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GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY
PERIODIC SCHRÖDINGER-POISSON SYSTEMS IN R2

JING CHEN, SITONG CHEN, XIANHUA TANG

Abstract. This article concerns the planar Schrödinger-Poisson system

−∆u+ V (x)u+ φu = f(x, u), x ∈ R2,

∆φ = u2, x ∈ R2,

where V (x) and f(x, u) are periodic or asymptotically periodic in x. By com-

bining the variational approach, the non-Nehari manifold approach and new
analytic techniques, we establish the existence of ground state solutions for

the above problem in the periodic and asymptotically periodic cases. In par-

ticular, in our study, f is not required to satisfy the Ambrosetti-Rabinowitz
type condition or the Nehari-type monotonic condition.

1. Introduction

In this article, we consider the planar Schrödinger-Poisson system

−∆u+ V (x)u+ λφu = f(x, u), x ∈ R2,

∆φ = u2, x ∈ R2,
(1.1)

where λ ∈ R, V and f satisfy the following assumptions:
(A1) V ∈ L∞(R2,R) and infx∈R2 V (x) > 0;
(A2) f ∈ C(R2 × R,R), and there exist constants C0 > 0 and p ∈ (2,∞) such

that
|f(x, t)| ≤ C0

(
1 + |t|p−1

)
, ∀(x, t) ∈ R2 × R;

(A3) f(x, t) = o(|t|) as t→ 0, uniformly in x ∈ R2.
System (1.1) is a special form of the Schrödinger-Poisson system

−∆u+ V (x)u+ λφu = f(x, u), x ∈ RN ,

∆φ = u2, x ∈ RN ,
(1.2)

where λ ∈ R, V ∈ C(RN , (0,∞)) and f ∈ C(RN × R,R). It is well known that
the solutions of (1.2) are related to the solitary wave solutions to the Schrödinger-
Poisson system

−iψt −∆ψ + E(x)ψ + λφψ = f(x, ψ),

∆φ = |ψ|2,
(1.3)
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in RN × R, where ψ : RN × R → C is the wave function, E is a real external
potential, λ ∈ R is a parameter, φ represents an internal potential for a nonlocal self-
interaction of the wave function and the nonlinear term f describes the interaction
effect among many particles. It has a profound physical meaning because it appears
in quantum mechanics models (see e.g. [5, 6, 20]) and in semiconductor theory
[4, 23, 25]. For more details in the physical applications, we refer the readers to
[3, 4].

From a mathematical point of view, the second equation in (1.2) determines
φ : RN → R only is up to harmonic functions. It is natural to choose φ as the
negative Newton potential of u2, i.e., the convolution of u2 with the fundamental
solution ΓN of the Laplacian, which is given by

ΓN (x) =

{
1

2π ln |x|, N = 2,
1

N(2−N)ωN
|x|2−N , N 6= 2,

here ωN is the volume of the unit N -ball. With this formal inversion of the second
equation in (1.2), we obtain the integro-differential equation

−∆u+ V (x)u+ λ(ΓN ∗ u2)u = f(x, u), x ∈ RN . (1.4)

Let φN,u(x) = (ΓN ∗ u2)(x). At least formally, the energy functional associated to
(1.2) becomes

J(u) =
1
2

∫
RN

(
|∇u|2 + V (x)u2

)
dx+

λ

4

∫
RN

φN,uu
2dx−

∫
RN

F (x, u)dx,

where, and in the sequel, F (x, t) :=
∫ t

0
f(x, s)ds. If u is a critical point of J , then

the pair (u, φN,u) is a weak solution of (1.2). For the sake of simplicity, in many
cases we just say u, instead of (u, φN,u), is a weak solution of (1.2).

In recent years, there has been increasing attention on the existence of positive
solutions ground state solutions and multiple solutions for to systems of the form
(1.2). The greatest part of the literature focuses on the study of (1.2) with N = 3
and λ < 0. In this case, by Hardy-Littlewood-Sobolev inequality (see [21] or [22,
page 98]), J is a well-defined of class C1 functional on space

HV =
{
u ∈ H1(R3) :

∫
R3

(
|∇u|2 + V (x)u2

)
dx < +∞

}
.

Moreover, the competing nonlocal term

λ

∫
R3
φ3,uu

2dx = − λ

4π

∫
R3

∫
R3

u2(x)u2(y)
|x− y|

dxdy

is positive and homogeneous of degree 4, the mountain pass geometry can be easily
verified provided f(x, t) is superlinear at t = 0 and super-cubic at t = ∞. In
this situation, the existence or multiplicity of solutions have been obtained under
various assumptions on V and f , see e.g. [1, 2, 7, 8, 11, 12, 17, 15, 16, 19, 27, 28,
31, 37, 39, 40].

As described above, there are many results for (1.2) with N = 3. In contrast,
the literature is scantier for the planar case. Unlike the three dimensional case, the
logarithmic integral kernel

φ2,u(x) =
1

2π

∫
R2

ln |x− y|u2(y)dy
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is sign-changing and neither bounded from above nor from below, which may behave
like 1

2π‖u‖
2
2 ln |x| at infinity. Moreover, J is not well defined on H1(R2) even if

V ∈ L∞(R2) and infR2 V > 0. Hence, variational methods for (1.2) with N = 3
can not be directly applied to (1.1). This is one of the reasons why much less is
known in the planar case.

In this work we focus on (1.1) in the case N = 2 and λ > 0, and by rescaling we
may assume λ = 1. More precisely, we are dealing with System (1.1), the associated
scalar equation

−∆u+ V (x)u+ (Γ2 ∗ u2)u = f(x, u), x ∈ R2. (1.5)

Inspired by Stubbe [30], Cingolani and Weth [10] developed a variational framework
for the above equation with a smaller Hilbert space

E :=
{
u ∈ H1(R2) :

∫
R2

[V (x) + ln(1 + |x|)]u2dx <∞
}

(1.6)

equipped with the norm

‖u‖E =
(∫

R2

[
|∇u|2 + V (x)u2 + ln(1 + |x|)u2(x)

]
dx
)1/2

.

It is easy to see that the corresponding energy functional associated with (1.5)

Φ(u) =
1
2

∫
R2

(
|∇u|2 + V (x)u2

)
dx+

1
4

∫
R2
φ2,u(x)u2dx−

∫
R2
F (x, u)dx, (1.7)

for u ∈ E, is a well-defined of class C1 functional on E under assumptions (A1)–
(A3), see also in Section 2. When V satisfies the assumption

(A4) V ∈ C(R2, (0,∞)) and V (x) is 1-periodic in x1 and x2,
and f(x, t) = b|t|p−2t with b ≥ 0 and p ≥ 4, by a strong compactness condition
(modulo translation) for Cerami sequences at arbitrary positive energy levels, Cin-
golani and Weth [10] proved that (1.1) admits high energy solutions, and every
minimizer u of Φ on the Nehari manifold

N := {u ∈ E : u 6= 0, 〈Φ′(u), u〉 = 0}
is a solution which obeys the minimax characterization

Φ(u) = inf
N

Φ = inf
u∈E\{0}

sup
t≥0

Φ(tu) > 0. (1.8)

When V ≡ 1 and f(x, t) = b|t|p−2t with b > 0 and p > 2, based on the strong com-
pactness condition introduced by Cingolani and Weth [10], and a scaling technique
developed by Jeanjean [18], Du and Weth [13] constructed a Cerami sequence with
a key additional property related to the Pohozaev identity, and proved the bound-
edness of this Cerami sequence when 2 < p < 4, which is the main obstacle in [13].
Hence, they can relax the restriction p ≥ 4 to p > 2. Very recently, Chen and Tang
[9] established the existence of nontrivial solutions and ground state solutions in
the axially symmetric functions space.

It is worth pointing out that the approach used in [10, 13] heavily rely on the
fact that V is a positive constant or Z2-translation invariance and f(x, t) = b|t|p−2t.
They can not directly applied to (1.1) with variable potential and nonlinearity, even
if V (x) and f(x, t) are asymptotically periodic in x.

Motivated by [10, 13], in the present paper, by combining the approach devel-
oped in [10] with some new tricks, we shall establish the existence of ground state
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solutions for (1.1) in the periodic and asymptotically periodic cases. In particular,
in our set of hypotheses, f is not required to satisfy the Ambrosetti-Rabinowitz
type condition

(AR) 0 < 4F (x, t) ≤ f(x, t)t for all x ∈ R2 and t ∈ R \ {0},
which would readily imply the boundedness of Palais-Smale sequences; nor does
the Nehari-type monotonic condition:

(MT) the function t 7→ f(x, t)/|t|3 is nondecreasing on R \ {0},
which prevents us from using Nehari manifold and fibering methods as e.g. in
[26, 32, 33].

Here, we point out some difficulties involving this subject. (1) The norm of E is
not translation invariant even if the functional Φ is translation invariant; (2) The
quadratic part of Φ is not coercive on E; (3) The Nehari manifold approach is not
applicable without the monotonicity on f(x, t)/|t|3; (4) Φ loses the Z2-translation
invariance in the asymptotically periodic case.

Difficulties (1) and (2) have been overcome in [10]. To overcome difficulty (3),
we shall use the non-Nehari manifold approach developed by Tang [36], i.e., finding
a minimizing Cerami sequence for Φ outside N by the diagonal method, see Lemma
2.9. Difficulty (4) can be overcome by showing that the minimizer of Φ on N is
a critical point (because f is only assumed to be continuous, N may not be a
C1-manifold of E), see Lemma 4.2 below.

Before presenting our theorems, we fix notation. Let

B = {u ∈ L∞(R2,R) : meas{x ∈ R2 : |u(x)| ≥ ε} <∞, ∀ε > 0}.

In addition to (A2)–(A4), we introduce the following assumptions:
(A5) V (x) = V0(x) +V1(x), infR2 V > 0, V0 ∈ C(R2,R), V0(x) is 1-periodic in x1

and x2, and V1 ∈ C(R2, (−∞, 0]) ∩ B;
(A6) f(x, t) is 1-periodic in x1 and x2;
(A6’) f(x, t) = f0(x, t) + f1(x, t), f0 ∈ C(R2 × R,R), f0(x, t) is 1-periodic in x1

and x2, and f1 ∈ C(R2 × R,R) satisfies that

f1(x, t)t ≥ 0,
1
4
V1(x)t2 +

1
4
f1(x, t)t− F1(x, t) ≤ 0,

|f1(x, t)| ≤ a(x)
(
|t|+ |t|p0−1

)
with a ∈ B,

(1.9)

where F1(x, t) =
∫ t

0
f1(x, s)ds and p0 ∈ (2,∞);

(A7) infx∈R2,t∈R\{0}
F (x,t)
|t|2 > −∞;

(A8) there exists θ ∈ (0, 1) such that

1
4
f(x, t)t− F (x, t) +

θ

4
V (x)t2 ≥ 0, ∀(x, t) ∈ R2 × R;

(A8’) there exists θ ∈ (0, 1) such that[f(x, τ)
τ3

− f(x, tτ)
(tτ)3

]
sign(1− t) + θV (x)

|1− t2|
(tτ)2

≥ 0, (1.10)

for all x ∈ R2, t > 0, τ 6= 0.
Now, we state our results of this paper.

Theorem 1.1. Assume that (A2)–(A4), (A6)–(A8) hold. Then (1.5) or (1.1) with
λ = 1 has a nontrivial solution of mountain pass type u0 ∈ E such that Φ(u0) > 0.
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Theorem 1.2. Assume that (A2)–(A4), (A6), (A7) (A8’) hold. Then (1.5) or (1.1)
with λ = 1 has a ground state solution u0 ∈ E such that Φ(u0) = infN Φ > 0.

Theorem 1.3. Assume that (A2), (A3), (A5), (A6’), (A7), (A8’) hold. Then (1.5)
or (1.1) with λ = 1 has a ground state solution u0 ∈ E such that Φ(u0) = infN Φ >
0.

Remark 1.4. By (A8’), we have

1− t4

4
τf(x, τ) + F (x, tτ)− F (x, τ) +

θV (x)
4

(
1− t2

)2
τ2

=
∫ 1

t

[f(x, τ)
τ3

− f(x, sτ)
(sτ)3

+ θV (x)
(1− s2)

(sτ)2

]
s3τ4ds

≥ 0, ∀x ∈ R2, t ≥ 0, τ 6= 0.

(1.11)

Let t = 0 in (1.11), one can deduce (A8). This shows that (A8’) implies (A8).

Theorem 1.3 is new even if f ≡ 0. For the asymptotically periodic case, in
contrast to the case N = 3, it is removed that f0 satisfies the Nehari-type monotonic
condition or the condition similar to (1.10), see [8, Theorem 1.2].

Besides f(x, t) = b|t|p−2t with b ≥ 0 and p ≥ 4 considered in [10], there are many
functions satisfying (A6), (A7) and (A8’), for example:

f(x, t) = K(x)|t|p−2t− V (x)|t|3/2t+ V (x)|t|t, ∀(x, t) ∈ R2 × R,

where p ≥ 4, K ∈ C(R2, (0,+∞)) and K(x) is 1-periodic in x1 and x2, and V
satisfies (A4). Moreover, it is easy to see that the above function does not satisfy
the usual Nehari-type monotonic condition (MT).

Under (A2), (A3) and (A7), it is difficult to find a unique tu > 0 such that tuu ∈
N for every u ∈ E \ {0}. Hence, one can not obtain the minimax characterization
(1.8) as in [10]. In the present paper, we introduce a new set

Λ :=
{
u ∈ E :

∫
R2

[
V (x)u2 − f(x, u)u

]
dx

+
1

2π

∫
R2

∫
R2

ln |x− y|u2(x)u2(y)dydx < 0
}

and construct a similar minimax characterization

inf
u∈N

Φ(u) := m = inf
u∈Λ

max
t≥0

Φ(tu) > 0,

see Lemmas 2.6–2.8 below.
This article is organized as follows. In Section 2, we give the variational setting

and preliminaries. We complete the proofs of Theorems 1.1–1.3 in Sections 3 and
4.

Throughout this article, we let ut(x) := u(tx) for t > 0, and denote the norm of
Ls(R2) by ‖u‖s =

( ∫
R2 |u|sdx

)1/s for s ∈ [2,∞), Br(x) = {y ∈ R2 : |y − x| < r},
and positive constants possibly different in different places, by C1, C2, . . . .

2. Variational setting and preliminaries

Under assumption (A1), we endow H1(R2) with the scalar product and norm

(u, v) =
∫

R2
(∇u · ∇v + V (x)uv) dx, ‖u‖ =

(∫
R2

(
|∇u|2 + V (x)u2

)
dx
)1/2

.
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Define the symmetric bilinear forms

(u, v) 7→ A1(u, v) =
1

2π

∫
R2

∫
R2

ln
(
1 + |x− y|

)
u(x)v(y)dxdy, (2.1)

(u, v) 7→ A2(u, v) =
1

2π

∫
R2

∫
R2

ln
(

1 +
1

|x− y|

)
u(x)v(y)dxdy, (2.2)

(u, v) 7→ A0(u, v) = A1(u, v)−A2(u, v) =
1

2π

∫
R2

∫
R2

ln |x− y|u(x)v(y)dxdy,

(2.3)

where the definition is restricted, in each case, to measurable functions u, v:R2 → R
such that the corresponding double integral is well defined in Lebesgue sense. Note
that 0 ≤ ln(1 + r) ≤ r for r ≥ 0, it follows from the Hardy-Littlewood-Sobolev
inequality (see [21] or [22, page 98]) that

|A2(u, v)| ≤ 1
2π

∫
R2

∫
R2

1
|x− y|

|u(x)v(y)|dxdy ≤ C1‖u‖4/3‖v‖4/3 (2.4)

with a constant C1 > 0. Using (2.1), (2.2) and (2.3), we define the functionals:

I1:H1(R2)→ [0,∞], I2:L8/3(R2)→ [0,∞), I0:H1(R2)→ R ∪ {∞},

I1(u) = A1(u2, u2) =
1

2π

∫
R2

∫
R2

ln (1 + |x− y|)u2(x)u2(y)dxdy,

I2(u) = A2(u2, u2) =
1

2π

∫
R2

∫
R2

ln
(
1 +

1
|x− y|

)
u2(x)u2(y)dxdy,

I0(u) = A0(u2, u2) =
1

2π

∫
R2

∫
R2

ln |x− y|u2(x)u2(y)dxdy.

Here I2 takes only finite values on L8/3(R2). Indeed, (2.4) implies

|I2(u)| ≤ C1‖u‖48/3, ∀u ∈ L8/3(R2). (2.5)

As in [10], we define, for any measurable function u : R2 → R

‖u‖2∗ =
∫

R2
ln(1 + |x|)u2(x)dx ∈ [0,∞].

Then the set
E =

{
u ∈ H1(R2) : ‖u‖∗ < +∞

}
is a Hilbert space equipped with the norm

‖u‖E =
(
‖u‖2 + ‖u‖2∗

)1/2
.

It is easy to see that E is compactly embedded in Ls(R2) for all s ∈ [2,∞). More-
over, since

ln(1 + |x− y|) ≤ ln(1 + |x|+ |y|) ≤ ln(1 + |x|) + ln(1 + |y|), ∀x, y ∈ R2, (2.6)

we have
0 ≤ A1(uv,wz)

≤ 1
2π

∫
R2

∫
R2

[ln(1 + |x|) + ln(1 + |y|)] |u(x)v(x)||w(y)z(y)|dxdy

≤ ‖u‖∗‖v‖∗‖w‖2‖z‖2 + ‖u‖2‖v‖2‖w‖∗‖z‖∗, ∀u, v, w, z ∈ E.

(2.7)
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According to [10, Lemma 2.2], we have I0, I1 and I2 are of class C1 on E, and

〈I ′i(u), v〉 = 4Ai(u2, v), ∀u, v ∈ E, i = 0, 1, 2. (2.8)

Then, (A1)–(A3) and (2.8) imply that Φ is a well-defined of class C1 functional on
E (see [10]), and that

Φ(u) =
1
2
‖u‖2 +

1
4

[I1(u)− I2(u)]−
∫

R2
F (x, u)dx, (2.9)

〈Φ′(u), v〉 =
∫

R2
(∇u · ∇v + V (x)uv) dx+A1(u2, uv)−A2(u2, uv)

−
∫

R2
f(x, u)vdx.

(2.10)

Hence, the solutions of (1.1) with λ = 1 are the critical points of the reduced
functional (2.9).

To prove the existence of nontrivial solutions for (1.1) with λ = 1, we use the
following version of the Mountain Pass Theorem, see [14, 29].

Lemma 2.1. Let X be a real Banach space and let Ψ ∈ C1(X,R). Let S be a closed
subset of X which disconnects (archwise) X in distinct connected components X1

and X2. Suppose further that Ψ(0) = 0 and
(1) 0 ∈ X1 and there is ρ0 > 0 such that Ψ|S ≥ ρ0 > 0,
(2) there is e ∈ X2 such that Ψ(e) ≤ 0.

Then there exists a sequence {un} ⊂ X satisfying

Ψ(un)→ c ≥ ρ0 > 0, ‖Ψ′(un)‖(1 + ‖un‖)→ 0,

where c = infγ∈Γ maxt∈[0,1] Ψ(γ(t)) and

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) ∈ X2, Ψ(γ(1)) < 0} .

Now, we apply Lemma 2.1 to obtain a Cerami sequence of Φ.

Lemma 2.2. Assume that (A1)–(A3), (A7) hold. Then there exist a constant c > 0
and a sequence {un} ⊂ E satisfying

Φ(un)→ c > 0, ‖Φ′(un)‖E∗(1 + ‖un‖E)→ 0. (2.11)

Proof. By (A2) and (A3), for every ε > 0, there exists a constant Cε > 0 such that

f(x, t)t ≤ εt2 + Cε|t|p, F (x, t) ≤ εt2 + Cε|t|p, ∀(x, t) ∈ R2 × R. (2.12)

By (2.9) and (2.12), there exist δ0 > 0 and ρ0 > 0 such that

Φ(u) ≥ 0, ∀‖u‖ ≤ δ0, textand Φ(u) ≥ ρ0, ∀‖u‖ = δ0. (2.13)

Note that for each fixed u ∈ E with u 6= 0,

I0(t2ut) =
t4

2π

∫
R2

∫
R2

ln |x− y|u2(tx)u2(ty)d(tx)d(ty)

=
t4

2π

∫
R2

∫
R2

(ln |tx− ty| − ln t)u2(tx)u2(ty)d(tx)d(ty)

=
t4

2π

∫
R2

∫
R2

(ln |x− y| − ln t)u2(x)u2(y)dxdy

= t4I0(u)− t4 ln t
2π
‖u‖42, ∀t > 0.

(2.14)
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Moreover, by (A2), (A3), (A7), there exists a constant κ1 ≥ 0 such that

F (t−1x, t2u) ≥ −κ1|t2u|2, ∀x ∈ R2, t > 0. (2.15)

Then, it follows from (A1), (1.7), (2.14) and (2.15) that

Φ(t2ut) =
1
2

∫
R2

[
t4|∇u|2 + t2V (t−1x)u2

]
dx+

t4

4
I0(u)− t4 ln t

8π
‖u‖42

−
∫

R2

F (t−1x, t2u)
t2

dx

≤ t4

2
‖∇u‖22 + (‖V ‖∞ + κ1) t2‖u‖22 +

t4

4
I0(u)− t4 ln t

8π
‖u‖42,

(2.16)

which implies
Φ(t2ut)→ −∞ as t→ +∞. (2.17)

Taking e = T 2uT for T > 0 large, we have Φ(e) < 0 = Φ(0). Applying Lemma 2.1,
there exists a sequence {un} ⊂ E satisfying (2.11). �

Lemma 2.3 ([10, Lemma 2.1]). Let {un} be a sequence in L2(R2) such that un →
u ∈ L2(R2) \ {0} a.e. on R2. If {vn} be a bounded sequence in L2(R2) such that

sup
n∈N

A1(u2
n, v

2
n) <∞,

then {‖vn‖∗} is bounded. If, moreover,

A1(u2
n, v

2
n)→ 0 and ‖vn‖2 → 0 as n→∞,

then ‖vn‖∗ → 0 as n→∞.

To find ground state solutions for (1.1) with λ = 1, we give the following lemmas.

Lemma 2.4. Assume that (A1)–(A3) (A8’) hold. Then

Φ(u) ≥ Φ(tu) +
1− t4

4
〈Φ′(u), u〉+

(1− θ)
(
1− t2

)2
4

‖u‖2, ∀u ∈ E, t ≥ 0. (2.18)

Proof. By (1.11), (2.9) and (2.10), one has

Φ(u)− Φ(tu) =
1− t2

2
‖u‖2 +

1− t4

4
I0(u) +

∫
R2

[F (x, tu)− F (x, u)]dx

=
1− t4

4
〈Φ′(u), u〉+

(
1− t2

)2
4

‖u‖2

+
∫

R2

[1− t4
4

f(x, u)u+ F (x, tu)− F (x, u)
]
dx

≥ 1− t4

4
〈Φ′(u), u〉+

(1− θ)
(
1− t2

)2
4

‖u‖2

+
∫

R2

[1− t4
4

f(x, u)u+ F (x, tu)− F (x, u) +
θV (x)

4
(1− t2)2u2

]
dx

≥ 1− t4

4
〈Φ′(u), u〉+

(1− θ)
(
1− t2

)2
4

‖u‖2, t ≥ 0.

This shows that (2.18) holds. �
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Corollary 2.5. Assume that (A1)–(A3), (A8’) hold. Then for u ∈ N ,

Φ(u) = max
t≥0

Φ(tu). (2.19)

To obtain the minimax characterization of m, we define the set

Λ =
{
u ∈ E :

∫
R2

[
V (x)u2 − f(x, u)u

]
dx+ I0(u) < 0

}
.

Lemma 2.6. Assume that (A1)–(A3), (A7), (A8) hold. Then Λ 6= ∅ and N ⊂ Λ.

Proof. For each fixed u ∈ E \ {0}, in the similar way as in (2.14), we have

I0(tut) = I0(u)− ln t
2π
‖u‖42, ∀t > 0. (2.20)

By (A2), (A3) and (A7), there exists a constant κ2 ≥ 0 such that

F (t−1x, tu) ≥ −κ2|tu|2, ∀x ∈ R2, t > 0, (2.21)

which, together with (A8), yields∫
R2

f(t−1x, tu)tu
t2

dx ≥ −
∫

R2
[4κ2 + θV (x)]u2dx. (2.22)

Then, it follows from (A1), (2.20) and (2.22) that∫
R2

[
V (x)(tut)2 − f(x, tut)tut

]
dx+ I0(tut)

=
∫

R2
V (t−1x)u2dx−

∫
R2

f(t−1x, tu)tu
t2

dx+ I0(u)− ln t
2π
‖u‖42

≤ (4κ2 + 2‖V ‖∞) ‖u‖22 + I0(u)− ln t
2π
‖u‖42,

(2.23)

which implies∫
R2

[
V (x)(tut)2 − f(x, tut)tut

]
dx+ I0(tut)→ −∞ as t→ +∞. (2.24)

Taking v = TuT for T large, we have v ∈ Λ. Hence, Λ 6= ∅. Using (2.10), it is easy
to see that N ⊂ Λ. �

Lemma 2.7. Assume that (A1)–(A3), (A7), (A8’) hold. Then, for any u ∈ Λ,
there exists a unique t(u) > 0 such that t(u)u ∈ N .

Proof. Since (A8’) implies (A8), we have Λ 6= ∅ by Lemma 2.6. For any fixed u ∈ Λ,
we define a function g(t) := 〈Φ′(tu), tu〉 on [0,∞). By (A8’), one has

f(x, tτ)tτ ≥ f(x, τ)τt4 − θV (x)(t2 − 1)(tτ)2, ∀x ∈ R2, t ≥ 1, τ ∈ R, (2.25)

which yields∫
R2

[
θV (x)(tτ)2 − f(x, tτ)tτ

]
dx ≤ t4

∫
R2

[
θV (x)τ2 − f(x, τ)τ

]
dx, (2.26)

for all t ≥ 1, τ ∈ R.
From (2.10) and (2.26) it follows that

g(t) ≤ t2‖u‖2 + t4
∫

R2

[
V (x)u2 − f(x, u)u

]
dx+ t4I0(u)−θt2

∫
R2
V (x)u2dx, (2.27)

for all t ≥ 1. Using (2.10), (2.12) and (2.27), it is easy to verify that g(0) = 0,
g(t) > 0 for t > 0 small and g(t) < 0 for t large due to u ∈ Λ. Therefore, there
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exists a t̂ = t(u) > 0 so that g(t̂) = 0 and t(u)u ∈ N . Arguing as in [8] or [35], we
prove that t(u) is unique for any u ∈ Λ. In fact, for any given u ∈ Λ, let t1, t2 > 0
such that g(t1) = g(t2) = 0. Jointly with (2.18), we have

Φ(t1u) ≥ Φ(t2u) +
t41 − t42

4t41
〈Φ′(t1u), t1u〉+

(1− θ)(t21 − t22)2

4t21
‖u‖2

= Φ(t2u) +
(1− θ)(t21 − t22)2

4t21
‖u‖2

(2.28)

and

Φ(t2u) ≥ Φ(t1u) +
t42 − t41

4t42
〈Φ′(t2u), t2u〉+

(1− θ)(t22 − t21)2

4t22
‖u‖2

= Φ(t1u) +
(1− θ)(t22 − t21)2

4t22
‖u‖2.

(2.29)

Then, (2.28) and (2.29) imply t1 = t2. Hence, t(u) > 0 is unique for any u ∈ Λ. �

Lemma 2.8. Assume that (A1)–(A3), (A7), (A8’) hold. Then

inf
u∈N

Φ(u) := m = inf
u∈Λ

max
t≥0

Φ(tu) > 0.

Proof. Corollary 2.5 and Lemma 2.7 imply that m = infu∈Λ maxt≥0 Φ(tu). Using
(A2) and (A3), it is easy to see that there exist C1 > 0 and q > 4 such that

|f(x, t)t| ≤ γ2

2
t2 + C1|t|q, ∀(x, t) ∈ R2 × R, (2.30)

where γs := infu∈H1(R2),‖u‖s=1 ‖u‖2 for s ≥ 2. By (2.5), (2.10), (2.30) and the
Sobolev embedding theorem, we have

‖u‖2 ≤ ‖u‖2 + I1(u) = I2(u) +
∫

R2
f(x, u)udx

≤ C2‖u‖4 +
1
2
‖u‖2 + C3‖u‖q, ∀u ∈ N ,

which implies

‖u‖ ≥ min
{

2−1/2(C2 + C3)−1/2, 1
}

:= σ0, ∀u ∈ N . (2.31)

Thus, it follows from (2.18) with t = 0 and (2.31) that m ≥ (1− θ)σ2
0/4 > 0. �

Next we find a minimizing Cerami sequence for Φ outside N by the diagonal
method, this idea goes back to [36], which is a key in the proof of Theorems 1.2
and 1.3.

Lemma 2.9. Assume that (A1)–(A3), (A7), (A8’) hold. Then there exist a constant
c∗ ∈ (0,m] and a sequence {un} ⊂ E satisfying

Φ(un)→ c∗, ‖Φ′(un)‖E∗(1 + ‖un‖E)→ 0. (2.32)

Proof. In view of Lemmas 2.7 and 2.8, we choose vk ∈ N ⊂ Λ such that

m ≤ Φ(vk) < m+
1
k
, k ∈ N. (2.33)

Since 〈Φ′(vk), vk〉 = 0, then (2.18) implies that Φ(tvk) < 0 for large t > δ0/‖vk‖.
Moreover, (2.13) implies that Φ(tvk) ≥ ρ0 > 0 = Φ(0) for t‖vk‖ = δ0. Applying
Lemma 2.1, there exists a sequence {uk,n}n∈N ⊂ E satisfying

Φ(uk,n)→ ck, ‖Φ′(uk,n)‖E∗(1 + ‖uk,n‖E)→ 0, k ∈ N, (2.34)
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where ck ∈ [ρ0, supt≥0 Φ(tvk)]. By Corollary 2.5, one has Φ(vk) = supt≥0 Φ(tvk).
Hence, by (2.33) and (2.34), one has

Φ(uk,n)→ ck ∈ [ρ0,m+
1
k

), ‖Φ′(uk,n)‖E∗(1 + ‖uk,n‖E)→ 0, k ∈ N. (2.35)

Now, we can choose a sequence {nk} ⊂ N such that

Φ(uk,nk
) ∈ [ρ0,m+

1
k

), ‖Φ′(uk,nk
)‖E∗(1 + ‖uk,nk

‖E) <
1
k
, k ∈ N. (2.36)

Let uk = uk,nk
, k ∈ N. Then, going if necessary to a subsequence, we have

Φ(un)→ c∗ ∈ [ρ0,m], ‖Φ′(un)‖E∗(1 + ‖un‖E)→ 0.

�

3. The periodic case

In this section, we give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. In view of Lemma 2.2, there exists a sequence {un} ⊂ E
satisfying (2.11), then

Φ(un)→ c > 0, 〈Φ′(un), un〉 → 0. (3.1)

By (A8), (2.9), (2.10) and (3.1), one has

c+ o(1)

= Φ(un)− 1
4
〈Φ′(un), un〉

=
θ

4
‖∇un‖22 +

1− θ
4
‖un‖2 +

∫
R2

[1
4
f(x, un)un − F (x, un) +

θV (x)
4

u2
n

]
≥ 1− θ

4
‖un‖2.

(3.2)

This shows that {un} is bounded in H1(R2). If

δ := lim sup
n→∞

sup
y∈R2

∫
B2(y)

|un|2dx = 0,

then by Lion’s concentration compactness principle [24] or [38, Lemma 1.21], un →
0 in Ls(R2) for s > 2. Then, (2.5) implies that I2(un)→ 0. Note that ‖un‖2 ≤M1

with some constant M1 > 0. By (2.12), for ε = c/2M1, there exists Cε > 0 such
that

lim sup
n→∞

∫
R2

∣∣1
2
f(x, un)un − F (x, un)

∣∣dx ≤ 3
2
ε sup
n∈N
‖un‖22 + Cε lim

n→∞
‖un‖pp

≤ 3c
4
.

(3.3)

Thus, it follows from (2.9), (2.10), (3.1) and (3.3) that

c = Φ(un)− 1
2
〈Φ′(un), un〉+ o(1)

= −1
4
I1(un) +

1
4
I2(un) +

∫
R3

[1
2
f(x, un)un − F (x, un)

]
dx+ o(1)

≤ 3c
4

+ o(1).

(3.4)

This contradiction shows that δ > 0.
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Going to a subsequence, if necessary, we assume the existence of kn ∈ Z2 such
that ∫

B2(kn)

|un|2dx >
δ

2
. (3.5)

Let ũn(x) = un(x+ kn). Then ∫
B2(0)

|ũn|2dx >
δ

2
. (3.6)

Note that

‖ũn‖2∗ =
∫

R2
ln(1 + |x− kn|)u2

ndx ≤ ‖un‖2∗ + ln(1 + |kn|)‖un‖22, ∀n ∈ N, (3.7)

then ũn ∈ E for every n ∈ N. Since V (x) and f(x, u) are periodic in x, and
Ii(ũn) = Ii(un) for i = 0, 1, 2, then (3.1) implies

Φ(ũn)→ c > 0, 〈Φ′(ũn), ũn〉 → 0. (3.8)

Passing to a subsequence, we have ũn ⇀ u0 in H1(R2), ũn → u0 in Lsloc(R2),
s ∈ [2,∞) and ũn(x) → u0(x) a.e. on R2. Thus, (3.6) implies that u0 6= 0. By
(2.5), (2.12), (3.8) and the Sobolev embedding theorem that

‖ũn‖2 + I1(ũn) = I2(ũn) +
∫

R2
f(x, ũn)ũndx

≤ C1‖ũn‖48/3 + ‖ũn‖22 + C1‖ũn‖pp
≤ C2‖ũn‖4 + C3‖ũn‖2 + C4‖ũn‖p,

(3.9)

which implies that supn∈N I1(ũn) = supn∈N A1(ũ2
n, ũ

2
n) <∞. Applying Lemma 2.3,

we have {‖ũn‖∗} is bounded. Hence, {ũn} is bounded in E. We may thus assume,
passing to a subsequence again if necessary, that

ũn ⇀ u0 in E, ũn → u0 in Ls(R2), s ∈ [2,∞), ũn(x)→ u0(x) a.e. on R2.
(3.10)

Now, we prove that Φ′(u0) = 0. To this end, we claim that

〈Φ′(u0), w〉 = lim
n→∞

〈Φ′(ũn), w〉 = lim
n→∞

〈Φ′(un), w(· − kn)〉 = 0, ∀w ∈ E. (3.11)

In fact, it is easy to see that

‖w(·−kn)‖2E = ‖w‖2 +
∫

R2
ln(1+ |x+kn|)w2dx ≤ ‖w‖2E +ln(1+ |kn|)‖w‖22, (3.12)

for all w ∈ E. Moreover, by (3.6), we have

‖un‖2∗ =
∫

R2
ln(1 + |x− kn|)ũ2

ndx

≥
∫
B2(0)

ln(1 + |x− kn|)ũ2
ndx

≥ δ ln(|kn| − 1)
2

≥ δ ln(1 + |kn|)
4

, ∀kn ≥ 3.

(3.13)

From (3.12) and (3.13), we conclude that

‖w(· − kn)‖2E ≤ ‖w‖2E +
(4‖un‖2∗

δ
+ ln 4

)
‖w‖22, ∀n ∈ N. (3.14)
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Thus, it follows from (2.10), (2.32) and (3.14) that

〈Φ′(ũn), w〉 = 〈Φ′(un), w(· − kn)〉

≤ ‖Φ′(un)‖E∗
[
‖w‖2E +

(4‖un‖2∗
δ

+ ln 4
)
‖w‖22

]1/2
= o(1), ∀w ∈ E.

(3.15)

Then, (3.15) implies

〈Φ′(ũn), u0〉 = 〈Φ′(un), u0(· − kn)〉

≤ ‖Φ′(un)‖E∗
[
‖u0‖2E +

(4‖un‖2∗
δ

+ ln 4
)
‖u0‖22

]1/2 = o(1).
(3.16)

According to [10, Lemma 2.6], we have

A1

(
ũ2
n, (ũn − u0)w

)
= o(1), ∀w ∈ E. (3.17)

Thus, it follows from (3.8), (3.10), (3.16), (3.17) and Lebesgue’s dominated conver-
gence theorem that

0 = 〈Φ′(ũn), ũn − u0〉+ o(1)

= ‖ũn‖2 − ‖u0‖2 +A1

(
ũ2
n, (ũn − u0)2

)
+A1

(
ũ2
n, (ũn − u0)u0

)
−A2

(
ũ2
n, ũn(ũn − u0)

)
−
∫

R2
f(x, ũn)(ũn − u0)dx+ o(1)

= ‖ũn‖2 − ‖u0‖2 +A1

(
ũ2
n, (ũn − u0)2

)
+ o(1),

(3.18)

which, together with ũn ⇀ u0 in H1(R2), yields

‖ũn − u0‖ → 0, A1

(
ũ2
n, (ũn − u0)2

)
→ 0. (3.19)

Applying Lemma 2.3, we have ‖ũn − u0‖∗ → 0. Hence, ‖ũn − u0‖E → 0. By (2.7),
we have

A1(ũ2
n − u2

0, u0w) ≤ ‖ũn − u0‖∗‖ũn + u0‖∗‖u0‖2‖w‖2 = o(1). (3.20)

By (2.10), (3.10), (3.17), (3.20) and Lebesgue’s dominated convergence theorem,
we have

〈Φ′(ũn)− Φ′(u0), w〉
= (ũn − u0, w) +A1

(
ũ2
n, (ũn − u0)w

)
+A1

(
ũ2
n − u2

0, u0w
)

−A2

(
ũ2
n, (ũn − u0)w

)
−A2

(
ũ2
n − u2

0, u0w
)

−
∫

R2
[f(x, ũn)− f(x, u0)]wdx = o(1).

(3.21)

Therefore, (3.11) follows from (3.15) and (3.21). This shows that u0 ∈ E is a
nontrivial solution of (1.5), and Φ(u0) = c > 0. �

Proof of Theorem 1.2. In view of Lemma 2.9, there exists a sequence {un} ⊂ E
satisfying (2.32). Then

Φ(un)→ c∗ ∈ (0,m], 〈Φ′(un), un〉 → 0. (3.22)

By the same argument as in the last part of the proof of Theorem 1.1, we conclude
that there exists u0 ∈ E \ {0} such that Φ′(u0) = 0 and Φ(u0) = c∗ ∈ (0,m].
Moreover, since u0 ∈ N , we have Φ(u0) ≥ m. This shows that u0 ∈ E is a ground
state solution for (1.5) with Φ(u0) = m = infN Φ > 0. �
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4. The asymptotically periodic case

In this section, we have V (x) = V0(x) + V1(x) and f(x, u) = f0(x, u) + f1(x, u).
We define the functional

Φ0(u) =
1
2

∫
R2

(
|∇u|2 + V0(x)u2

)
dx+

1
4

[I1(u)− I2(u)]−
∫

R2
F0(x, u)dx, (4.1)

where F0(x, u) :=
∫ u

0
f0(x, s)ds. Then (A2), (A3), (A5) and (A6’) imply that

Φ0 ∈ C1(E,R) and

〈Φ′0(u), v〉 =
∫

R2
(∇u · ∇v + V0(x)uv) dx+A1(u2, uv)−A2(u2, uv)

−
∫

R2
f0(x, u)vdx.

(4.2)

By a standard argument, we can obtain the following lemma.

Lemma 4.1. Assume that (A2), (A3), (A5), (A6’) hold. If un ⇀ 0 in H1(R2),
then

lim
n→∞

∫
R2
V1(x)u2

ndx = 0, lim
n→∞

∫
R2
V1(x)unvdx = 0, ∀v ∈ H1(R2), (4.3)

lim
n→∞

∫
R2
F1(x, un)dx = 0, lim

n→∞

∫
R2
f1(x, un)vdx = 0, ∀v ∈ H1(R2). (4.4)

In the asymptotically periodic case, we prove that the minimizer of Φ on N is a
critical point.

Lemma 4.2. Assume that (A1)–(A3), (A7), (A8’) hold. If u0 ∈ N and Φ(u0) = m,
then u0 is a critical point of Φ.

Proof. Assume that u0 ∈ N , Φ(u0) = m and Φ′(u0) 6= 0. Then there exist δ > 0
and % > 0 such that

‖u− u0‖E ≤ 3δ ⇒ ‖Φ′(u)‖ ≥ %. (4.5)

In view of Lemma 2.4, one has

Φ(tu0) ≤ Φ(u0)− (1− θ)(1− t2)2

4
‖u0‖2

= m− (1− θ)(1− t2)2

4
‖u0‖2, ∀t ≥ 0.

(4.6)

For ε := min{3(1 − θ)‖u0‖2/64, 1, %δ/8}, S := B(u0, δ), [38, Lemma 2.3] yields a
deformation η ∈ C([0, 1]× E,E) such that

(i) η(1, u) = u if Φ(u) < m− 2ε or Φ(u) > m+ 2ε;
(ii) η (1,Φm+ε ∩B(u0, δ)) ⊂ Φm−ε;

(iii) Φ(η(1, u)) ≤ Φ(u), for all u ∈ E;
(iv) η(1, u) is a homeomorphism of E.

By Corollary 2.5, Φ(tu0) ≤ Φ(u0) = m for t ≥ 0, then it follows from (ii) that

Φ(η(1, tu0)) ≤ m− ε, ∀t ≥ 0, |t− 1| < δ/‖u0‖. (4.7)
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On the other hand, by (iii) and (4.6), one has

Φ(η(1, tu0)) ≤ Φ(tu0)

≤ m− (1− θ)(1− t2)2

4
‖u0‖2

≤ m− (1− θ)δ2

4
, ∀t ≥ 0, |t− 1| ≥ δ/‖u0‖.

(4.8)

Combining (4.7) with (4.8), we have

max
t∈[1/2,

√
7/2]

Φ(η(1, tu0)) < m. (4.9)

We prove that η(1, tu0) ∩ N 6= ∅ for some t ∈ [1/2,
√

7/2], contradicting to the
definition of m. Define

Ψ0(t) := 〈Φ′(tu0), tu0〉, Ψ1(t) := 〈Φ′(η(1, tu0)), η(1, tu0)〉, ∀t ≥ 0.

Since u0 ∈ Λ, by Lemma 2.7 and degree theory, deg(Ψ0, (1/2,
√

7/2), 0) = 1. Using
(4.6) and i), it is easy to verify that η(1, tu0) = tu0 for t = 1/2 and t =

√
7/2. Thus,

deg(Ψ1, (1/2,
√

7/2), 0) = deg(Ψ0, (1/2,
√

7/2), 0) = 1. Since u0 6= 0, it follows from
(iv) that η(1, tu0) 6= 0 for all t > 0. Hence, Ψ1(t0) = 0 for some t0 ∈ (1/2,

√
7/2),

that is η(1, t0u0) ∈ N , which is a contradiction. �

Proof of Theorem 1.3. Lemma 2.9 implies the existence of a sequence {un} ⊂ E
satisfying (2.32). Similar to the proof of (3.2), we can deduce that {un} is bounded
in H1(R2). Passing to a subsequence, we may assume that un ⇀ ū in H1(R2),
un → ū in Lsloc(R2), s ∈ [2,∞) and un(x) → ū(x) a.e. on R2. There are two
possible cases: ū = 0 and ū 6= 0.
Case (i): ū = 0. Then un ⇀ 0 in H1(R2), and so un → 0 in Lsloc(R2), s ∈ [2,∞)

and un(x)→ 0 a.e. on R2. Note that

‖u‖2 =
∫

R2

(
|∇u|2 + V0(x)u2

)
dx+

∫
R2
V1(x)u2dx, u ∈ H1(R2), (4.10)

Φ0(u) = Φ(u)− 1
2

∫
R2
V1(x)u2dx+

∫
R2
F1(x, u)dx, (4.11)

〈Φ′0(u), v〉 = 〈Φ′(u), v〉 −
∫

R2
V1(x)uvdx+

∫
R2
f1(x, u)vdx. (4.12)

By (2.32), (4.3), (4.4), (4.11) and (4.12), one has

Φ0(un)→ c∗ ∈ (0,m], 〈Φ′0(un), un〉 → 0, Φ′0(un)→ 0. (4.13)

Analogous to the proof of (3.5), there exists kn ∈ Z2, going to a subsequence, if
necessary, such that ∫

B2(kn)

|un|2dx >
δ

2
> 0.

Let us define vn(x) = un(x+ kn) so that∫
B2(0)

|vn|2dx >
δ

2
. (4.14)

Since V0(x) and f0(x, u) are periodic in x, it follows from (4.13) that

Φ0(vn)→ c∗ ∈ (0,m], 〈Φ′0(vn), vn〉 → 0. (4.15)
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Passing to a subsequence, we have vn ⇀ v̄ in H1(R2), vn → v̄ in Lsloc(R2), s ∈ [2,∞)
and vn(x) → v̄(x) a.e. on R2. Thus, (4.14) implies that v̄ 6= 0. Arguing as in the
proof of Theorem 1.1, we conclude that {vn} is bounded in E. We may thus assume,
passing to a subsequence again if necessary, that

vn ⇀ v̄ in E, vn → v̄ in Ls(R2), s ∈ [2,∞), vn(x)→ v̄(x)a.e. on R2. (4.16)

By (1.9), (4.2), (4.12), (4.15) and (4.16), one has

〈Φ′(v̄), v̄〉 ≤ 〈Φ′0(v̄), v̄〉 ≤ lim inf
n→∞

〈Φ′0(vn), vn〉 = 0.

In view of Lemma 2.7, there exists a unique t0 = t(v̄) ∈ (0, 1] such that t0v̄ ∈ N ,
and so Φ(t0v̄) ≥ m. Now, we prove that Φ(t0v̄) = m. By (A8’), we have

f(x, tτ)tτ ≤ f(x, τ)τt4 + θV (x)(1− t2)(tτ)2, ∀x ∈ R2, 0 ≤ t ≤ 1, τ ∈ R. (4.17)

Note that (1.11) implies

F (x, tτ) ≥ t4 − 1
4

f(x, τ)τ + F (x, τ)− 1− 2t2 + t4

4
θV (x)τ2, (4.18)

for all x ∈ R2, t ≥ 0, τ ∈ R.
Then, (4.17) and (4.18) imply

1
4
f(x, tτ)tτ − F (x, tτ) +

θV (x)
4

(tτ)2 ≤ 1
4
f(x, τ)τ − F (x, τ) +

θV (x)
4

τ2, (4.19)

for all x ∈ R2, 0 ≤ t ≤ 1, τ ∈ R.
Thus, it follows from (1.9), (2.9), (2.10), (4.1), eqrefPhd0, (4.15), (4.16), (4.19)

and Lebesgue’s dominated convergence theorem that

m ≤ Φ(t0v̄) = Φ(t0v̄)− 1
4
〈Φ′(t0v̄), t0v̄〉

=
t20
4

∫
R2

[
|∇v̄|2 + (1− θ)V (x)|v̄|2

]
dx

+
∫

R2

[1
4
f(x, t0v̄)t0v̄ − F (x, t0v̄) +

θV (x)
4

(t0v̄)2
]
dx

≤ 1
4

∫
R2

[
|∇v̄|2 + (1− θ)V (x)|v̄|2

]
dx

+
∫

R2

[1
4
f(x, v̄)v̄ − F (x, v̄) +

θV (x)
4

(v̄)2
]
dx

= Φ0(v̄)− 1
4
〈Φ′0(v̄), v̄〉+

∫
R2

[1
4
f1(x, v̄)v̄ − F1(x, v̄) +

V1(x)
4

(v̄)2
]
dx

≤ Φ0(v̄)− 1
4
〈Φ′0(v̄), v̄〉

=
1
4

∫
R2

[
|∇v̄|2 + V0(x)|v̄|2

]
dx+

∫
R2

[1
4
f(x, v̄)v̄ − F (x, v̄)

]
dx

≤ lim inf
n→∞

{1
4

∫
R2

[
|∇vn|2 + V0(x)v2

n

]
dx+

∫
R2

[1
4
f(x, vn)vn − F (x, vn)

]
dx
}

= lim
n→∞

[
Φ0(vn)− 1

4
〈Φ′0(vn), vn〉

]
= c∗ ≤ m.
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This shows that Φ(t0v̄) = m. Let u0 = t0v̄. Then u0 ∈ N and Φ(u0) = m. In view
of Lemma 4.2, we obtain Φ′(u0) = 0. This shows that u0 ∈ E is a ground state
solution for (1.5) with Φ(u0) = m = infN Φ > 0.

Case ii: ū 6= 0. Similar to the proof of (3.9), we can deduce that supn∈N I1(un) =
supn∈N A1(u2

n, u
2
n) <∞. By Lemma 2.3, we have {‖un‖∗} is bounded, and so {un}

is bounded in E. We may assume, passing to a subsequence, that un ⇀ ū in E,
un → ū in Ls(R2), s ∈ [2,∞) and un(x) → ū(x) a.e. on R2. By the same fashion
as the last part of the proof of Theorem 1.1, we can obtain that ‖un− ū‖E → 0 and
Φ′(ū) = 0, and so Φ(ū) = c∗ ∈ (0,m]. Since ū ∈ N , we have Φ(ū) ≥ m. This shows
that ū ∈ E is a ground state solution for (1.5) with Φ(ū) = m = infN Φ > 0. �
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molecules. Comm. Math. Phys., 79 (1981), 167-180.

[6] I. Catto, P. L. Lions; Binding of atoms and stability of molecules in Hartree and Thomas-
Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general

molecular system. Comm. Partial Differential Equations, 17 (1992), 1051-1110.

[7] G. Cerami, G. Vaira; Positive solutions for some non-autonomous Schrödinger-Poisson sys-
tems. J. Differential Equations, 248 (2010), 521-543.

[8] S.T. Chen, X.H. Tang; Nehari type ground state solutions for asymptotically periodic

Schrödinger-Poisson systems. Taiwan. J. Math., 21(2) (2017), 363-383.
[9] S. T. Chen, X. H. Tang; Existence of ground state solutions for the planar axially symmetric

Schrödinger Poisson system. Discrete Contin. Dyn. Syst. Seris B, 2018, preprint.

[10] S. Cingolani, T. Weth; On the planar Schrödinger-Poisson system, Ann. Inst. Henri
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