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ABSTRACT

Activity recognition is one of the popular fields in computer vision research.

Though recent development in deep learning-based methodologies has shown

tremendous progress in traditional video-based activity recognition, 360◦ activity

recognition is still in its infancy. 360◦-based activity recognition imposes challenges

like lack of datasets, domain-specific frameworks, and motion understanding in 360◦

videos. This research focuses on two critical aspects of activity recognition in 360◦

videos from an egocentric perspective, (i) Egocentric activity recognition and (ii)

Motion understanding in 360◦ videos. Under (i) Egocentric activity recognition, we

present two important works, EgoK360 and VIT360. EgoK360 is an egocentric

kinetic human activity dataset comprised of human activities and smaller actions

from a first-person view. The dataset intends to fill the gap of egocentric video-based

activity recognition in 360◦ videos context. Similarly, VIT360 is a rotation-invariant

activity recognition model designed using representation learning techniques and

current transformer-based techniques in the literature. Similarly, under (ii) Motion

understanding in 360◦ videos, we present three important works LiteFlowNet360,

FLOW360, and SLOF. LiteFlowNet360 is a domain adaptation framework for

transferring perspective videos based motion estimation techniques to 360◦ videos

settings. On the other hand, we present FLOW360, a perceptually natural synthetic

optical flow dataset for motion understanding in 360◦ videos. This dataset is the

first in the literature, leveraging several newer opportunities in this domain. Finally,

we present SLOF, a siamese representation learning-based framework for motion

estimation in 360◦ videos. We will also discuss several challenges in these areas and

the contribution of our work compared with the state-of-the-art frameworks.
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MOTION AND ACTIVITY UNDERSTANDING IN 360o  VIDEOS: AN EGOCENTRIC PERSPECTIVE

Figure 1.1: Framework of the dissertation. The design of overall dissertation is divided
into two main sections: (i) Activity Recognition and (ii) Omnidirectional Motion
Estimation in 360◦ videos. Chapter II & IV is focused on activity recognition
and Chapter III & V is focused on omnidirectional motion estimation.

The idea of 360◦ imaging dates back to 1787 when English painter Robert

Barker coined the term “panorama” for his paintings displayed on Leicester Square,

London [1]. The awe moment of the visitors who visited the display would soon

change with the invention of digital photography by Frenchman Joseph Nicéphore

Nièpce. With a series of iterations, advanced 360◦ panoramic cameras started

hitting the market in the 1980s, changing how we capture the world. On the other

hand, as general photography advanced and became more accessible, the amount of

data generated over time compounded significantly. These data would impact areas

of machine learning (or deep learning), so-called a “hype” in computer/information

science to be one of the important fields of 21st century. Today, we have seen a

massive success of deep learning in computer vision applications advancing fields

like health, e-commerce, autonomous driving, surveillance, security, and many more.

Compared to general imaging, the development and accessibility of 360◦ imaging
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technology paced slower over time, resulting in computer vision applications less

vivid in 360◦ domain. However, the current trend of increasing interest in 360◦

imaging in several applications like vlogging, surveillance, gaming, Augmented

Reality (AR), Virtual Reality (VR), and many more is attracting researchers to

explore the 360◦ based imaging for computer vision applications. This dissertation

focuses on one such computer vision application for 360◦ videos called as motion

and activity understanding.

360◦ imaging compared to regular or “perspective” imaging provides an infinite

field of view, making it superior in applications where a complete understanding of

the environment (as it unfolds in the real world) in images/videos is essential.

Several applications we mentioned above benefit from 360◦ whenever the

omnidirectional aspect is considered. E.g., in autonomous driving, omnidirectional

information is crucial to achieving human-like maneuverability where

synchronization of disjoint sensors will add an extra layer of complexity. A similar

example can be seen in drone navigation, intelligent surveillance, gaming, and

AR/VR. There are several use cases where 360◦ videos make more sense than

regular videos, given omnidirectional information is crucial; however, this

dissertation only explores a narrow aspect focusing on activity recognition and

motion understanding in 360◦ videos.

The focus on egocentric activity recognition on 360◦ videos is motivated for

surveillance and security. E.g., this dissertation establishes a proof of concept on how

computer vision research can be used to understand activity performed by an agent

in 360◦ videos. This finding would be necessary for several real-world applications

where humans are involved in performing dangerous jobs in the field. To maintain

the security and safe working environment understanding the omnidirectional world

and actions performed by the agent is equally important. This can be achieved by

implementing computer vision software to alarm the hazardous situation and
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prompt the emergency aid. Similarly, another application area we think is relatable

to life-vlogging, where understanding the events could be important for several

downstream tasks like summarizing the vlog, surveillance, and security.

Crafting an intelligent computer vision software or model for 360◦ videos

impose several challenges like lack of dataset, motion representation (360◦ optical

flow, or omnidirectional flow) and need of reliable frameworks for egocentric activity

recognition in 360◦ videos. The organization of the overall dissertation, as shown in

Fig. 1.1 highlights two major aspects of this dissertation: (i) Understanding activity

and (ii) Understanding Motion. The remainder of this dissertation is organized as

follows:

• In Chapter II, we propose a novel egocentric activity recognition dataset for

360◦ videos, EGOK360. This dataset is the first of its kind to address

omnidirectional egocentric activity recognition.

Summary: Recently, there has been a growing interest in wearable

sensors which provides new research perspectives for 360◦ video analysis.

However, the lack of 360◦ datasets in literature hinders the research in

this field. To bridge this gap, in Chapter II, we propose a novel

Egocentric (first-person) 360◦ Kinetic human activity video dataset

(EgoK360). The EgoK360 dataset contains annotations of human activity

with different sub-actions, e.g., activity Ping-Pong with four sub-actions

which are pickup-ball, hit, bounce-ball and serve. To the best of our

knowledge, EgoK360 is the first dataset in the domain of first-person

activity recognition with a 360◦ environmental setup, which will facilitate

the egocentric 360◦ video understanding. We provide experimental results

and comprehensive analysis of variants of the two-stream network for 360

egocentric activity recognition. The EgoK360 dataset can be downloaded

from https://egok360.github.io/.
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• In Chapter III, we present a novel framework for 360 optical flow estimation,

dubbed as LiteFlowNet360 as an adaptation of existing best practices from

“optical flow estimation for perspective videos” and “spherical convolution for

360 videos/images”.

Summary: Nowadays 360 video analysis has become a significant

research topic in the field since the appearance of high-quality and

low-cost 360 wearable devices. In Chapter III, we propose a novel

LiteFlowNet360 architecture for 360 videos optical flow estimation. We

design LiteFlowNet360 as a domain adaptation framework from

perspective video domain to 360 video domain. We adapt it from simple

kernel transformation techniques inspired by Kernel Transformer

Network (KTN) to cope with inherent distortion in 360 videos caused by

the sphere-to-plane projection. First, we apply an incremental

transformation of convolution layers in feature pyramid network and

show that further transformation in inference and regularization layers

are not important, hence reducing the network growth in terms of size

and computation cost. Second, we refine the network by training with

augmented data in a supervised manner. We perform data augmentation

by projecting the images in a sphere and re-projecting to a plane. Third,

we train LiteFlowNet360 in a self-supervised manner using target domain

360 videos. Experimental results show the promising results of 360 video

optical flow estimation using the proposed novel architecture.

• In Chapter IV, we present the first perceptually natural-synthetic benchmark

dataset for omnidirectional flow estimation, FLOW360 and representation

learning based omnidirectional flow estimation framework, SLOF.

Summary: Optical flow estimation in omnidirectional videos faces two

4



significant issues: the lack of benchmark datasets and the challenge of

adapting perspective video-based methods to accommodate the

omnidirectional nature. In Chapter IV we propose the first perceptually

natural-synthetic omnidirectional benchmark dataset with a 360◦ field of

view, FLOW360, with 40 different videos and 4,000 video frames. We

conduct comprehensive characteristic analysis and comparisons between

our dataset and existing optical flow datasets, which manifest perceptual

realism, uniqueness, and diversity. To accommodate the omnidirectional

nature, we present a novel Siamese representation Learning framework

for Omnidirectional Flow (SLOF). We train our network in a contrastive

manner with a hybrid loss function that combines contrastive loss and

optical flow loss. Extensive experiments verify the proposed framework’s

effectiveness and show up to 40% performance improvement over the

state-of-the-art approaches. We will publish the FLOW360 dataset with

all raw Blender scenes and Blender add-ons for researchers to create

custom optical flow datasets for perspective and omnidirectional videos.

• In Chapter V, we present VIT360 - a vision transformer based network

pretrained with siamese representation - to achieve rotational invariance in

360◦ videos for egocentric activity recognition.

Summary: Research on egocentric activity recognition mainly focuses

on improving accuracy using sophisticated architectures based entirely on

convolution layers. However, when it comes to 360◦ videos, egocentric

activity recognition imposes three significant challenges: i) Performance

deterioration due to random field-of-view projection; ii) Radial

distortions caused by sphere-to-plane projections; and, iii) Overheads of

model adaptation, transformation and refinement for 360◦ optical flow. In

Chapter V, we propose Vision Transformer 360 (VIT360) to address
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aforementioned issues. This work shows how accuracy-centric

convolution-based architecture performs better for fixed field-of-view

projection but fails in the case of random field-of-view projection.

VIT360 is rotationally invariant, and therefore does not suffer from

performance degradation when the field-of-view projection is randomized.

In addition, VIT360 mitigates radial distortions as it learns features on

tangential patches. VIT360 provides the foundation to leverage motion

inference techniques from off-the-shelf optical flow architecture. Although

this chapter focuses on egocentric activity recognition, the projection

invariant properties of VIT360 can be applied to other applications

involving 360◦ videos as well.

To summarize, the contributions of this dissertation are as follows:

• Egocentric Activity Recognition (EAR) in 360◦ videos opens several new

oppurtinities in areas like surveliance, security, navigation, video

understanding, and AR/VR. However, the lack of datasets has hinders the

development of the field. We propose an egocentric activity dataset, EgoK360

to facilitate the advancement of the field.

• Motion understanding in 360◦ videos is crucial for many vision related

downstream applications like action/activity recognition, motion anticipation,

video summarization & understanding, computational

videography/photography, and so on. Following are the contributions we made

for motion understanding in 360◦ videos

1. LiteFlowNet360. This framework advocates best practices for

exploiting off-the-shelf optical flow architecture for estimating optical

flow for 360◦ videos. LiteFlowNet360 is basically a multi-stage domain

adaptation framework involving transformation of tradional CNNs to
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spherical CNNs, fine-tuning the transformed optical flow framework via

supervised training with augmented dataset and domain transfer via

self-supervised training on target dataset.

2. SLOF. A siamese representation learning based framework for motion

understanding in 360◦ videos. SLOF overcomes the challenges appeared in

LiteFlowNet360 by eliminating the requirement of laborous task involving

multi-stage domain adaptation of existing off-the-shelf framework.

3. FLOW360. Availibility of a reliable dataset is the first important steps

for the advancement of any domain. Optical flow estimation in 360◦ or

omnidirectional flow estimation domain lacks reliable standard

benchmark dataset for optical flow estimation. Following the best

practices from the state-of-the-art persepctive videos based optical flow

dataset, Sintel [2], we propose a perceptually natural synthetic dataset

for omnidirectional flow estimation to facilitate the advancement of

motion understanding in 360◦ videos.

4. Transformer Based Flow Inference. This approach exploits best

practices in transformer based optical-flow framework PercieverIO [3] to

infer optical flow in different rotational view of 360◦ videos and later

combining the results into final optical flow.

• Prior practices focusing on modifications of existing architecture via

re-adjustments (replacing traditional CNNs with spherical CNNs) and

refinement for computer vision applications in 360◦ videos results in several

complications like difficulty in portability, over-parameterization and

multi-stage training/inference protocols. We present techniques involving

representation learning and transformer based frameworks to mitigate such

7



overheads. These techniques results in better performance with simpler design

resulting in easy deployment, training and inference.

1. SLOF. Siamese representation Learning for Omnidirectional Flow

(SLOF) focuses only on learning the spherical nature of 360◦ data via

training the existing architecture with different representation view of

same input and maximizing the latent similarity across rotationally

augmented views of same 360◦ videos input. Design of SLOF eliminates

the overheads of network re-adjustments and multi-stage training

protocols making it effective in deployment settings with improved

accuracy.

2. VIT360. VIT360 extends Vision Transformer [4] framework for activity

recognition in 360◦ videos. The design of VIT360 ensures two fold

adaptation on 360◦ videos, (i) siamese representation learning as

pre-training stage and (ii) instead of considering entire view as an input

VIT360 takes multiple tangential planes covering the 360◦ field-of-view

ensuring the trivial amount of distortions. VIT360 shows the efficacy of

proposed architecture with representation learning and shows potential of

such design to other vision related task for 360◦ videos.
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II. EGOK360: A 360◦ EGOCENTRIC KINETIC HUMAN ACTIVITY

VIDEO DATASET

Introduction

a  

g  f  

h  i  

d  e  

LEFT

UP

FRONT

DOWN

RIGHT BACK

c  

b  

j  k  

Figure 2.1: Sample video frames from EgoK360 dataset. (a,b) Consecutive frames
(Ii, Ii+1) for action “Serve" from “Ping-Pong" activity in equirectangular projec-
tion. (c) Cubemap projection of (b) showing six different cubic faces. (d,e) Crop-
ped section of wearer showing action ‘serving’ (red box in (b)) and front-view
from wearer’s perspective (green box in (b)). (f,g) Optical flow (u⃗i, v⃗i). (h,i,j,k)
Normal field-of-view for front-down, back-down, left-down and right-down.

Wearable devices like Apple smartwatch, GoPro and Google Clip, have been

widely used in our daily life nowadays. Meanwhile, the appearance of 360◦ cameras

and the growing services on social media platforms such as Facebook and YouTube

are changing the way how we consume multimedia. Having the advantage of 360

field-of-view over perspective videos from traditional cameras, 360◦ cameras have

the superiority in many applications such as self-driving cars, virtual-reality,

life-logging, augmented reality, film-making and surveillance [5, 6]. The popularity

of 360◦ videos is also changing computer vision and virtual reality research area
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recently. Egocentric Activity Recognition (EAR) from videos is one of such fields.

However, to the best of our knowledge, there is no public 360 egocentric human

activity dataset in literature.

In this chapter, we propose a novel 360 egocentric human activity recognition

(EgoK360) dataset. The EgoK360 dataset is inspired by action recognition datasets

such as UCF-101 [7], HMDB-51 [8] and Kinetics [9]. Our EgoK360 dataset contains

three different types of actions: Person-Person, Person-Object, and Singular actions.

These categories of actions can be described in the following manner. Person-Person

actions involve two or more people interacting with each other such as hugging and

speaking with someone; Person-Object actions refer to a person interacting with

some objects such as picking up something or moving something from one location

to another; Singular person actions involve a single person performing some actions

independent of others such as reaching towards something or combing hair. In this

chapter we perform experiments with two popular action classification deep nerual

networks on our introduced EgoK360 dataset, i.e., two-stream network [10] and

Inflated 3-Dimensional network (I3D) [9]. In the following sections, we present the

related work, datasets, experimental results and conclusions.

Related Work

Action recognition datasets such as HMDB [8], UCF101 [7] and Kinetcs [11] are

widely used in literature. They are captured by perspective cameras (single

field-of-view) and have limitations in terms of applications. Singh et.al., [12] use a

novel dominant motion feature derived from optical flow for egocentric action

recognition and also propose a convolutional neural networks (CNN) [13] for

end-to-end training. Xia et.al., [14] present a framework to analyze RGBD videos

captured from a robot for activity recognition. Lee et.al., [15] present an egocentric

video summarization approach by identifying important people and object in the

10



video. Two-stream network is the popular architecture in literature for action

recognition, such as Two-stream Convnet [10] and Inflated 3D ConvNet (I3D) [9].

I3D architecture is the state-of-the-art in the two-stream genre for action

recognition.

In recent years, a few 360◦ datasets [16, 17, 18, 19, 20, 21, 22, 16, 6] appeared

in the applications such as autonomous driving, human-computer interaction,

virtual reality, and others. However, they are target to different applications other

than Egocentric Activity Recognition in 360◦ field-of-view (EAR360).

Meanwhile, in the egocentric action recognition field, popular datasets such as

Epic Kitchens [23], EgoHands [24], EGTEA Gaze+ [25] are perspective video

datasets with a person interacting with an object or another person. Similarly,

large-scale datasets such as Charades-Ego [26] contains both the first-person and

third-person videos. Pirsiavash et.al., [27, 28, 29, 30, 31] present an egocentric

dataset for understanding activities and the context in the video. However, all these

datasets in literature are only limited to perspective videos.

EgoK-360 Dataset

Our EgoK-360 dataset contains activity classes that represent all three

categories, i.e., Person-Person, Person-Object, and Singular actions. There are a few

differences in the video content compared with other datasets because of the

properties of Egocentric 360 videos. Given that the footage encompassing the

dataset captured from an egocentric perspective, the Person-Person actions would

involve the interaction between the wearer and other people. This differs with

Person-Person actions captured in the traditional third-person perspective cameras.

Likewise, a Person-Object action such as bouncing a ping-pong ball on a table

would only be identified when the particular action was performed by the wearer.

Most action classes in EgoK360 are in the Person (singular) category because the

11
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Figure 2.2: Activities and action classes in EgoK360. Actions are colored and numbered
with corresponding activity. The same actions may appear in different activities.

egocentric perspective inherently privatizes the action or content recorded.

The 360 field-of-view naturally makes everything egocentric in EgoK360.

Egocentric actions entirely depend on the field-of-view where a wearer (first-person)

is engaged. Meanwhile, the rest of fields-of-view that he/she is not engaged are

irrelevant for action recognition. The significant contribution to action recognition is

the wearer’s egocentric view and his/her engagement in actions.

Activity/Action Classes

We show action/activity instances of EgoK360 in Fig. 2.2. Our dataset contains

12 activities and 45 actions, collectively making 63 activity-action unique cases. An
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activity is defined as collections of shorter actions. For example, an activity ‘driving’

is composed of actions such as accelerate, decelerate, idle, stop, driving, turn-left

and turn-right. Action classes such as turn-left, turn-right, reach, doorway and

check-phone are frequently occurring actions. However, there is a significant

difference in these actions depending upon the category of activity. For example,

turn-left in driving is completely different than turn-left in activity office-talk. We

collected 127 videos with approximately 11 minutes each.

EgoK-360 Characteristics

The EgoK-360 dataset has its uniqueness of 360 fields-of-view, egocentric and

kinetic properties. We discuss the following characteristics of EgoK-360 dataset in

terms of its diversity, statistics and properties.

Diversity. Our EgoK-360 dataset contains common different activities in daily

life. Around 11% of actions (such as turn-left, turn-right, reach, check-phone and

doorway are frequent actions) are overlapping actions. Activity such as desk-work,

driving, playing-pool and running have the most number of actions. Activity such as

standing has the least number of actions.

Properties. We present sample frame in Fig. 2.1. The dataset is a collection of

videos from a 360 camera projected on the 2D plane using equirectangular

projection, as shown in Fig. 2.1 (a and b). The frames size is 640x320. Frames

exhibit huge distortion as shown in Fig. 2.1 (b-c, h-k) using red and green bounding

box), making it challenging for regular convolution. We calculate optical flows using

FlowNet [32].

Experiment

We conduct our experiments using two-stream and I3D networks. We

implement two-stream architecture with resnet-101 model pre-trained on UCF101

13
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Figure 2.3: Spatio-temporal architecture for action/activity classification. We im-
plement resnet-101 and I3D architecture. Average and convolution fusion are
adopted. For average fusion we simply average probabilities of two networks and
map them into single probability. For convolution fusion, we concatenate (depth-
wise) output from last convolution layer and feed to the convolution module.

which outperforms state-of-the-art I3D model. EgoK360 exhibits complexity of

spherical representation of 360◦ video on 2D plane (equirectangular projection)

which makes challenge for these models to prioritize a significant field-of-view

responsible for the wearer’s engagement in certain actions and makes difficult to

train. Therefore, 3D-representation of the video does not perform well in the 360

environment.
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Implementation Details

We adopt the network architecture as shown in Fig. 2.3 in our experiments. Our

model inputs are consecutive frames. Videos are down-sampled in the rate of 10 fps.

We calculate optical flows beforehand using FlowNet [32]. We adopt the two-stream

and I3D architectures with average and convolution fusion. For two-stream

architecture, video is represented as 2D inputs with [N × Fc ×H ×W ] dimensions.

For I3D architecture, video is represented as 3D input with [N × C × F ×H ×W ]

dimensions, where Fc = F ×C. Here F is the number of frames, N is the batch-size,

C, H and W are channel, height and width of the frames.

Two-stream Architecture

Residual learning framework [33] provides convenient optimization and rapid

high accuracy as network becomes deeper. With this in mind, we change the

two-stream architecture by replacing the spatial and temporal network with

resnet-101 model pre-trained on UCF101. We use size of 10 to stack frames in

sequence for both spatial and temporal networks. This brings the channel size

changing from 3 to 20 in the temporal network and to 30 in the spatial network. The

resnet-101 requires input as 3 channel images. To fix this, we use the method in the

cross-modal learning [34]. We do not observe better results compared to UCF101

implemented with the same architecture, which achieves at least 80% accuracy.

I3D Architecture

We implement I3D architecture as proposed in [9]. I3D architecture relies on 3D

receptive fields for video representation. Spatial and temporal network receive an

input of 3 and 2 for the channel size respectively, along with depth of 10. The

original idea in [9] using the entire video as one training sample. However, we do not
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Table 2.1: EgoK360 quantitative results. Experimental results of EgoK360 datasets on
two-Stream (modified version with trained Resnet-101 on UCF101) and I3D Ar-
chitecture. (Top accuracy in bold)

Network Mode
Architecture flow rgb avg_fused conv_fused

Activity Action Activity Action Activity Action Activity Action
Resnet 73.94 61.09 77.05 58.22 76.53 62.44 74.71 56.87
I3D 57.24 43.4 74.13 55.31 68.74 50.88 74.47 56.63

achieve performance increase on EgoK-360 dataset. We run experiments with the

depth of 10 which is the optimal for our case.

Fusion

In this chapter we use both average and convolution fusion techniques. In

average fusion, we take an average of probabilities from the last layers. For

convolution fusion, we implement convolution-module inspired by [33]. We use the

output from the last convolution layer and concatenate the features which later fed

into the fusion convolution module. We freeze our spatio-temporal module and train

the fusion layer. We can also train the spatio-temporal network along with the

fusion layer.

Results

We present our experimental results in Table 2.1 and visualization in Fig. 2.4.

We observe that activity classification accuracy is higher than action classification

accuracy as shown in Table-2.1. The range of activity and action classification

accuracy in I3D architecture is higher than in two-stream architecture.

The average fusion is remarkably better than the convolution fusion in our case.

This quantitative results can be explained using Fig-2.4 visualization. We observe

interesting results on two different architectures. Fusion techniques make a huge
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Figure 2.4: Comparing quantitative results on EgoK360. Visualization results of Table
2.1. The figure shows accuracy for each architecture and classification mode
(activity vs action). Overall ’action’ classification is better in resnet-101. We
observe convolution fusion in resnet architecture and I3D makes significance
difference in flow (temporal) and rgb (spatial) stream. Similarly, temporal-stream
performs better in resnet compared with I3D architecture. Conv_fusion has
same effect on both cases where as avg_fusion comparatively improve resnet
architecture. In general resnet architecture shows consistent metrics relative to
I3D arhcitecture.

difference in action/activity classification in resnet whereas spatial and temporal

streams have significant differences in I3D architecture. From Fig. 2.4 we can infer

that convolution fusion performs better whenever two streams have significant gap

in accuracy.

We also investigate how well this two-stream architecture generalizes with our

dataset. We use the technique presented in [35] to visualize the activation map. We

show the activation map with a randomly selected action in Fig. 2.5. We derive

these activation maps from the I3D and two-stream spatial network.

These activation maps represent salient features learned by the model. The
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model infers most edges as trivial regions, as the dataset has massive distortion near

edges. We can visually inspect and analyze this behavior. For example, in the

Fig. 2.5 activity Bounce_ball (playing Ping-Pong activity), the salient features are

away from the actual region where a person wearing a camera is bouncing a ball.

This region lies on the left-bottom-corner and has massive distortion. It is nearly

impossible to judge the meaning of these activation maps accurately. However, if we

carefully inspect the salient features learned by both architectures, we can conclude

that the model is inferring the action classification task from other features rather

than salient features as expected. The reason behind this poor response of the

model is due to the naïve convolution, which is not rotation invariant. Features on

EgoK360 have different spatial properties depending upon the position in

equirectangular plane. This can be improved with techniques such as [36, 37].
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Conclusion

This chapter introduces EgoK360 dataset with annotations of 63 unique

activity and action classes. This dataset is challenging because of distortion, wide

field-of-view and activities/actions properties. We implement two popular

two-stream architectures in the experiments. We modify the two-stream convents

architecture by replacing each stream with resnet-101. It outperforms

state-of-the-art I3D architecture. EgoK-360 is the first to address egocentric activity

recognition in 360 environment. We believe EgoK360 dataset will be beneficial to

the EAR360 research.
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III. REVISITING OPTICAL FLOW ESTIMATION IN 360◦ VIDEOS

Introduction

FL
O

W
 IN

FE
R

EN
C

E
AN

D
R

EG
U

LA
R

IZ
AT

IO
N

LA
YE

R

PY
R

AM
ID

AL
FE

AT
U

R
E 

EX
TR

AC
TI

O
N

 
LA

YE
R

Figure 3.1: Overview of LiteFlowNet360 network architecture. We put focus only on
feature extraction block which is shown in detail. Flow inference and regulari-
zation layer is similar to the original implementation. Input to the network are
equirectangular or spherical data. Each convolution layer in pyramidal network
is transformed to adapt spherical convolution(shown in red color). Final output
is optical flow in spherical domain.

The immersive 360 video technology shows promising growth in the past years.

Services such as GoPro, VeeR, Visbit, Facebook360 and YouTube have become

great platforms for 360 videos. 360 videos are shaping the future of content creation

and sharing. Hence, 360 videos will be an important digital medium in near future.

This adds newer challenges and opportunities in computer vision research. One of

such challenge is the motion and optical flow estimation in 360 videos.

Motion and optical flow estimation is important for 360 video understanding.

Motion information can significantly aid tasks such as saliency detection, saliency

prediction, gaze prediction, video piloting in 360 videos [38, 39, 40, 41]. Similarly,

optical flow based panorama video stitching has shown impressive results compared

with other methods. Deep Learning based optical flow estimation methods have

shown significant improvement over classical methods [42, 43]. Evolution of optical

flow estimation methods from simple CNN based architecture to complex feature

pyramid based architecture shows significant improvements as well [44, 32, 45].
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CUBEMAP EQUIRECTANGULAR

Figure 3.2: Radial distortion. Showing how regular kernel map does not work in equirec-
tangular (right) projection. When kernel applied in cubemap (left) are mapped
into equirectangular projection it suffers huge distortions.

However, regular CNN architectures are not suitable for 360 videos because of

inherent distortion caused by projection of spherical videos to plane. We can use

techniques such as [37, 46, 47, 48] to achieve spherical convolution. However, these

methods have enormous overheads while converting existing complex pyramid based

architecture to fit the needs of distortion free convolution for 360 videos. First, the

training of the optical flow network is unstable. Having many transform convolution

layers will lead entire process complicated as architectures becomes bigger. Second,

we may not be able to guarantee that our model works even if we transform the

architecture. We need some metrics such as EPE(End Point Error) to decide if our

model works well. Since we lack labelled 360 video dataset for optical flow, the only

method that fits our requirement is self-supervised methods. But how do we train

this architecture in a self-supervised manner? The core part of self-supervised

approach is calculating the loss between warped image and target image using

predicted flow. Are warping techniques generalizable? In later sections we aim to

answer these questions.

Choosing a right architecture for our framework was the initial challenge we

faced. However, we set certain requirements (like size, speed and efficiency) as a

21



guide to choose the right architecture. There are many optical flow architectures to

choose from, LiteFlowNet wins the competition. We will discuss more about this

architecture in the following section. Framework we proposed would grow

significantly as it includes significant changes as a part of perspective to a spherical

domain transformation process. One more significant addition to this

transformation process is the inclusion of special convolution to adapt the spherical

nature for our dataset. This is important because the dataset we work on is an

equirectangular plane, a sphere-to-plane projection. This planar projection incurs

heavy distortion, which we have illustrated in Fig.3.2. These special convolution,

termed as spherical convolution, are expensive in terms of computation, which voids

our requirements. Therefore, we adopt techniques like kernel transformation using

transformer network. One such architecture [36] dubbed as KTN has shown

comparable improvement over later methods with less computation. We adopt KTN

as our transformer network to learn spherical convolution.

Training an end-to-end optical flow architecture requires significant

considerations of extra jobs like scheduling of training, implementing stacked

architecture, considerations of motion magnitude and many other details to make it

work on a par with the state-of-the-art results. Training architectures like this using

better strategy to cope with gradually increasing task is an adoption of a popular

philosophy, curriculum learning[49]. We have seen architecture like [32, 45] adopted

this strategy to create a better model. Apart from traditional optical flow

estimation strategies, we have additional requirements because of the spherical

nature of the dataset. Therefore, end-to-end training of optical flow for 360 video is

highly unstable as there are many parallel objectives to achieve. We need to make

sure that our model size does not grow significantly. This can slow down the

training and inference speed. We need to address the nature of optical flow in 360

domain which can change the interpretation of warping techniques, flow
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representation and many other aspects. To make it brief, training optical flow

architecture in 360 videos is not straightforward. To achieve the stable training

process and fulfill our requirements, we adopt a divide-and-conquer strategy, thus

dividing the entire training process into three major stages.

First stage of LiteFlowNet360 is to train LiteFlowNet architecture in

perspective video datasets like [2]. Then, we transform source CNN to target CNN

layer wise. This transformation technique is progressive which means we need to do

everything in-order. We will explain details about process of transformation in

method section. After transforming into target CNN we will now further train entire

model in an end-to-end fashion in supervised manner. To achieve this task we

augment both source perspective videos and target optical flows into spherical

distortion setting. When the second stage is complete, we will use a self-supervised

scheme to further train our model in target videos. To do this, we need to perform a

task like back-warping of frames using predicted flow. We use these predicted or

warped frames as the basis of the training process by minimizing the similarity loss

between ground frames and predicted frames. We adopt occlusion aware scheme

inspired by [50].

In this chapter we exploit the existing optical flow estimation techniques and

distortion free convolution in 360 videos. Our contributions are three folds: (i) To

the best of our knowledge, this is the first work to address deep learning based

dense optical flow estimation in 360 videos. (ii) We present an algorithm inspired by

[36] to transform learned representations from pre-trained network. (iii) We present

a self-supervised learning approach since we do not have ground truth optical flow

for 360 videos.
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Related Work

Optical Flow Estimation. The classical optical flow estimation approaches

[42, 43] used variational approaches to minimize energy based on brightness

constancy and spatial smoothness. Recently, [44] proposed an end-to-end optical

flow estimation with convolutional networks (FlowNet) using supervised scheme.

Several other works based on CNN followed FlownNet including 3D convolution

based approach [51], unsupervised approach [52, 53, 54] and pyramidal-coarse-to-fine

approach [55, 56]. Recent variants such as [57, 58] used sparse matching by learning

feature embedding. These methods were computationally expensive, making it

impossible to train end-to-end fashion. FlowNet-2.0 [32] was an important addition

in this series. It exploited curriculum learning approach [49]. In their work they

address the weakness of FlowNet by addressing a smaller to larger range of

displacement magnitude. However, the success of FlowNet-2.0 comes with a cost of

over parametrization with around 160 Million parameters. [45] presented a more

effective approach dubbed as LiteFlowNet. LiteFlowNet is around 30 times smaller

and around 1.36 times faster. LiteFlowNet excelled FlowNet-2.0 by drilling down

architecture details. LiteFlowNet proposed effective flow inference at each pyramid

level, presented data fidelity and regularization as variational methods, whereas

FlowNet only used a U-Net like architecture. Self-supervised [50, 59] approaches for

optical flow estimation are intuitive and reasonable approaches, as warping is one of

the fundamental techniques used in successful deep learning based architecture.

These techniques motivate our self-supervised learning scheme in the final stage.

CNN for 360 Video/Images. Performing direct convolution on spherical

data led to inaccurate models [60, 61]. An intuitive approach to perform convolution

on spherical data is to use convolution directly in cube map projection [62, 63]. This

introduced less distortion but the model will have discontinuities, which led to
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sub-optimal model for several tasks. Another approach to learn rotation invariant

CNN was to use graph convolution [64] techniques. This can be done by defining

convolution in spectral domain [46, 47]. Similarly, this can also be done by

projecting both feature maps and kernel in a spectral domain and apply regular

CNN. These methods lose semantic information and were not useful in our case. In

a recent year, several other spherical CNN based models have been proposed. Work

such as [37, 48] considered distortion in sphere-to-plane projection of spherical

images/videos. Recent method by [36], dubbed as Kernel Transformer

Network(KTN) is a significant piece of work in this domain. This architecture

efficiently transferred convolution kernels from perspective images to the

equirectangular projection. Basically, KTN produced a function parametrised by a

polar angle and kernel as output. This work preserved the source CNNs and

maintained accuracy, meanwhile offering transferability and scalability. Our

architecture is a modified version of KTN, which uses interleaving convolution

techniques to reduce discontinuity during convolution.

360 Flow Estimation. [65] proposed an approach by back-projecting image

points to a virtual curved retina intrinsic to the geometry of central panoramic

camera. Their method could adopt to contemporary ego-motion algorithms. [66]

implemented Lucas-Kanade based method for optical flow estimation in catadioptric

images. They proposed new constraint based on motion model defined on

perspective images. This new constraint-based model was used to compute optical

flow for omnidirectional image sequences. [67] used multichannel spherical image

decomposition techniques to compute optical flow for 360 image sequences. Similarly

[68] proposed several variational regularization methods to estimate and decompose

motion fields on the sphere. [69] implemented, adapted phase based method to

compute optical flow using different treatments to account for 360 images.

Our work fall somewhere in the intersection of optical flow estimation and
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emerging domain of omnidirectional computer vision. However, none of the above

methods address the optical flow estimation problem using deep learning methods.

Method

We choose LiteFlowNet [45] as the basis for our newly proposed

LiteFlowNet360 (shown in Fig. 3.1) architecture because of its simpler design,

lightweight (5.37M parameters) and highly efficient implementation. We represent

our LiteFlowNet360 architecture in terms of two important blocks, feature extractor

block (F ) and regularization block (P ) as shown in Eq. III.1 where X is a sequence

of two consecutive frames, k is the number of layer transform from 0th to kth layer in

F and where n is an optimum number of layers eligible for transformation.

Fk(X) =


F0(X) : k = 0

Fk(Fk−1)(X) : n > k > 0

(III.1)

Feature extractor block F is transformed to adapt our need of 360 flow

estimation as shown in Eq. III.2. Each convolution layers F0, F1, ..., F(n−1) in feature

extractor block is parametrised by a function Ω = g(θ, ϕ) in sphere, by generating

different kernels for distortion above and below the equatorial region in sphere such

that layers F ′
0, F

′
1, ..., F

′
(n−1) are our target layers. We compute location dependent

kernel using polar and azimuthal angle θ and ϕ respectively.

We keep inference and regularization block as the same as LiteFlowNet.

However, feature warping techniques at each pyramid level is transformed to address

warping in 360 video domain. Further details will be explained in the following

section.
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Algorithm 1 : Interleaving Convolution
Y ← tensor();
X ← input;
tied_weights← ng;
n_transform← h/ng;
for each row ∈ [0, n_transform] do

start← row × tied_weights;
if row < (n_transform− 1) then

end← start+ tied_weights+ nl;
else

end← start+ tied_weights;
end
Y [start : end]←∑

i,jKrow[i, j] ∗Xrow[x− i, y − j];
end

F ′
k(X) =


F ′
0(F0(X),Ω) : k = 0

F ′
k(Fk,Ω)(F

′
k−1(Fk−1,Ω))(X) : n > k > 0

(III.2)

LiteFlowNet360 framework is an evolutionary architecture. We start from

regular LiteFlowNet architecture and perform incremental transformation and

training process to achieve final architecture. We formulate three important

subsequent stages, transformation stage, intermediate refinement stage and final

refinement.

Stage 1: Transformation

This stage starts with training the LiteFlowNet architecture with labeled data

following [45]. The most important part of this stage is to transform convolution

layers trained on perspective images to adapt to 360 images. We follow [36] with

some improvements, which we will present later in this section. Since we use

equirectangular projection method, distortion depends only on polar angle. This

leads to direct correspondence of the polar angle to the height of the input image,

i.e., y = θh/π. This means we can utilize a single kernel for optimal row-group
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Figure 3.3: Spherical data augmentation. Perspective videos are projected in a unit
sphere and then back projected to equirectangular plane. This is intentionally
lossy process to create distortion artifact(shown in top row) in perspective data.

size(ng) such that we have h/ng projection matrices Pi ∈ IRri×kh×kw , where

ri = hi × hw is target kernel for each row-group i and (kh × kw) is an original kernel

size from source CNN as in [36]. Different from original implementation, we

interleave these rows as shown in Algorithm-1 to maintain connectedness, where nl

is interleaving factor. We choose nl = 3 in our case.

We train each layer of feature extractor evolutionarily. We feed augmented

images created by warping perspective image sequence as inputs to transformed

layer and original image sequence as inputs to source CNN. Warping process is done

by plane-to-sphere and sphere-to-plane projection of perspective image sequences.

This back projection trechnique introduce distortion in perspective videos, as shown

in Fig.3.3 (top row).

Yk = Fk(X), Y ′
k = F ′

k(Fk(X),Ω)

Lk = ||Y ′
k − Yk||2

(III.3)

We train each layer with objective function presented in Eq.III.3 to minimize the L2
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Figure 3.4: Flow representation in spherical domain. (u, v) component changes as we
move away from equator.

norm between feature map generated by source CNN and transformed CNN layers,

where Yk and Y ′
k represent output at kth layers in source and target architecture

respectively and Lk is an L2 norm between feature map from source and target

CNN.

L′
k =

1

ng

ng∑
i

Lk(Ω(Y
′i
k ), Y

i
k ) (III.4)

We project feature map row-group wise in tangential plane and compute loss

with respect to corresponding feature map row-group from perspective source CNN.

We combine these losses by averaging all the losses in row-group as shown in

Eq.III.4, where i refers to i-th row-group, and L′
k is an L2 norm averaged over

row-group.

Stage 2: Intermediate Refinement

Though first stage can transform convolution layers to adapt spherical images,

it does not guarantee that estimated flow are well represented. A common problem

will arise when we try to warp inferred flow around the sphere. This is due to the

nature of sphercial coordinates. We can observe in Fig. 3.4 that the size and the
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shape of the patches decreases as we move away from the equatorial region. This

means u and v component(shown in figure) changes as we move away from the

equatorial region. This is because of the difference between idea behind the optical

flow representation in perspective domain vs spherical domain. Optical flow in

perspective domain is represented by the displacement in terms of euclidean

distance. However, in spherical domain flow information makes sense only if we

represent flow in terms of angular displacement. This means we need to present u

and v in terms of uθ and vϕ component. Instead of obtaining a direct solution, which

is beyond the scope of our work, we introduce some correction factor on original u

and v and project it in spherical domain.

The second stage is to refine the representation learning of optical flow in

spherical domain. The intermediate refinement process is all about end-to-end

training of the transform network. The training process is supervised as we want to

make sure our network learn the actual representation. The problem with this

scheme is that we do not have labelled dataset. Core part of the intermediate

refinement stage is to use data augmentation techniques to convert labelled data,

both images and optical flow in a spherical domain. We show sample augmented

image sequences and corresponding optical flow in Fig.3.3.

Equirectangular plane is expressed from (−π, π), (−π/2, π/2) for length and

height respectively, leading the aspect ratio of length : height = 2 : 1. We resize our

original image and optical flow with the nearest interpolation scheme to maintain

required aspect ratio. Then, we use simple projection techniques given by

(ϕ = 2× π × u, cos θ = 2× v − 1) for unit sphere to perform forward projection (i.e.,

perspective to spherical projection) followed by restoration using backward

projection (i.e., spherical projection to backward projection).

As we discussed, issues regarding projecting perspective optical flow directly

into sphere requires a correction factor. We apply this correction factor separately
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for u and v component of original perspective flow. The idea behind these factors is

to scale displacement magnitude to be fair all over the points in spherical

representation. For example, u is corrected by scaling each row with the ratio of

central circumference (corresponding to the actual width w in perspective plane)

and circumference wi = 2πri at each row. Regarding calculation of ri, see Fig.3.4,

where radius of a pixel-row i at distance hi = |R− i| from center can be calculated

using simple law of triangle r2i = R2 − h2i where R = w
2π

, where i ∈ (−R,R). We

finally define function Ω(x,y) to perform perspective to spherical projection, ω(r,θ,ϕ) to

perform back projection and ζ as correction function. Now we present image

augmentation I as I ′ = ω(Ω(I)) and optical flow ∆ as ∆′ = ω(Ω(ζ(∆)). We present

spherical data augmentation algorithm in Algorithm-2.

Algorithm 2 : Spherical Data Augmentation
∆I1→I2 ← input();
(I1, I2)← I ← input();
(h,w)← dim(I1);
(rw, rh)← ( h

4π
, w
2π
);

for each i ∈ [−h/2, h/2] do

∆u = ∆I1→I2 [i, :]×
2π
√
r2w−|rw−i|2
w

;
end
for each j ∈ [−w/2, w/2] do

∆v = ∆I1→I2 [:, j]×
2π
√
r2h−|rh−j|2

h
;

end
∆′
I1→I2

← ω(Ω(∆));
I ′ ← (I ′1, I

′
2)← ω(Ω(I));

The training objective is to minimize end point error ||∆′ −∆′′|| between

predicted flow ∆′′ and ground truth flow ∆′ in conjunction with brightness error

||(I ′1 +∆′
I1→I2

)− I ′′2 || between the warped image and source image. We follow

routine prescribed by [45] to train our network, but we limit our training process to

significantly fewer amount of epochs compared to original implementation, as this is

only a refinement process and network plateaus in terms of error rate. Our model is
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Figure 3.5: Final refinement process. Network from second stage is extended to have two
parallel weight sharing architecture.

now ready to cope with the spherical domain, but we need to adapt our model to

real-world data. To adapt our model to real-world data, we move into ultimate

refinement stage.

Stage 3: Final Refinement

We replicate our initial network from stage-2 into two channel siamese network

as shown in Fig. 3.5 to estimate forward ∆1→2 and backward ∆2→1 flow. We use

forward and backward flow to estimate occlusion Õ = (Õ2→1, Õ1→2) using Eq.III.5

where ϵ ≈ 10−2, (i, j) = (1, 2) for forward flow and vice versa.

Mi =


0

1 if, |∆i→j| ≤ ϵ

Õi→j =Mi ⊙ ((1−Mj) + Õj→i)

Lp =
∑

i,j

∑
ψ(Ii−I′i)⊙(1−Oi→j)∑

1−Oi→j

(III.5)
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Similarly, we use predicted optical flow to warp target image. Apart from

traditional warping techniques, we modify warping technique as shown in

Algorithm-3. This warping technique is necessary to address the continuous nature

of 360 images, i.e., whenever pixel displacement occurs beyond the boundary

condition the pixel is displaced somewhere within the equirectangular plane. For

example, if a pixel is displaced beyond the right boundary, the pixel will be

displaced on the left side of the equirectangular plane. This is not true with

perspective flow, where we consider this as a boundary condition and put the pixel

into boundary. This is well preserved and more accurate assumption for smaller

displacement in the border area.

Algorithm 3 : Boundary Condition
(gθ, gϕ)← ([−180,+180], [−90,+90]);
G← mesh_grid(gθ, gϕ);
(∆̃u, ∆̃v)← ∆̃← G+∆1→2;
δ̃u =

∆̃u

|∆̃u|
(|∆̃u| − 360);

δ̃v =
∆̃v

|∆̃v |
(180− |∆̃v|);

∆̃u =


‘∆̃u, ∆̃u ∈ [−180, 180]
−∆̃u, ∆̃v /∈ [−90, 90]
δ̃u, ∆̃u /∈ [−180, 180]

;

∆̃v =

∆̃v, ∆̃v ∈ [−90, 90]
δ̃v, ∆̃v /∈ [−90, 90]

;

∆̃← (∆̃u, ∆̃v);

We present final refinement process as further training steps to adapt to the

target domain. We use dataset from our ongoing work Egok360, an egocentric

activity recognition dataset for 360 videos as target dataset. The training process is

self-supervised based on photometric loss as shown in Eq.III.5 where

ψ = (|x|+ ϵ)q, ϵ ≈ 10−2, q ≈ 1× 10−1.
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Table 3.1: Experimental results on Sintel360 dataset.

Model Data #Layers EPE L∗
p

LiteFlowNet[45] Sintel360 0 ∼ 6.35 ∼ 1.30
LiteFlowNet +[36] Sintel360 > 4 ≥ 17 ≥ 3.06
Ours, Stage-2 Sintel360 4 ∼ 6.35 ∼ 0.70
Ours, Final Sintel360 4 ∼ 3.95 ∼ 0.60

Results

We present our result mainly on augmented Sintel [2] dataset, which we termed

as Sintel360. We performed spherical data augmentation on original Sintel training

set, which we divided into 9:1 train-val set. This train-val set has ground truth

optical flow information. We compared 4 different models as shown in Table 3.1

using commonly used end point error (EPE) metrics using validation set. To make

comparision fair, we augmented original sintel test set. We used this test set to

compute photometric loss (Lp), defined in Eq.III.5.

Quantitative Results. Table 3.1 summarizes our experiments. We found that

exhaustive layer replacement task is unnecessary. The convergance rate dramatically

decreases as we go deeper, as shown in Table 3.1, EPE is significanly higher (≥ 17)

for more than 4 layers replacement. This creates a domino effect, which propagate

errors in subsequent layers. We illustrate this effect in Fig.3.6. We can see that

beyond layer 4, the output of transformed layers are different. Instead of

reproducing the source CNN these layers learn nothing even after training for 30

epochs, using same techniques that was used to train previous layers.

Our model on Stage 2 performs on par with original implementation. Though

original method seems fine, representation for optical flow in spherical video is not

fair. We can explain the lower EPE on the original model with the large number of

flow information correspondence between real and augmented data in central region
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Figure 3.6: Comparing activations in source and target CNN. Showing randomly pic-
ked individual channel from output of different layers in source and target(stage
2) architectures. Shows source and transform CNNs on train (first row) and test
(second row) set.

of equirectangular plane. With a final refinement stage, we improve our model

significantly bringing EPE to 3.95 from 6.35 on val-set and photometric loss from

0.70 to 0.60 on a test set.

Qualitative Result. Fig.3.7 shows qualitative results from our experiment

compared with baseline LiteFlowNet. We also present qualitative results on our

target 360 video dataset. To understand the fairness of the flow predicted, we used

flow information to predict the next frame. We observe that the warping of flow

preserves the spherical nature. In another word, it preserves the artificat we

introduced in original dataset (please note patches in different colors in target

dataset shown in Fig.3.7). However, there are cases where none of these models

work as expected. We show such case in the last row of estimated optical flow on

target dataset. We believe this can be improved further by allowing the model to

have longer training times with further hyperparameter exploration.

Conclusion

In this chapter, we presented a novel framework for 360 optical flow estimation,

dubbed as LiteFlowNet360. This framework is an adaptation of existing best

practices from both of the world, “optical flow estimation for perspective videos”

and “spherical convolution for 360 videos/images”. We presented our work as three
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major subsequent stages, transformation stage, intermediate refinement stage and

final refinement stage. We started with the process of transformation, which

includes evolutionary learning of spherical convolution based on transformer

network. Apart from the success of these methods in other field, we empirically

showed that exhaustive layer transformation from source to target CNN is

insignificant in the context of optical flow estimation. We present second stage to

address the correct representation of 360 flow. This stage requires further training as

a refinement task. To train our model, we introduce a lossy data augmentation

techniques to exploit existing labelled datasets. This technique allowed us to

introduce artifacts related to spherical distortion in perspective videos, meanwhile

transforming optical flow information in a spherical domain. We presented final

stage as a domain transfer stage, where we use unlabelled target 360 video data to

train our model in a self-supervised manner. Empirical and qualitative results

showed the potential of this work. We believe this work will inspire others to

investigate this area of optical flow estimation.

Acknowledgements: This research was partially supported by NSF

CSR-1908658 and NeTS-1909185. This article solely reflects the opinions and

conclusions of its authors and not the funding agents.
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Figure 3.7: Qualitative results from LiteFlowNet360. Qualitative results on augmen-
ted Sintel 360 dataset and target video dataset. First two row represents ran-
domly picked frames and second two row represents corresponding optical flow
information. We predict frame-1 using forward flow from each architecture. We
randomly pick patches from same location from predicted(patch-2,patch-3) and
ground truth(patch-1) frame-1 as shown in bottom left corner. Patch 2,3 are from
liteflownet360 and liteflownet respectively. We can see liteflownet360 results are
comparatively better. Note: We encourage digital reader to zoom in for detail
view.
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IV. LEARNING OMNIDIRECTIONAL FLOW IN 360◦ VIDEOS VIA

SIAMESE REPRESENTATION

Introduction
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Figure 4.1: Siamese representation learning for omnidirectional flow-(SLOF). Pairs
of frame sequence (w/ and w/o random rotation) are passed as inputs to enco-
der f (RAFT as a flow head backbone and a standard convolutional projector
layer). A predictor layer h is an MLP layer. The entire framework is trained
by fusing the pretraining and fine-tuning stage to combine the similarity and
flow-loss in a single stage. The model maximizes the similarity between latent
representations of flow information from two streams and minimizes the flow
loss. Training Strategy (right): Here two different arrows(left, right) repre-
sent siamese streams or input pathways to our model. v1 and v2 (randomly
switching the rotational augmentation between two streams) are similar strate-
gies achieving overall better performance.

Optical flow estimation, as a fundamental problem in computer vision, has been

studied over decades by early works [43, 42] dated back to 80s. Before the era of

modern deep learning, traditional optical flow estimation methods relied on

hand-crafted features based optimizations [70, 71, 72], energy-based

optimizations [73, 74, 75] and variational approaches [76, 77, 78]. Although deep

learning-based approaches [79, 80, 81, 82, 32, 45] have shown great advantages over

these classical approaches, most of them are specially tailored for perspective videos.

38



The availability of perspective optical flow datasets [2, 83, 84, 85, 86] heavily

supports the advancement of these modern deep learning-based approaches. The

optical flow datasets are difficult to obtain and requires the generation of

naturalistic synthetic dataset like Sintel [2]. As these datasets mark the foundation

for optical flow estimation research, the availability of reliable omnidirectional

datasets is equally important to advance the omnidirectional flow estimation

research. The need for the datasets brings up the first challenge: there is no such

reliable (perceptually natural and complex) 360◦ or omnidirectional video dataset in

the literature collected for omnidirectional optical flow estimation. Another

challenge of omnidirectional optical flow estimation is that current perspective

video-based deep networks fail to accommodate the nature of 360◦ videos. These

perspective optical flow estimation methods inevitably require fine-tuning due to the

presence of radial distortion [87] on 360◦ videos. This fine-tuning task is

effort-intensive and requires several transformation techniques to adapt the

distortion [36, 88]. An intuitive solution is to fine-tune perspective-based deep

networks under omnidirectional supervised data. However, this brute-force

migration of perspective-based networks often requires enormous supervision and

still leads to significant performance degradation [89].

We address the first challenge of reliable benchmark dataset shortage by

proposing a new dataset named FLOW360. To the best of our knowledge, this is the

first perceptually natural-synthetic 360◦ video dataset collected for omnidirectional

flow estimation. Currently, existing omnidirectional datasets face two significant

issues i.e., lack of full 360◦ FOV (field of view) and lack of perceptual realism.

Specifically, OmniFlow[90] dataset only has 180◦ FOV failing to address the

omnidirectional nature, while the dataset proposed in OmniFlowNet[91] lacks

perceptual realism in scene and motion. Meanwhile, perspective optical flow

datasets such as [86, 2, 83] have facilitated researchers in investigating perspective
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optical flow estimation methods [45, 44, 32, 81, 80], where the availability of such

omnidirectional videos dataset is essential to advance this particular field. It is

worth noting that FLOW360 dataset can be used in various other areas such as

continuous flow estimation in 3-frame settings with forward and backward

consistency [50, 92, 93], depth [94, 95] and normal map estimation [96].

The accommodation to the omnidirectional nature generally requires

modification of convolution layers and further refinements on the target dataset due

to the presence of radial distortions [89], which is caused by projecting 360◦ videos

(spherical) to an equirectangular plane. Existing works design various convolution

layers to address the distortion problem, such as spherical

convolution [36, 62, 48, 37], spectral convolution [46, 47] and tangent convolution

[88]. Although these methods can achieve better performance than classical CNN

convolutions, they require immense effort with layer-wise architecture design, which

is impractical for high-demanding deployment in the real-world setting.

Instead of adding new convolution layers, we design a novel SLOF (Siamese

representation Learning for Omnidirectional Flow) framework (Fig. 4.1), which

leverages the rotation-invariant property of omnidirectional videos to address the

radial distortion problem. The term rotation-invariant here implies that 360◦ videos

are rotated in a random projection such that the reverse rotation of such projection

is equal to the original projection. This rotation-invariant property ensures that

omnidirectional videos can be projected to a planar representation with infinite

projections by rotating the spherical videos on three different axis (X, Y, Z), namely

“pitch”, “roll” and “yaw” operations preserving overall information. Specifically, we

design a siamese representation learning framework for learning omnidirectional flow

from a pair of consecutive frames and their rotated counterparts, assuming that the

representations of these two cases are similar enough to generate nearly identical

optical flow in the spherical domain. Besides, we design and compare different
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combinations of rotational augmentation and derive guidelines for selecting the most

effective augmentation scheme.

To summarize, we make three major contributions in this chapter: (i) we

introduce FLOW360, a new optical flow dataset for omnidirectional videos, to fill

the dataset’s need to advance the omnidirectional flow estimation field. (ii) We

propose SLOF, a novel framework for optical flow estimation in omnidirectional

videos, to mitigate the cumbersome framework adjustments for omnidirectional flow

estimation. (iii) We demonstrate a new distortion-aware error measure for

performance analysis that incorporates the relative error measure based on

distortion. Finally, we compare our method with existing omnidirectional flow

estimation techniques via kernel transformation [36] to address radial distortions.

The FLOW360 dataset, the SLOF framework, and our experimental results provide

a solid foundation for future exploration in this important field.

Related Work

Optical Flow Datasets. Perspective datasets such as [97, 86, 98, 99, 100, 101]

comprise synthetic image sequences along with synthetic and hand-crafted optical

flow. However, these datasets fall short in terms of perceptual realism and

complexities. Even though several optical flow datasets have been published recently

in [102, 83, 84, 85], they are primarily used in automotive driving scenarios. The

other relevant dataset in the literature was Sintel [2], which provided a bridge to

contemporary optical flow estimation and synthetic datasets that can be used in

real-world situations.

All datasets, as mentioned earlier, are introduced for perspective videos thus

cannot be used for omnidirectional flow estimation. So to address this problem,

LiteFlowNet360 [89] on omnidirectional flow estimation was released to augment the

Sintel dataset by introducing distortion artifacts for the domain adaptation task.
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Nevertheless, these augmented datasets are discontinuous around the edges and

violate the 360◦ nature of omnidirectional videos. The closest datasets to ours are

OmniFlow [90] and OmniFlowNet [91]. OmniFlow introduced a synthetic 180◦ FOV

dataset, which is limited to indoor scenes and lacks full 360◦ FOV. Similarly,

OmniFlowNet introduced a full 360◦ FOV dataset. However, both datasets lack

complexities and evidence for perceptual realism. We show a detailed comparison of

FLOW360, OmniFlow, and OmniFlowNet in Fig. 4.5. Compared to existing

datasets in the literature, FLOW360 is the first perceptually natural benchmark

360◦ dataset and fills the void in current research.

Optical Flow Estimation. Advancements in optical flow estimation

techniques largely rely on the success of data-driven deep learning frameworks.

Flownet [44] marked one of the initial adoption of CNN- based deep learning

frameworks for optical flow estimation. Several other

works [32, 45, 53, 51, 52, 54, 55, 56] followed the footsteps with improved results.

Generally, these networks adopt an encoder-decoder framework to learn optical flow

in a coarse-to-fine manner. The current framework RAFT [80] has shown

improvements with correlation learning.

The methods mentioned above are insufficient on omnidirectional flow field

estimation as they are designed and trained for perspective datasets. One of the

initial work [65] on omnidirectional flow estimation was presented as flow estimation

by back-projecting image points to the virtually curved retina, thus called

back-projection flow. It showed an improvement over classical algorithms. Similarly,

another classical approach [103] relyed on spherical wavelet to compute optical flow

on omnidirectional videos. However, these methods are limited to classical

approaches as they are not relevant in existing deep learning-based approaches. One

of the recent works, LiteFlowNet360 [89] tried to compute optical flow on

omnidirectional videos using domain adaptation. This method utilized the kernel
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transformer technique (KTN [36]) to adapt convolution layers on LiteFlowNet [45]

and learn correct convolution mapping on spherical data. Similarly,

OmniFlowNet [91] proposed a deep learning-based optical flow estimation technique

for omnidirectional videos. The major drawback of these methods is the requirement

to adapt convolution layers, which takes a substantial amount of time and makes

portability a significant issue. For example, in LiteFlowNet360, each convolution

layer in LiteFlowNet was transformed using KTN with additional training and

adjustments. Similar to OmniFlowNet, every convolution layer in

LiteFlowNet2 [104] was transformed using kernel mapping [105] based on different

locations of the spherical image. These techniques incur computational overheads

and limit the use of existing architectures. Such approaches demand explicit

adaptation of convolution layers, which is hard to maintain when more up-to-date

methods are published constantly. Contrary to these methods, we propose a Siamese

Representation Learning for Omnidirectional Flow (SLOF) method to learn

omnidirectional flow by exploiting existing architectures with designed

representation learning objectives, significantly reducing the unnecessary effort of

transforming or redesigning the convolution layer.

Siamese Representation Learning. Representation learning is a powerful

approach in unsupervised learning. Siamese networks have shown great success in

different vision-related tasks such as verification [106, 107] and tracking[108]. A

recent approach [109] in siamese representation learning showed impressive results

in unsupervised visual representation learning via exploiting different augmentation

views of the same data. They presented their work in pre-training and fine-tuning

stages, where the former being the unsupervised representation learning. We use the

representation learning scheme on omnidirectional data via rotational

augmentations, maximizing the similarity for latent representations and minimizing

the flow loss.
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Figure 4.2: The FLOW360 dataset. Sample frames (first and second column, respective-
ly) from some of the videos with corresponding forward optical flow and dynamic
depth information. Motion in 3D Sphere (fourth column) is computed by tran-
sforming the motion vectors from Equirectangular plane (θ, ϕ) to unit sphere
f(x, y, z). Motion in the sphere is represented in RGBA color notation. RGB
color representation (as suggested in Middlebury [86]) is encoded using (x, y)
components, and the alpha color is encoded from z of a unit sphere. RGB enco-
ding (fifth column) is an RGB color map of flow in 3D space. Note: flow fields
are clipped for better visualization.

FLOW360 is an optical flow dataset tailored for 360◦ videos using

Blender [110]. This dataset contains naturalistic 360◦ videos, forward and backward

optical flow, and dynamic depth information. The dataset comprises 40 different

videos extracted from huge 3D-World ‘The Room’, ‘Modern’, ‘Alien Planet’, and

‘City Rush’. Due to their size, this 3D-World cannot be rendered at once in a single

video. We render several parts of this 3D-World, which provides enough qualitative

variation in motion and visual perception like 3D-assets, textures, and illuminations.

The nature of this large and diverse animated world provides relatively enough
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Figure 4.3: Complexity of FLOW360 dataset. Final frames in FLOW360 Dataset in-
clude complex characteristics like camera focus/defocus, motion blur, lens di-
stortion, shadow, and reflections. Our dataset provides ambiance occlusion and
environmental effects for a realistic visual appearance.

diversity to qualify for a standard benchmark dataset. The Fig. 4.4 shows some of

the examples of motion and scene diversity of FLOW360. Similarly, samples from

the dataset of different 3D-World are shown in Fig. 4.2. We build these 3D-World

using publicly available 3D models [111, 112, 113] and 3D animated

characters [114, 115, 116]. Meanwhile, we adopt Blender [110] for additional rigging

and animation for the dataset.

FLOW360 contains 40 video clips extracted from different parts of huge

3D-World, ‘The Room’, ‘Alien Planet’, ‘City Rush’, and Modern’. The datasets also

contain other information like depth maps and normal fields extracted from the

3D-World. The FLOW360 dataset has 4,000 video frames, 4,000 depth maps, and

3,960 flow fields. We divide the video frames into 2700/1300 train-test split. We

render the video frames with the dimension of (512, 1024) to save the rendering

time. However, FLOW360 can be rendered with higher resolution, as 3D models and

Blender add-ons will also be public.

Diversity. We design FLOW360 datasets to include a diverse situation that

resembles the real world scenario as much as possible. The statistical validity of the

datasets in terms of perceptual realism of scene and motion is presented in Fig. 4.5.
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Figure 4.4: Motion and scene diversity. Samples from FLOW360 Dataset with ran-
dom projection (pitch, roll, yaw, fov) showing scene and motion diversity. The
FLOW360 dataset has a vast scene consisting of several lighting scenarios, tex-
tures, diverse 3D assets, and motion complexity in different regions.

The datasets contain a wide range of motion complexity from smaller to larger

displacement, occlusion, motion blur, and similar complexities on the scene using

camera focus-defocus, shadow, reflections, and several distortion combinations. As

these complexities are quite common in natural videos, the FLOW360 provides

similar complexities. Similarly, the datasets cover diverse scenarios like

environmental effects, textures, 3D assets, and diverse illuminations. The qualitative

presentation of these diversities and complexities are presented in Fig. 4.4 and

Fig. 4.3 respectively.

Fairness. The FLOW360 dataset contains custom-tailored animated 360

videos. We plan to release the dataset with the 3D models and our custom Blender
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add-ons to provide researchers a platform to create their custom optical flow

datasets for all kinds of environments (perspective, 180◦ and 360◦ FOV). However,

the release of 3D world scenes can raise questions regarding fairness. To mitigate

this issue, we will perturb certain parts of 3D world scenes and not release any

camera information related to the test set.

Flow-generator with Blender Add-ons. Flow-generator is a custom

Blender add-on written for Blender-v2.92. The flow-generator serves two basic

purposes. First, it creates a Blender compositor pipeline to collect frames, depth

maps and optical flow information. This add-on can also collect additional

information, such as normal maps. Second, it sets up a camera configuration for

360◦ FOV. We will describe details of the add-ons in supplementary material.

Render Passes. We exploit several modern features from Blender-v2.92 like

advanced ray-tracing as a render engine along with render passes like vector,

normal, depth, mist, and so on to produce realistic 3D scenes. Additionally, we

incorporate features like ambient occlusion, motion blur, camera focus/defocus,

smooth shading, specular reflection, shadow, and camera distortion to introduce

naturalistic complexity (shown in Fig. 4.3) in our dataset. Besides optical flow

information, the FLOW360 3D-world may be used to collect several other helpful

information like depth, normal maps, and semantic segmentation.

Dataset Statistics. We conduct a comprehensive analysis and compare our

dataset with Sintel [2], Lookalikes (presented in the original Sintel paper to compare

the image statistics with the simulated dataset), Middlebury [86], OmniFlow [90]

and OmniFlowNet [91]. The analysis shown in Fig. 4.5 shows the image and motion

statistics in the top and bottom rows, respectively.

Based on analysis from Sintel, we present frame statistics with three different

analysis: luminance histogram, power spectrum, and spatial derivative. For

luminance statistics, we convert the frames to gray-scale, I(x, y)∈[0, 255] then we
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compute histograms of gray-scale images across all pixels in the entire dataset. The

luminance statistics show the FLOW360 has a similar distribution with the peak in

the range between [0−100] and decreasing luminosity beyond that range. Similarly,

we estimate power spectra from the 2D FFT of the 512×512 in the center of each

frame. We compute the average of these power spectra across all the datasets. We

present power spectra analysis separately for the training and test set in this

analysis. The power spectra analysis closely resembles the Sintel, Lookalikes, and

Middlebury datasets. Based on [101, 117], the real-world movies exhibit a

characteristic of a power spectrum slope around -2, which is equivalent to a 1/f 2

falloff. FLOW360 with the slope (−2.30,−2.36) on test and training split shows

such characteristics. We do not claim that FLOW360 is realistic, but it certainly

exhibits perceptual similarity with natural movies. The spatial and temporal

derivative analysis additionally supports this characteristic. The Kurtosis of frames

spatial derivatives range from 32.74 to 57.27, peaked at zero. This characteristic

shows that FLOW360 has a resemblance to natural scenes [101].

Regarding the flow field analysis we directly compare the distribution of motion

u(x, y), speed defined as s(x, y)=
√
u(x, y)2 + v(x, y)2, flow direction

Θ(x, y)= tan−1 (v(x, y)/u(x, y)) and spatial flow derivative of u and v. The close

resemblance of the flow field statistics between Sintel and FLOW360 suggests

motion field resemblance with natural movies. Based on these comparisons,

FLOW360 exhibits sufficient properties evident enough for its perceptual realism

and complexities.

Comparison with OmniFlow and OmniFlowNet. OmniFlow [90] presents

an omnidirectional flow dataset that is roughly similar to FLOW360. However, the

major distinction between these datasets is the FOV. FLOW360 provides immersive

360◦ FOV, whereas OmniFlow provides only 180◦ FOV showing FLOW360

compared to OmniFlow is the true omnidirectional dataset. Similarly,
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<latexit sha1_base64="NrXaxjC4xlkrOLADccuJMnt69XU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHgRW8V+gVtKJvtpF272Q27G6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLa+sbmVnG7tLO7t39QPjxqaZkqik0quVSdkGjkTGDTMMOxkygkccixHY5vZ377CZVmUjTMJMEgJkPBIkaJsVKr1xihIf1yxat6c7irxM9JBXLU++Wv3kDSNEZhKCdad30vMUFGlGGU47TUSzUmhI7JELuWChKjDrL5tVP3zCoDN5LKljDuXP09kZFY60kc2s6YmJFe9mbif143NdFNkDGRpAYFXSyKUu4a6c5edwdMITV8YgmhitlbXToiilBjAyrZEPzll1dJ66LqX1X9h8tK7T6PowgncArn4MM11OAO6tAECo/wDK/w5kjnxXl3PhatBSefOYY/cD5/AHcKjxU=</latexit>

⇥
<latexit sha1_base64="NrXaxjC4xlkrOLADccuJMnt69XU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHgRW8V+gVtKJvtpF272Q27G6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLa+sbmVnG7tLO7t39QPjxqaZkqik0quVSdkGjkTGDTMMOxkygkccixHY5vZ377CZVmUjTMJMEgJkPBIkaJsVKr1xihIf1yxat6c7irxM9JBXLU++Wv3kDSNEZhKCdad30vMUFGlGGU47TUSzUmhI7JELuWChKjDrL5tVP3zCoDN5LKljDuXP09kZFY60kc2s6YmJFe9mbif143NdFNkDGRpAYFXSyKUu4a6c5edwdMITV8YgmhitlbXToiilBjAyrZEPzll1dJ66LqX1X9h8tK7T6PowgncArn4MM11OAO6tAECo/wDK/w5kjnxXl3PhatBSefOYY/cD5/AHcKjxU=</latexit>

⇥ (degrees)

image derivative (dI)frequency (cycle/pixel)luminance

motion (u) flow directionspeed (s)

simple low 
poly complexnature simple

indoorscene outdoor indoor/
outdoor

Yes

360o

FLOW360

Yes

moving

OmniFlowNetOmniFlow/

motion due 
to camera No Yes

camera

360o

entities in 
motion

fixed moving

180o

Yes No

FOV

FLOW360 vs. 
OmniFlow & OmniFlowNet

OmniFlowNet dI/dx
0.211-

OmniFlowNet dI/dx

-1.42

OmniFlowNet dI/dx

Kurtosis
57.27
44.97
41.16
32.74

  58.61
-49.94

  23.93
62.53
55.94

391.09
373.55

*OmniFlow 
clipped at y=-14, 
minimum value 
range upto -23

OmniFlow (
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u )

OmniFlow (
<latexit sha1_base64="43JK46uV05wMcNOT+xSKJ2k4Tk8=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZemk65a9ipcDLRN/TspXn5Cj1nW/Oj1J0pgKQzjWuu17iQkyrAwjnE6KnVTTBJMh7tO2pQLHVAdZfvoEnVilhyKpbAmDcvX3RIZjrcdxaDtjbAZ60ZuK/3nt1ESXQcZEkhoqyGxRlHJkJJrmgHpMUWL42BJMFLO3IjLAChNj0yraEPzFl5dJ46zin1f8O79cvZ2lAQU4gmM4BR8uoAo3UIM6EBjBE7zAq/PoPDtvzvusdcWZzxzCHzgfP8oTlck=</latexit> �u
<latexit sha1_base64="43JK46uV05wMcNOT+xSKJ2k4Tk8=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZemk65a9ipcDLRN/TspXn5Cj1nW/Oj1J0pgKQzjWuu17iQkyrAwjnE6KnVTTBJMh7tO2pQLHVAdZfvoEnVilhyKpbAmDcvX3RIZjrcdxaDtjbAZ60ZuK/3nt1ESXQcZEkhoqyGxRlHJkJJrmgHpMUWL42BJMFLO3IjLAChNj0yraEPzFl5dJ46zin1f8O79cvZ2lAQU4gmM4BR8uoAo3UIM6EBjBE7zAq/PoPDtvzvusdcWZzxzCHzgfP8oTlck=</latexit> �u )

F360-test  (
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u )

F360-test  (
<latexit sha1_base64="43JK46uV05wMcNOT+xSKJ2k4Tk8=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZemk65a9ipcDLRN/TspXn5Cj1nW/Oj1J0pgKQzjWuu17iQkyrAwjnE6KnVTTBJMh7tO2pQLHVAdZfvoEnVilhyKpbAmDcvX3RIZjrcdxaDtjbAZ60ZuK/3nt1ESXQcZEkhoqyGxRlHJkJJrmgHpMUWL42BJMFLO3IjLAChNj0yraEPzFl5dJ46zin1f8O79cvZ2lAQU4gmM4BR8uoAo3UIM6EBjBE7zAq/PoPDtvzvusdcWZzxzCHzgfP8oTlck=</latexit> �u
<latexit sha1_base64="43JK46uV05wMcNOT+xSKJ2k4Tk8=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZemk65a9ipcDLRN/TspXn5Cj1nW/Oj1J0pgKQzjWuu17iQkyrAwjnE6KnVTTBJMh7tO2pQLHVAdZfvoEnVilhyKpbAmDcvX3RIZjrcdxaDtjbAZ60ZuK/3nt1ESXQcZEkhoqyGxRlHJkJJrmgHpMUWL42BJMFLO3IjLAChNj0yraEPzFl5dJ46zin1f8O79cvZ2lAQU4gmM4BR8uoAo3UIM6EBjBE7zAq/PoPDtvzvusdcWZzxzCHzgfP8oTlck=</latexit> �u )

F360-train (
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u )

F360-train (
<latexit sha1_base64="43JK46uV05wMcNOT+xSKJ2k4Tk8=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZemk65a9ipcDLRN/TspXn5Cj1nW/Oj1J0pgKQzjWuu17iQkyrAwjnE6KnVTTBJMh7tO2pQLHVAdZfvoEnVilhyKpbAmDcvX3RIZjrcdxaDtjbAZ60ZuK/3nt1ESXQcZEkhoqyGxRlHJkJJrmgHpMUWL42BJMFLO3IjLAChNj0yraEPzFl5dJ46zin1f8O79cvZ2lAQU4gmM4BR8uoAo3UIM6EBjBE7zAq/PoPDtvzvusdcWZzxzCHzgfP8oTlck=</latexit> �u
<latexit sha1_base64="43JK46uV05wMcNOT+xSKJ2k4Tk8=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZemk65a9ipcDLRN/TspXn5Cj1nW/Oj1J0pgKQzjWuu17iQkyrAwjnE6KnVTTBJMh7tO2pQLHVAdZfvoEnVilhyKpbAmDcvX3RIZjrcdxaDtjbAZ60ZuK/3nt1ESXQcZEkhoqyGxRlHJkJJrmgHpMUWL42BJMFLO3IjLAChNj0yraEPzFl5dJ46zin1f8O79cvZ2lAQU4gmM4BR8uoAo3UIM6EBjBE7zAq/PoPDtvzvusdcWZzxzCHzgfP8oTlck=</latexit> �u )

OmniFlowNet (
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u )

OmniFlow (
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s )

OmniFlow (
<latexit sha1_base64="e1rwE81ib2hqGLpYxCIGdlRt8JY=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZXrSdctexcuBlok/J+WrT8hR67pfnZ4kaUyFIRxr3fa9xAQZVoYRTifFTqppgskQ92nbUoFjqoMsP32CTqzSQ5FUtoRBufp7IsOx1uM4tJ0xNgO96E3F/7x2aqLLIGMiSQ0VZLYoSjkyEk1zQD2mKDF8bAkmitlbERlghYmxaRVtCP7iy8ukcVbxzyv+nV+u3s7SgAIcwTGcgg8XUIUbqEEdCIzgCV7g1Xl0np03533WuuLMZw7hD5yPH8cJlcc=</latexit> �s
<latexit sha1_base64="e1rwE81ib2hqGLpYxCIGdlRt8JY=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZXrSdctexcuBlok/J+WrT8hR67pfnZ4kaUyFIRxr3fa9xAQZVoYRTifFTqppgskQ92nbUoFjqoMsP32CTqzSQ5FUtoRBufp7IsOx1uM4tJ0xNgO96E3F/7x2aqLLIGMiSQ0VZLYoSjkyEk1zQD2mKDF8bAkmitlbERlghYmxaRVtCP7iy8ukcVbxzyv+nV+u3s7SgAIcwTGcgg8XUIUbqEEdCIzgCV7g1Xl0np03533WuuLMZw7hD5yPH8cJlcc=</latexit> �s )

F360-test  (
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s )

F360-test  (
<latexit sha1_base64="e1rwE81ib2hqGLpYxCIGdlRt8JY=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZXrSdctexcuBlok/J+WrT8hR67pfnZ4kaUyFIRxr3fa9xAQZVoYRTifFTqppgskQ92nbUoFjqoMsP32CTqzSQ5FUtoRBufp7IsOx1uM4tJ0xNgO96E3F/7x2aqLLIGMiSQ0VZLYoSjkyEk1zQD2mKDF8bAkmitlbERlghYmxaRVtCP7iy8ukcVbxzyv+nV+u3s7SgAIcwTGcgg8XUIUbqEEdCIzgCV7g1Xl0np03533WuuLMZw7hD5yPH8cJlcc=</latexit> �s
<latexit sha1_base64="e1rwE81ib2hqGLpYxCIGdlRt8JY=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZXrSdctexcuBlok/J+WrT8hR67pfnZ4kaUyFIRxr3fa9xAQZVoYRTifFTqppgskQ92nbUoFjqoMsP32CTqzSQ5FUtoRBufp7IsOx1uM4tJ0xNgO96E3F/7x2aqLLIGMiSQ0VZLYoSjkyEk1zQD2mKDF8bAkmitlbERlghYmxaRVtCP7iy8ukcVbxzyv+nV+u3s7SgAIcwTGcgg8XUIUbqEEdCIzgCV7g1Xl0np03533WuuLMZw7hD5yPH8cJlcc=</latexit> �s )

F360-train (
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s )

F360-train (
<latexit sha1_base64="e1rwE81ib2hqGLpYxCIGdlRt8JY=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZXrSdctexcuBlok/J+WrT8hR67pfnZ4kaUyFIRxr3fa9xAQZVoYRTifFTqppgskQ92nbUoFjqoMsP32CTqzSQ5FUtoRBufp7IsOx1uM4tJ0xNgO96E3F/7x2aqLLIGMiSQ0VZLYoSjkyEk1zQD2mKDF8bAkmitlbERlghYmxaRVtCP7iy8ukcVbxzyv+nV+u3s7SgAIcwTGcgg8XUIUbqEEdCIzgCV7g1Xl0np03533WuuLMZw7hD5yPH8cJlcc=</latexit> �s
<latexit sha1_base64="e1rwE81ib2hqGLpYxCIGdlRt8JY=">AAAB+nicbVA9SwNBEJ3zM8avi5Y2i0GwCncWamfARrsI5gOSI+xt9pIle7vH7p4hnPkpNhaK2PpDxM5/4+aSQhMfDDzem2FmXphwpo3nfTsrq2vrG5uFreL2zu7evls6aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+up33ygSjMp7s04oUGM+4JFjGBjpa5b6khrcxoZrJQcZXrSdctexcuBlok/J+WrT8hR67pfnZ4kaUyFIRxr3fa9xAQZVoYRTifFTqppgskQ92nbUoFjqoMsP32CTqzSQ5FUtoRBufp7IsOx1uM4tJ0xNgO96E3F/7x2aqLLIGMiSQ0VZLYoSjkyEk1zQD2mKDF8bAkmitlbERlghYmxaRVtCP7iy8ukcVbxzyv+nV+u3s7SgAIcwTGcgg8XUIUbqEEdCIzgCV7g1Xl0np03533WuuLMZw7hD5yPH8cJlcc=</latexit> �s )

OmniFlowNet (
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s
<latexit sha1_base64="EOZHgFzrdnL22RF4SN73Lc/Wmlg=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iHVWc+teFUvB1om/pxULj8hR73nfnX7kiQRFYZwrHXH92ITpFgZRjjNSt1E0xiTMR7SjqUCR1QHaX57ho6t0kcDqWwJg3L190SKI60nUWg7I2xGetGbiv95ncQMLoKUiTgxVJDZokHCkZFoGgTqM0WJ4RNLMFHM3orICCtMjI2rZEPwF19eJs3Tqn9W9W/9Su1mlgYU4RCO4AR8OIcaXEMdGkDgEZ7gBV6dzHl23pz3WWvBmc8cwB84Hz+h/JZE</latexit>�!s )

sintel

OmniFlow (
<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓

<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓ )

F360-test  (
<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓

<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓ )

F360-train (
<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓

<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓ )

OmniFlowNet (
<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓

<latexit sha1_base64="+GPzIj8XFimpq3IJiHFeY47YYM8=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbA6DYBXuLNTOgI12EcwH5ELY2+wlS/Z2j905JRxp/Cs2ForY+ivEzn/j5qPQxAcDj/dmmJkXJoIb9LxvJ7e0vLK6ll8vbGxube8Ud/fqRqWashpVQulmSAwTXLIachSsmWhG4lCwRji4GvuNe6YNV/IOhwlrx6QnecQpQSt1igeBsrbmvT4SrdVDFmCfIRl1iiWv7E3gLhJ/RkqXnzBBtVP8CrqKpjGTSAUxpuV7CbYzopFTwUaFIDUsIXRAeqxlqSQxM+1s8sDIPbZK142UtiXRnai/JzISGzOMQ9sZE+ybeW8s/ue1Uowu2hmXSYpM0umiKBUuKnechtvlmlEUQ0sI1dze6tI+0YSizaxgQ/DnX14k9dOyf1b2b/1S5WaaBuThEI7gBHw4hwpcQxVqQGEET/ACr86j8+y8Oe/T1pwzm9mHP3A+fgCM3ph1</latexit>�!
✓ )

OmniFlow (
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u
<latexit sha1_base64="Q+J/QevfRzv8ShX7RW6JSCb6s+s=">AAAB+3icbVA9SwNBEJ2LXzF+nbG0WQyCVbizUDsDNtpFMB+QHGFvs0mW7O0eu3tqOO6v2FgoYuv/EDv/jZtLCk18MPB4b4aZeWHMmTae9+0UVlbX1jeKm6Wt7Z3dPXe/3NQyUYQ2iORStUOsKWeCNgwznLZjRXEUctoKx1dTv3VPlWZS3JlJTIMIDwUbMIKNlXpuuSutrdhwZLBS8iFNsp5b8apeDrRM/DmpXH5CjnrP/er2JUkiKgzhWOuO78UmSLEyjHCalbqJpjEmYzykHUsFjqgO0vz2DB1bpY8GUtkSBuXq74kUR1pPotB2RtiM9KI3Ff/zOokZXAQpE3FiqCCzRYOEIyPRNAjUZ4oSwyeWYKKYvRWREVaYGBtXyYbgL768TJqnVf+s6t/6ldrNLA0owiEcwQn4cA41uIY6NIDAIzzBC7w6mfPsvDnvs9aCM585gD9wPn4ApQaWRg==</latexit>�!u )
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Figure 4.5: Comparision of frames and flow statistics. Top row represents the frames
statistics and comparison with Sintel, Lookalikes, Middlebury, OmniFlow [90]
and OmniFlowNet [91]. Bottom row represents flow statistics and comparison
with Sintel (red), OmniFlow (magenta) and OmniFlowNet (turquoise). The table
on the top-right shows a brief comparision of OmniFlow & OmniFlowNet with
FLOW360 dataset. Note: (→, ←) represents forward and backward flow fields,
respectively.

OmniFlowNet [91] presents synthetic omnidirectional flow dataset with 360◦ FOV.

However, this dataset contains low poly unnatural scenes, which can be explained

by relatively larger kurtosis (373.55, 391.09), characteristic of a power spectrum and

luminance distribution (peaked at 255). The overall statistical analysis reveals

FLOW360’s better perceptual realism and diversity.

Applications. As we mentioned, the FLOW360 dataset contains frames and

forward flow field and includes backward flow field, depth maps, and 3D-FLOW360

worlds, providing potential for applications like continuous flow-field estimation in 3

frames setting. Besides optical flow estimation, the FLOW360 dataset can be used

in other applications such as depth and normal field estimation. Moreover, given

3D-FLOW360 animation data, the researcher can create as many optical flow

datasets as needed.
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SLOF

SLOF, as shown in Fig. 4.1, is inspired by the recent work on Siamese

representation learning [109]. Since the method we rely on acts as a hub between

several methods like contrastive learning, clustering, and siamese networks, it

exhibits two special properties required for our case. First, this method has

non-collapsing behavior. Second, it is useful when we have only positive

discriminative cases. SLOF does not consider radial distortion mitigation via

changing/transforming the convolution layers rather learns the equivariant

properties of 360 videos via siamese representation. We claim that such

transformation is trivial, based on the following fact. First, the omnidirectional

videos are projected in angular domain, w.r.t.

polar(θ), azimuthal(ϕ); θ∈(−π
2
, π
2
), ϕ∈(−π, π), so we can learn flow fields in these

domains and convert these flow fields to spherical domain using planar to spherical

transformations as shown in Eq. IV.1 and Eq. IV.2. Second, the intent of a

convolution operator in optical flow architecture is relatively different from other

applications like classification, detection, or segmentation network, where other

tasks require convolution to learn relevant features (spatially consistent), the

relevance of these features should stay consistent (strictly for better performance)

throughout any spatial location of the images/videos. However, the convolution

operation is dedicated to computing the pixel-wise displacement regardless of spatial

inconsistency in the distorted region via equivariant representation learning [109].

Another important consideration of such a design is to make this method portable

to any existing optical flow architecture. This design will eliminate the cumbersome

architecture re-adjustments tasks and make it powerful and portable.

Mapping Flow Field to Unit Sphere. Input to our model are

equirectangular images projected in angular domain polar(θ), azimuthal(ϕ), where
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these angles are defined in radian as θ∈(−π
2
, π
2
), ϕ∈(−π, π), thus the predicted

optical flow is in (θ, ϕ). These flow fields can be converted to unit sphere using

planar to spherical co-ordinate transformation as shown below:

(xs, ys, zs) = (sin θ cosϕ, sin θ sinϕ, cos θ). (IV.1)

We can compute sphere to catadioptric plane [118] projections to express the flow

field in Cartesian co-ordinates as:

(x, y) = (
xs

1− zs
,

ys
1− zs

) = (cot
θ

2
cosϕ, cot

θ

2
sinϕ). (IV.2)

Design. Given a pair of input image sequence X1=(x1, x2), the rotation head

(R) computes augmented view of this sequence as X2=(x′1, x
′
2) with rotation r using

a random combination of “pitch", “yaw" and “roll" operations. These two augmented

views are passed as an input to an encoder network f , defined as

f=P (R′(Θ(E(R(X, r))))) where E is a flow prediction module, RAFT [80] in our

case, Θ is a mapping of 2D flow to unit sphere, R′ is a reverse rotation operation

and P is a convolution based down-sampling head. A prediction head presented as h

(an MLP head), transforms the output from the encoder f from one stream to

match the other stream. The illustration of this process shown in Equation. IV.3 as

maximization of cosine similarity two views from siamese stream:

D(pleft, zright) = − pleft

||pleft||2
· zright

||zright||2
. (IV.3)

Here, pleft≜h(f left(X1)) and zright≜f right(X2) denotes the output vectors to match

from two different streams(f left, f right). This maximization problem can be viewed

from another direction, with (pright, zleft) as the second matching pair from siamese

stream (f right, f left) respectively. Given two matching pairs, we can use following
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(Eq. IV.4) symmetrized similarity loss function (note that zleft and zright are treated

as a constant term using stop-grad operations to prevent a degenerate solution due

to model collapse [109]):

Lsim =
1

2
D(pleft, zright) +

1

2
D(pright, zleft). (IV.4)

Similarly, the optical flow loss is computed as a sequence loss [80] over predicted

flow field and ground truth. This loss (l1 distance over predicted and ground truth

flow fgt) is computed and averaged over sequence of predictions iteraterively

generated for the same pair of input frames {f1, f2, ..., fn}=E(R(X, r)) as shown in

Equation. IV.5, where γ=0.8n−i−1 served as weights over sequence loss. Note that

(n, i) denotes number of prediction(n) in sequence and prediction id(i) in predicted

flow sequences. The design of the weighted schemes ensures different levels of

confidence on predicted flows over time.

Lflow =
n∑
i=1

γ||R(fgt, r)− fi||. (IV.5)

Given similarity loss(Lsim) and flow loss(Lflow) we implement a hybrid loss function

L=Lsim+Lflow. The overall objective of this loss function is to maximize the

similarity between latent representation of flow information while minimizing the

loss between ground truth and predicted optical flow.

Experiments

We evaluate SLOF on the FLOW360 test set. We use pre-trained RAFT on

Sintel [2] and fine-tune on FLOW360 as a comparison baseline. The fine-tuning

process is done using training protocols suggested in [80]. Moreover, to make a fair

comparison with traditional methods, we transform RAFT (pre-trained) to adapt

spherical convolution using KTN [36]. KTN transforms the convolution kernel to
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Figure 4.6: Distortion density map. Illustrating different distortion intensity due to equi-
rectangular projections. Left: upper (red) and lower (green) part of projections
shows higher distortion in central part where as the equatorial region (cyan, pink,
blue, gray) exhibit higher distortion rate away from the center of tangential pla-
ne. Right: shows the distortion density from (0, 1). This distortion density map
is used to evaluate the distortion aware EPE (EPEd). Note: Each circle patch
in left spherical projection have same area.

mitigate the radial distortions via estimating the spherical convolution function.

Additionally, we run ablation studies on different training strategies and propose a

distortion-aware evaluation. We will present details of the training procedure in the

supplemental material.

Scope. The scope of our experiments are two folds: First, create a baseline for

future researchers to explore novel methodologies. Second, address the validity of

our method based on the fair comparison with a flow network designed for a

spherical dataset. We formulate our baseline experiment on perspective optical flow

network RAFT and modified version of RAFT with KTN [36] to compare the

performance. The RAFT+KTN architecture simulates a domain adaptation similar

to approaches like [89, 91]. We choose KTN because of its success over alternative

approaches like [46, 47, 38, 48, 37]. It is worth noting that the design of

omnidirectional flow estimation can be extended to several techniques involving

mitigation of radial distortions, making it practically impossible to cover all.

Augmentation Strategy. Given the nature of SLOF, we can train it using

two different training strategies (v1,v2) as shown in Fig. 4.1(right). These strategies

can be achieved by performing different rotational augmentation on the input

sequences. The first strategy (v1) can be achieved by using set of inputs

(R(X1, r1), R(X2, r2)) where r1=(0, 0, 0), i.e., X1 does not have any rotational
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frame-1 RAFT+KTNRAFT SLOF (v2)gt-flow finetuned - RAFT SLOF (v1)

Figure 4.7: Qualitative results on FLOW360 test set. Qualitative results show our be-
st model SLOF(v1) shows better results compared to fine-tuned RAFT trained
with policy explained in [80]. The dotted (black) rectangle indicates the compa-
rative improvements of our model over fine-tuned RAFT. RAFT+KTN method
fails to predict flow-field correctly; instead, it only predicts shallow flow fields
from camera motion. The weakness of our model can be seen on dotted (red)
rectangle where smaller motion segments are missing. Note: Flows information
is clipped for better visualization.

augmentation, whereas r2 ̸=(0, 0, 0) has rotation defined with random combinations

of “pitch", “roll", and “yaw" operations. This setting is kept consistent throughout

the training process. Alternatively, identical augmentation can be achieved by

flipping this augmentation protocols. The second rotational scheme (v2) can be

achieved by randomly switching rotation such that when r1 is none, the r2 is some

random rotational augmentation and vice versa. This approach performs on par

with v1.

AE = arccos(
ueur + vevr + 1√

u2r + v2r + 1
√
u2e + v2e + 1

). (IV.6)

EPE =
1

N

N∑
i

||fpred − fgt||2. (IV.7)

EPEd =
1

N

N∑
i

||fpred − fgt||2
1− d . (IV.8)
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Table 4.1: Quantitave results on FLOW360 test set. ∗ denotes that we use EPEd/AEd
as the metrics; otherwise, the normal EPE and AE. Compared to baseline, SLOF
achieves lower end-point-error and angular error on both distortion aware (EPEd
and AEd) and normal scheme. In terms of end-point-error (lower the better)
our model (v1,v2) outperforms all the baseline. Similarly in terms of angular
error (lower the better) our models (v1, v2) perform comparatively similar and
outperform all the baseline. Though RAFT+KTN achieves comparable normal
EPE, the distortion aware (Weighted) metrics (EPEd and AEd) are significantly
larger. Note: metrics in range (all, less than (5, 10, 20) and greater than 20) is
computed as an average, based on the speed (s(x,y)=

√
u(x, y)2 + v(x, y)2) only

in the respective pixel regions.

Mehtod Version Metric Weighted s≥0∗ s≥0 s<5 s<10 s<20 s≥20

Baselines

RAFT [80] EPE 3.344 2.058 0.558 0.682 0.838 71.736
AE 1.120 0.820 0.825 0.821 0.819 0.868

Finetuned RAFT [80] EPE 2.635 1.624 0.314 0.393 0.509 65.340
AE 0.745 0.522 0.527 0.522 0.520 0.647

RAFT + KTN [36] EPE 3.899 2.222 0.598 0.742 0.924 76.426
AE 2.020 0.912 0.912 0.910 0.911 1.0114

SLOF
Switch rotation (v2) EPE 2.626 1.615 0.326 0.401 0.512 64.678

AE 0.691 0.485 0.489 0.484 0.482 0.659

Single rotation (v1) EPE 2.548 1.568 0.309 0.387 0.502 62.476
AE 0.708 0.497 0.501 0.497 0.495 0.607

Evaluation Strategy. We evaluate our method based on 2D-raw flow.

Besides, using EPE (End Point Error in Eq. IV.7), i.e., Euclidean distance between

the predicted flow and ground truth flow, as a single evaluation metric, we

incorporate AE (Angular Error) as shown in Eq. IV.6 as the second measure. To

explain the error in the omnidirectional setting, we introduce a distortion-aware

measure called EPEd as in Eq. IV.8. This metric penalizes the error in the distorted

area based on the distortion density map.

As EPEd, AEd is calculated as 1
N

∑N
i

AE
1−d where, d represents the distortion

density map illustrated in Fig. 4.6, fpred=(ue, ve) represents predicted flow, and

fgt=(ur, vr) represents ground truth flow. Note that, to maintain lower metrics scale

the distortion density is mapped between [0.500, 1.000) from (0.0, 1.0]. Please refer

to supplemental for additional details on distortion density map.

Results. Fig. 4.7, Fig. 4.8 and Table 4.1 summarize our experimental results.
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The overall summary of qualitative results is presented in Fig. 4.7. SLOF performs

better than baseline RAFT and kernel transformed RAFT+KTN methods. This

result is evident enough to show that siamese representation learning can exploit the

rotational properties of 360◦ videos to learn omnidirectional optical flow regardless

of explicit architecture adjustments.

Our methods, SLOF (v1,v2) perform better than presented baselines.Among

these methods v1 has the best EPE score whereas, v2 has better AE score.

However, AE on both v1 and v2 are relatively similar, suggesting v1 as our best

method. This is clearly visible in qualitative results shown in Fig. 4.7.

By investigating distortion-aware EPE, we can see that RAFT with KTN

achieves significantly higher EPE regardless of comparable normal EPE with the

other methods. This clearly explains why RAFT+KTN methods could not predict

the motion around the distorted area; instead, it predicts shallow flow fields due to

camera motion only. Moreover, comparing qualitative results in Fig. 4.7 and EPE

measure in different distortion ranges in Fig. 4.8, we can see that our best method

can predict smoother flow fields compared to baseline methods. These fields in the

polar region are comparatively better and have better motion consistency in the

edge region. However, our model might fail to predict relatively smaller motion

regions in some cases, which leaves room for future improvements based on the

proposed method. This concludes that RAFT+KTN requires additional

re-engineering and domain adaptation, which is out of the scope of current work.
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Figure 4.8: Error distribution plot. Illustrating error (EPE and AE) in different distortion
density ranges. SLOF relatively performs better in all distortion density ranges.

Conclusion

Omnidirectional flow estimation remains in its infancy because of the shortage

of reliable benchmark datasets and tedious tasks dealing with inescapable radial

distortions. This chapter proposes the first perceptually natural-synthetic

benchmark dataset, FLOW360, to close the gap, where comprehensive analysis

shows excellent advantages over other datasets. Our dataset can be extended for

other non-motion applications like segmentation and normal estimation task as well.

Moreover, we introduce a siamese representation learning approach for
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omnidirectional flow (SLOF) instead of redesigning the convolution layer to adapt

omnidirectional nature. Our method leverages the invariant rotation property of

360◦ videos to learn similar flow representation on various video augmentations.

Meanwhile, we study the effect of different rotations on the final flow estimation,

which provides a guideline for future work. Overall, the elimination of network

redesigns aids researchers in exploiting existing architectures without significant

modification leading faster deployment in real world setting.
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V. VIT360: EGOCENTRIC ACTIVITY RECOGNITION VIA

SIAMESE REPRESENTATION LEARNING IN 360◦ VIDEOS

Introduction

The increased interests in wearable camera sensors open an interesting area of

research in computer vision, commonly termed as Egocentric Activity Recognition

(EAR) [119]. The activity recognition is critical in the video understanding domain

with many real-world applications like surveillance, video retrieval, video

summarization, and human-computer interaction. The growth of 360◦ videos reuslts

in interesting extension of egocentric activity recognition domain commonly referred

as EAR360 [120] meanwhile adding several challenges relating to adaption with

complex nature of 360◦ videos.

Human activity recognition focuses on identifying characteristic activities

performed by humans in a video sequence. This task, in general, is formulated as a

multi-class classification problem of accurately predicting the activity labels.

Hand-crafted features [121, 122, 123, 124] were used as the basis of activity

recognition prior to the advent of deep learning. In recent years, Convolution Neural

Networks (CNNs) have been widely used for activity

recognition [125, 10, 126, 127, 128, 129, 130, 9, 131, 132]. However, these models are

not easily transferable to egocentric activity recognition on 360◦ videos. The 360◦

videos or spherical videos exhibit a unique property of radial distortions when

projected in a plane. Spherical video-based applications suffer a considerable

performance loss in CNNs due to the distortion variant [133, 37] nature of

convolution operations. Generally speaking, such issues can be solved by learning

spherical representation [36] or learning spherical CNN [46, 47]. These increased

overheads require several modifications of the existing architectures with additional

domain adaptation [89]. Besides, the adaptation of 3D convolution imposes new
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Figure 5.1: VIT360 framework. The sequence of ten consecutive frames (or optical flow)
is sampled into six different tangential projections. These tangential projections
are passed through Projection Layer(L1) and Feature Extraction Layer (L2) to
compute features XL1 and XL2. The First Attention Enforcement Layer (AE1)
computed the attention map between these features and passed it to Transformer
Encoder (E1) with positional embedding as an input. Final Attention Enforce-
ment Layer (AE2) computes the attention maps between the output XE1 and
XE2 and passes it as an input to MLP Head for activity classification.

challenges such as complex architecture design and computational bottleneck.

Recent advancements in spherical convolution techniques have primarily focused on

convolution on tangential patches [88], which demonstrates the potential of such

methodologies in downstream computer vision tasks. On the other hand,

attention-based frameworks [134, 135] are outperforming traditional CNNs on still

image applications [136, 4] as well as video-based applications [137, 138, 139, 140].

In this chapter, we propose a novel egocentric activity recognition framework called

VIT360 (shown in Fig. 5.1) by combining tangent view-based convolution [88] with

vision transformer [4]. VIT360 advances the state-of-the-art research in EAR360

because: i) it follows a hybrid design pattern where we implement the framework of

3D convolution for feature extractions which are later fed into the transformer

encoder for learning representations; ii) it eliminates the impact of radial distortions

by limiting the convolution operations only to tangential planes; and iii) it provides
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a unique way to exploit the advancement of transformers in egocentric activity

recognition.

Research in egocentric activity recognition in 360◦ videos is relatively less

explored. One such work proposed in EGOK360 [120] implements modified

resnet [33] and I3D [9] based frameworks for action/activity recognition. Based on

the results presented in EGOK360, these performance-centric methods achieve

relatively higher accuracy on both action and activity classification tasks. However,

given EGOK360 being a dataset collected in controlled settings, 360◦ videos in the

dataset exhibit consistent fixed field-of-view. The prior results were derived from

experiments with controlled settings (i.e., the training and inference were performed

using fixed field-of-view projections). Nevertheless, such controlled settings are

rarely seen in real-world applications as the person/agent with wearable sensors is

subjected to maneuver randomly, resulting in a random field-of-view. As a result,

previous methods for egocentric activity recognition perform poorly on random

projections [120], which makes them unusable in real-world settings. Our method

solves this problem by exploiting siamese representation learning [109] to build a

projection invariant framework for activity recognition. We achieve that by

pre-training VIT360 to maximize latent representation similarity across different

rotational augmentation of the same input data. VIT360 with rotation-invariant

property provides an effective solution for real-world egocentric activity recognition

in 360◦ videos.

Optical flow constitutes the temporal characteristic of motion between

consecutive frames. Our VIT360-based model uses optical flow as input for the

egocentric activity recognition to capture the temporal characteristic-based activity

features. These optical flow information can be extracted using popular off-the-shelf

frameworks as [80, 45, 44, 3, 104, 32]. However, these architectures are designed for

optical flow estimation of perspective videos only, which does not work for the
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optical flow estimation in 360◦ videos. The main challenges are the radial distortion

seen in the equirectangular projection of these 360◦ videos. Recently, several

works [89, 91] are proposed for 360◦ optical flow estimation but they introduce

significant overheads of domain adaptation, training, and fine-tuning on target

videos. Given that egocentric activity recognition is the primary goal, we intend to

use off-the-shelf architectures to extract optical flow in 360◦ videos. We demonstrate

that 360◦ optical flow can be seamlessly integrated into VIT360 with improved

performance. This is achieved by leveraging PerceiverIO [3], a recently proposed

transformer-based optical flow estimation technique by DeepMind. We use a

pre-trained PerceiverIO for optical flow inference only. This inference technique

exercises the similar approach mentioned in VIT360.

To summarize, the nature of 360◦ videos imposes three significant challenges to

EAR360 research: i) Performance deterioration due to random field-of-view

projection; ii) Radial distortions caused by sphere-to-plane projections; and, iii)

High overheads of model adaptation, transformation and refinement for 360◦ optical

flow. This chapter proposes a novel rotation invariant egocentric activity recognition

framework VIT360 for 360◦ videos. The design of VIT360 tackles challenges of

processing 360◦ videos with a fully convolution-based framework while learning the

rotational invariant representation. VIT360 is collectively inspired by the current

trend in transformer-based techniques combined with siamese representation

learning. Our contributions are three folds: i) Transformer based novel activity

recognition framework, ii) Rotation invariant framework for 360◦ videos, and iii)

Seamless integration of optical flow inference for 360◦ videos with existing

frameworks.
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Related Work

CNN based Activity Recognition. The convolution-based action/activity

recognition framework has been the standard practice in the activity recognition

field. Though 2D CNN shows massive success in still image-based applications,

incorporating the temporal aspects for the downstream task is challenging because

the CNN alone does not account for time. The initial work [125] shows a way to use

CNN to incorporate temporal aspects for the video classification task. Similarly, the

two-stream architecture [10] learns spatio-temporal features from input RGB and

optical flow information for video classification. Many other

approaches [126, 127, 128, 129] leverage the recurrent neural network to model

long-term dependencies across input video frames. Following the first introduction

of 3D CNN based video approach [130], several other variants of 3D CNN based

approaches [9, 131, 132, 9] were proposed. Our transformer-based approach, a hybrid

method, takes inspiration from these methods to extract initial video features.

Attention based Activity Recognition. Though initially introduced in

NLP [134], the attention mechanism in deep learning has changed several aspects of

computer vision research. Ranging from still image-based vision tasks [136] to video

action classification task [141], the attention-based mechanism is drawing increasing

interest in application areas like the activity recognition domain. The introduction

of the paper, “Attention is all you need” [135] marks a significant turning point in

transformer-based approaches. This attention framework led to the notable outcome

of the transformer-based vision applications as Vision Transformer [4] and activity

recognition frameworks [137, 138, 139, 140]. However, research in egocentric activity

recognition in 360◦ videos is still in its infancy. Inspired by recent advancements in

transformer-based vision tasks, we combine the potential of vision transformer with

traditional convolution-based techniques for egocentric activity recognition.
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Siamese Representation Learning. The siamese networks have succeeded in

many vision-related tasks [106, 107]. Recently, these networks are attracting

attention in unsupervised representation learning techniques. One of the notable

work SimSiam [109] tries to learn augmentation invariance representation via

training the networks with different augmentation views of the same input, resulting

in improved performance. We apply this approach to exploit rotational invariance in

360◦ videos to train a rotational invariant activity recognition model for 360◦ videos.

360◦ optical flow. Following the success of Flownet [44], several CNN based

deep learning frameworks [32, 45, 53, 51, 52, 54, 55, 56, 80] have shown consistent

improvements over time. However, perspective video-based frameworks impose

several challenges in estimating optical flow in 360◦ videos. Architecture designed

for 360◦ videos based optical flow framework, LiteFlowNet360 [89] and

OmniFlowNet [91] propose several modifications on existing CNN based

architectures [45, 104]. These modifications include an adaptation of existing

convolution layers to 360◦ using techniques as [36, 105]. As a secondary task in

egocentric activity recognition, the overheads mentioned above in 360◦ optical flow

estimation create considerable lag in the research. Instead of training, adapting, and

finetuning the existing architectures, improvisation on optical flow inference can

significantly alleviate such issues. The recent success on transformer-based

techniques called PerceiverIO by DeepMind [3] takes several input patches of the

input frames. It predicts intermediate optical flow, which can be later warped

together to make a final flow. We modify the PerceiverIO inference process to adapt

optical flow inference in 360◦ videos using the input patches as a different rotational

view of the same 360◦ videos and later warping these intermediate flows to 360◦

representation.

Dataset. Although there are affluent datasets in the egocentric activity

recognition literature, most of the published datasets [23, 24, 25, 26, 27] are limited
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to the perspective field-of-view. The 360◦ videos based egocentric activity

recognition datasets are relatively scarce. EGOK360 [120] is a recently published

egocentric dataset with 360◦ field-of-view, which includes two confusing

terminologies called activity and actions. The activity is defined as a collection of

minor actions, where the actions are more fine-grained motions related to egocentric

activities. We perform our experiments on these datasets focusing only on the

activity recognition (twelve different classes).

Method

The overall design of egocentric activity recognition in 360◦ videos comprises

four different components: (1) design of VIT360, (2) learning projection invariant

representation of 360◦ videos, (3) computing 360◦ or omnidirectional aware motion

features from off-the-shelf architecture, and (4) two-stream approach for activity

classification. The following subsections will discuss each of these components in

chronological order.

Design of VIT360

VIT360 requires input pre-processing which converts an equirectangular image

into multiple tangential patches covering the entire field-of-view as shown in Fig. 4.1.

Instead of processing raw image patches in the time dimension, these patches are

processed first via the global projection layer (L1) to compute feature sequences.

Compared with the original VIT [4] implementation, input features to VIT360 are

relatively larger as the patches are fed in the time dimension. The projection layers

transform the larger input feature space into a relatively smaller feature space by

downsizing the transformed feature dimension. The feature extraction layer (L2)

acts as a siamese stream for learning additional features from independent tangent

patches in the time dimension to mitigate the low parametrization of features. Using
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Figure 5.2: Layers in VIT360. VIT360 is composed of four major components: Projection
Layer (L1) computes the initial flattened features of input sequences, and Featu-
re Extraction Layer (L2) computes additional features using the siamese stream.
Attention Enforcement Layers (AE1 and AE2) compute the attention maps com-
puted across two different feature extraction layers and encoder streams, respec-
tively. Finally, a pair of Transformer Encoder (E1 and E2) to learn temporal
features for activity recognition.

a projection layer (L1) and feature extraction layer (L2) with stacked convolution

architecture makes VIT360 a hybrid architecture.

Tangential Projections: VIT360 takes input of 360◦ video frames or optical

flows in time dimension (X ∈ RC×T×H×W ), resulting in spatial modality (where C =

3) and motion modality (where C = 2) respectively. Note that T represents the

number of consecutive frames denoting the time dimension. Each input at time(t)

are in fact projected in the equirectangular plane(X t ∈ RC×H×W , 0 ≤ t ≤ T ), which

is obtained by a sphere mesh unwrapped on a flat rectangular plane surface. This

process maps sphere latitude and longitude to horizontal and vertical coordinate

systems expressing the length and height of the plane in the range (−π, π) and

(−π/2, π/2) respectively. In order to create input patches, tangential planes are

sampled using a spherical to cartesian coordinate transformation system. This is

shown in Eq. (V.1), where (λ, ψ) represents latitude and longitude such that

(λ0, ψ0) = (0, 0) represents the centre of the plane, and (c) represents the angular
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distance of the point(x, y) from the centre of the projection.

x =
cosψ sin(λ− λ0)

cos(c)
,

y =
cosψ0 sinψ − sinψ0 cosψ cos (λ− λ0)

cos c
,

cos(c) = sinψ0 sinψ + cosψ0 cos(ψ) cos(λ− λ0).

(V.1)

Similarly, the inverse map from plane to sphere can be computed using the following

equation as

ψ = sin−1

(
cos (c) sinψ0 +

y sin(c) cosψ0

ρ

)
,

λ = λ0 + tan−1

(
x sin (c)

ρ cosψ0 cos (c)− y sinψ0 sin (c)

) (V.2)

In the above equation, ρ =
√
x2 + y2, c = tan−1 ρ. The projection layer samples n

tangential planes (RC×T×h×w) covering the entire 360◦ field-of-view, where (h,w) are

the height and width of each tangential plane. These tangential planes are linearly

stacked alongside the width to obtain a final output x ∈ RC×T×h×nw. In summary,

the tangential projection layers take a series of optical flows or frames in a video

(X ∈ RC×T×H×W ) and transform it into a series of tangential plane projections

(x ∈ RC×T×h×nw) linearly stacked along the width.

Projection Layer (L1): An overview of the Projection Layer (L1) is shown in

Fig. 5.2. This layer takes tangential patches (x ∈ RC×T×h×nw) in time dimension as

input. In contrast with the original VIT implementation, the input to VIT360 is a

3D image (considering the time dimension) which requires a modification of the

original projection layer to 3D convolution-based architecture. The Projection Layer

(L1) includes a 3D convolution with 3D batch-normalization and LeakyReLU layer

as an activation function. The 3D convolution layer is parametrized with the 3D

kernel size and stride as (TIME, TANGENT_H, TANGENT_W), where
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TANGENT_H = h, TANGENT_W = w refers to the height and width of tangent

patches and TIME = T refers to the number of frames in the time dimension. This

formulation of L1 transformed input tangential patches (x ∈ RC×T×h×nw) to

(x ∈ Rn×EMBED_DIM), where EMBED_DIM refers to the output feature dimension

in Fig. 5.2.

Feature Extraction Layer (L2): The Projection Layer (L1) inspired from

original VIT implementation maps a huge feature space (x ∈ RC×T×h×nw) into

relatively smaller feature (x ∈ Rn×EMBED_DIM) embedding. This low

parametrization of the feature space resulted in VIT360 performance degradation.

To mitigate this issue, an additional Feature Extraction Layer (L2), as shown in

Fig. 5.2 is designed to learn additional features. These additional features are later

used for attention enforcement, resulting in improved performance. The Feature

Extraction Layer (L2) is implemented as a siamese network to process individual

input tangential patches. To achieve the siamese network, we use vmap (available

in pytorch framework) operation per tangential patches. The Feature Extraction

Layer (L2) takes an input (x ∈ RC×T×h×nw), reshapes it to (x ∈ Rn×C×T×h×w) and

computes features (x ∈ Rn×SEQ_DIM) where the SEQ_DIM is an output

embeddings of the Feature Extraction Layer (L2).

Attention Enforcement (AE1 and AE2): The Encoder in the original

implementation of VIT takes input from the linear projection layer from 16× 16

image patches. Such design consideration in VIT360 is computationally challenging

since the input for VIT360 is stacked patches in the time dimension. It is possible to

generate a relatively larger number of tangential planes and subsequently larger

embedding space from the Projection Layer (L1). Such a design is computationally

infeasible because the input will be relatively larger than the original VIT. This

tradeoff between the choice of the number of input patches and computational cost

directly affects model performance. In addition, the Projection Layer (L1) reduces
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the feature space significantly, as we discussed above, leading to lower

parametrization and reducing the model’s performance. In order to mitigate such

issues and maintain the optimal input size, we introduce Attention Enforcement

(AE1 and AE2) techniques. The first Attention Enforcement (AE1) computes an

attention map between the output from L1(XL1) and L2(XL2) making the input

(X ∈ RSEQ_DIM×EMB_DIM) size of the encoder sufficiently optimal retaining the

model performance. Similarly, the second Attention Enforcement(AE2) computes

the attention maps (X ∈ Rn×SEQ_DIM) between the output from

E1(XE1 ∈ RSEQ_DIM×EMB_DIM) and E2(XE2 ∈ RSEQ_DIM×n), keeping the number

of parameter (n× EMB_DIM ×NUM_CLASSES) in MLP Head fixed. The

overview of Attention Enforcements is presented in Fig. 5.2.

Encoder Layer (E1 and E2): The Transformer Encoder layer E1 and E2

contains similar implementation as presented in the original VIT implementation.

The E1-encoder contains two layers of encoder architecture, whereas E2 contains

only one layer of encoder architecture. E1 takes an

input (XAE1 ∈ RSEQ_DIM×EMB_DIM) from the Attention Enforcement Layer (E1)

where EMBED_DIM is the input dimension of the E1-encoder. Similarly, E2 takes

an input (XL2 ∈ Rn×SEQ_DIM) from the Feature Extraction Layer (L2) where

SEQ_DIM is the input dimension of the E2-encoder. Both E1 and E2 computes

output feature (XE1 ∈ RSEQ_DIM×EMB_DIM , XE2 ∈ Rn×SEQ_DIM) vectors similar

to the input dimension.

MLP Head: In contrast to the original VIT implementation, we introduce a

single layer MLP head as a classification head to predict the activity classes. The

Attention Enforcement Layer (AE2) output is passed as an input to the final MLP

Head.
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Figure 5.3: Siamese representation learning for egocentric activity recognition.
The random Rotation head (R) computes two different rotational views of the
same input video sequences. These augmented views are passed as an input to
VIT360 using tangential projections. The siamese network of VIT360 computes
latent representation, pi and zi, using projector(p) and predictor (h) respective-
ly. The training policy maximizes the similarity between latent representations
(p1, z2) and (p2, z1) in unsupervised manner. The pre-trained network with this
policy is then subjected to training for egocentric activity recognition.

Projection Invariant Representation

360◦ videos in comparison with perspective videos exhibit a unique property of

unlimited field-of-view, resulting in infinite projections. Such infinite projections can

be achieved by rotating the 360◦ videos on three different axes (X, Y, Z), namely

“pitch”, “roll”, and “yaw” operations. Regardless of these projections, the overall

information of 360◦ videos remains intact. This rotation-invariant property of 360◦

videos is crucial while designing deep learning architecture for 360◦ videos based

applications. In practice, the ideal architectures should be rotationally invariant or

projection invariant. To achieve this goal, we perform pretraining of VIT360 to learn

projection invariant representation.

Pre-training of VIT360 for projection invariant representation is loosely based

on contrastive learning approach called SimSiam [109]. The overview of pre-training

stage is illustrated in Fig. 5.3. This representation learning based on SimSiam is

completed using siamese representation learning, formulated as a pair of weight

sharing VIT360 streams (stream-1, stream-2) to maximize the similarity between

two different representations of the same 360◦ videos information (both frames and

70



optical flow). Given a sequence of frames X = (x0, x1, ..., xT−1), where T is the

number of frames in sequence in time, the rotation head (R) computes a pair of

rotational augmentation Xi = R(X, ri) using r ∈ (r1, r2) defined as a random

configuration of “pitch”, “yaw” and “roll” operations. These rotationally augmented

representations are now passed as an input to an encoder network

f = h(p(V IT360(R(X, r)))), where p and h are MLP layers, defined as the

projector and predictor head respectively. A projector head (p) appends the MLP

Head (shown in Fig. 4.1) with additional MLP layers to create a bottleneck MLP

module, which consitutes the final VIT360 architecture. Similarly, a predictor head

(h) transforms the output (pi ∈ Rn×EMBED_DIM) from the encoder (f) to

(zi ∈ Rn×EMBED_DIM) where i = 1, 2 represents the first and second stream.

Given output (pi, zi) from respective streams, we formulate a pretraining stage

to maximize cosine similarity between these representations across siamese streams.

The illustration of the maximization process is shown in Eq. (V.3).

D(p1, z2) = −
p1
||p1||2

· z2
||z2||2

, Lsim =
1

2
D(p1, z2) +

1

2
D(p2, z1). (V.3)

Here, p1 = f(X1) and z2 = h(f(X2)) denote latent representations computed at

different levels for the same input X using rotationally augmented different view

(X1, X2). Siamese VIT360 is trained so that both projector and predictor layers are

subjected to learn similar latent representation of the given input across two

different sets of inputs. This representation learning aims to maximize the similarity

between these two outputs at different levels across the siamese streams. The

maximization problem can be considered in both directions, another being the

maximization between (p2, z1). Given output pairs (p1, z2) and (p2, z1), we use the

symmetrized similarity loss function (Lsim) as shown in Eq. (V.3). As discussed in

SimSiam [109], we treat (p1, p2) as a constant via stop-grad operations to prevent a
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Figure 5.4: 360◦ flow inference using PercieverIO. The pairs of consecutive frames
are projected with six different field-of-view covering the entire 360◦ field. The
PercieverIO [3] is implemented as Flow Head, which computes the optical flow in
each pair of projected field-of-view. The computed flow fields are then projected
using tangential projections to extract the central field-of-view. This central field-
of-view is then warped in a spherical representation The inference technique
avoids pre-crop to avoid the missing of motion features calculation beyond the
padding zone.

degenerate solution due to model collapse.

Omnidirectional Aware Optical Flow

The overview of the optical flow inference for 360◦ videos using PerceiverIO is

shown in Fig. 5.4. Similar to VIT360, this approach also considers different

projections of pair of input 360◦ frames for calculating the final flow between the

frames. These different projections are considered an input patch to PercieverIO,

where it calculates motion information in each pair. Later these motions in patches

are warped into one 360◦ field of view to compute the final 360◦ optical flow. In

order to maintain the computational size, we limit the number of patches to six and

perform six different projections to cover the entire 360◦ field-of-view. Compared to

the original PercieverIO implementation, we do not crop these different projections

but rather resize these projections into input size as defined in PercieverIO. We do

not limit the flow computation across the neighboring patches by avoiding cropping

beyond the padding zone. These intermediate flow represents optical flow per

projections over entire equirectangular plane. Given optical flow computed in

equirectangular plane, flow information in the highly distorted area (like polar
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Figure 5.5: Two stream architecture. The motion and spatial stream constitute the
component of two-stream architecture. The spatial stream receives RGB frames,
whereas the motion streams receive the pre-computed optical flow. These two
streams are trained independently and later fused to incorporate two different
modalities via average and concatenation based late fusion techniques. The fusion
techniques include average and concatenation-based methods. The average fusion
follows straightforward averaging of logits. The concatenation technique involves
the concatenation of fully connected layers and introduction of additional fully
connected layer for further training and refinement.

regions) suffers the impact of distortions. However, the central part of

equirectangular plane (λ0, ψ0) = (0, 0) is comparatively least distorted region from

where the tangential patches are sampled with π
2

field-of-view. These sampled

patches cover the entire 360◦ field-of-view. Finally, these patches are warped into

global 360◦ flow for input frames.

Two Stream Architecture

Our egocentric activity recognition framework (shown in Fig. 5.5) is based on

recent success on action/activity recognition task [10] loosely based on two stream

hypothesis [142]. One stream is designed as a spatial stream responsible for object

recognition, and another is designed as a motion stream responsible for motion

recognition. Both streams of this framework implement VIT360, as discussed above,

for different input modalities (e.g. frames for spatial and optical flow for motion).
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These streams are trained independently and later fused (late fusion) to make a

joint prediction based on spatial and motion information. Following the best

practices in previous work [120], we implement two different fusion techniques -

average and concatenation. The average fusion technique computes the average of

the scores from the last layer and computes the model confidence, and does not

require additional training. The concatenation-based techniques require

concatenation of the last MLP head and the introduction of additional fully

connected layers matching the output class dimension. This technique requires

additional fine-tuning and achieves marginally better results.

Experiment

In this work, we focus our experiments mainly on representation learning based

egocentric activity recognition on 360◦ videos. We run our experiments on

EGOK360 [120] dataset, an egocentric activity recognition dataset for 360◦ videos.

We present a series of experiments that demonstrate the efficacy of pre-training

VIT360 with a siamese representation approach maximizing the representation

across the different view of the same input. In addition, we study the impact of

using 360◦ or omnidirectional aware optical flow compared to traditional perspective

videos based on optical flow on 360◦ videos for motion-based egocentric activity

recognition tasks.

The first experiment includes egocentric activity recognition (using a

two-stream approach) without the representation learning scheme. Similarly, the

follow-up experiments include the representation learning based egocentric activity

recognition, which follows two different consecutive experiments of pre-training and

two streams approach for classification. Similarly, we conducted two additional

experiments based on optical flow and omnidirectional optical flow. In addition to

these, we also make a comparative study of qualitative results on proposed
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Table 5.1: Quantitave results. The Top-1 accuracy (shown as %) of VIT360 compared with
baseline methods in EGOK360 [120] achieves consistent performance regardless
of projection mode, achieving less than 0.40% accuracy difference. The baseline
method shows performance gaps between 5-14%. 360◦ optical flow computed using
our inference techniques boost the peformance of VIT360 by almost 5%. (Note:
We use Perspective Flow (RAFT [80]) for baseline experiments.)

Version Random Projection Flow Motion Spatial Fused Avg Fused Concat

ResNet YES Perspective 42.53 59.67 56.18 62.79
NO Perspective 56.43 68.95 66.79 69.32

I3D YES Perspective 48.43 63.61 60.17 65.39
NO Perspective 62.19 69.78 67.37 72.68

VIT360 (Ours)

YES Perspective 56.52 67.14 65.18 70.89
NO Perspective 56.57 67.23 65.23 70.79

YES 360◦(Ours) 60.34 71.29 70.66 75.87
NO 360◦(Ours) 60.43 71.13 70.29 75.59

PercieverIO-based 360◦ optical flow inference techniques with pre-trained

perspective video based optical flow technique, RAFT [80]. Note that our

comparisons based on the two-stream architecture are reported in EGOK360 [120]

dataset only. Since the experimental results presented on EGOK360 are based on a

random train/test split of entire datasets, we also follow a similar approach.

However, to make a fair test case, we sample train and test frames with 9:1 split

from each clip from the entire training data. We achieve marginally similar baseline

results on EGOK360 compared to experimental results reported in the original

paper. In addition, we only consider activity recognition on EGOK360 dataset as

experimental results are sufficient to establish core concepts of rotationally invariant

egocentric activity recognition.

Experiment Configuration: VIT360 training follows the similar approach

we have seen in other related works [9, 10, 89]. We choose Adam [143] as our

optimizer with the initial learning rate of 10−3, and StepLR as our learning rate

scheduler for smooth training. We consider ten frames as one training input and six

tangential patches as input discussed as (T, n) in the method section. The

experiments are conducted on three 2080Ti NVIDIA GPUs with a batch size of 16,
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Figure 5.6: Qualitative results. We compare 360◦ flow inferred using our techniques and
perspective video-based technique using RAFT [80]. The superiority of our me-
thod can be seen in optical flow with smooth motion, distinct motion region,
and flow continuity across the edges.

both in the training and testing phase. The training and testing speed approaches 2

seconds/iterations and 1.5 seconds/iterations, respectively, achieving a throughput

of nearly 80 and 106 frames per second.

Discussion on Activity Recognition Results: Table 5.1 summarizes our

experimental results on egocentric activity recognition on EGOK360 datasets. From

these results, we can observe that the baseline method achieves marginally similar

accuracy as reported in [120] on a fairly sampled new test set. Though these results

are promising for controlled projections, the weaknesses of the baseline algorithm

quickly appear when we perform random rotation during testing. Its accuracy drops

significantly in both motion and spatial stream. However, considering the VIT360

for a similar effect, we obtain consistent results during fixed and random rotations.

These achievements of VIT360 are useful considering the nature of 360◦ videos in

the wild. In addition, we see a significant boost in performance using optical flow

features computed using our inference techniques on 360◦ videos. The experimental
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results of VIT360 compared to the baseline on the same test set have shown an

impressive performance boost, which provids strong evidences for the efficacy of

VIT360 in egocentric activity recognition on 360◦ videos.

Discussion on Optical Flow Results: Based on results from Table 5.1, the

proposed optical flow inference technique is comparatively better than the

traditional techniques. To understand this in details, we also present qualitative

results of our techniques and compare them with perspective flow-based techniques

in Fig. 5.6. The qualitative results show more accurate optical flow for 360◦ videos

using VIT360, which can be further explained by smooth displacement field, motion

boundaries, and flow continuity around edges.

Limitation and Societal Impact: The experimental results are based on

EGOK360 [120] datasets. The original paper discusses activity recognition as a

two-tier task: activity, and action, where activity constitutes a series of more minor

actions. In our experiments, we only focus on the activity recognition task. The

experimental results on activity recognition support the claim regarding the efficacy

of VIT360. However, we do not know the impact of our design on more fine-grained

classifications at the action level. Similarly, as progress is made in this domain and

360◦ videos based activity recognition and framework becomes increasingly

pervasive, privacy and security concerns are compounded. Using the video input

from wearable devices, these architectures can be used maliciously for mass

monitoring raising serious privacy, legal, and ethical concerns. On the other hand,

this can also be used to provide prompt response and assistance in case of

emergencies.

Conclusion

In this chapter, we propose VIT360 - a vision transformer based network

pretrained with siamese representation - to achieve rotational invariance in 360◦
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videos for egocentric activity recognition. VIT360 performs consistently regardless

of the projection mode, achieving less than 0.4% accuracy gap whereas baseline

methods drop in performance by 5% to 14% between fixed and random field-of-view

projections. Our 360◦ flow inference technique integrates seamlessly with VIT360 to

boost the performance by almost 5%. VIT360 is more suitable for activity

recognition in real-world scenarios due to its rotational invariant properties.
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VI. CONCLUSIONS

In this dissertation, we have addressed several computer vision problems

associated with activity recognition and motion understanding in 360◦ videos, i.e.,

lack of activity recognition datasets, challenges in omnidirectional motion

estimation, and challenges in activity recognition in 360◦ videos.

Activity recognition is one of the critical areas of computer vision and has

several potential considering its implementation on 360◦ videos. However, there are

several challenges ranging from lack of egocentric activity recognition datasets to

360◦ domain-specific deep learning-based computer vision framework. We explore

the first challenge, the lack of an egocentric activity recognition dataset in

Chapter II. We proposed Egok360, A 360◦ Egocentric Kinetic Human Activity

Video Dataset. The Egok360 is the first of its kind in the literature for egocentric

activity recognition in 360◦ videos (EAR360).

Following the progress of the EgoK360, we focused on understanding an

essential feature for activity recognition, optical flow for 360◦ videos or

omnidirectional flow. In chapter III we propose LiteFlowNet360, a domain

adaptation framework for transforming existing off-the-shelf optical flow models for

omnidirectional flow estimation. This framework addresses challenges like radial

distortions and mitigating such issues via transforming existing CNNs layers with

learnable spherical convolution layers.

Though LiteFlowNet360 shows satisfactory results on the augmented dataset, it

imposes two significant challenges. Lack of performance evidence on benchmark

datasets and issues regarding the design like difficulty in portability, poor

generalization, and over parametrization. In chapter IV we address this issue by

proposing a benchmark dataset (FLOW360) and omnidirectional flow estimation

framework (SLOF) by exploiting the nature of 360◦ videos.
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Finally, following the success of SLOF in Chapter IV and recent advancements

in transformer-based models, we introduced VIT360, a vision transformer-based

egocentric activity recognition for 360◦ videos. VIT360 utilizes a similar principle to

SLOF to achieve rotational invariance via siamese representation learning.

In summary, we targeted two significant aspects in 360◦ video understanding,

(i) Activity recognition, and (ii) Motion understanding. The overall design principle

of exploiting the rotational invariance properties of 360◦ videos reveals a crucial

aspect in 360◦ video understanding for future research. The major contributions of

this work focuses on representation learning for motion (SLOF) and activity

understanding (VIT360) which is really a powerful concepts along with important

dataset contributions like EgoK360 and FLOW360 to advance the motion

understanding field in 360◦ videos.
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APPENDIX SECTION

APPENDIX A: PUBLICATIONS

This dissertation consists of the following publications:

• Chapter II:

– Bhandari, K., DeLaGarza, M. A., Zong, Z., Latapie, H., & Yan, Y.

(2020, October). Egok360: A 360 Egocentric Kinetic Human Activity

Video Dataset. In 2020 IEEE ICIP (pp. 266-270). IEEE.

• Chapter III:

– Bhandari, K., Zong, Z., & Yan, Y. (2021, January). Revisiting Optical

Flow Estimation in 360 Videos. In 2020 25th ICPR (pp. 8196-8203).

IEEE.

The following papers have been accepted and are in the process for publication

at the moment of writing this Ph.D. thesis:

• Chapter IV:

– Bhandari, K., Duan, B., Liu, G., Latapie, H., Zong, Z., & Yan, Y.

Learning Omnidirectional Flow in 360◦ Video via Siamese

Representation. In ECCV 2022.

The following papers have been sumbitted and are under review at the moment

of writing this Ph.D. thesis:

• Chapter V:

– Bhandari, K., Aryal, B., Duan, B., Ngu Anne, HH., Zong, Z., & Yan,

Y. VIT360: Egocentric Activity Recognition via Siamese Representation

Learning in 360◦ Videos. In NeurIPS 2022.
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