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ABSTRACT 

Program tracing is widely used for debugging and performance optimization. 

Whenever a program is traced, the overhead in terms of extra runtime and in terms of 

storage for the generated trace information are a concern. These concerns are greatly 

exacerbated on GPUs due to the large amount of parallelism. In fact, GPUs provide such 

massive parallelism that conventional tracing approaches either fail or only manage to 

trace very few events per thread. Hence, we need not only a low-overhead but also a 

space-efficient approach to make detailed tracing possible on GPUs. To the best of my 

knowledge, none of the existing GPU tracing tools support both. Thus, in this thesis, I 

developed an execution tracing tool for GPUs called ECL-Tracer that is light-weight and 

immediately compresses the generated trace data before they are stored. 
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1. INTRODUCTION 

Due to their high computational power, low cost, and energy efficiency, GPUs are 

increasingly used in various disciplines such as simulations, solving complex problems, 

climate modeling, drug discoveries, data analysis, etc. Unfortunately, writing and tuning 

programs for GPUs is more difficult than for CPUs. Tracing tools have the potential to 

play an important role in the development of high-performance GPU codes, but no 

whole-program tracing tools exist so far. The main reason is the massive parallelism of 

GPUs, which can simultaneously hold up to almost 50,000 threads. Tracing just a single 

event per thread thus produces up to 50,000 events that need to be recorded. As a 

consequence, I/O bandwidth quickly becomes a bottleneck when writing such immense 

amounts of trace data to disk or even just to memory. To make the tracing of a large 

number of events per thread and per second possible, the trace data must be compressed 

right away and quickly before it is stored. 

 

1.1 Large Size Traces 

Although tracing events helps us detect problems, growing trace-file sizes 

complicate the analysis and management of data in large-scale systems. In this section, 

some factors that contribute to large traces are explained. 

• Number of threads: This factor represents the number of threads captured for 

tracing. Collecting trace data from a larger number of threads results in 

correspondingly larger trace files. 
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• Number of event parameters: This factor represents the parameters recorded as 

part of an event. The most typical parameters include a thread identifier, a time 

stamp, memory transfer information, device specific information, and a type 

identifier [1]. In my thesis, I pass the function call location as the event parameter. 

• Granularity: The granularity of detail recorded depends on the granularity at 

which the events are traced. In my project, events are recorded wherever the user 

places a call to the ECL-Tracer in the source code. I placed such a call at every 

control-flow decision point in the code. 

• Problem size: This factor is the input size given to the program to be traced. 

Depending on the program, larger inputs may need more operations to be 

processed, which leads to generate larger traces [1]. 

Large traces prevent us from tracing for a long time as either the memory is filled 

soon or the amount of data to be transferred will become an issue. These problems will 

become worse in the future due to the rapid increase in use of accelerator-based devices. 

Equally important, within the next few years, we will witness a considerable rise in the 

amount of data to be processed by these applications, hence we need more memory and 

space to store the traces. 

To overcome the problems mentioned above, we need a tracing tool and trace-

compression mechanism to reduce the generated trace file size as the need for such a tool 

is greater than ever before. 

 



 

3 

 

1.2 Contributions 

This thesis makes the following contributions: 

1. A light-weight, portable GPU tracing tool called ECL-Tracer 

2. This tool provides efficiency in time and space. 

3. This tool incorporates a novel, incremental compression algorithm that 

compresses the traces at runtime and before writing them to memory. 

1.3 Results 

The ECL-Tracer works well for most parallel programs with an overhead of 1.03 

to 5.27. It compresses data by up to a factor of 385 and is faster than standard 

compression algorithms such as Bzip2. Moreover, the ECL-Tracer is portable and works 

on different GPU architectures. 

 

1.4 Outline 

In this thesis, Chapter 2 gives a brief overview of the background of tracing and 

data compression. In Chapter 3, prior work is explained. I introduce the ECL-Tracer tool 

and describe the design and implementation of the tool in Chapter 4. Chapter 5 begins 

with the methodology and the configuration on which the experiments were conducted 

and evaluated. Results are discussed in Chapter 6. Finally, Chapter 7 presents the 

summary and future work. 
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2. BACKGROUND 

 In this chapter I explain a brief background on tracing, the common techniques for 

implementing it, and data compression techniques. 

 

2.1 Tracing Definition and Applications 

To put it simply, when we go through a program and check the values of different 

variables and record the output, we are tracing the program. In software engineering, 

information about a program execution is collected and recorded with the help of logging 

technique. This method is generally called tracing. 

A trace program is usually referred to as a utility program that captures the 

sequence of executing events in another program [1]. A tracing routine provides a 

chronological record of the execution of a computer program [1]. The tracing is often 

performed to find out what a program exactly executes and where the origins of problems 

are [2]. Moreover, event tracing is a powerful method for performance analysis [3]. In 

particular, in parallel programs we can monitor how threads interact while 

communicating and study the effect of concurrent activities on the performance of each 

other. 

 

2.1.1 Tracing techniques 

Tracing techniques are different based on their application and the data they 

capture. However, one of the common tracing techniques in software programming that I 

used in ECL-Tracer is called instrumentation, which is explained as following. 
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Instrumentation 

The Instrumentation technique is implemented by means of adding trace code 

instructions to the main application. This technique allows us to track the execution of 

specific sections in a code [4]. In other words, it can receive and collect informative data 

and write it to the specified target such as the screen output or a file stored on the disk. 

One popular way of instrumentation is to record the information obtained from function 

calls, i.e. the location of the function in the source code. 

 

2.2 Compression 

In general, the process of reducing the size of a given data file is called data 

compression. This is useful because it reduces the resources required to store and transmit 

data. The original data can be reproduced by inverting the compression (decompression). 

Two approaches exist for compression: lossy and lossless. In lossless data compression, 

no information is lost because it exploits statistical redundancy to reduce bits. Lossy 

method, however, eliminates some detail or less-important data to reduce the data file 

size [5]. 

As mentioned above, trace data helps us study the behavior of a program. Hence, 

we need the trace data to be highly accurate. Accordingly, a good tracing compression 

algorithm is the one that not only compresses data but also guarantees the accuracy of 

reproduced data after decompression. For this reason, lossy algorithms are not suitable 

choices as they cannot perfectly reconstruct the original data. 
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There are several compression techniques used in compression algorithms. One of 

them is called table-based compression model. In this technique, a table is generated 

dynamically from the earlier data from the input. Table entries are substituted for 

repeated strings of data. LZ77, which is one of the most popular lossless compression 

algorithms, uses this model. Probabilistic models are also used in compression. In these 

models, data is compressed based on a prediction obtained by partial matching. 

 

2.2.1 Gzip 

Gzip is a utility designed for file compression and decompression. The software 

was basically created to be a replacement for the compress program and compresses 

much better than the replaced software [6]. Gzip algorithm is based on the combination 

of LZ77 and Huffman coding [7] and provides lossless data compression [8]. 

Given an input, the LZ77 algorithm looks for the repeated strings in the input data 

and replaces the second occurrence of the string with a reference to the previous string. 

This reference is formed by a pair of values: the jump, which is the distance from the 

previous string, and the length of the string. Gzip emits the strings that does not repeat in 

the input. The Huffman algorithm is then used by Gzip to compress the matching lengths 

and matching distances. Huffman coding is based on the variable-length coding 

method. In this method, the more frequent characters are assigned shorter codes [9]. 

 



 

7 

 

2.2.2 Bzip2 

Bzip2 is an open-source and high-quality data compressor that uses a stack of 

several compression techniques. It starts with Run-length encoding (RLE) [10] and 

produces blocks of size between 100 and 900 KB. RLE replaces repeating data by a count 

and one copy of the repeated element. Then it uses Burrows–Wheeler transform [11] to 

convert frequently occurring character sequences into strings of identical letters. It then 

applies move-to-front transform [12] and Huffman coding [7]. Bzip2 is more efficient 

than Gzip but tends to be considerably slower [13]. 
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3. RELATED WORK 

To the best of my knowledge, all tracing tools for GPU programs do not compress 

their output. Moreover, there are compression algorithms for GPUs but not specifically 

for tracing. As a result, I discuss the prior work in two separate sections. 

 

3.1 Tracing tools 

Tracing tools for GPUs are being utilized for performance analysis [14] [15], 

tracing memory addresses [16], etc. As described elsewhere [17], the first GPU tracing 

tools, including AMD’s CodeXL [18] and Nvidia’s Nsight [19], were proprietary tools. 

Third-party tools that provide similar functionality, such as TAU [20] and VampirTrace 

[21], typically also support for MPI. For GPUs, these tools primarily provide a visual 

representation of API calls, memory transfers, and kernel execution. A recent article 

describes a system-wide unified CPU and GPU tracing tool (CLUST) for OpenCL 

applications [22]. They added an extension to the LTTng tracing tool that enables 

programmers to gain a better global view of OpenCL applications by using GPU tracing 

along with CPU tracing. MPTrace is a debugging tool for GPUs that is based on in-line 

tracing [23]. Another debugging tool for race condition detection [24] employs an 

optimal strategy to record just the minimum number of shared-memory references 

required to exactly replay the execution. None of these tools directly compresses the 

generated trace data. 
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3.2 GPU-Compression Tools 

Several compression algorithms for GPUs have been proposed, including a 

parallel implementation of bzip2-like lossless compression [25]. Compression using this 

algorithm is slower than bzip2 but decompression is faster. Another compression 

algorithm for GPUs is CULZZSS-Bit [26], which exploits bit parallelism. Yet another 

algorithm is based on statistical and dictionary approaches to arrive at a general-purpose 

compression algorithm for GPUs [27]. Some compression algorithms for GPUs target 

floating-point data [28] [29]. However, none of these algorithms were designed 

specifically for compressing trace data. Regarding GPU trace compression, Goel et al. 

applied online stream compression to create a compact execution collector for shared-

memory parallel programs and showed that their technique outperforms Gzip [30]. 

However, they do not compress the trace data immediately but first store it in 

uncompressed format. There are several trace compression algorithms for (serial) CPU 

execution, including a hardware-based approach for trace compression and on-the-fly 

trace decompression [31]. VPC3 [32] is a program trace-compression algorithm that 

makes use of value predictors to compress traces more efficiently. There are also 

approaches for both instruction and data address traces [33]. Unfortunately, none of these 

algorithms can be readily parallelized, making them unsuitable for GPUs. 
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4. DESIGN AND IMPLEMENTATION 

In this thesis, I devised an efficient tracing tool for massively parallel programs 

running on GPUs. The tool does not incur much overhead so as not to slow down the 

execution to an unacceptable level. Moreover, it does not produce too much data per 

traced event so that a large number of events can be recorded. The basic strategy for 

tracing is to provide a simple interface to the programmer that allows the marking of all 

points in the program that should be traced, i.e., a trace event is recorded whenever a 

thread reaches one of these points during execution. I studied such traces from a suite of 

GPU programs and determined simple yet effective compression algorithms for the 

resulting type of data. Eventually, I implemented the best such compression algorithm 

directly in the tracing tool. 

This chapter describes how ECL-Tracer was designed and developed to 

efficiently trace and compress the traced data for a massively parallel program. 

 

4.1 GPU Parallelism 

CUDA Architecture exposes GPU parallelism for general-purpose computing. On 

modern GPUs, CUDA provides software programmers with three granularities, warp, 

block, and grid. 

The first level, which is called warp, is formed by grouping 32 contiguous threads 

together to work in lockstep. That is, threads within a warp must follow the same 

execution path, i.e. threads either execute the same instruction on different data in the 

same cycle (active threads) or they are disabled (inactive threads). In other words, threads 
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cannot diverge. Nonetheless, branch or thread divergence is inevitable if some threads in 

a warp do not fit into the criterion for an instruction. In this case, they jump to different 

instruction and become inactive. Inactive threads must wait while the hardware runs the 

active threads so that they can re-converge again. Thread divergence could result in 

reduction of parallelism and eventually performance loss in massively parallel 

applications that suffers from excessive divergent codes. Data can be exchanged between 

threads within a warp without an explicit synchronization. 

The second level is larger than warp and is represented by thread blocks. In fact, a 

thread block is divided into warps. In current GPUs, block allocation limits allow up to 

1024 threads per block. The programmer is responsible to choose the size of a thread 

block. 

Grids that are third level of parallelism in current GPUs can hold up to two billion 

blocks. Like for thread blocks, the grid size is determined by the programmer. GPUs 

allow cross-block communications only through the global memory which is a shared L2 

cache and because L2 cache has limited capacity (few words per thread) it is not able to 

provide fast communication between thousands of running threads by a GPU, therefore 

communication between blocks are slower than within-block communications. 

One method to obtain data from lower levels of parallelism such as warps is using 

CUDA warp-vote functions. Generally, warp vote functions take a predicate (normally an 

integer) from each thread in the warp and compare those values with zero. The result of 

the comparisons is combined across the active threads of the warp and broadcasted a 

single return value to each participating thread. One of the warp vote functions that I used 

in this thesis is ballot function. This function returns an integer whose Nth bit is set only 
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if the result of the comparison for the Nth thread in the warp is non-zero and the Nth 

thread is active [34]. 

 

4.2 Data Collection 

As mentioned in section 2.2, I used instrumentation technique to trace the events. 

This was implemented by instrumenting function calls anywhere in the code that we 

needed to obtain information about. In fact, by calling each of the instrumented functions 

we are passing parameters and record information about that specific location in the code. 

GPUs use threads for executing the codes, thus our functions are called by each thread 

reaching the function. But here are two big problems with GPUs. First of all, GPUs do 

not run a few threads, but around 50,000 of them run simultaneously. This will instantly 

create a huge amount of data that needs to be handled. Second of all, data collection can 

be more complicated by the fact that GPUs do warp based execution (cf. Section 4.1), 

which causes thread divergence. To handle these problems, I decided to take the warp as 

the main unit and use warp voting functions to collect data. Below I will explain how 

ECL-Tracer collect data from running warps. 

For each running warp, ECL-Tracer records the location of the called function in 

the code and the number of active and inactive threads in the warp. At first, all the trace 

function calls must be assigned a unique ID and added to the source code wherever data 

needs to be collected such as locations , , and  in the pseudocode on the next 

page.  

 

1 2 3 
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void traceLoc(unsigned char location) { 

  // warp voting function 

  int bmp = __ballot(location); 

  // CUT: converting bmp to sequences of bytes 

  for (int i = 0; i < 4; i++) { 

    b = bmp & 0xFF; 

    // passing bytes to next compression component 

    LZ(b); 

    bmp >>= 8; 

  } 

} 

void myKernel(int nodes) { 

  int index = threadIdx.x + blockIdx.x * blockDim.x; 

  int a[nodes]; 

 

  traceLoc(1); 

  if (index < nodes) { 

    traceLoc(2); 

    for (int i = 0; i < (nodes / 2); i++) { 

      traceLoc(3); 

      a[index] += i; 

    } 

  } 

} 

 

Then in the initialization step, the ECL-Tracer creates a counter for each running 

warp to keep track of the number of times a trace event is generated by a warp. Whenever 

a function is called, the ID associated with the function along with a bitmap of active 

threads in the warp are obtained, converted to a sequence of bytes , and passed to 

the compression phase on-the-fly . For instance, the trace function to be revoked from 

location  will be assigned number 1. When warp zero calls traceLoc (1), “1” will be 

4 5 

6 

1 

2 

1 

3 

4 

5 
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passed to the function as an argument. The trace function also records the bitmap of 

active threads using the value returned from __ballot() function. This value is a 32-bit 

integer in which each bit position represents a thread. If a warp in location  calls 

traceLoc(2) and the warp vote function returns 15, it means that only warps zero to 3 are 

active and executing the traceLoc(2). This value first will be converted to a sequence of 

bytes and then passed to next compression component . 

 

4.3 Compression 

Since a large number of threads execute the trace functions, the recorded data tend 

to be very large, thus transferring and writing them to the secondary storage soon will be 

an I/O and storage bottlenecks. Hence, I decided to design a simple yet effective 

compression algorithm. 

One approach is to compress the trace data after it completely generated. 

However, it is not an efficient way as it still needs a huge amount of storage for the 

complete trace. To overcome this problem, I took a better approach which is to 

incrementally compress the trace data as they are being generated. Implementing this 

approach required a compression algorithm that not only maintains a good compression 

ratio, but also does not incur much overhead on the system to not to slow down the 

execution to an unacceptable level. 

To find a fulfilling algorithm I used a tool called CRUSHER [29] which is a tool 

that automatically generates high-performance lossless compression algorithms by 

2 

5 6 



 

15 

 

chaining components. This tool could be limited to only synthesize GPU-friendly 

compression algorithms. 

CRUSHER was run on my previously generated traces from different parallel programs. 

Based on what CRUSHER reported, a chain of three components called CUT, LZ, and 

RLE would be a good compression algorithm. CUT is simply a type cast that converts a 

block of words into a block of bytes. LZ and RLE take sequence of values as input and 

output transformed sequences. In general, the output of one component is the input for 

the next component and the output of RLE will be the compressed trace. Figure1 

illustrates the data flow through the compression components. 

 

 

Figure 1. General information flow through the compression components 

 

The fact that first component in our compression chain is CUT simplifies the 

implementation as it indicates that byte granularity suffices for our values. To implement 

the CUT, all the trace data of more than one byte size must be interpreted to a sequence 

of bytes. For example, the bitmap of active threads is a 32-bit integer which is four bytes 

long and must be fed to LZ component as a sequence of four bytes but the function IDs 

can be directly fed into LZ as they are one byte long. The output of LZ is fed into the 

RLE component which its output is stored into global arrays, Figure2. The final traces, 
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then are read from global arrays and written out. The decompression phase is done in a 

reverse direction from RLE up to CUT. 

 

Figure 2. Diagram showing the application of CUT in the chain of compression 

components 

 

A variant of the LZ77 algorithm [35] is implemented by LZan component. It  

incorporates tradeoffs that make it more efficient than other LZ77 versions on floating-

point data and operates as follows. To identify the most recent prior occurrence of the 

current value in the trace location 1, a hash table is used. Afterward the n values 

immediately before location l is checked to see whether it matches the n values just 

before the current location. If they do not, the current trace value is released and the 

component advances to the next trace value. If the n values match, the component counts 

how many values following the current value match the values following location l. The 

length of the matching substring is emitted and the component advances by that many 

values. Smaller values of n yield more matches, which have the potential to improve 

compression, but also result in a higher chance of zero-length substrings, which hurt 

compression. The best algorithm reported by CRUSHER showed n = 2. Therefore, I 

chose LZa2 for ECL-Tracer. 

The RLE component proceeds as follows. It emits a sequence of non-repeating 

bytes and counts how many of them there are. Then it counts how many times the last 
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emitted byte repeats. It records both counts in a byte. The first count gets the lower four 

bits and the second count the upper four bits. Because there are only four bits available, 

the maximum count is 15. As a consequence, it always stops counting and moves on 

when a count of 15 is reached so that the count doesn't go higher. I used an 18-element 

buffer size for RLE which is filled with trace data. The reason to choose 18 elements is, 

at the worst case the input sequence consists of 16 non-repeating values which all will be 

emitted by RLE thus the output will be 17 elements including a counter and 16 non-

repeating values. This buffer is then copied to global arrays when either the buffer is full 

or it reaches a non-repeating value after a sequence of repeating values whichever it 

reaches first. From the perspective of memory consumption, the buffer takes only 18 

bytes to allocate per warp, which is a reasonable amount when running many warps. 

 

4.4 Decompression 

In order to process the generated compressed trace, I needed a program to read in 

the compressed data so I created a decompression program. The decompressor follows 

the compression steps in reverse order to reproduce the original trace data. 
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5. EVALUATION 

To evaluate and measure the performance, ECL-Tracer was tested on some 

LonestarGPU benchmarks as well as several algorithms with different levels of 

irregularity in behavior. Regular programs operate on array- and matrix-based data 

structures and have relatively predictable control flow and largely independent 

computations. In contrast, irregular programs build, traverse and update dynamic data 

structure such as trees, graphs, etc. Unlike regular programs, irregular codes have 

complex control flow, which is dependent on the input values and changes dynamically. 

Irregular programs are important as many important scientific programs such as data 

clustering, simulations, etc. are irregular. The following subsections explain regular and 

irregular parallel programs on which ECL-Tracer was examined. 

 

5.1 Fractal 

This code computes a fractal from the Mandelbrot Set. The Mandelbrot Set is the 

set of complex numbers C for which the sequence zn+1 = zn
2 + c; (z0 = 0) is bounded and 

does not diverge when iterated from z0 = 0. It is called fractal because the set shows 

repeating patterns at every scale. The fractal code I used, based on a given maximum, 

calculates the number of iterations needed until |zk| ≥ 5, where k is the number of 

iterations and specifies the pixel color. The real and imaginary values of C is determined 

by the scaled x/y coordinates of each pixel. Figure 3 illustrates the picture drawn by the 

program. Fractals are mostly regular programs. 
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Figure 3. Fractal image from Mandelbrot Set 

 

5.2 Maximal Independent Sets (MIS) 

In a graph, a set of vertices S is called independent if no two vertices in the set are 

adjacent. This set is maximal if it is impossible to add another vertex to the set and still 

stay independent. A maximum independent set is a maximal independent set that has the 

largest set of vertices amongst maximal independent sets. Maximum independent sets are 

not unique. In this thesis, I used a parallel implementation of the MIS algorithm that is 

built based on Luby algorithm. MIS is an irregular program. 
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5.3 N-Body 

In general, N-body simulation system consists of bodies where n represents the 

number of bodies. Bodies interact via pair-wise forces. N-body can be widely used as 

many systems can be modeled based on it such as star/galaxy clusters or particles in 

electric or magnetic forces. The N-body algorithm I used, gets the number of bodies and 

the number of time steps as inputs. In each time step, it calculates the force between 

bodies and updates body positions and velocities based on the calculated force. N-body 

falls into the category of regular programs. 

 

5.4 LonestarGPU benchmark 

In this thesis, I am using the LonestarGPU (version 2.0) [36] to generate and 

evaluate traces. LonestarGPU, which is created by ISS group at University of Texas at 

Austin in collaboration with Texas State University, is a collection of CUDA 

implementations of several widely-used real-world irregular applications. I chose the 

DMR (Delaunay Mesh Refinement) [37] and MST (Minimal Spanning Tree) [38] 

applications from this benchmark. 

 

5.4.1 DMR 

The DMR algorithm takes as input an unrefined triangulation of a set of points in 

a plane (Figure 4 (a)) [39]. The triangles that do not meet the defined criterion (angles in 

the mesh should not be less than 30 degrees) are called “bad” triangles (black triangles). 

All bad triangles are initially placed on a worklist. The refinement procedure that is 
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repeated in each step works as follows: 1) a bad triangle is picked from the worklist, 2) a 

number of triangles surrounding the bad triangle called a cavity are collected (gray 

triangles in Figure 4 (b)) and the cavity is retriangulated. If the retriangulation generates 

new bad triangles, these are added to the worklist and processed again until all bad 

triangles have been removed from the mesh. A mesh can be formed based on a graph in 

which the nodes and edges represent triangles and triangle adjacencies, respectively. I use 

a parallel implementation of the algorithm for this thesis. 

 

 

Figure 4. Delaunay Mesh Refinement 

 

5.4.2 MST 

In an edge-weighted, undirected graph in which all the vertices are connected 

together, a Minimum Spanning Tree (MST) is defined as the subset of the edges without 

any cycles and with the minimum possible total edge weight such that the edges still 

connect all the vertices [40]. A parallel implementation of this algorithm is used in this 

thesis. 
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5.5 Experimental Methodology and Configuration 

The ECL-Tracer was developed and tested on Linux platforms. I evaluated all the 

programs on the ECL-Tracer and measured the runtime of the codes with and without 

using the ECL-Tracer. The collected runtime includes the time for running the kernel, 

copying the compressed trace data to the CPU and writing the data to disk. 

The results are presented for two GPUs: a GeForce GTX Titan X and a Tesla 

K40. The Titan X is based on the Maxwell architecture with compute capability 5.2. It 

has 3072 processing elements, which are distributed over 24 multiprocessors and support 

the total of 49,152 threads. In terms of memory, each multiprocessor has 96 KB of shared 

memory as well as 48 KB of L1 cache. In addition, a 2 MB L2 cache and 12 GB of global 

memory are shared by all the multiprocessors. The default clock frequency of the 

processing elements and the GDDR5 global memory are 1.1 GHz and 3.5 GHz, 

respectively. 

The Tesla K40 is based on the Kepler architecture with compute capability 3.5. 

The K40 comprises 2880 processing elements distributed over 15 multiprocessors that 

can hold up to 30,720 threads. It has 64 KB of cache that is split between the shared 

memory and the L1 data cache. All 15 multiprocessors share a 1.5 MB L2 cache as well 

as 12 GB of global memory. 

Both GPUs are plugged into 16x PCIe 3.0 slots in the same system, which has 

dual 10-core Xeon E5-2687W v3 CPUs running at 3.1 GHz. The host operating system is 

CentOS 6.7 and memory size is 128 GB. 

For all the applications except DMR, traces were generated on both GPUs. All 

codes were compiled with nvcc V8.0.61. The traces were compressed using my 
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compression algorithm on-the-fly (cf. Chapter 4). For comparison, I compressed the 

decompressed traced with Bzip2 and Gzip. Trace data were collected from experiments 

when running ECL-Tracer using different inputs. Table 1 lists all the inputs. 

 

Table 1. Input Data used for Tracing. 

Program Name Input 

Fractal 

Width Depth 

2048 1024 

2048 2048 

2048 4096 

N-Body 

Bodies Time steps 

50000 10 

60000 10 

MIS 

 Nodes Edges 

USA-road-d.NY.egr 264346 730100 

amazon0312.egr 400727 4699738 

internet.egr 124651 387240 

DMR 

 Nodes Triangles 

250k.2_15 275000 524998 

r1M_12 1000003 2000001 

MST 
 Nodes Edges 

rmat12 4096 59320 
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6. RESULTS 

This chapter shows the results of the experiments conducted for this thesis. The 

inputs were chosen from the regular and irregular programs described in Chapter 5. I 

investigate the overhead incurred by ECL-Tracer and the runtime of ECL-Tracer with 

and without compression. Then I present the comparison between the compression ratio 

obtained by ECL-Tracer and the compression ratio from the standard compression 

algorithms Bzip2 and Gzip running on Titan X. Finally, the results of conducting the 

experiments on the K40 are presented. 

 

6.1 Overhead 

In this subsection, I look into the overhead incurred by ECL-Tracer when tracing 

different applications and compressing traces on-the-fly. To obtain the overhead, I 

divided the runtime of the instrumented program by the original runtime of the program 

given the same input. Figure 5 illustrates the results in logarithmic scale. The inputs are 

listed along the x-axis, and the runtimes in seconds are represented on the y-axis. 

Numbers above 1.0 indicate a slowdown due to the tracing. 

The results clearly show the low overhead of ECL-Tracer on most programs, 

which is below 5.5 in most cases. In particular, for irregular programs such as MIS and 

DMR the overhead is below 2.6, meaning that these programs run less than three times as 

long with tracing than they do without tracing. This demonstrates that my tracing tool 

does not incur an unreasonable amount of overhead on these complex programs. 
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Figure 5. ECL-Tracer overhead relative to using no tracing tool 

 

This is significant because the runtime of irregular programs is highly dependent 

on the input. The overhead of Fractal and N-Body, however, is relatively higher than that 

of other programs. This is probably because regular programs utilize the GPU hardware 

more effectively. Adding irregular compression code to a regular application therefore 

incurs a higher relative overhead than adding such code to an irregular application. 

Despite the fact that the overhead of the applications mentioned above is higher than for 

other applications, the resulting compression ratio is considerable as we will see. 
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6.2 Relative runtimes of ECL-Tracer with and without compression 

This part analyzes the overhead of the compression technique used in the ECL-

Tracer. Figure 6 show the comparison between the runtime of the ECL-Tracer with and 

without compression. 

As shown in the figure, compressing trace data results in a runtime reduction 

compared to the non-compressing tracing time for the irregular programs. Significantly, 

the DMR runtimes decreased from 2.6s to 0.5s for the smaller input (dmr_250k.2) and 

from 3.8s to 1.1s for the larger input (dmr_r1m). Interestingly enough, both runtimes are 

roughly the same for USA-road-d.NY. Regular programs (Fractal and N-body), however, 

represent an increase when compressing the trace data. 

My main take-away observation is that compression increases the runtime quite a 

bit on the regular programs but decreases it a little to a lot on the irregular programs 

(except on MST, which has a very short runtime). On the regular codes, the compression 

incurs more overhead than the savings due to having to write less data. On the irregular 

codes, the relative compression overhead is not that high (see above) and lower than the 

saving due to writing less data. 

The overhead of the compression is illustrated in Figure 7. The results are 

computed by dividing the runtime of ECL-Tracer with compression by the runtime 

without compression. Numbers above 1.0 indicate that the non-compressing version of 

the code works faster. Interestingly enough, compression overheads below 1.0 are present 

for most irregular programs. Moreover, two MIS inputs and DMR run faster with trace 

compression, which, as mentioned earlier, is the result of writing and copying less data to 

disk. 
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Figure 6. Runtimes of ECL-Tracer with and without compression 

 

 

 

Figure 7. Overhead of compression when using ECL-Tracer 
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6.3 Compression Ratios 

Compression ratios achieved by the compression algorithm implemented in ECL-

Tracer is outlined in Figure 8. As expected, regular programs such as Fractal and N-Body 

yield higher compression ratios than irregular programs. The reason is simply because 

regular codes generate longer sequences of repeating numbers, which compress better. 

 

 

Figure 8. Compression ratio for ECL-Tracer 

 

Figure 9 compares the compression ratio of ECL-Tracer to Bzip2 and Gzip for all 

the tested applications. It can be seen from Figure 9 that ECL-Tracer’s compression ratio 

is reasonably close to Bzip2 and Gzip on most irregular programs. On average, Bzip2 

compresses better than ECL-Tracer by only a factor of 2.9 and Gzip does so by factor of 

3.2 on traces from irregular codes. I believe that this is a satisfactory tradeoff between 

overhead and compression ratio. 
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Figure 9. Compression ratios for ECL-Tracer compared to Bzip2 and Gzip 

 

6.4 Compression speed 

To compare the runtime of ECL-Tracer with two general purpose compressors, I 

ran the Gzip and Bzip2 on the same trace data. Figure 10 presents the runtimes of Bzip2 

and Gzip relative to the runtime of ECL-Tracer. Values above 1.0 mean that ECL-Tracer 

runs faster than the other two tools. 

 The most remarkable result to emerge from the data is that Bzip2 is slower than 

ECL-Tracer in most cases but compresses better. Specifically, for regular applications 

like Fractal and N-Body, ECL-Tracer outperforms Bzip2 by a factor of 3.4 on average. 

This is surprising because the ECL-Tracer running time includes the entire execution 

time of program. The reason is that Gzip and Bzip2 are serial programs running on the 

CPU whereas ECL-Tracer runs in parallel as each warp in the application compresses its 

own trace while other warps perform their compression at the same time. 
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Figure 10. Runtime of Bzip2 and Gzip relative to runtime of ECL-Tracer 
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on regular codes is higher. As mentioned earlier (cf. Subsection 6.1), this is probably 

because regular programs utilize the GPU hardware more effectively. Adding irregular 

compression code to a regular application incurs a higher relative overhead than adding 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

R
e

la
ti

ve
 R

u
n

ti
m

e

Bzip2 Gzip



 

31 

 

such code to an already irregular application. Although the overhead on regular codes is 

higher than on irregular programs, the resulting compression ratio is better as we will see. 

 

 

Figure 11. ECL-Tracer overhead relative to using no tracing tool on K40 

 

The running time of ECL-Tracer with and without compression turned on is 

shown in Figure 12. As can be seen runtimes (except for MST) are significantly higher 

with compression on K40.  

Figure 13 represents the compression overhead incurred by ECL-Tracer on K40. 

Values were computed by dividing the runtime of ECL-Tracer with compression by the 

runtime without compression. Numbers above 1.0 indicate that the non-compressing 

version of the code runs faster.  
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Figure 12. ECL-Tracer runtimes with and without compression on K40 

 

 

 

Figure 13. Compression overhead when using ECL-Tracer on K40 
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The figure 14 presents the compression ratio of ECL-Tracer running on K40. The 

results show that the ECL-Tracer compresses the trace data from regular code (Fractal 

and Nbody) better than the irregular codes. The reason could be the larger number of 

repeating numbers generated by regular codes. 

 

 

Figure 14. Compression ratios of ECL-Tracer on K40 

 

Figure 15 compares the compression ratios of ECL-Tracer on K40 with the 

compression ratios achieved from compressing the decompressed files by Bzip2 and 

Gzip. We can see that ECL-Tracer compresses close to Bzip2 and Gzip on all the 

irregular codes. On average, Bzip2 compresses better than ECL-Tracer by only a factor 

of 2.74 and Gzip does so by a factor of 2.93 on irregular codes. 
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Figure 15. Compression ratios for ECL-Tracer compared to Bzip2 and Gzip on K40 

 

Figure 16 compares the ECL-Tracer runtimes on K40 with Bzip2 and Gzip. 

Similar to Titan X (cf. Section 6.3, Figure 9), for most regular codes we see ECL-Tracer 

performs faster than Bzip2 but slower than Gzip. There is a trade-off between the running 

time and compression ratios in most regular code. 

 

 

Figure 16. Runtime of Bzip2 and Gzip relative to runtime of ECL-Tracer on K40 
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7. CONCLUSION 

7.1 Summary 

This thesis presents an efficient tracing tool for massively parallel programs 

running on GPUs. As far as I am aware, the ECL-Tracer is the first GPU tracing tool 

capable of compressing the trace data on the fly before writing it to disk. This tool is a 

clear improvement on GPU execution tracing, and I believe that my approach would lend 

itself well for use by researchers and programmers to aid to increase the performance of 

their programs. The findings of this thesis imply that the ECL-Tracer has low overhead 

and is efficient in terms of time and space for most parallel programs. 

7.2 Future Work 

ECL-Tracer works properly on all tested CUDA programs. Nevertheless, it can 

easily be made even more capable to further help programmers and researchers. For 

example, one could add support to record additional information, which might help 

identify and analyze performance weaknesses or bugs faster. To expand this study, one 

could investigate other compression algorithms to possibly improve the compression 

ratio. Testing the ECL-Tracer on additional programs, different architectures, and even 

multi-GPU programs are also opportunities for future work. 

 

 

 

APPENDIX SECTION 
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This section lists all the raw data for all the experiments. 

INPUT Decompressed file ECL-Tracer Bzip2 Gzip 

fr_2048_1024 25511720 4043071 649107 536875 

fr_2048_2048 26239135 4254701 652150 540871 

fr_2048_4096 26457160 4317234 652126 541131 

mis_amazon0312 4505129 2428465 902288 861001 

mis_internet 773332 505281 184126 182843 

mis_USA-road-d.NY 1400371 986743 360214 345481 

nb_50000_2 784648909 2040629 2122 1100663 

nb_60000_2 1129532409 2929635 2456 1577121 

mst_rmat12 410575 233156 78016 67085 

dmr_250k.2_15 6046059 3822143 1451921 1244914 

dmr_r1M_12 2658209 1160153 345236 319085 

Table A.1 File sizes (in Bytes) of traces generated on Titan X 

 

 

INPUT Decompressed file Tracer Bzip2 Gzip 

fr_2048_1024 25541245 4046217 649198 536850 

fr_2048_2048 26269295 4254895 652013 540869 

fr_2048_4096 23019120 3677657 564250 476242 

mis_amazon0312 4445099 2393580 892260 847995 

mis_internet 770667 503341 182949 182447 

mis_USA-road-d.NY 1399181 986043 360215 345368 

mst_rmat12 364625 218161 77929 66848 

nb_50000_2 784648909 2040629 2122 1100663 

nb_60000_2 1129532409 2929635 2456 1577121 

Table A.2 File sizes (in Bytes) of traces generated on K40 
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