTEMS SYSTEMS WITH CRITICAL GROWTH 35

Choosing 8, > max{d,1/2}, we have

1
Y ®si Poi0) > 5, Vb RY. (4.30)
Now, choosing d; = max{d3,d4} the result follows of (4.29)) and (4.30). O

Lemma 4.10. There is R > 0 such that

(a) f(lo®sp,to®sp) < 9L for all b for which |b| > R and § € [61,62];

(b) (B(®s,p, Ps,p)|b)ry > 0 for all b for which |b] > R and 6 € [61, d2].
Proof. From Lemma assuming § = % > (0, we can find R; > 0, big enough,
such that

s
Fllo®sy to®sy) < Sp + 6 = H;CO, Vb:|b| > Ry, and 6 € [01,8,],  (4.31)

and item (a) follows.

Now, for each b € RY we consider the sets (RY),” = {z € RY;(z|b)g~r > 0}
and (RY), = RN\ (RV)}. Since € varies in the compact set [, 2], we can prove
there is Ry > 0 big enough and r € (0, %) such that the following things are true if
‘b| Z RQ and ‘b— b0| = %,

By (bo) = {z € RY;[b—bo| <7} C (RY);.
Initially, note that for every x € B,.(by), we have
(=) 2057

_ / |sp(z) — ®6,b(y)|2d
RN

|z —y| 2
N—2s N—2s
cd 2 cd 2 2
/ ![62%4'2],%25 prly—b |
> dy
By ()\B; (b) o =y
C(SN725 1 1
Z/ — - —— | dy:=H; >0
BN o) (DN + 51552 67+ 4175
Thus,
(B(Ps56, Psp) |b)rr
02 42 b b
> OS 0{/ ( |)H1d +/ (l‘l )|(_A)S/2(I)5,b|2dm}
H B, (bo) |15| ®"); 7]
LGB+ .
A [ e[ (Carate)
H B, (bo) |33|| | RNy (4:32)
0+ t3 s
> 20 ey [ Pde-pl [ (-8) e Pds)
H B, (bo) || RN),
€2+t2
= B b — o [(—2)/2,, 2z},
H (RN),
where

H2 = Cl/ d
B,.(bo) |z]
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Moreover, using [24, Propositin 2.2] and spherical coordinates, we deduce that

/ |(—A) 25, (z) Pdr < / |(—A)2 () Pde
®Y); B3, (b)

<0 / |(—A)*/205,(z) [Pda
Bg_ (b)

<0 / |(—A)*/2050(x) P
Bg, (0)

B A
=2 e (0) (1+ |2[2)N+2s+2

— CgéN—2sR;(N+2*4S)
where we can choose Ry > 0 large, such that for all b € R with |b| > Ry, we have

/ (—A)/28; ,(2)2dz < Ho. (4.33)
&™)y

Therefore, from (4.32) and (4.33)), it follows that

é% + t(% s/2 2
(B(Psp, Po,p)|b) = T|b|{H2 - [(=A)* " Ps4(2)] dﬂﬁ} >0, (4.34)
H RN),
for all |b] > Ry and for all § € [§1,02]. Now, choosing R = max{R;, Ry} the result
of (L31) and (L34). 0

5. PROOF OF MAIN THEOREM

To prove Theorem [I.1] we first fix some notation and give some more technical
lemmas. Consider the set

V= {(b,8) € RY x (0,00) : |b| < R and § € (61,02)},

where 41,2 and R are given by Lemmas [£.8] [£.9] and respectively.
Let Q : RY x (0,00) — D*2(RY) be the continuous function given by

Q(b,6) = Psp.
With the above notation, we define the sets
© := {(Q(b,9),Q(b,9)) : (b,9) € V},
H:={hel(ENM): h(u,v) = (u,v), Y(u,v) € ENM: f(lyu,tov) <
Fr'={ACInNM:A=h(0),hecH}

Note that © C XN M, © = Q(V) x Q(V) is compact and H # 0, because the
identity function is in H.

co+ Sy
2

b

Lemma 5.1. Let F:V — RN*! be the function defined by

2 2
F(b,0) = (ko (Q,Q))(b,0) = eOSZtO /RN (

Then the topological degree is d(F,V,(0,1/2)) = 1.

e E(@))|(~A) 2D, 42 da

m7
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Proof. Define Z : [0,1] x ¥V — R¥*! the homotopy by

where Z is the identity operator. Using Lemma and Lemma we can show
that (0,1/2) ¢ Z([0,1] x (9V)), i.e.,

18(@p.5, Bpg) + (1 — )b £0, Vi € [0,1] and ¥(b, 5) € Y (5.1)
or 1
t’y(q)b,(;, (I’;,’(;) + (1 — t)5 75 5, Vit € [O, 1] and V(b, 5) € oV. (52)

Since, (0,1/2) ¢ Z([0,1]x(9V)), we have that d(F,V, (0,1/2)), d(Z(t,-), V, (0.1/2))
is well defined and by properties of the topological degree

d(F,V,(0,1/2)) = d(Zy, V, (0,1/2)).
Since (0,1/2) € V, we deduce that
d(F,V,(0,1/2)) = d(Zy,V,(0,1/2)) = 1.

(]
Lemma 5.2. If A€T, then ANS # 0.
Proof. It is sufficient to prove that for all h € H, there exists (bg, dp) such that
(0 H o (Q. @) (bo,0) = (0, 2)
Given h € H, let Fj, : V — RN be the continuous function given by
Fn(b,0) = (koho(Q,Q))(b,0).
Now we show that Fj, = F in dV. Note that
8y =11, UTL, U I, (5.3)
where
Iy :={(b,01) : [b| < R}, Iy :={(b,82) : [b] < R},
I3 := {(b,d3) : |b| = R and 6 € [§1,02]}.
If (b,0) € II, then (b,9) = (b,071). and by Lemma (a), we have
F(oQ(b,8),t6Q(b,6)) = F(LoQ(b, 61), 16Q(b, 1))
= f(lo®s, b, toPs, b) (5.4)
Sty em,.
If (b,9) € Iy, then (b,d) = (b, d2), and by Lemma a), we have
foQ(b,6),t0Q(b,6)) = f(Lo@(b, 62), toQ(b, 52))
= f(loPs, .6, t0Ps,,0) (5.5)
< SH;“’, Y(b,6) € T,
If (b, 0) € I3, then [b| = R and 6 € [61, 2] and by Lemma [£.10|(a), we obtain
Su + o

F(LoQ(b,0),t0Q(b,0)) = f(loPsp, toPsp) <

S Vb ETL (5.6)
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Combining (5.3)), (5.4), (5.5), and (5.6)), we obtain

Su + co

floPsp, toPsp) < 5

, V(b,0) € OV.
Thus,
Fn(b,0) = (koho(Q,Q))(b,0)
= (ko h)(Q(b,6),Q(b,))
= k(h((Q(b,0), Q(b,9))))
((Q(b,6),Q(b,9)))

= (ko (Q,Q))(b,9)
= F(b,8), V(b,6) € V.

Since (0,1/2) ¢ F(9V), we obtain
d(Fn,V,(0,1/2)) = d(F,V,(0,1/2)).
By Lemma we have
d(Fn,V,(0,1/2)) = d(F,V,(0,1/2)) = 1,
and there is (bg, dp) € V such that

Fn(bo,d0) = (ko ho(Q,Q))(bo,do) = (0, %)

and the proof is complete. O

Proof of Theorem[I.1. We define the number

= i f
¢ Eérdﬁ?&f(“’”)

and for each ¢ € R, we define the set
f4={(u,v) eTNM: f(u,v) <q}.
We start our analysis by noting that
Sy <c<2/Ngy. (5.7)
In fact, by Lemma

c fl‘rér(g,r}}?éf(uvv),(Jg&)lgef(u,v)

< sup f(fo@&b, toq)57b) < QQS/NSH.

(b,6)ERN x (0,+00)
On the other hand, by Lemmas [£.7] and we obtain

Sp<co= inf f(u,v)

(u,v) €S

= 1 f
It max, f(u,0) (5.8)

< sup Flo®sp, to®sp) < 225/N Sy,
(b,6)€RN X (0,4-00)

from where it follows (5.7).
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Using the definition of ¢, there exists the sequence (u,,v,) € X N M such that
f(un,v,) — c. Suppose, by contradiction, that f’'|a(un,v,) # 0. Then, there
exists (Un,,Vn;) C (Un,v,) such that

1 | m(tn, s vn,)]|l« > C >0, VjeN.

By a deformation Lemma [31], there exists a continuous application 7 : [0,1] x ¥ N
M — YN M and ¢y > 0 such that

(a) 1(0, (u,v)) = (u,v);
(b) n(t, (u,v)) = (u,v) for all (u,v) € foU{(ENM)\ ft<}and all t € [0, 1];
(C n(l,fc—l-eo/Z) C fC—éo/Q_

From the definition of ¢, there exists A €T such that

c< max_ f(u,v) <c+ 6—0,

(uv)€A 2
where
Ac fets, (5.9)
Since A € I' we have A C (X N M) and there exists & € H such that
h(©) = A. (5.10)

From the definition of 7, we have
n(1, A) C (TN M). (5.11)

Let h, : (ENM) — (XN M) be the function given by A, (u,v) = n(1, h(1,v)). Note
that h, € C(ENM, SN M).
We are going to show that

feteo\ pemco f223/NSH \f(SH+Co)/2. (5.12)
Indeed, given (u,v) € feT€ \ f¢=¢ we have
c—¢€ < f(u,v) <c+eg
and by , for €y sufficiently small, we obtain
c—eo < flu,v) <c+e < 225/N G,
Now, combining Lemma with , we have

S
H;—CO <Co—€0<C—€0<22S/NSH,
S
$<co—60§c—eo<f(u,v)

which implies (u,v) € fQZS/NSH \ fSE+e0)/2 from where it follows (5.12).
Consider (u,v) € (XN M) such that
S
Flu,v) < H; “, (5.13)

Then h(u,v) = (u,v) and from (5.13), we have that

Sp+eco

(uyv) g f277 S\ f715
and by (5.12), we have (u,v) ¢ fet<\ f¢=%. Thus,
(u,v) € fOU{EZNM)\ foFo}
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and by (b), we obtain 7(1, (u,v)) = (u,v). Therefore,
h. ( ) (1 E( )) = 77(1, (u,v)) = (U,U),

which shows that h, € H, and so,
Hence,
= inf ,v) < ,). 5.14
c=in (ung}é)?LgAf(u v) < (ungngf(u v) (5.14)
On the other hand, by (c¢) and ., we obtain

n(1,A) € n(, fH3) c feF
That is,

€0 ~

f(u,v) S Cc— 57 V(U,U) € 77(17“4)’
which implies that
max  f(u,v) <c— 2,
(u,v)€n(1,4) 2
which is a contradiction. Therefore, we must have

Fun,vy) = ¢ and  f'|pm(un, vy) — 0

and from Corollary up to a subsequence, we have u, — ug, v, — Vg in
D*2(RY), and satisfies

f(ug,v0) =c and f'|pm(uo,vo) = 0.
By Corollary J has a critical point (wo, 29) € DS2(RY) x D*2(RY) such that

j(w07 ZO) = %CN/287
and by , we obtain

s N 2s N
NSfQIS <L7(U)0,ZO><NS;IS.

The positivity of (wp, z0) is a consequence of maximum principle that can be see in
[25, Proposition 2.17]. |
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