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INVARIANT FOLIATIONS FOR STOCHASTIC DYNAMICAL

SYSTEMS WITH MULTIPLICATIVE STABLE LÉVY NOISE

YING CHAO, PINGYUAN WEI, SHENGLAN YUAN

Abstract. This work concerns the dynamics of a class of stochastic dynami-

cal systems with a multiplicative non-Gaussian Lévy noise. We first establish

the existence of stable and unstable foliations for this kind of system via the
Lyapunov-Perron method. Then we examine the geometric structure of the

invariant foliations, and their relation with invariant manifolds. Also we illus-

trate our results in an example.

1. Introduction

Invariant foliations, and invariant manifolds, are geometric structures in state
space for describing and understanding the dynamics of nonlinear dynamical sys-
tems [6, 9, 14, 26, 28]. An invariant foliation is about describing sets (called fibers)
in state space with certain dynamical properties. A fiber consists of all those points
starting from which the dynamical orbits are exponentially approaching each other,
in forward time (stable foliation) or backward time (unstable foliation). Both stable
and unstable fibers are building blocks for dynamical systems, as they carry spe-
cific dynamical information. The stable and unstable foliations for deterministic
systems have been investigated by various authors [3, 4, 11, 12, 19].

During the previous two decades, there have been various studies on invariant fo-
liations and invariant manifolds for stochastic differential equations (SDEs). Lu and
Schmalfuss [25] proved the existence of random invariant foliations for infinite di-
mensional stochastic dynamical systems. Sun et al. [33] provided an approximation
method of invariant foliations for dynamical systems with small noisy perturbations
via asymptotic analysis. Subsequently, Chen et al. [10] further studied the slow fo-
liation of a multiscale (slow-fast) stochastic evolutionary system, eliminating the
fast variables for this system. Most of these works were for stochastic systems with
Gaussian noise, i.e., Brownian noise.

However, in applications of biological and physical fields, noise appeared in the
complex systems are often non-Gaussian rather than Gaussian [37, 34, 7, 35, 20].
Note that the slow manifolds of a class of slow-fast stochastic dynamical systems
with non-Gaussian additive type noise and its approximation have been considered
by Yuan et al. [36]. Kummel [21] studied invariant manifolds of finite dimensional
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stochastic systems with multiplicative noise. It is now the time to consider invariant
foliations for stochastic dynamical systems with non-Gaussian noise.

In this article, we are concerned with invariant foliations for stochastic systems
in case of non-Gaussian Lévy noise and their relationship with invariant manifolds.

Consider the following nonlinear stochastic dynamical system with linear multi-
plicative α-stable Lévy noise

dx

dt
= Ax+ f(x, y) + x � L̇αt , in Rn, (1.1)

dy

dt
= By + g(x, y) + y � L̇αt , in Rm, (1.2)

where � denotes Marcus differential [1, 21]. The operators A and B are generators of
C0-semigroups satisfying an exponential dichotomy condition. Nonlinearities f and
g are Lipschitz continuous functions with f(0, 0) = 0, g(0, 0) = 0. The stochastic
process Lαt is a scalar, two-sided symmetric α-stable Lévy process with index of
the stability 1 < α < 2 [1, 13]. The precise conditions on these quantities will be
specified in Section 3.

It is worthy mentioning that as Marcus SDEs preserve certain physical quanti-
ties such as energy, they are often appropriate models in engineering and physical
applications [32]. The linear multiplicative noise appears in the cases where noise
fluctuates in proportion to the system state, as in some geophysical systems and
fulid systems. The wellposedness of mild solutions for this kind of stochastic dif-
ferential equations with non-Gaussian Lévy noise is known [18, 22, 1, 29].

To provide a geometric visualization for the state space of dynamical system
(1.1)-(1.2) via invariant foliations in the similar sprit as in [17, 21], and to explore
its geometry structure, we first introduce a random transformation based on the
Lévy-type Ornstein-Uhlenbeck process to convert a Marcus SDE into a conjugated
random differential equation (RDE) which easily generates a random dynamical
system. Then we prove that, under appropriate conditions, an unstable foliation
can be constructed as a graph of a Lipschitz continuous map via the Lyapunov-
Perron method [8, 17]. After that, by the inverse transformation, we can obtain
the unstable foliation for the original stochastic system. Furthermore, we shall
analyze the geometric structure of the unstable foliation and verify that the unstable
manifold is one fiber of the unstable foliation. There are similar conclusions about
the stable foliation.

This article is arranged as follows. In Section 2, we present a brief summary
of basic concepts in random dynamical systems and present a special but very
important metric dynamical system represented by a Lévy process with two-sided
time. Subsequently, Marcus canonical differential equations with Lévy motions
are discussed. Our framework is presented in Section 3. In Section 4, we show
the existence of unstable foliation (Theorem 4.1), examine its geometric structure
and illustrate a link with unstable manifold (Theorem 4.11). The same results on
the stable foliation for (1.1)-(1.2) are given in Theorem 4.13. Finally, Section 5 is
devoted to an illustrative example.

2. Preliminaries

We now recall some preliminary concepts in random dynamical systems [1, 2, 21].
Then we discuss differential equations driven by Lévy noise.
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2.1. Random dynamical systems. Let us recall an appropriate model for noise.

Definition 2.1 (Metric dynamical system). Given a probability space (Ω,F ,P)
and a flow θ = {θt}t∈R on Ω defined as a mapping θ : R× Ω 7→ Ω that satisfies

• θ0 = id, identity on Ω;
• θt1θt2 = θt1+t2 for all t1, t2 ∈ R;
• the mapping (t, ω) 7→ θtω is (B(R)⊗ F ,F)-measurable, where B(R) is the

collection of Borel sets on the real line R.

In addition, the probability measure P is assumed to be ergodic with respect to
{θt}t∈R. Then the quadruple Θ := (Ω,F ,P, θ) is called a metric dynamical system.

For our applications, we will consider a canonical sample space for two-sided
Lévy process. Let Ω = D(R,Rd) be the space of càdlàg functions (i.e., continuous
on the right and have limits on the left) taking zero value at t = 0 defined on R
and taken values in Rd. The space D(R,Rd) is not separable if we use the usual
compact-open metric. To make D(R,Rd) complete and separable, a Skorokhod’s
topology generated by the Skorokhod’s metric dR is equipped [5, 31]. For functions
ω1, ω2 ∈ D(R,Rd), dR(ω1, ω2) is defined as

dR(ω1, ω2) :=

∞∑
n=1

1

2n
(1 ∧ dn(ωn1 , ω

n
2 )),

where ωn1 (t) := fn(t)ω1(t), ωn2 (t) := fn(t)ω2(t) with

fn(t) =


1 if |t| ≤ n− 1;

n− t if n− 1 ≤ |t| ≤ n;

0 if |t| ≥ n.

and

dn(ωn1 , ω
n
2 ) := inf

λ∈Λ

{
sup

−n≤s<t≤n
| ln λ(t)− λ(s)

t− s
| ∨ sup
−n≤t≤n

|ω1(t)− ω2(λ(t))|
}
,

where

Λ := {λ : R→ R;λ is strictly increasing, lim
t→−∞

λ(t) = −∞, lim
t→+∞

λ(t) = +∞}.

We denote by F := B(D(R,Rd)) the associated Borel σ-algebra. On this set, mea-
surable flow θ = {θt}t∈R is defined by the shifts

θtω = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.

Let P be the probability measure on F , which is given by the distribution of a
two-sided Lévy motion with path in D(R,Rd). Note that P is ergodic with respect
to θt; see [2, Appendix A]. Thus (D(R,Rd),B(D(R,Rd)),P, {θt}t∈R) is a metric
dynamical system. Later on we will consider, instead of the whole D(R,Rd), a
{θt}t∈R-invariant subset Ω ⊂ D(R,Rd) of P-measure one as well as the trace σ-
algebra F of B(D(R,Rd)) with respect to Ω. Review that a set Ω is called {θt}t∈R-
invariant if θtΩ = Ω for t ∈ R [2, Page545]. On F , we will consider the restriction
of the measure P and still denote it by P. In our set, we consider scalar Lévy
motion, i.e., d = 1.
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Definition 2.2 (Random dynamical system (RDS)). A measurable random dy-
namical system on a measurable space (H,B(H)) over the metric dynamical sys-
tem (Ω,F ,P, θ) is given by a mapping ϕ : R × Ω × H 7→ H with , the following
properties:

• ϕ is jointly (B(R)⊗F ⊗ B(H),B(H))-measurable;
• the mapping ϕ(t, ω) := ϕ(t, ω, ·) : H 7→ H form a cocycle over θ(·), that is:

ϕ(0, ω, x) = x,

ϕ(t1 + t2, ω, x) = ϕ(t2, θt1ω, ϕ(t1, ω, x)),

for each t1, t2 ∈ R, ω ∈ Ω and x ∈ H.

In this paper, we take H=Rn+m = Rn × Rm.

Generally speaking, a stable foliation or an unstable foliation is composed of
stable fibers or unstable fibers which are certain sets in the state space carrying
specific dynamical information. More precisely, a stable fiber or an unstable fiber
of a foliation is defined as follows [10, 12].

Definition 2.3 (Stable and unstable fiber).

(i) Wγs(x, ω) is called a γ-stable fiber passing through x ∈ H with γ ∈ R−,
if ‖ϕ(t, ω, x) − ϕ(t, ω, x̂)‖H = O(eγt) for all ω ∈ Ω as t → +∞ for all
x, x̂ ∈ Wγs.

(ii) Wηu(x, ω) is called a η-unstable fiber passing through x ∈ H with η ∈ R+,
if ‖ϕ(t, ω, x) − ϕ(t, ω, x̂)‖H = O(eηt) for all ω ∈ Ω as t → −∞ for all
x, x̂ ∈ Wηu.

From the proceeding definition, we see that a stable fiber or an unstable fiber
is the set of all those points passing through which the dynamical trajectories can
approach each other exponentially, in forward time or backward time, respectively.
In fact, we can replace O(eγt) by O(epγt) with 0 < p ≤ 1 as we will show, without
affecting the property of exponential approximation. In addition, we say a foliation
is invariant if the random dynamical system ϕ maps one fiber to another fiber in
the following sense

ϕ(t, ω,Wη(x, ω)) ⊂ Wη(ϕ(t, ω, x), θtω).

2.2. Marcus canonical stochastic differential equations with Lévy mo-
tions. Here we consider a special but very useful class of scalar Lévy motions, i.e.,
the symmetric α-stable Lévy motions (1 < α < 2) with drift zero, diffusion d > 0

and Lévy measure να(du) = cα
du
|u|1+α where cα = α

21−α√π
Γ( 1+α

2 )

Γ(1−α2 ) . Here Γ is Gamma

function. For more definition, see [1, 30].
Initially Marcus canonical differential equations with point process as the driving

process were discussed by Marcus in [27]. Subsequently, Kurtz et al. [23] generalized
the driving process. For a scalar symmetric Lévy motion Lαt mentioned above, the
precise definition is given by

dx(t) = b(x(t))dt+ σ(x(t−)) � dLαt
where � denotes the Marcus integral, i.e.,

dx(t) = b(x(t))dt+ σ(x(t−)) ◦ dLα,c(t) + σ(x(t−))dLα,d(t)

+
∑

0<s≤t

[ψ(x(s−),∆Lαs )− x(s−)− σ(x(s−))∆Lαs ],
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where Lα,c(t), Lα,d(t) are the continuous and discontinuous parts of Lαt respectively,
◦ denotes the Stratonovich integral. Moreover, ψ(x(s−),∆Lαs ) = ς(∆Lαt σ;x(t−), 1)
satisfies

dς(σ; v, t)

dt
= σ[ς(σ; v, t)], ς(σ; v, 0) = v.

Appropriate conditions for coefficients b and σ given later can ensure the existence
and uniqueness of solution of the Marcus canonical equation, and then it defines a
stochastic flow or cocycle so that RDS methods can be applied. For more details,
see [18, 22].

Here, the reason for taking 1 < α < 2 is to ensure that Lemma 3.1 holds. In
fact, the index of stability can take values in (0, 2). When α = 2, it reduces to the
well-known Brownian motion.

3. Framework

For system (1.1)-(1.2), let | · | denote the Euclidean norm. To construct the
unstable foliation of system, we need to introduce the following hypotheses.

(A1) Exponential dichotomy condition: The linear operator A be the generator
of a C0-semigroup eAt on Rn satisfying

|eAtx| ≤ eat|x|, for t ≤ 0.

Moreover, the linear operator B is the generator of a C0-semigroup eBt on
Rm satisfying

|eBty| ≤ ebt|y|, for t ≥ 0,

where b < 0 < a.
(A2) Lipschitz condition: The interactions functions f : Rn × Rm → Rn and g :

Rn ×Rm → Rm, are Lipschitz continuous with f(0, 0) = 0 and g(0, 0) = 0,
i.e., there exists a positive constant K such that for all (xi, yi) ∈ Rn ×Rm,
i = 1, 2,

|f(x1, y1)− f(x2, y2)| ≤ K(|x1 − x2|+ |y1 − y2|),
|g(x1, y1)− g(x2, y2)| ≤ K(|x1 − x2|+ |y1 − y2|).

Note that if f and g are locally Lipschitz, following the analysis in this paper, we
also get invariant foliation in a neighborhood of (0, 0). As in references [14, 15], we
are going to verify that stochastic system (1.1)-(1.2) can be transformed into the
random differential system which is described by differential equations with random
coefficients. For this purpose, we consider a Langevin equation

dz = −zdt+ dLαt . (3.1)

A solution of this equation is usually called a Lévy-type Ornstein-Uhlenbeck pro-
cess. The properties of its stationary solution can be characterized by the following
lemma in the same sprit of the case of Brownian noise, refer to [14, 24].

Lemma 3.1. Let Lαt be a two-sided scalar symmetric α-stable Lévy motion with
1 < α < 2. Then

(i) there exists a {θt}t∈R-invariant set Ω ⊂ D(R,Rd)) of full measure with
sublinear growth:

lim
t→±∞

ω(t)

t
= 0, ω ∈ Ω

of P-measure one.
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(ii) for ω ∈ Ω, the random variable

z(ω) = −
∫ 0

−∞
eτω(τ)dτ

exists and generates a unique càdlàg stationary solution of (3.1) given by

z(θtω) = −
∫ 0

−∞
eτθtω(τ)dτ = −

∫ 0

−∞
eτω(τ + t)dτ + ω(t).

(iii) in particular,

lim
t→±∞

|z(θtω)|
|t|

= 0, ω ∈ Ω.

(iv) in addition,

lim
t→±∞

1

t

∫ t

0

z(θτω)dτ = 0, ω ∈ Ω.

Proof. (i) The
∫
|x|>1

|x|να(dx) is finite because α has a value between 1 and 2 ([30,

Page 80]). In addition, E|Lα1 | <∞ and ELα1 = 0, by the properties of moments for
Lévy process [30, Page 163]. Thus the assertion is obtained from the strong law of
large numbers for Lévy process (see [30, Page 246]).

(ii) The existence of the integral on the right hand side for ω ∈ Ω2 follows from

the fact that the sample paths of an α-stable Lévy motion satisfy lim supt→∞ t−
1
ηLα,∗t

equal zero a.s. or equals ∞ a.s., according to whether η < α or η > α, respectively,
where Lα,∗t = sup0≤s≤t |Lαs |. For the remaining part we refer to [1, Page 216 and
311].

(iii) Based on the above facts, for 1
α < δ < 1 and ω ∈ Ω2, there exists a constant

Cδ,ω > 0 such that |ω(τ + t)| ≤ Cδ,ω + |τ |δ + |t|δ. Thus, limt→±∞ | −
∫ 0

−∞ eτω(τ +

t)dτ | = 0, (iii) is proven.
(iv) Since Lαt is symmetric α-stable, we can prove that z(ω) is also symmetric

α-stable, and Ez(ω) = 0. Thus, by the ergodic theorem we obtain (iv) for ω ∈ Ω3 ∈
B(D(R,Rd)). This set Ω3 is also {θt}t∈R-invariant. Then we set Ω := Ω1∩Ω2∩Ω3.
The proof is complete. �

From now on, we replace B(D(R,Rd)) by

F = {Ω ∩A,A ∈ B(D(R,Rd))}

for Ω given in Lemma 3.1. Probability measure is the restriction of the original
measure to this new σ-algebra, we still denote it by P.

Define the random transformation(
x̂

ŷ

)
= T (ω, x, y) :=

(
xe−z(ω)

ye−z(ω)

)
(3.2)

According to [15, 16], marcus canonical integral satisfies the usual chain rules,
thus, the (x̂(t), ŷ(t)) = T (θtω, x(t), y(t)) satisfies the following conjugated random
differential equations:

dx̂

dt
= Ax̂+ F (x̂, ŷ, θtω) + z(θtω)x̂, (3.3)

dŷ

dt
= Bŷ +G(x̂, ŷ, θtω) + z(θtω)ŷ, (3.4)
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where

F (x̂, ŷ, θtω) := e−z(θtω)f(ez(θtω)x̂, ez(θtω)ŷ),

G(x̂, ŷ, θtω) := e−z(θtω)g(ez(θtω)x̂, ez(θtω)ŷ)

and z(θtω) is the càdlàg stationary solution of (3.1) given in Lemma 3.1. We
can see that functions F and G also satisfy the Lipschitz condition with the same
Lipschitz constant K. Here, it is worth noting that although x, y are only càdlàg
in time, the solution x̂(t), ŷ(t) are the product of two càdlàg functions, and are

actually continuous in time. And ˙̂x denote d
dt+ x̂ := limh↓0

x̂(t+h)−x̂(t)
h , i.e., the

right derivations of x̂ with respect to t. Therein, the state space for this new
system is still Rn+m = Rn × Rm.

Let ẑ(t, ω, ẑ0) := (x̂(t, ω, (x̂0, ŷ0)), ŷ(t, ω, (x̂0, ŷ0))) be the mild solution of (3.3)-
(3.4) with initial values (x̂(0), ŷ(0)) = (x̂0, ŷ0) := ẑ0 in the sense of Carathéodory
[16]. Then, the solution operator of (3.3)-(3.4),

ϕ(t, ω, (x̂0, ŷ0)) = (x̂(t, ω, (x̂0, ŷ0)), ŷ(t, ω, (x̂0, ŷ0)))

generate a random dynamical system. By converse transformation, we can obtain
the following result.

Lemma 3.2. Let ϕ(t, ω, z) be the random dynamical system generated by (3.3)-
(3.4). Then T−1(θtω, ϕ(t, ω, T (ω, z))) := ϕ̃(t, ω, z) is a random dynamical system.
For any z ∈ Rn+m, the process (t, ω)→ ϕ̃(t, ω, z) is a solution of (1.1)-(1.2).

Hence, by a particular structure of transform T , if (3.3)-(3.4) has a stable or
unstable foliation, so does (1.1)-(1.2).

As we want to explore the relationship between the foliations and manifolds, we
state the following results about the stable and unstable manifolds for (3.3)-(3.4),
similar to early works in [15, 17].

Lemma 3.3 (Random unstable manifold). If the Lipschitz constant K, dichotomy
parameters a, b satisfy the gap condition K( 1

η−b + 1
a−η ) < 1 with b < η < a, then

a Lipschitz invariant random unstable manifold for the RDEs (3.3)-(3.4) exists,
which is given by

Mu(ω) = {(ξ, hu(ξ, ω))| ξ ∈ Rn} (3.5)

where hu : Rn → Rm is a Lipschitz continuous mapping that satisfies hu(0) = 0
and solves the equation

hu(ξ, ω) =

∫ 0

−∞
e−Bs+

∫ 0
s
z(θτω)dτG(x̂(s, ω; ξ), ŷ(s, ω; ξ), θsω)ds, (3.6)

for any ξ ∈ Rn, where x̂(t, ω; ξ) and ŷ(t, ω; ξ) are the solutions of system (3.3)-(3.4)
of the form(

x̂(t, ω; ξ)
ŷ(t, ω; ξ)

)
=

(
eAt+

∫ t
0
z(θτω)dτξ +

∫ t
0
eA(t−s)+

∫ t
s
z(θτω)dτFds∫ t

−∞ eB(t−s)+
∫ t
s
z(θτω)dτGds

)
where F = F (x̂(s, ω; ξ), ŷ(s, ω; ξ), θsω), G = G(x̂(s, ω; ξ), ŷ(s, ω; ξ), θsω). Further-

more, M̃u(ω) = T−1(ω,Mu(ω)) = {(ξ, ez(ω)hu(e−z(ω)ξ, ω))|ξ ∈ Rn} is a Lipschitz
unstable manifold of the stochastic differential system (1.1)-(1.2).

Similar results on stable manifold can be obtained but we omit them here.
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4. Unstable foliation

To study system (3.3)-(3.4), we define Banach spaces for a fixed η, b < η < a as
follows:

Cn,−η = {φ : (−∞, 0]→ Rn : φ is continuous and sup
t≤0

e−ηt−
∫ t
0
z(θτω)dτ |φ| <∞},

Cn,+η = {φ : [0,+∞)→ Rn : φ is continuous and sup
t≥0

e−ηt−
∫ t
0
z(θτω)dτ |φ| <∞},

with the norms

‖φ‖Cn,−η
= sup

t≤0
e−ηt−

∫ t
0
z(θτω)dτ |φ|, and ‖φ‖Cn,+η

= sup
t≥0

e−ηt−
∫ t
0
z(θτω)dτ |φ|,

respectively. Analogously, we define Banach spaces Cm,−η and Cm,+η with the norms

‖φ‖Cm,−η
= sup

t≤0
e−ηt−

∫ t
0
z(θτω)dτ |φ|, and ‖φ‖Cm,+η

= sup
t≥0

e−ηt−
∫ t
0
z(θτω)dτ |φ|.

Let C±η := Cn,±η × Cm,±η , with norms ‖(x, y)‖C±
η

= ‖x‖Cn,±η
+ ‖y‖Cm,±η

, for

(x, y) ∈ C±η .
we introduce the set

Wη((x̂0, ŷ0), ω)

= {(x̂∗0, ŷ∗0) ∈ Rn × Rm : ϕ(t, ω, (x̂0, ŷ0))− ϕ(t, ω, (x̂∗0, ŷ
∗
0)) ∈ C−η }.

(4.1)

where ϕ(t, ω, (x̂0, ŷ0)) is the solution of the random system (3.3)-(3.4) as we denoted
in Section 3. This is the set of all initial data through which the difference of

two dynamical orbits are bounded by eηt+
∫ t
0
z(θτω)dτ . As we will prove later that

Wη((x̂0, ŷ0), ω) is actually a fiber of the unstable foliation for the random system
(3.3)-(3.4).

Our main results about the existence of unstable foliation is as follows.

Theorem 4.1 (Unstable foliation). Assume that (A1), (A2) hold. Take η as the
positive real number in the gap condition K( 1

η−b + 1
a−η ) < 1. Then, the random dy-

namical system (3.3)-(3.4) has a Lipschitz unstable foliation for which each unstable
fiber can be represented as a graph

Wη((x̂0, ŷ0), ω) = {(ξ, l(ξ, (x̂0, ŷ0), ω)) : ξ ∈ Rn}. (4.2)

Here (x̂0, ŷ0) ∈ Rn × Rm, and the function l(ξ, (x̂0, ŷ0), ω) defined in (4.15) is the
graph mapping with Lipschitz constant satisfying

Lip l ≤ K

(η − b)(1−K( 1
η−b + 1

a−η ))
.

The proof of this theorem, based on the Lyapunov-Perron method, will be pre-
sented after several useful lemmas.

Define the difference of two dynamical orbits of random system (3.3)-(3.4)

φ(t) = ϕ(t, ω, (x̂∗0, ŷ
∗
0))− ϕ(t, ω, (x̂0, ŷ0))

= (x̂(t, ω, (x̂∗0, ŷ
∗
0))− x̂(t, ω, (x̂0, ŷ0)), ŷ(t, ω, (x̂∗0, ŷ

∗
0))− ŷ(t, ω, (x̂0, ŷ0)))

=: (u(t), v(t))

(4.3)

with the initial condition

φ(0) = (u(0), v(0)) = (x̂∗0 − x̂0, ŷ
∗
0 − ŷ0).
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Hence

x̂(t, ω, (x̂∗0, ŷ
∗
0)) = u(t) + x̂(t, ω, (x̂0, ŷ0)),

ŷ(t, ω, (x̂∗0, ŷ
∗
0)) = v(t) + ŷ(t, ω, (x̂0, ŷ0)).

Moreover, by using (3.3)-(3.4), we find that (u(t), v(t)) satisfy

du

dt
= Au+ ∆F (u, v, θtω) + z(θtω)u, (4.4)

dv

dt
= Bv + ∆G(u, v, θtω) + z(θtω)v, (4.5)

where

∆F (u, v, θtω) = F (u(t) + x̂(t, ω, (x̂0, ŷ0)), v(t) + ŷ(t, ω, (x̂0, ŷ0)), θtω)

− F (x̂(t, ω, (x̂0, ŷ0)), ŷ(t, ω, (x̂0, ŷ0)), θtω),
(4.6)

∆G(u, v, θtω) = G(u(t) + x̂(t, ω, (x̂0, ŷ0)), v(t) + ŷ(t, ω, (x̂0, ŷ0)), θtω)

−G(x̂(t, ω, (x̂0, ŷ0)), ŷ(t, ω, (x̂0, ŷ0)), θtω),
(4.7)

and initial conditions

u(0) = u0 = x̂∗0 − x̂0, v(0) = v0 = ŷ∗0 − ŷ0.

Noted that the functions ∆F and ∆G also satisfy the Lipschitz condition with the
same Lipschitz constant as f or g.

The following lemma will offer the desired properties of the random function
φ(t) = (u(t), v(t)).

Lemma 4.2. Suppose that φ(t) = (u(t), v(t)) is in C−η . Then φ(t) is the solution
of (4.4)-(4.5) with initial data φ(0) = (u0, v0) if and only if φ(t) satisfies(

u(t)
v(t)

)
=

(
eAt+

∫ t
0
z(θτω)dτu(0) +

∫ t
0
eA(t−s)+

∫ t
s
z(θτω)dτ∆F (u(s), v(s), θsω)ds∫ t

−∞ eB(t−s)+
∫ t
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds

)
.

(4.8)

Proof. Necessity. Suppose process (u(t), v(t)) solves system (4.4)-(4.5) with initial
data (u0, v0) and belong to Banach space C−η . Applying the variation of constants
formula to system (4.4)-(4.5) for integral interval r ≤ t ≤ 0,

u(t) = eA(t−r)+
∫ t
r
z(θτω)dτu(r) +

∫ t

r

eA(t−s)+
∫ t
s
z(θτω)dτ∆F (u(s), v(s), θsω)ds,

v(t) = eB(t−r)+
∫ t
r
z(θτω)dτv(r) +

∫ t

r

eB(t−s)+
∫ t
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds.

We can check that the form of u(t) is bounded under ‖ · ‖Cn,−η
by setting r = 0.

‖u(t)‖Cn,−η
= sup

t≤0
e−ηt−

∫ t
0
z(θτω)dτ |u(t)|

≤ sup
t≤0
{e(a−η)t|u(0)|+Ke−ηt

∫ 0

t

ea(t−s)+
∫ 0
s
z(θτω)dτ (|u(s)|+ |v(s)|)ds}

≤ sup
t≤0
{e(a−η)t|u(0)|+K

∫ 0

t

e(a−η)(t−s)(‖u(s)‖Cn,−η
+ ‖v(s)‖Cm,−η

)ds}

≤ |u(0)|+ K

a− η
(‖u(s)‖Cn,−η

+ ‖v(s)‖Cm,−η
) <∞
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To make (u(t), v(t)) belong to C−η , apply the same ideas in the case of deterministic
dynamical systems to find the appropriate form for v(t), and notice that

‖v(t)‖Cm,−η
= sup

t≤0
e−ηt|eBt(e−Br+

∫ 0
r
z(θτω)dτv(r)

+

∫ t

r

e−Bs+
∫ 0
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds)|

Then for t ≤ 0 the above inequality holds, and letting t→ −∞, we obtain

|e−Br+
∫ 0
r
z(θτω)dτv(r) +

∫ t

r

e−Bs+
∫ 0
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds|

≤ e(η−b)t‖v(t)‖Cm,−η
→ 0

which, for t ≤ 0, implies

v(r) = −eBr+
∫ r
0
z(θτω)dτ

∫ t

r

e−Bs+
∫ 0
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds

By taking limit for t, i.e., t→ −∞ and replacing time variable r by t, we obtain

v(t) =

∫ t

−∞
eB(t−s)+

∫ t
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds

Thus, (u(t), v(t)) a solution of (4.4)-(4.5) in the Banach space C−η with initial data
(u0, v0) can be written as in (4.8).

(Sufficiency) By direct calculations, it is not hard to see that the process φ(t) =
(u(t), v(t)) is the solution of (4.4)-(4.5) if φ(t) can be written in the form (4.8) and
is in C−η . This completes the proof of Lemma 4.2. �

From this lemma, we have the following Corollary.

Corollary 4.3. Assume that Hypotheses (A1), (A2) hold. Take η as the positive
real number. Then (x̂∗0, ŷ

∗
0) is in Wη((x̂0, ŷ0), ω) if and only if there exists a func-

tion φ(t) = (u(t), v(t)) = (u(t, ω, (x̂0, ŷ0);u(0)), v(t, ω, (x̂0, ŷ0);u(0))) ∈ C−η satisfies
(4.8).

Lemma 4.4. Take η > 0, b < η < a so that they satisfy K( 1
η−b + 1

a−η ) < 1.

Given u0 = x̂∗0 − x̂0 ∈ Rn, then the integral system (4.8) has a unique solution
φ(·) = φ(·, ω, (x̂0, ŷ0);u(0)) in C−η under the hypotheses (A1), (A2).

Proof. To see this, for any φ(t) = (u(t), v(t)) ∈ C−η , introduce two operators Jn :

C−η → Cn,−η and Jm : C−η → Cm,−η by means of

Jn(φ)[t] = eAt+
∫ t
0
z(θτω)dτu(0) +

∫ t

0

eA(t−s)+
∫ t
s
z(θτω)dτ∆F (u(s), v(s), θsω)ds,

Jm(φ)[t] =

∫ t

−∞
eB(t−s)+

∫ t
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds,

for t ≤ 0 and define the mapping

J (φ(·)) :=

(
Jn(φ(·))
Jm(φ(·))

)
.
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It is easy to see that J is well-defined from C−η into itself. To this end, taking

φ(t) = (u(t), v(t)) ∈ C−η , we have

‖Jn(φ)[t]‖Cn,−η

≤ sup
t≤0
{e(a−η)t|u(0)|+Ke−ηt

∫ 0

t

ea(t−s)+
∫ 0
s
z(θτω)dτ (|u(s)|+ |v(s)|)ds}

≤ sup
t≤0
{e(a−η)t|u(0)|+K

∫ 0

t

e(a−η)(t−s)(‖u(s)‖Cn,−η
+ ‖v(s)‖Cm,−η

)ds}

≤ |u(0)|+ K

a− η
(‖u(s)‖Cn,−η

+ ‖v(s)‖Cm,−η
)

= |u(0)|+ K

a− η
‖φ(t)‖C−

η

and

‖Jm(φ)[t]‖Cm,−η
≤ sup

t≤0
{Ke−ηt

∫ t

−∞
eb(t−s)+

∫ 0
s
z(θτω)dτ (|u(s)|+ |v(s)|)ds}

≤ sup
t≤0
{K

∫ t

−∞
e(b−η)(t−s)‖φ(s)‖C−

η
}

=
K

η − b
‖φ(s)‖C−

η
.

Hence, by the definition of J , we obtain

J (φ(t)) ≤ |u(0)|+ (
K

a− η
+

K

η − b
)‖φ(t)‖C−

η
.

Thus, we conclude that J maps C−η into itself. Further, we will show that the

mapping J is contractive. To see this, taking any φ = (u, v) ∈ C−η and φ̂ = (û, v̂) ∈
C−η , then

‖Jn(φ)− Jn(φ̂)‖Cn,−η

= ‖
∫ t

0

eA(t−s)+
∫ t
s
z(θτω)dτ [∆F (u(s), v(s), θsω)−∆F (û(s), v̂(s), θsω)]ds‖Cn,−η

= ‖
∫ t

0

eA(t−s)+
∫ t
s
z(θτω)dτ [F (u(s) + x̂(s, ω, (x̂0, ŷ0)), v(s) + ŷ(s, ω, (x̂0, ŷ0)), θsω)

− F (û(s) + x̂(s, ω, (x̂0, ŷ0)), v̂(s) + ŷ(s, ω, (x̂0, ŷ0)), θsω)]ds‖Cn,−η

≤ sup
t≤0
{Ke−ηt

∫ 0

t

ea(t−s)+
∫ 0
s
z(θτω)dτ (|u(s)− û(s)|+ |v(s)− v̂(s)|)ds}

≤ sup
t≤0
{K

∫ 0

t

e(a−η)(t−s)‖φ− φ̂‖C−
η
ds}

≤ K

a− η
‖φ− φ̂‖C−

η
,

(4.9)
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and

‖Jm(φ)− Jm(φ̂)‖Cm,−η

= ‖
∫ t

−∞
eB(t−s)+

∫ t
s
z(θτω)dτ [∆G(u(s), v(s), θsω)−∆G(û(s), v̂(s), θsω)]ds‖Cm,−η

= ‖
∫ t

−∞
eB(t−s)+

∫ t
s
z(θτω)dτ [G(u(s) + x̂(s, ω, (x̂0, ŷ0), v(s) + ŷ(s, ω, (x̂0, ŷ0)), θsω)

−G(û(s) + x̂(s, ω, (x̂0, ŷ0)), v̂(s) + ŷ(s, ω, (x̂0, ŷ0)), θsω)]ds‖Cm,−η

≤ sup
t≤0

Ke−ηt
∫ t

−∞
eb(t−s)+

∫ 0
s
z(θτω)dτ (|u(s)− û(s)|+ |v(s)− v̂(s)|)ds

≤ K

η − b
‖φ− φ̂‖C−

η
.

(4.10)
Hence, by (4.9) and (4.10),

‖J (φ)− J (φ̂)‖C−
η

= ‖Jn(φ)− Jn(φ̂)‖Cn,−η
+ ‖Jm(φ)− Jm(φ̂)‖Cm,−η

≤ (
K

a− η
+

K

η − b
)‖φ− φ̂‖C−

η
.

(4.11)

Put the constant

ρ(a, b,K) =
K

a− η
+

K

η − b
. (4.12)

Then

‖J (φ)− J (φ̂)‖C−
η
≤ ρ(a, b,K)‖φ− φ̂‖C−

η
. (4.13)

By the assumption, 0 < ρ(a, b,K) < 1. Hence the map J (φ) is contractive in C−η
uniformly with respect to (ω, (x̂0, ŷ0);u(0)). By the uniform contraction mapping
principle, we have that the mapping J (φ) = J (φ, ω, (x̂0, ŷ0);u(0)) has a unique
fixed point for each u(0) ∈ Rn, which still denoted by

φ(·) = φ(·, ω, (x̂0, ŷ0);u(0)) ∈ C−η .

Namely, φ(·, ω, (x̂0, ŷ0);u(0)) ∈ C−η is a unique solution of the system (4.8) with
the initial data u(0). �

Lemma 4.4 ensures the existence and uniqueness of solution of system (4.8) for
each given initial value. In fact, following lemma indicates that the solution of
system (4.8), i.e., φ(t) = φ(t, ω, (x̂0, ŷ0);u(0)) has continuous dependence on the
initial conditions.

Lemma 4.5. Assume the same conditions as stated in Lemma 4.4. Let φ(t) =
φ(t, ω, (x̂0, ŷ0);u(0)) be the unique solution of system (4.8) in C−η . Then for every
u(0) and ũ(0) in Rn, we have

‖φ(t, ω, (x̂0, ŷ0);u(0))− φ(t, ω, (x̂0, ŷ0); ũ(0))‖C−
η

≤ 1

1− ρ(a, b,K)
|u(0)− ũ(0)|,

(4.14)

where ρ(a, b,K) is defined as (4.12).
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Proof. Taking any u(0) and ũ(0) in Rn, we write u(t, ω;u(0)) instead of u(t, ω, (x̂0, ŷ0);u(0))
and v(t, ω;u(0)) instead of v(t, ω, (x̂0, ŷ0);u(0)) for simplicity. We have for the fixed
point φ the estimate:

‖φ(t, ω, (x̂0, ŷ0);u(0))− φ(t, ω, (x̂0, ŷ0); ũ(0))‖C−
η

= |u(t, ω;u(0))− u(t, ω; ũ(0))|+ |v(t, ω;u(0))− v(t, ω; ũ(0))|
≤ |u(0)− ũ(0)|+ ρ(a, b,K)‖φ(t, ω, (x̂0, ŷ0);u(0))− φ(t, ω, (x̂0, ŷ0); ũ(0))‖C−

η
.

Then we obtain (4.14) by transposition. �

For ξ ∈ Rn, we define the function

l(ξ, (x̂0, ŷ0), ω) := ŷ0 +

∫ 0

−∞
e−Bs+

∫ 0
s
z(θτω)dτ∆G(u, v, θsω)ds. (4.15)

with u = u(s, ω, (x̂0, ŷ0); (ξ − x̂0)), v = v(s, ω, (x̂0, ŷ0); (ξ − x̂0)).

Proof of Theorem 4.1. From (4.8), we deduce that(
x̂∗0 − x̂0

ŷ∗0 − ŷ0

)
=

(
x̂∗0 − x̂0∫ 0

−∞ e−Bs+
∫ 0
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds

)
.

As a sequence,

ŷ∗0 = ŷ0 +

∫ 0

−∞
exp

(
−Bs+

∫ 0

s

z(θτω)dτ
)

×∆G(u(s, ω, (x̂0, ŷ0);u(0)), v(s, ω, (x̂0, ŷ0);u(0)), θsω)ds

= ŷ0 +

∫ 0

−∞

(
−Bs+

∫ 0

s

z(θτω)dτ
)

×∆G(u(s, ω, (x̂0, ŷ0); x̂∗0 − x̂0), v(s, ω, (x̂0, ŷ0); (x̂∗0 − x̂0)), θsω)ds,

We find that above function just is l(ξ, (x̂0, ŷ0), ω) if we take x̂∗0 as ξ in Rn. Then
according to Corollary 4.3, Lemma 4.4, (4.1) and (4.15), we see that

Wη((x̂0, ŷ0), ω) = {(ξ, l(ξ, (x̂0, ŷ0), ω))| ξ ∈ Rn},
which immediately shows a fiber of the unstable foliation can be represented as
graph of a function. In addition, for any ξ and ξ̃ in Rn, via (4.15) and Lemma 4.5,

|l(ξ, (x̂0, ŷ0), ω)− l(ξ̃, (x̂0, ŷ0), ω)|

≤ K

η − b
‖φ(·, ω, (x̂0, ŷ0); ξ − x̂0)− φ(·, ω, (x̂0, ŷ0); ξ̃ − x̂0)‖C−

η

≤ K

η − b
· 1

1− ρ(a, b,K)
|ξ − ξ̃|.

This shows that l(ξ, (x̂0, ŷ0), ω) is Lipschitz continuous with respect to variable ξ.
The proof is complete. �

Remark 4.6. Note that the relationship between the solutions of system (1.1)-
(1.2) and (3.3)-(3.4): the original stochastic system also has an unstable foliation
under the conditions of Theorem 4.1, and every unstable fiber is represented as

W̃η((x0, y0), ω) = T−1(ω,Wη((x̂0, ŷ0), ω))

= ({(ξ, ez(ω)l(e−z(ω)ξ, (x0e
−z(ω), y0e

−z(ω)), ω))|ξ ∈ Rn}.
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Different from the case of Brownian noise, the dynamical orbits in W̃η((x0, y0), ω)
are cádlág and adapted.

In what follows we prove that if dynamical orbits of (3.3)-(3.4) start from the
same unstable fiber, then they will approach each other exponentially in backward
time.

Theorem 4.7 (Properties of unstable foliation). Assume that Hypotheses (A1),
(A2) hold. Take η > 0, b < η < a so that they satisfy the gap condition K( 1

η−b +
1

a−η ) < 1. Then, the Lipschitz unstable foliation for (3.3)-(3.4) obtained in Theorem

4.1 has the following properties:
(i) The dynamical orbits which start from the same fiber are exponentially ap-

proaching each other in backward time. In other words, for every two points (x̂1
0, ŷ

1
0)

and (x̂2
0, ŷ

2
0) in a same fiber Wη((x̂0, ŷ0), ω),

|ϕ(t, ω, (x̂1
0, ŷ

1
0))− ϕ(t, ω, (x̂2

0, ŷ
2
0))| ≤ eηt+

∫ t
0
z(θτω)dτ

1− ρ(a, b,K)
· |x̂1

0 − x̂2
0|

= O(eηt), ∀ω, as t→ −∞.
(4.16)

(ii) its unstable fiber is invariant in the sense of cocycle, i.e.,

ϕ(t, ω,Wη((x̂0, ŷ0), ω)) ⊂ Wη(ϕ(t, ω, (x̂0, ŷ0)), θtω).

Proof. (i) In view of Corollary 4.3 and the same argument in the proof of Lemma
4.4, we find that

‖φ(·)‖C−
η

= ‖u(·)‖Cn,−η
+ ‖v(·)‖Cm,−η

≤ ‖eAt+
∫ t
0
z(θτω)dτu(0)‖Cn,−η

+ ‖
∫ t

0

eA(t−s)+
∫ t
s
z(θτω)dτ∆F (u(s), v(s), θsω)ds‖Cn,−η

+ ‖
∫ t

−∞
eB(t−s)+

∫ t
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds‖Cm,−η

≤ |u(0)|+ K

a− η
‖φ(·)‖C−

η
+

K

η − b
‖φ(·)‖C−

η

≤ |u(0)|+ ρ(a, b,K)‖φ(·)‖C−
η
,

(4.17)

where φ is defined as (4.3). Then from (4.17) it follows that

‖φ(·)‖C−
η
≤ 1

1− ρ(a, b,K)
|u(0)|,

which implies immediately that

|ϕ(t, ω, (x̂∗0, ŷ
∗
0))− ϕ(t, ω, (x̂0, ŷ0))| ≤ eηt+

∫ t
0
z(θτω)dτ

1− ρ(a, b,K)
· |u(0)|, ∀t ≤ 0. (4.18)

Hence, for every pair of points (x̂1
0, ŷ

1
0) and (x̂2

0, ŷ
2
0) from the same fiberWη((x̂0, ŷ0), ω),

as both of them satisfy (4.18), we have

|ϕ(t, ω, (x̂1
0, ŷ

1
0))− ϕ(t, ω, (x̂0, ŷ0))| ≤ eηt+

∫ t
0
z(θτω)dτ

1− ρ(a, b,K)
· |u(0)|, ∀t ≤ 0,

|ϕ(t, ω, (x̂2
0, ŷ

2
0))− ϕ(t, ω, (x̂0, ŷ0))| ≤ eηt+

∫ t
0
z(θτω)dτ

1− ρ(a, b,K)
· |u(0)|, ∀t ≤ 0.
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These imply that (4.16) holds apparently.
Note that

lim
t→±∞

1

t

∫ t

0

z(θτω)dτ = 0, ω ∈ Ω

In other words,
∫ t

0
z(θτω)dτ has a sublinear growth rate which is increasing slowly

than linear increasing, thus, e
∫ t
0
z(θτω)dτ does not change the exponential conver-

gence of solutions starting at the same fiber, the proof of (i) is complete.
(ii) To prove the fiber invariance, taking a fiber Wη((x̂0, ŷ0), ω) arbitrarily, we

need to show that

ϕ(τ, ω,Wη((x̂0, ŷ0), ω)) ⊂ Wη(ϕ(τ, ω, (x̂0, ŷ0)), θτω).

Let (x̂∗0, ŷ
∗
0) ∈ Wη((x̂0, ŷ0), ω). We have ϕ(·, ω, (x̂∗0, ŷ∗0)) − ϕ(·, ω, (x̂0, ŷ0)) ∈ C−η

from (4.1), which implies that

ϕ(·+ τ, ω, (x̂∗0, ŷ
∗
0))− ϕ(·+ τ, ω, (x̂0, ŷ0)) ∈ C−η .

Thus according to the cocycle property,

ϕ(·+ τ, ω, (x̂∗0, ŷ
∗
0)) = ϕ(·, θτω, ϕ(τ, ω, (x̂∗0, ŷ

∗
0))),

ϕ(·+ τ, ω, (x̂0, ŷ0)) = ϕ(·, θτω, ϕ(τ, ω, (x̂0, ŷ0))),

hence ϕ(·, θτω, ϕ(τ, ω, (x̂∗0, ŷ
∗
0))) − ϕ(·, θτω, ϕ(τ, ω, (x̂0, ŷ0))) ∈ C−η . Then we have

ϕ(τ, ω, (x̂∗0, ŷ
∗
0)) ∈ Wη(ϕ(τ, ω, (x̂0, ŷ0)), θτω). The proof is complete. �

Remark 4.8. Under the same conditions presented in Theorem 4.7, the unstable
foliation of original stochastic system (1.1)-(1.2) is also invariant because of the
nature of the random transformation T . Furthermore, note that t → z(θtω) has a
sublinear growth rate guaranteed by Lemma 3.1. Thus, the transform T−1(θtω, ·)
does not change the exponential convergence of dynamical orbits of system (1.1)-
(1.2) in backward time starting from the same fiber.

Remark 4.9. In addition, by early works as well as the results of this paper, we
see that the unstable foliation and unstable manifold are the useful tools describing
different aspects of the dynamics for stochastic systems with multiplicative non-
Gaussian noise.

Remark 4.10. Usual gap condition K
a−η + K

η−b < 1 given in [12] and [15] only

indicates the existence of the mapping l of the unstable foliation for the random
system (3.3)-(3.4). To ensure dynamical orbits starting from the same fiber expo-
nentially approaching each other in backward time, we require η > 0 additionally.
More precisely, for the existence of unstable foliation, we need: (i) a − η > 0 in
(4.9) and K

a−η + K
η−b < 1 in (4.12); for the exponentially approaching of dynamical

orbits, need: (ii) η > 0. Therefore, a simple choice is that η = 1
pa with p > 1. By

directly calculation, we find that the corresponding exponentially approaching rate
is less if we choose the gap condition is larger. So it is unfortunate that we can not
obtain the optimal gap condition with the optimal rate η. For simplicity, we only
require η > 0 and dose not specify the exact value that η takes.

The link between the unstable foliation and unstable manifold is presented in
the following theorem (refer to [10] for the case of additive Brownian noise.)
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Theorem 4.11 (Geometric structures of the unstable foliation). Assume that (A1),
(A2) hold. Take η > 0, b < η < a. Let Mu(ω) and Wη((x̂0, ŷ0), ω) be the unstable
manifold and a fiber of the unstable foliation for the random system (3.3)-(3.4),
which are well defined by (3.5) and (4.2), respectively. Put

p

Wη(ω) := {Wη((x̂0, ŷ0), ω) | ŷ0 − hu(x̂0, ω) := p ∈ Rm, (x̂0, ŷ0) ∈ Rn × Rm},

where hu(x̂0, ω) is defined in (3.6). Then

(i) if p = 0,
p

Wη(ω) is just the unstable manifold;

(ii) for any p, q ∈ Rm and p 6= q, the unstable fiber
p

Wη(ω) parallels to the

unstable fiber
q

Wη(ω);
(iii) the unstable fiber Wη((x̂0, ŷ0), ω) is just the unstable manifold Mu(ω) if

we choose an arbitrarily point (x̂0, ŷ0) from the unstable foliation and this
chosen point also belongs to unstable manifold Mu(ω);

(iv) the unstable fiber Wη((x̂0, ŷ0), ω) and unstable manifoldMu(ω) are parallel
if arbitrarily taken point (X0, Y0) of the unstable foliation is not in the
unstable manifold Mu(ω).

Proof. It follows from (4.8) that, for any (x̂∗0, ŷ
∗
0) ∈ Rn × Rm, we have

ŷ∗0 − ŷ0 =

∫ 0

−∞
e−Bs+

∫ 0
s
z(θτω)dτ∆G(u(s), v(s), θsω)ds,

which suggests that

ŷ∗0 −
∫ 0

−∞
e−Bs+

∫ 0
s
z(θτω)dτG(x̂(s, ω; x̂∗0), ŷ(s, ω; x̂∗0), θsω)ds

= ŷ0 −
∫ 0

−∞
e−Bs+

∫ 0
s
z(θτω)dτG(x̂(s, ω; x̂0), ŷ(s, ω; x̂0), θsω)ds.

(4.19)

Namely,

ŷ∗0 − hu(x̂∗0, ω) = ŷ0 − hu(x̂0, ω), (4.20)

where hu(·, ω) is defined as (3.6). If we take an arbitrary point (x̂0, ŷ0) from the
unstable foliation, then there exists p ∈ Rm such that

ŷ0 − hu(x̂0, ω) = p.

When p = 0, then (x̂0, ŷ0) belongs to the unstable manifoldMu(ω), we obtain from
(4.20) that

ŷ∗0 − hu(x̂∗0, ω) = 0, for any x̂∗0 ∈ Rn.

Thus,
0

Wη(ω) =Mu(ω). When p 6= 0, then (x̂0, ŷ0) is not in the unstable manifold
Mu(ω). Then it immediately follows from (4.20) that

ŷ∗0 − hu(x̂∗0, ω) = p 6= 0, for any x̂∗0 ∈ Rn.

Thus (x̂∗0, ŷ
∗
0) falls into

p

Wη(ω) that parallels to the unstable manifold M(ω) =
0

Wη(ω). And apparently, for p, q ∈ Rm and p 6= q, the
p

Wη(ω) parallels to
q

Wη(ω).
The proof is complete. �
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Remark 4.12. From Theorem 4.11, we have a clear idea of geometric structure of
the unstable foliation: (i) fibers of the unstable foliation parallel to each other; (ii)
the unstable manifold is a special fiber. Namely, if we take an arbitrary point from
the a fiber and this chosen point just falls in the unstable manifold, then the fiber
just be the unstable manifold itself. Finally, what needs to explain is that fiber
paralleling with each other here means that the two fibers have parallel tangent
lines at each corresponding horizontal point.

Analogously, we also obtain the corresponding results on the stable foliation
stated in the following theorem without proof.

Theorem 4.13 (stable foliation). Assume that (A1), (A2) hold. Take γ < 0,
b < γ < a so that they satisfy the gap condition K( 1

γ−b + 1
a−γ ) < 1. Then:

(i) the random dynamical system defined by (3.3)-(3.4) has an invariant Lipschitz
stable foliation for which every fiber is represented as a graph

Wγ((x̂0, ŷ0), ω) = {(l(ζ, (x̂0, ŷ0), ω), ζ) : ζ ∈ Rm}, (4.21)

where (x̂0, ŷ0) ∈ Rn × Rm. The function l(ζ, (x̂0, ŷ0), ω) is the graph mapping with
Lipschitz constant satisfying

Lip l ≤ K

(a− γ) · (1−K( 1
γ−b + 1

a−γ ))
,

where l(ζ, (x̂0, ŷ0), ω) is defined as

l(ζ, (x̂0, ŷ0), ω) := x̂0 +

∫ 0

∞
exp(−As+

∫ 0

s

z(θτω)dτ)

×∆F (u(s, ω, (x̂0, ŷ0); (ζ − ŷ0)), v(s, ω, (x̂0, ŷ0); (ζ − ŷ0)), θsω)ds.

Furthermore, by an inverse transformation,

W̃γ((x0, y0), ω) = T−1(ω,Wγ((x̂0, ŷ0), ω))

= {(ez(ω)l(e−z(ω)ζ, (x0e
−z(ω), y0e

−z(ω)), ω), ζ) : ζ ∈ Rm}

is a Lipschitz stable foliation of the original stochastic system (1.1)-(1.2).
(ii) the Lipschitz stable foliation for (3.3)-(3.4) obtained above have the following

property: the dynamical orbits which start from the same fiber are exponentially ap-
proaching each other in forward time; similarly conclusion also holds for stochastic
system (1.1)-(1.2).

(iii) Stable foliation has geometric properties: fibers of the stable foliation parallel
to each other and the stable manifold is a special stable fiber.

Remark 4.14. As Rn+m is a finite dimensional space, we can simply reserve the
time to get the stable foliation by using the results of unstable foliation (Theorems
4.1, 4.7, 4.11). It is worth mentioning that different from the case of unstable
foliation, the dynamical orbits which start from the same stable fiber approach
each other in forward time in lower order O(epγt) with 0 < p < 1 rather than in
O(eγt), but it does not affect the property of exponential approximation at all.

5. An example for unstable foliation

In this section, we present a simple example for the theory developed in the
previous section. Consider the following two dimensional model with multiplicative
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Lévy noise in the framework of Marcus type SDEs

dx

dt
= x+ x � L̇αt , in R1, (5.1)

dy

dt
= −y + |x|+ y � L̇αt , in R1, (5.2)

where x (resp. y) is the unstable (resp. stable) component, accordingly, a = 1,
b = −1, K = 1, f(x, y) = 0, g(x, y) = |x|.

From Section 3, we can convert this SDE system to the random system

dx̂

dt
= x̂+ x̂z(θtω), in R1, (5.3)

dŷ

dt
= −ŷ + |x̂|+ ŷz(θtω), in R1. (5.4)

Taking the initial value x̂(0) = x̂0 and ŷ(0) = ŷ0, we find the solution

x̂(t) = x̂0e
t+

∫ t
0
z(θτω)dτ , t ∈ R,

ŷ(t) = ŷ0e
−t+

∫ t
0
z(θτω)dτ +

1

2
|x̂0|(et+

∫ t
0
z(θτω)dτ − e−t+

∫ t
0
z(θτω)dτ ), t ∈ R,

where

x̂(t) = x̂(t, ω, (x̂0, ŷ0)) = x̂(t, z(θtω), (x̂0, ŷ0)) = x(t)e−z(θtω),

ŷ(t) = ŷ(t, ω, (x̂0, ŷ0)) = ŷ(t, z(θtω), (x̂0, ŷ0)) = y(t)e−z(θtω),

and z(θtω) =
∫ t
−∞ e(t−s)dLαt with the properties described in Lemma 3.1.

On the one hand, it follows from Theorem 4.1 that an unstable fiber of this
system is described by

W((x̂0, ŷ0), ω) = {(ξ, l(ξ, (x̂0, ŷ0), ω)) : ξ ∈ R1}, (5.5)

where

l(ξ, (x̂0, ŷ0), ω) = ŷ0 +

∫ 0

−∞
es+

∫ 0
s
z(θτω)dτ (|ξ| − |x̂0|)es+

∫ s
0
z(θτω)dτds

= ŷ0 +
1

2
(|ξ| − |x̂0|), ξ ∈ R1.

(5.6)

Moreover, using the integral expression of the solution, for any two points (x̂0, ŷ0)
and (x̂∗0, ŷ

∗
0) in R1 × R1, we calculate the difference between two orbits

J :=|(x̂(t, ω, (x̂0, ŷ0)), ŷ(t, ω, (x̂0, ŷ0)))− (x̂(t, ω, (x̂∗0, ŷ
∗
0)), ŷ(t, ω, (x̂∗0, ŷ

∗
0)))|

=|x̂(t, ω, (x̂0, ŷ0))− x̂(t, ω, (x̂∗0, ŷ
∗
0))|+ |ŷ(t, ω, (x̂0, ŷ0))− ŷ(t, ω, (x̂∗0, ŷ

∗
0))|

≤|x̂0 − x̂∗0|et+
∫ t
0
z(θτω)dτ +

1

2
|(x̂0 − x̂∗0)|et+

∫ t
0
z(θτω)dτ

+ |(ŷ0 − ŷ∗0)− 1

2
(|x̂0| − |x̂∗0|)|e−t+

∫ t
0
z(θτω)dτ .

Recall that

lim
t→±∞

1

t

∫ t

0

z(θτω)dτ = 0, ω ∈ Ω

i.e.,
∫ t

0
z(θτω)dτ has a sublinear growth rate, thus, the linear part of the exponent

part in the exponential function plays a leading role. Hence, if the coefficient

(ŷ0 − ŷ∗0)− 1

2
(|x̂0| − |x̂∗0|) = 0, (5.7)
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then the difference of two orbits is J = O(et), as t→ −∞.
We can obtain the following function

L(ζ, (x̂0, ŷ0), ω) = ŷ0 +
1

2
(|ζ| − |x̂0|), ξ ∈ R1, (5.8)

which is in accordance with the function (5.6), i.e., l(ξ, (x̂0, ŷ0), ω). This immedi-
ately implies that the different dynamical orbits starting from the same fiber will
be exponentially approaching each other as t→ −∞. As seen in (5.6), the unstable
foliation of (5.3)-(5.4) is a family of the parallel curves (i.e., fibers) in the state
space.

In addition, from (3.5) and (3.6), we see that the unstable manifold of (5.3)-(5.4)
is

Mu(ω) = {(ξ, h(ξ, ω))| ξ ∈ R1}, (5.9)

where

h(ξ, ω) =
1

2
|ξ|, ξ ∈ R1. (5.10)

By comparing with (5.6), it is clear that the unstable manifold is a fiber of the
unstable foliation.
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