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INITTAL-BOUNDARY VALUE PROBLEMS FOR NONLINEAR
PSEUDOPARABOLIC EQUATIONS IN A CRITICAL CASE

ELENA I. KAIKINA

ABSTRACT. We study nonlinear pseudoparabolic equations, on the half-line in
a critical case,
Ot (u — Ugg) — AUz = Mulu, x €RT, >0,
w(0,z) = ug(z), =z €RT,
u(t,0) =0,
where @ > 0, A € R. The aim of this paper is to prove the existence of global

solutions to the initial-boundary value problem and to find the main term of
the asymptotic representation of solutions.

1. INTRODUCTION

We study the following nonlinear pseudoparabolic equation on the half line, with
Dirichlet boundary condition,

Or(U — Ugz) — QUzy = NMulu, = €RT t>0,
u(0,2) = uo(z), = €RT, (1.1)
u(t,0) =0,

where o > 0 and A € R.

The Cauchy problem for nonlinear pseudoparabolic type equations was studied
in many papers (for example, see [I1], [12] 13| 14, 15| 26|, 30, 31]). The large time
asymptotics of solutions to the Cauchy problem was obtained in papers [1]-[4],
[18, 22} 23, 27, 28, [33].

In this paper we study the initial boundary-value problem in a critical
case, when the nonlinear term of equation has the same time decay rate as
the linear terms. Recently much attention was drown to the study of the global
existence and large time asymptotic behavior of solutions to the Cauchy problems
for nonlinear equations in the critical cases (see papers [6]-[10} 20} 21}, [24] 25] and
literature cited therein). A general theory of nonlinear nonlocal equations on a
half-line was developed in the book [I6], however the case of nonanalytic symbols
K(p) in the right-hand complex plane was not studied previously. In the present
paper we fill this gap, considering as example the pseudoparabolic type equation
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with a symbol K(p) = ap?/(1 — p?). We construct the Green operator for
problem posing some necessary condition at the singularity point p = 1 of
the symbol K (p). Another difficulty which we overcome in the present paper is in
evaluating the contribution of the boundary data into the large time asymptotic
behavior of solutions. In this paper we will prove that in the case of the initial-
boundary value problem due to boundary data the solution obtains an additional
decay comparing with the case of Cauchy problem. As a result the main term of the
asymptotic expansion does not depend on the mean value of the solution instead
it is determined by the first moment of the solution. Thus we have to estimate
the evolution of the first moments to obtain an optimal time decay estimate of the
solution. Also we are interested in the case of large initial data. Using the energy
type a-priori estimates for the first moment of the solution we are able to remove
the smallness condition for the initial data. The asymptotic behavior of solutions
is founded by the standard way developed in the book [19].
Below gi; is the Laplace transform of ¢ defined by

~ +Oo
3(6) = / e~ () dz,

Here ‘
£ = (m) ! [ et
is the inverse Laplace transform of ¢. By C(I; B) we denote the space of continuous
functions from a time interval I to the Banach space B. The usual Lebesgue space
is denote by LP(R1), 1 < p < oo, the weighted Lebesgue space LP>*(R™) is defined
by
LP(RY) = {¢ € L'(RT); [|gllLre = [[(2)¢llLe < o0},

where (z) = y/1+ |z|?, a > 0. Weighted Sobolev spaces we define as follows
k
W (RY) = {6 € LR ) [|6]yye = D [970llur < o0},
=0
where k>0, a > 0, 1 < p < 00.Also we denote by H**(Rt) = W5*(R*). Define

“+ o0
At / £(Golt, x))2dx = 1,
0

where the heat kernel
2

Go(t,x) = (47Tat)_1/2£e_ﬁ.
Denote
“+oo
g(t) =1+ |0|nlog(l+1t),0 = / xug(z)de.
0
Now we state the results of this paper.

Theorem 1.1. Assume that N0 < —Ce < 0. Let the initial data up € L (RT) N
LR Y), a € (0,1] are small ||ug||Les +||uo||1.1+0 < &. Then the initial-boundary
value problem (1.1) has a unique global solution

= C([O, OO);LOO(R+) ﬂL1’1+a(R+))
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satisfying the time decay estimate
[u(t) = 0Go(t)g™ ()L < C(t) " g2 (1) (1.2)

Using the method of papers [I7, [I8] we can remove the smallness condition on
the initial data ug(x).

Theorem 1.2. Assume the initial data ug € W2O(RT)NWIO(RT)NLLITo(RT),
0 < a <1, are such that A0 < 0. Then the initial-boundary value problem (1.1|) has
a unique global solution

u(t, ) € C([0,00); L*(RT) "LV (RT))
satisfying the time decay estimate
lu(t) — 6Go(t)g ™" (t)l|lL= < C(t) g7 %(t) loglog g(t). (1.3)

We start with a section where we obtain preliminary estimates for the linearized
initial boundary-value problem corresponding to (|1.1)). Also we prove a local exis-
tence theorem. In the next two sections we prove Theorems[I.1]and [T.2] respectively.

2. PRELIMINARIES

2.1. Green operator. Consider the linear initial boundary-value problem on half-
line
O(U — Upy) — QUgy = f(t,x), x€RT, >0,

u(0,7) = ug(x), x€RT (2.1)
u(t,0) = 0.

Taking Laplace transform with respect to space variable we get

2 s 2 i1y ~
(0, p) = o (p), (2.2)
u(t,0) = 0.

We rewrite
(1 —p*)0ti — ap®i = f1(t,p), (2.3)
where

-~ 927 1uy (0, ) oIt tO
fit.p) = Ft,p 2Z+—ap Z ),
J=1 Jj=1

Integrating ([2.3)) with respect to time, we obtain

t
1
itp) = K )+ [ KOO g, (24)
0 -bp
where )
ap
K@p)=-—-L_
) =1

Note that symbol K (p) is not analytic in right-half complex plane. Therefore we
have for solution u(t, z)

1 14+e+ioo
u(t,x) = —/ eP*u(t, p)dp.

2mi 14+e—i00
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To satisfy zero condition for x — +0o we need to have

res(u(t,p),1) = 0. (2.5)
We have by definition
res(u(t,p),1) = lim u(t, p)dp
r—=0Jc,
= lim u(t,p)dp + hm u(t,p)dp,
r=0Jc, 1, peD+ —0Jc, ,peD-

where
Co1 = {pe C:p=1+4pe?,p>0¢c [O,Zﬂ')},
and by D*, D~ we denote domains where Re K (p) > 0 and Re K (p) < 0. Since for
pE Op,l
a(l + pei®)?
Kp) =GP
pe'? (2 + pe'?)

it is easy to see that

lim u(t,p)dp = 0.

r=0.Jc,  peDt
We rewrite formula (2.4)) in a domain, where Re K (p) < 0 in the form

1
p2 fl (T7p)d7_)

+oo
a(t,p) = efK(p)t(go(p) +/ e~ K)(t—7) -
0 _

T k)L
—/t e P mfl(ﬂp)df

We have

+oo
lim dp / —K@)(t=7)
=0 Jc,  peD- t

To satisfy (2.5 we have to put the following condition for all p € D™, Rep > 0

1
1 _pzfl(Tvp)dT = 0

+oo 1
W)+ [ KO A = (206)
0 -

Note that function f; includes two unknown boundary data u(t,0) and wu,(0,1).
Also we have two roots ¢;(§) of equation £ = —K(p). By direct calculation we

obtain
d
“\e + o =g + o

Since we are interested in Re& > 0 and Rep > 0 making the change of variable
¢ = —K(p) we rewrite condition (2.6]) as one equation with two unknown boundary
data u(t,0) and u,(t,0)

+oo
ﬂ0(¢1) + % A eif‘rfl (7-, g)d’]’ = 0, (27)

where
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So we have to put only one boundary conditions in the problem (2.1) and rest
boundary data we will find from equation (2.7). Putting «(¢,0) = 0 in equation
&) we get

~

LT (t, 0) + 0ua (1,0)) = (1 — ¢t (1) + F(€, 61).
So that

~

2 (£,0) + a1, 0) = = /“’0 (1 — §2)iio(61) + FI€, 1))

% —100
1 100 ~ -
= 5= . (1 — H%)(UO(%) + f€, ¢1))de
_ L e £t M =X
- 2mi [ime ( f+a + f(& ¢1))dE.

Substituting this representation into (2.4)) we obtain

u(t,p) = Li(t,p) + L(t,p), (2.8)

where

_ ot _ e Uo (1)
I,(t,p) = e KWy _Lif dre~ K@) T)/ grtol9r) 4
1(t,p) =e to(p) —pam ), O . Eta 3
=J1+ Js

and

IQ(tvp) =

1 ! K t
([ e

1—
P2 Jo (2.10)

~

1 t 100 ~.
~ 5 i dTe—K(P)(t—T)/ T (§,¢1)d§)

100

Now we consider I; in the representation (2.8). Changing the order of integration,

« 1 t _ _ 100 ﬁ0(¢1)
Jo= % 2 | gre K@ T)/ e o(1) |
2T 1—p22mi Jy e —iooe E+a ¢
ke @1 [T Gg(hy) e FE@NE
€ -
1—p22mi ) ;0 E4+a  K(p)+¢

de.

Since ¢ is analytic in right-half complex plane and Re ¢ > 0, Re K (p) > 0 for all
Rep =0, Re& > 0 via Cauchy Theorem we obtain

© a(g) 1
/_m tra K@) 1l ="

Therefore,

PR 1 /m To(¢y) et :

L —~d
l—p?2mi J ;o €+ K(p)+¢
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Taking inverse Laplace transform with respect to space variable we obtain

g O [ e L[ (01
= g L L e

100

_ a ’ §tu0(¢1) > Pt 1
(2m’>2/mf Eta /,mdp OERED)

a0 i) [0 L. 1
~(2mi)? /_m dte E+a /_mdpep —ap? +¢(1—p?)

Since
100 1 1 100 1
dpeP* =— dpeP* ——m8 ————
/—ioc r —(a+&p*+¢ a+& ./ i (p—¢1)(p — ¢2)
1 1
= —2mie??® _
atps— P
using ¢1 + ¢ = 0, we obtain
-1 _ o 10 Ettpom 1 ~
(Jo) = —— d ———Ug(—2).
Lo () = =55 se 2T a)ig, 00
We have . ¢ .
e
b= ()=

200 E+a’ 2y (E+a)?
Making the change of the variables p = ¢o we obtain

1 e ~
L) = =5 | dee™ P ghiig(~ o)
1 K (p)t+
_ dpe—K®)t+pzg (_
omi | P to(—p)

at
=e L e Uy (—p) }.
Substituting this representation into (2.9) we get

L1 (L) = G(t)uo, (2.11)
where the Green operator G(t) is given by
G(1)6 = e~ L {7 (3(p) — (—p))}- (2.12)

Now we consider I3 in the formula (2.10)). In the same way we get

t +oo 1
*1(12):/0 dr/o dyf(r,y) Ly {e KW —— (7 —e) ). (213)

-Pp
We have
E;l{e—K(p)(t—T) : 7p2 (e—py _ epy)}
+oo
_ [m d2L1 {efK tf-r)}ﬁzfl{l (e77v — ).

Taking into account

1 1
-1 =Py _ PY\) — Z(p—lz—yl _ —lztyl
L {1_p2(e e )} 2(@ e ),
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we get
1
—1f,—K —T _
L, {e (p)(t )1_72)2(6 Py _ epy)}
+o0 1
B /,oo d2Lszs {e_K(p)(t_T)} el — el
+o0 1 ) (t—7) 1 Y(t—T) | | 2ol
= E_ e~ K(p T E— e~ K(p T —le=yl _ g-lzty )dZ

Substituting into (2.13)) we obtain

LHIL) = /0 Gt —T1)Bf(r)dr, (2.14)

where operator G was defined into (2.12)) and operator B is defined as

1 [t
Bo=y [ (e - o)y,
0
Also by direct calculation we can obtain another representation of operator B
B=(1-03)""
Indeed, we put Bw = u. Taking Laplace transform with respect to space variable

and using u(t,0) = 0 we get

(t,€) = g ({1, ) — s (0,1)). (2.15)

§

To satisfy lim, o u(t,z) = 0 we need to put the following condition
rese—1€5" (W (t, &) — u(0,t)) = 0.

Therefore we obtain
ug(0,1) = W(t, 1). (2.16)

Substituting (2.16)) into (2.15) we find

+oo
BwZ/O B(z,y)w(y)dy,

where

[t

B(x,y) = =(e” 177l — g~ lztuly,

Note that B(x,y) > 0 for any > 0, y > 0. From (2.8),(2.11) and (2.14)) we obtain
integral formula for solution of (2.1))

o |

t
u(t, z) = G(#)uo +/ Gt — 7)Bf (7)dr (2.17)
0
We can easily see that
1Bé|L- < Cllgllwr (2.18)
forall 1 <r < oo and
1Béllpre < Cllgllpe (2.19)

for any b > 0.
We first collect some preliminary estimates of the Green operator G(t) in the
norms ||¢||L» and ||¢||p1.14w, where w € (0,1), 1 < r < co.
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2.2. Preliminary lemmas. We introduce the operator Gy(t) given by

+oo

Go(t)¢ = Gi(t, 2, y)(y)dy,

0
where the kernel is

(@—y)? (@t)?
Gl(t,:v,y):(47rat)_1/2(e_ T e dar )

We first prepare some preliminary estimates of the operator Gy(t) in the Lebesgue

norms ||¢|lLe and ||@[|L1.e = ||{-)%¢@||L1, where a > 0, 1 < ¢ < co. Denote
2
Go(t, ) = 8,G1(t, 7, y)|y—0 = (4mat) /22 — e
Lemma 2.1. Let ¢ € L"(R"). Then

1Go(t)la < C{t)2G ) ||,

forallt >0,1<qg<o00,1<r<oo. Furthermore we assume that ¢ € Lblte,

then the estimate

4l b=a
1()(Go(t)¢ = 9Go(t))|lLa < Ct™F 20772 ||g]|prase
is valid for all t > 0, where 1 < ¢ < o0, b € [0,1+ a] and

—+o0
192/ T
0

IG1(t, 2, y)| < Ct /2 Fla—ul?

for all z,y € RT, by the Young inequality we have for p = qT';: 4

Proof. Since

Foo C 2
[Go()llLa < Ct’l/zﬂ/ e T () dyl |

— z li_1
< Ct V2 TP Lo gl < OGP |g) |

for all ¢ > 0, where 1 < ¢ < 0o, Hence the first estimate of the lemma follows.

the second estimate we write

“+o0
2*(Go(t)¢ — 9Go(t, ) = / 2 (Gh(t,2,y) — Go(t, 2)y)d(y)dy
0
for any b € [0,1 + a]. Applying Taylor expansion, we obtain
|G1(t,z,y) — Go(t,x)y| < Ct 1 2ytTo(e Tle—yl* 4 e_%x‘z)
for all 2,y € RT. Hence in the domain y < %

xb|G1(t7$7y)_Go(t,J)) | C’ o> a+1 b _T|x‘2
C —14bsa > ya+1 _T‘ﬁ\z

By the Lagrange finite differences Theorem we have

|G1(t,x,y)| S ct™ 2 yueiilw ’U‘

For
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for all x,y € RT, where v € [0,1]. Taking v = 1+ a — b, in the case b € [1,a + 1]
we get for y > 3

2’|Gi(t,2,y) — Go(t, 2)y| < 2°(|G1(ta,y)| + |Go(t, 2)y])

14 b=a —b —Clr—yl? _3 —Crl2
< Ot 1+ xbya+1 b@ Zlz—y| +Ct 2$b+1y€ Tl

).

14 b=a _Cle—ul? _Cl,.2
< Ct 1+25 ya—'rl(e Zlz—yl te Tl

In the case b € [0, 1], we write
£L’b|G1(t,£L'7y) - Go(t, x)y|
< a’(|Gi(t @, )|+ [Go(t, 2)y])° |G (t, 2, y) — Golt, z)y|'
< Oty | A 5)A=0) 1y (a4 D(A=0) (o= Fla—yl® 4 o= Flal®)

< Ct—l-ﬁ-b*T“yl-i-a(e—%lx—y\z +6_%‘x‘2),
for all z,y € RT, y > 2. Thus we obtain the estimate
2’|Gh (t, @, y) — Go(t, 2)y| < Ct*l#%alyl““(e*%‘z*yf + e*%x'Q)

for all z,y € R*, and for any b € [0,1 + a]. Applying the above estimate with
Young inequality we find

1()*(Go ()6 — IGo(t)) s

“+o0
- ||/0 2*(Gi(t,z,y) — Go(t, 2)y)d(y)dyl|Ls

—a +oo
< Ct‘HbTH/ (e~ Flo=vl 4 o= Ty g (y) | dy Lo
0

< Ot g g,
Thus the second estimate follows and the lemma is proved. ([l

Denote by G(t) the expression

G(t)p = e~ L {07 ($(p) — d(—p)) }.

Lemma 2.2. Suppose that the function ¢ € L>°(RT)NLY1T4(RT), wherea € (0,1).
Then the estimates

1 1

19l < e 6l + O gl
1G(t)6 — G ()L < Ot % [[§]|Lrase + e~ |@lx,
1()*(G () — 0Go)|lLs < Ct 372 (|g||paara + e[ () 00
are valid for allt > 0, where 1 < r < oco.
Proof. Note that the Green operator G(t) can be represented as
G(t)¢ = Go(t)p + e~ p(z) + R(t)9, (2.20)

where the remainder is

+oo
R(t)6 = / (R(t,z —y) — R(t. 7+ 1))6(y)dy
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with kernel .
100

1 P
R(t,.’IJ) - 270 /—iooe R(t7p)dp7
-~ atp? 2
where R(t,p) = e1-»* —e™P” — e~ From Lemma the operator Gy(t) satisfies
the estimates of the lemma . Also it is easily to see that the term e~**¢(x) satisfies
the estimate of the lemma.
Now we estimate the remainder R(t). We represent

~ atp2 4

R(t,p) = et-»? (1 — eiat#) — et

for all |p| <1, and
R(t,p) = —etp® 4 ot (eﬁ —1)
for all [p| > 1. Then we see that
BR(t,p)| < CU)P B 4 O(1)%e ! (1 - p*)
for all Rep=0,¢ >0, 0 < j < 4. Therefore,
|[R(t,2)] < Cla(t)™/%) 74757 4 Cla) ()%™
< Claft)™h) (=4
for all x € R, t > 0. Applying this estimate by the Young inequality we find
IRML- < Ct)~ 267 g s
forall 1 <¢g<r < oo and
ROl < COHTHB =[Ol + [6]Liw)

for all ¢t > 0. Now by representation (2.20) the estimates of the lemma follow.
Lemma [2.2]is proved. O

In the next lemma we estimate the Green operator in our basic norm
[9lx = sup(()[6(8) = + ()2 6(0) osvo).

where a € (0,1). Note that the L'-norm is estimated by the norm in X,

—+o0

) o)
OBl = [ lottldet [ Ll el o) e

(t)
< CDlle) I~ + )2 [|o(t)|[Lre < Cllglx-
We define
g(t) = 1+ klog(t)
with £ > 0.

Lemma 2.3. Let the function f(t, ) have a zero first moment fo+oo xf(t,x)dx = 0.
Then the following inequality

HﬂﬂAstﬂG@—ﬂBﬂﬂMNXSCWﬂﬂk

is valid, provided that the right-hand side is finite.
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: —1
Proof. Since g~ *(t) < C in view of Lemma- 2.2 we get

I / Gt —7)f(T)dT||L> + | / Gt —7)f(r)dr||p11+a

< Ol fllx
for all 0 <t < 4. We now consider ¢ > 4. From definition of function g(t) we have

Cyg™'(t) = ()",

sup g~ 1(r) < C(1 + Zlog(t)) < Cg~L(t).
relVii] 2

Therefore by Lemma and (2.18)-(2.19) we obtain
¢
I [ ot~ n)B#(r)dr|o~
0

Vi
< C/O (t =) 2B ()i + IBF(7)|Liiva)dr

t/2
Lo\ (1) /f (t = 1) (Bl + BT [paren)dr

t
g (1) / 1B () | dr,

hence using the definition of the norm in X, we get

u / G(t — 7B (r)dr |

Vi
< 0H<t>f”x/0 (t — 7)717%<T>%71d7

t/2 t

HOUD ko™ 0 [ (¢ = )71 a4 Ol o™ 0 [ ()

SO i+t g ) fllx < Ottt @I fllx

and similarly

H/ G(t —7)f(7)dr||p1ase

<c / Ol ssodr
Vi .

< Oll(0) fllx / rldr 4 O Ixg ™ (0) [ o4 tdr
0 Vi

< Ce(tt +g7t2)|() fllx < CtEg~ [ {6) flIx
for all ¢ > 4. Hence the result of the lemma follows. Lemma is proved. O

We now prove the local existence of weak solutions to the initial boundary-value

problem ([1.1).

Proposition 2.4. Let ug € LYT4(RT) NL®°(RY), a > 0. Then for some T > 0,
there exists a unique solution u € C([0,T]; LY F¢(RT) N L>(RT)) to the problem

).
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Proof. We apply the contraction mapping principle. We choose a functional space
Z={¢cC(0,T;L"R)NL2R"Y)): |ul|lz < oo},

with the norm
[ullz = sup ](IIU(t)IILwa + [lu()[|Le)-

s

For v € Z we define the mapping M(v) by
t
M(v) = G(t)up + )\/ drG(t — 7)B|v|"v (7). (2.21)
0

Suppose that the norm ||v||z < . We first prove that
[M(v)]|z <.
Applying the Lemmg2.2] we have
t
[M(v)[[Le < 1G(E)uollL~ + |/\|/ 1G(t = 7)Blv|v(7)||LedT
;Y (2.22)
< Clluglle~ +C [ [Blolo(r)lldr
0
Similarly we obtain the estimate

M) ||Lia+e < [1G(t)uo — 91GollLra+e + [|Gollrrava[[uollL: + e~ ||uoflLra+e

t
+ m/ 1G(t — 7)Blv|v(T) — 92Go||p11+adT
0
t
T / VPt = 7)[gse [Blolo(r) g dr
t
+|>\\/ e =D Blv|v(7)||p11+adT
0

t
< Cllullpirse + c/ IBlofo(r) | sedr
0

(2.23)
Using the estimate

1Blvlo(r)lz < l[o(r) [l [lv(7)]z < 6%,
From ([2.22) and (2.23)), we obtain
M)z < Clluollz + CT6* < 6

if we choose § > 2C||ug||z and T > 0 sufficiently small. Therefore, the mapping M
transforms a ball of a radius ¢ > 0 into itself in the space Z. We now estimate the
difference

1
[M(v1) = M(v2)||z < §||U1 — val|z.
We have

T
[M(v1) = M(v2)llz < C/O [1B([orlor (7) = |oafva(r)llz(t — 7)*/*dr.

Since
[[B([v1]vi(7) — [v2|va2(7))]|z < C6[|vr — v2]|z,
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it follows that
1
[M(v1) = M(v2)|lz < CT6llvy — valz < S llor —v2llz

if we choose T > 0 sufficiently small. Thus M is a contraction mapping, therefore
there exists a unique solution u(t,r) € C([0,T];LY1T2(RT) N L>°(R")) to the
problem (L.1)). Proposition [2.4]is proved. O

3. PROOF OF THEOREM (SMALL DATA)

As in reference [20] by making a change of the dependent variable u(t,z) =
v(t,z)e”?® for the new function v(t,z) we get the equation

(v — V) — Uz — A" Plofv — p'v = 0.
We assume that ¢(t) is such that ¢(0) =1 and
+oo
/ z(Xe”?|vlv + ¢'v)dz = 0.
0
Since by construction

/0+0° u(z)dr =0

the first moment of new function v(t,x) satisfies a conservation law:

d [+
7 / zv(t, z)dr =0,
0

hence f0+oo xv(t,x)dr = f0+°° zug(z)dx for all t > 0. Thus we consider the initial-
boundary value problem for the new dependent variables (v(¢, ), ©(t)),

+oo
d(v — Av) — alv = e (|v] — %/ z|v|vdz)v,
0

oo 3.1
Orp(t) = —ée_‘p/ x|vlvdz, (3:1)
0 0
v(0,2) = up(z), v(t,0)=0, ¢(0)=0.
We denote h(t) = e¥®) and write as
815(” - /Uzz) — QUgg = f(’U7 h)
v(0,2) = up(z), wv(t,0)=0 (3.2)

Ao
Oth = —f/ x|vlvde, h(0) =1,
0 Jo

where
1[re
_ -1 _ -
f(v,h) = Ah (|U| 9/0 z|v|vd:c)v.

We note that the first moment of the nonlinearity is

+oo
/0 xf(v,h)(t,z)dr =0
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for all ¢t > 0. We now prove the existence of the solution (v(¢ ,x),h( )) for the
problem (3.2) by the successive approximations (v, (t,z), hm(t)), m 2,...,
defined as follows

8t(Um - 837]»,”) - aagvm = f(vmfla hm71)>
A [0
Othy = —*/ [Vm—1|Vm—1dz, (3.3)
0 Jo
vm(0,2) = ug(x), v,(t,0) =0, h,(0)=1,

for all m > 2, where v1 = G(t)ug, h1 = g(t), g(t) = 1 + |0|n log(t).
We now prove by induction the following estimates

[omllx < Ce,
[vm () = G(t)uollLrs < Ce®g ™' (1), (3-4)
7 (8) = g(t)] < Ce(1 +logg(t))
for all m > 1, the norm || - ||x is defined as above by

éllx = iglg((ﬁl@(f)HLw + (B2 (t) [Lrara)-
By virtue of Lemma [2.2] we have

IG(H)uollL= < Ce(t) ™,
1G(@)uollrr < Ce,
Il [*(G()uo = 6Go(t, 2))|lLrs < Ce,
I+ 1*Go(t,2)[[a < Ct/2.

Therefore, estimates (3.4) are valid for m = 1. We assume that estimates (3.4]) are
true with m replaced by m — 1. The integral equations associated with (3.3]) are
written as

vm(t) = G(tyuo + / G(t — 7B (v (7), hom s (7)),
+oo
_].—7/(1’7'/ [Um—1|Um—1d.

1 [
_ -1 _
f(v,h) = Ah (|v| 7 /0 x|v|vdx)v.

‘We have

Hf(vm—l(t)vh’m—l(t))HL‘x’ < Ch'ml 1( )”U’m—l( )H1+1< ‘;| ||Um 1( )”lel)
< CeXt) g7 (1)

(3.5)

and

||f(vm—1(t), hm—l(t))||L1,l+a
< OO vs Ol [ O rsse (14 o Ol 6)

<Ce g
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for all ¢ > 0, provided that (v,—1(t),hm—1(t)) satisfies (3.4). This yields the
estimate

KE)9()f (m—1(8), hm-1(t)) [ x < Ce.
Since f(vm—1(T), hm—1(7)) have the zero first moment we get via Lemma

t
la(2) / 07 (PGt — T)BF s (7), B (7)) x < O
0
hence it follows that
lomllx < Ce, [0m(t) — G(tyuollpas < Ce2g~1(1). (3.7)

To prove the third estimate in (3.4) we need the following lemma, where we
evaluate the large time behavior of the first moment of the nonlinearity in equation
(1.1) in the critical case. As above we take 6 = f0+°° xug(z)dz.

Lemma 3.1. Assume that ug € L= (RT)NLMT¢(RT), that |luo||Le~ +]||uol|pii+e =
e is sufficiently small, and that A < —Ce < 0. Let a function v(t,x) satisfy the
estimates

@ llvllLe + [lv]lLir < Ce,
[o(t) = G(t)uollLin < C2g™(2)
for allt > 0. Then the inequality

t —+oo
- %/ dr/ elolo(r, )dz — g(t)] < Ce(1 +logg(t)) (3.8)
0 0
is valid for all t > 0.

Proof. In view of the condition ||v||Le~ +|v|L1: < Ce we get

)\ t +oo
7/ dT/ z|vlv(r, z)dz| < Cet,
0 Jo 0

hence estimate (3.8)) is true for all 0 < ¢ < 1.
We now consider the case t > 1. By the last estimate of Lemma [2.2] we get

|2(G(t)ug — Gy (t, x))||Lr < Cet™/2.
Hence we find
lz(Jolo — [616(Go(t, 2)) ) [[Ls
< C(llz(v(t) = G(t)uo) [l + 2(G(t)uo — 6Go(t, 2))|[L1)
X (J|v]lLee + 1G()uollLee + [0][|Go(t)[|Le-)
< Cet (g™ (t) +t72)
for all £ > 1. Since

+oo n
t/ 2(Golt, 2))2dz = L
0 BY

it follows that

—+o0
I/ alofo(t, @)de — 010t~ 72| < Cllz(jv]v — 10]6(Go(t, 2))*) ||
0

a
A
<Ot Heg ™M (t) +17 %)
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for all £ > 1. Therefore,

|A| t “+oo
\7 dr z|v|v(r, x)dx — |0|nlogt|
1 0

t Ce?dr ¢ a
< || ATy O T
< Ce(1+1logy(t))
for all £ > 1. Thus we obtain and complete the proof. O
By virtue of and applying Lemma we find that
[hm (t) — g(t)] < Ce(1 +logg(t))

for all ¢ > 0. Thus by induction we see that estimates (3.4) are valid for all m > 1.
In the same way by induction we can prove that

1
lvm — vm—1llx < =[|vm=-1 — Um—2||x,
SUPg_l<t)|hm(t) - hmfl(t)l
>0

1 1 _
< vm—1 = Vm—2llx + = sup g~ ()| m—1(t) — hin—2(t)|
4 4 >0

for all m > 2. Therefore taking the limit m — oo, we obtain a unique solution
1imy, o0 Ui (8, 2) = v(t, ) € X, limyy, o0 hin (t) = h(t) = ¥ € C(0, 00) satisfying
the equalities

o(t) = G(t)uo + /0 Gt — 7)BF(o(r), h(r))dr,

)\ t +oo
h(t)=1- f/ dT/ x|v|vde,
0 Jo 0

[o(t) = G(t)uollrir < Cg™ (1),
o (8) — g(1)] < C=(1 + log g(1)).
Applying and to , we have
[u(t) = G(#)uollL= < C*(t) g7 (2). (3.11)
Then via formulas u(t, z) = e~ ?®u(t, x) = h~(t)v(t, z) we find the estimates
u(t) — 0Go(t, z)e™?D || Lo
< J[ut) — (G(t)uo)e Dl + [(G(E)uo — 0Go(t,2))e * Dl (3.12)
< CE2() g (1),
where we used the estimate
1(G(t)uo — 0Go(t, x))e™?D|Le < Ot ||ug|Laira
and . By , we have
10Go(Hh™ (1) — 0Go(t,2)g ™ (Dle < Cet~1g~2(®)|A(t) - g(t)],
hence via it follows that
Ju(t) - 6Go(t,2)g ™ (O)l~ < C=2(H)~ g72(0). (3.13)

(3.9)

and the estimates

(3.10)
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This completes the proof of Theorem [T.1]

4. PROOF OF THEOREM (LARGE DATA)

Before proving Theorem we need a lemma, where we compare the solutions
of the following two problems
Ug — Upe + |ulu=f, R >0,

(4.1)
u(0,2) = uo(z), u(t,0)=0, ze€RT t>0

and
U — Ve +ev? = |f|, zERT, >0,

(4.2)
v(0,2) = |ug(z)|, v(t,0)=0, z€RT ¢t>0

Lemma 4.1. Suppose that ug € L>®°(RT)NCY(RT), and 0 < e < 1. Then |u(t,z)| <
v(t,x) for allt >0, z € RT.
Proof. Define r = v — u. Then we obtain

re — Tuy €0 — julu=|f| - f, xzeERT, t>0,

r(0,2) = |ug(x)| — up(z), r(¢t,0)=0.

We need to prove that r > 0 for all t > 0, z € RT. Define R(t) = inf,cp+ r(t, z).
On the contrary, suppose that there exists a time 7" > 0 such that R(T) < 0. By
the continuity we can find an interval [T7,T] such that R(t) < 0 for all ¢t € [T, T]
and R(T;) = 0. By [5, Theorem 2.1] there exists a point ((t) € R* such that
R(t) = r(t,¢(t)), moreover R'(t) = 2r(t,((t)) almost everywhere on t € [T}, T].
We have

(4.3)

lulu — ev? = (v — R)* —ev? >0
for all ¢ € [Ty, T)]. For the Laplacian §? at the point of maximum ((t) we have
—0hr(t,¢(1) < 0.

Therefore by equation we get R'(t) > 0 for all ¢t € [T}, T]. Integration with
respect to time yields R(¢) > 0. This gives a contradiction, hence u(t,z) < |v(t, )|
for all x € R and ¢t > 7. In the same manner we prove that v +u > 0 for all
z € R" and ¢ > Ty. Lemma[£.1]is proved. O

Lemma 4.2. Let ug € W2 (RT) NW2(RT). Then we have the following estimate
for solution of initial-boundary value problem (1.1)):

lullee < CO™*, Jlzulee < Oy~

Proof. Multiplying equation (1.1)) by 2u and integrating with respect to x € RT we
get

d

T (u®lEz + llua()]g2) + 20flua @Iz = 2A[u(®) 732,
hence integrating we see that

t t
lu()lIEs + llus ()22 +2a/0 [ (7)IIL2dr — 2/\/0 lu(r)lIf 22z dr
< |luollL> + lluos |z

= l[uolx:
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for all ¢ > 0. In particular we have
2 = sup [u(8) e < ol (1.4

[ulls.s = [[l[u(t, #)l[Ls 1Lz (0,00) < Clluolle (4.5)

From equation (|1.1)) we have
Uz (£,0) = 0.

Differentiating ([1.1), multiplying by 2u, and integrating with respect to z € RT
we get

d oo
a(llux(t)Hiz + e (D 1E2) + 20/ uee ()22 = 2/\/0 Julude,

hence integrating we see that
t —+oo
u®ls + lus®le + 20 [ fus(lEedr =23 [ Julu2ds
0 0
< laslF + lows 2 = luol

for all t > 0. In particular we obtain that the solution u(¢, z) € C([0, +o0), C*(RT)).
Now we prove the estimates

lu(®)lle < C(t) =/ (4.6)
for all ¢ > 0. Denote ©(x) =1 for all z > 0 and ©(z) = —1 for all z < 0; ©(0) = 0.

We multiply equation by £O(u(t, z)) and integrate with respect to x over Rt
to get
+o0 +oo
O (/ zu(t, £)O(u(t, x))dx — / Tz (t, )OO (u(t, :c))da:)
0 0
+oo
- a/ TUgze (t, 2)O(u(t, x))dx (4.7
0
+oo
=\ z|u|?dz.
0
Since u(t,z) € C([0, +00), C}{(RT)) we get
+oo
/ TUge (t, 2)O(u(t, x))dx = 0. (4.8)
0

Also we have

+oo d
| ot 00 (utt,a)de = Zlau(®l,
0
+oo
)\/ z|u?dx < 0.
0
Therefore by (4.7), (4.9) and (4.8]) we find
d
@”IU”LI <0. (4.10)

Integration of inequality (4.10) yields
|zl < C. (4.11)
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Now we can prove the estimate (4.6 for all ¢ > 0. Indeed, using (4.11)) in particular,
we find

Sup g (t, &) < Cllzut)|lu < C. (4.12)
(S

We now multiply equation (1.1)) by 2u, then integrating with respect to x € R* we
get

d

(IO + I IE) = 20wl + Al (413)
By construction we have

—+oo
u(t,0) = / u(t,z)dr =0
0
By the Plansherel theorem using the Fourier splitting method due to [29], we have
luz (DT = lI€a(D)1L:

~ 2 2d 52 ~ 2d
> /525'““’5)' €[2de > /|€|26|u<t75>| ¢

+oo
_ 52 ~ 2 50 52 ~ o~ 2
—5 / R /W'““’f’ ar, 0)2de

+oo 13
— 52 Py 2 _ 52 =~ 2
/0 e, ) [2de /W | / e (1, €0) e [2de

> 0%||u(t)||f2 — 26° sup |ag(t, ),
|§]<d
where 6 > 0. Thus from (4.13) we have the inequality

d ~
S lu®llE < —ad®[[u()f + 408> sup [ig(t, €)[* (4.14)
lgl<o

We choose a6 = 2(1+t)~! and change ||u(t)||f = (1+t) W (¢). Then via (4.13)
we get from (4.14])

d

W <o+ )=, (4.15)
Integration of (4.15)) with respect to time yields

W (t) < [luollZn +C((1+8)~ 2+ = 1).
Therefore we obtain a time decay estimate in the L2-norm,
Ju(t)||re < C(1+1)73/* (4.16)

for all t > 0. We now multiply equation (1.1)) by 2%u, then integrating with respect
to x € RT we get

d
& lau®lZs + e o — 2u(t)22)
i (4.17)
— ~2alleus (O + 20+ A [ afulde
0
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By the Plansherel theorem using the Fourier splitting method due to [29], we have

lous (Ol = l0cEa0IE = [ [+ acl?lde

> / €[ de| — / ||

~ 1250 2
> /W € [2de — [Ju(t) 2
“+o0
L / e (1, €) e — 52 / (1, €) P — [[ult) 2

—o0 |€]<é

> 8% |au(t)|f> — 26° S e (t, )1 — lu(®)E-

where § > 0. Thus from (4.17)) we have the inequality

& ()l 2lu(0)3:)

< —ad®|lzu(t)||fn +206° sup [Ge(t, € + 2(a + 1) u(t)||L
j€l<s

(4.18)

We choose a6 = 2(1 + ¢)~* and change ||u(t)||f = (1 + ¢)"2W(t). Then via

[E12),([E16) we get from (£I8)

dtW( )< C(1+1)2. (4.19)
Integration of with respect to time yields

W(t) < auollfn +C((1+1)2+ —1).
Therefore, we obtain a time decay estimate of the L? - norm

lzu(t)llee < C(1+1)~H*

Lemma is proved [l

By Lemmas 2.2 and [£:2] we have
t ) )
[u()[lLee < [[G()uollLe + Cﬂ (t =7) 72 |lu(r)l|L2dr
t/2
JrC/ (t — )7 |z|ulu(r) || dr

—|—C/ {t—7)" 1dT

< C(t)~ " log(t)
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for all ¢ > 0. In the same manner
102u(t)||o

<C(t / 102Gt — 7)Blu|u(7)||Ledr
<cwic / (t — )2 u(r)|Zadr + C / (t— ) u(r) |2 dr

+C/ t—7)" 2dT+C/ (t — 7)1y "2 log? (1)dr

< CO(t) " log*(t

for all ¢t > 0. Denote f(t,z) = uzyt. Then by Lemmas and we have the
estimates

I1f () lleee
= |07 (t) [
< [1070:G (t)uo]|Loe + |02 Blulu(t) L~

¢ t/2

+ C/; (t — )" H|O2Blulu(T)||L~dT + C/O (t — )73 2|ulu(r)||Ladr
t t/2

< C(t) " log™(t) + C/ (t —)"Hr) P log*(r)dr + C/ {t — 1) 3 (1) tdr
3 0

< O(t) 3 log™(t)

for all ¢ > 0. We a sufficiently small € > 0 and consider the following two auxiliary
problems

Uy —Upe +U? =¢|f|, z€RT, t>0,
U(0,2) = elup(x)|, = €RT, (4.20)
U(z,0)=0, t>0

and
Vi = Ve +eV2i=|f|, z€RT, t>0,
V(0,7) = Jug(z)], x€RT, (4.21)
V(z,0)=0, t>0.
Note that problem (4 can be reduced to problem (4.20)) by the change of variable
V =¢e U. Also note that - has a sufficiently small initial data and a small

force elugqt|. Applying results of paper we obtain an almost optimal time decay
estimate

IU@® L= < Ct)~

hence by Lemmawe get [|u(t)||Le < C{t) !
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Now we estimate the L1t norm of the solution

||U(t)||L1,1+a < ||g(t)U0HL1,1+a

t
* C/ (IBlulu(m)llgsase + (€ — )2 Blufu(r) g )dr
a/2+C/ 1||u ||L1adT+C/ t_7-%<> Lir

e e / () () e

Hence by Granwall’s inequality we obtain
|u(t)||priea < C(t)? (4.22)

for all ¢ > 0. In the same manner we estimate the L*!'*¢ - norm of f. By Lemma
22 we have

[FB)llrrve = luaae(t)]|Lrve
< [020:G (t)uo|lurvva + (|02 Blufu(t)|[Lia+e
t
i C/o {t =) llulu(r)lleassa + &= 1) lufu(r)|[g12)dr

<oy 1+ +0/0 (t—T>_1(T>%_1dT+C/O (t— )41 (r)
<Cc@y~'te.

Thus we can apply the results of paper [21] to get the estimate of the functions
U(t,z) and V (¢,z). Then by Lemma [4.1] we get an optimal time decay estimate for
the solution

[u()llLe < Ce™H{t) ™ (log(2 + 1) ™" (4.23)

for all ¢t > 0.

We make a change of the dependent variable u(t, ) = v(t, z)e~?® as in the proof
of Theorem (1.1} Then we obtain problem (3.I]) for new functions (v(t,z), ¢(t)). Now
we prove the following estimate

[o(t)[|Lia+a < C(1)*/2
for all t > 0. From (3.1)) we obtain the integral formula

olt) = Gltyuo+ A [ ard(t = DB (o) - 2 [ umles). @29
Using and Lemmawe have
t - — @ o ul\T)|v\T)ax
| [ arge=mB(uniutr) =7 [ ulor)do) g
t - @ " u(7)|v(7T)dx T
<C [t =57 [ (el
< [ r) log(2-+ 1) ol fuavedr
0
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for all t > 0. Therefore, by ([4.22)) we find

o) |[L1asa < |GE)0(0)||Liita +c/

< O()? + c/ Yog(2 4 7)) Yo(r)||prasadr
for all ¢ > 0. Hence by Granwall’s inequality we obtain

H(log(2 + 7)) "M [o(P)llgrasedr

lo(®)llira < C(H)*2
for all ¢ > 0. In the same way from (4.23)) and Lemma [2.2] we get

[o(®)ller < [1G(#)v(0)[ler

t o(r) [t
+ [ argte = nurioe) - 25 [T o
<C< —%—%(1_%)

+C/ (t—7) 22025 (1) 5 (log(2 + 7)) dr

“Llog(2 + 7)) () ||LrdT

D [ e dr

2

for all ¢ > 0. So by Granwall’s inequality we have

x)HLP

lo@)lee < Cty727207)
for all ¢ > 0. Now from (4.24) and Lemma [2.2] we get

t/2 L ’U(T)
o) =GOl < [ (6= E o) = 52 [ (el dr
+ [ e

o(r) [T°
e
t/2
<C [ - n) ) gtz 1) e

+C [ (1) *(og(24 7)) tdr

< Clog(2+1t)7*

Lo+

(4.25)
for all t > 0. Therefore using Lemm we find for h(t) = ¥

|h(t) = g(t)] < Clogg(t),
for all ¢ > 0. Then from u(t,z) = e *Wu(t, 2)

= h=(t)v(t, ), we have
lu(t) — Be™#OGo ()]
< JJu(t) = e ? G (tyuo L= + 1G(¢)uo — e # D Go(t) |

: (4.26)
< Ct 1 72(t) + Ctili? ||UO||L1,1+a
< Ct~ g3 (1)

23
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for all t > 0. Also we have

10Go(t) (A1 (1) — g (1))l < Ot~ g72(B)[R(E) — g(t)],

and so by (4.26)),

[u(t) = 0Go(t)g ™ () L= < C(1+18)" g7%(t) log g(t).

Theorem [I.2]is proved.
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