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NON-SIMULTANEOUS QUENCHING IN A SEMILINEAR
PARABOLIC SYSTEM WITH MULTI-SINGULAR
REACTION TERMS

ZHE JIA, ZUODONG YANG, CHANGYING WANG

ABSTRACT. This article concerns quenching properties of solutions for a semi-
linear parabolic system with multi-singular reaction terms. We obtain suffi-
cient conditions for the existence of finite time quenching of global solutions.
The blow up of time-derivatives at the quenching point is verified. In addi-
tion, we identify simultaneous and non-simultaneous quenching, and provide
a classification of parameters for the simultaneous quenching rates.

1. INTRODUCTION
In this article, we consider the semilinear parabolic system
u=Au+1—-u) P +(1—-v) % 2 t>0,
v=Av+(1—-u)2+1-v)"% ze€Q,t>0,
u(z,t) =0, wv(z,t)=0, z€dNt>D0,
u(z,0) = uo(z), v(zr,0)=vo(z), x€Q,

(1.1)

where p1,ps > 0, q1,q2 > 0, and Q C RY is a bounded domain with smooth
boundary. In addition, ug(x),ve(x) € C%(Q) N C1(Q) are sufficiently smooth func-
tions satisfying the compatibility conditions and 0 < ug(z), vo(z) < 1 in . This
problem can be considered as the classical non-Newtonian filtration system that in-
corporates the effects of singular boundary outflux and nonlinear reaction sources.
The quenching behavior represents an interesting phenomenon where the solution
tends to a constant but the time derivative approaches infinity as (x,t) tends to
some point in the spatial-time space.

Definition 1.1. We say that the solution (u,v) to problem (I.1)) quenches in finite
time, if there exists 0 < T < oo such that

li t t)}=1.
Him glgg{U(x, ),v(w, t)}

From now on, we denote by T'(0 < T' < o0) the quenching time of problem ([L.1]).
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The study of the quenching behavior began with the work by Kawarada [I]
who first introduced the quenching behavior of the semilinear heat equation u; =
Uzz + (1 —u)~! at level u = 1, and obtained that the reaction term and the time
derivative blow up as u reached this level. Since then, many researchers have worked
on the quenching properties of solutions for different kinds of parabolic equations
(see [2]-[I8] and the references therein). In particular, Zhi and Mu [9] considered
the quenching properties for the semilinear equation

Ut =Uge + (1 —u)P, O0<z<1,t>0
ug(0,t) = u=%(0,t), wu,(1,t)=0, t>0, (1.2)
u(x,0) =up(z), 0<z<I,

and studied solution quenching in finite time, blow-up of time-derivatives and
bounds of quenching rates. Later, Wang et al [I1] investigated the following para-
bolic equation with localized reaction term,

up=Au+ (1 —u(z,t) P+ (1 —u(z"t)™% z€B, t>0
u(z,t) =0, x€dB,t>0, (1.3)
u(z,0) =uo(z), =€ B,

where B = {x € R": ||z]| < 1}, * € B. They obtained the existence of the unique
classical solution and proved the solution quenched in a finite time. In addition,
when z* = 0, they also gave bounds for the quenching rate.

There are two evident gaps in [II]: (a) the existence of classical solution in
Q C R™; (b) the bounds of the quenching rate for any x* € Q. This article explore
these two questions and extend the results for equation to the system .
Also we try obtain non-simultaneous quenching results.

Recently, some papers considered the non-simultaneous quenching behavior of
solutions reaching the level u = 0 for parabolic systems (see [14]-[20]). For instance,
Zheng and Wang [19] studied quenching properties for the nonlinear parabolic sys-
tem

uy=Au—vP, e t>0,
nw=~Av—u"? x€Q t>0
,2u=v=1, x€dt>0,
u(z,0) = ug(z), v(z,0)=vo(z), z€Q,
They obtained a solution quenching in finite time, and time-derivative blow up
at the quenching point, under proper conditions. In addition, when Q = Bp,
they studied sufficient conditions for non-simultaneous and simultaneous quenching.
Later, Ji, Zhou and Zheng [17] studied the quenching behavior of solutions for heat
system

(1.4)

m n

Ut = Uy — U " — V0 P 0 =g —u I —07 "
with Neumann boundary conditions, They identified non-simultaneous and simul-
taneous quenching and described four possible simultaneous quenching rates via a
characteristic algebraic system. However, there are very few papers in nonsimul-
taneous quenching for solutions reaching the level v = 1, which motivates us to
consider the problem in this article.

This article is organized as follows. In Section 2, we obtain the global existence
result for Q small enough and finite time quenching for 2 large enough. Also we
deduce the blow up of time-derivatives at the quenching point. In Section 3, we
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consider the non-simultaneous quenching of solutions for with Q = Bgr(z*).
We will prove if po > p1+1 and g1 > g2+ 1, then quenching is always simultaneous;
while po > p; + 1 and ¢1 < 1, then quenching is always non-simultaneous. If
p2 < p1+1 and g1 < g2 + 1), then the non-simultaneous quenching may occur;
and if po < p;1 + 1 and ¢; < g2 + 1, then both non-simultaneous and simultaneous
quenching also may occur for proper initial data. In Section 4, we give a precise
classification of parameters for the simultaneous quenching rates.
In this article we use the hypothesis

Aug + (1 - UO)_pl + (1 — Uo)_ql > 0,

B B (1.5)
AUO+(1_UQ) p2+(1—’U0) 2 > (.

2. FINITE TIME QUENCHING AND BLOW UP OF TIME DERIVATIVES

Let A1 and ¢; denote the first eigenvalue and the first eigenfunction of the
problem

Ap+Ap=0, inQ,
=0, on 09,
and choose ¢1(x) to satisfy
v1(z) >0, inQ, / pdx = 1.
Q
Theorem 2.1. If Ay < min{p; + p2,q1 + q2} + 2, then there exists a finite time T,
such that the solution of (1.1)) quenches at this time.

Proof. By the maximum principle, we have 0 < u,v < 11in Q x (0,7T). Assume that
p1+p2 > qu+qe. Let F(t) = [upde, G(t) = [, vedr, and ®(t) = F(t) + G(t)
for t € [0,T). By Jensen’s inequality,

F'(t) :/QAwpd:c—l—/Q(l—u)_plgodx—k/(l—v)_thdx

Q

> —/ Auedx + py / updx + q1/ vodz + 2 (2.1)
Q Q Q
= (p1 — M)F(t) + 1 G(t) + 2.
Similarly, we have
G'(t) > (g2 — M\)G(t) + pa F(t) + 2, (2.2)
so we have
O'(t) > (p1+p2— M)Ft)+ (1 + g2 — \1)G(t) + 4 23

> (p1 +p2 — M1)O(t) + 4.

Since A\; < min{p1+p2, 1 +¢2}+2and 0 < F,G < 1, we have (p1+p2—A1)®(t)+4 >
0 for t € [0,T). Integrating (2.3) from 0 to ¢, we have

1 (p14p2—X1)P(t)+4
t < {P1+P2—/\1 In (P11+I)§—/\11)‘1’(0)+4 ’ A1 7& p1+ P2, (2 4)
1[®(t) — (0], A1 = p1 + P2,
Since lim;_,7- ®(t) < 2, so we have the upper bound for quenching time T
1 2(p1tp2—A1)+4
T< {11)1-‘1-112—)\1 In (p1+p2—X1)®(0)+4 A1 7& D1+ P2, (25)
712 —@(0)], AL =p1 + pa,
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it is easy to see the right-hand side of (2.5 is greater than 0, so the solution of
(1.1) quenches in finite time. O

We note that A\; decreases when the domain size increases, so Theorem says
that the solution of will quench in finite time for 2 large enough. Next, we
obtain the existence of a global solution for €2 small enough, which can be proved
by adapting methods that are established in [19].

Theorem 2.2. Assume that ug,vg < 0g < 1 in Q and the diameter of Q is small
enough. Then the solutions of (L.1)) exist globally.

Proof. Consider the auxiliary problem
ww=Au+(1—-a)™4+(1-0)"%" (z,t)€Qx][0,T),
B=A04+(1—-a) P2+ (1-0)"%", (x,t)eQx][0,T),

a(z,t) =09, U(x,t) =009, €N t>0,
a(z,0) =09, U(x,0)=09, x€.

It is easy to see the solution of (2.6) is an upper-solution of (|1.1). By the comparison
principle, we have u < @, v < 7, it suffices to prove that (@, ) is global. Let ¢ satisfy

Ap—Cy=0, ze€ Bg(z"),
¢ = 00, x € OBg(z"),
where Br(z*) ={r € Q: |z —2*| < R} and
Co <min{—(1 —00)™" = (L —00)" ", —(1 —00)™" = (L —09)"*} <0,

hence

(2.6)

(2.7)

_ Co(|lz —=** — R?)
with max g, (,+) ¢(-) = o0 — 020]}\?2. Taking R small enough such that

Co < Jnin, {-(0-0)™ =(1=¢) " ~(1-0)" —(1-9¢) =},

so (¢,¢) is a time-independent upper-solution of (2.6) for Q@ C Bpg(z*), which
implies the global solutions of (1.1 exist for the diameter of € small enough. O

+ oo (28)

Now we consider the blow up of time derivatives.

Lemma 2.3. If (1.5)) holds, then ug, vy > 0 for (x,t) € Q x [0,T). Moreover, for
any n > 0, there exists ¢ > 0 such that

ug(x,t),ve(z,t) > ¢, V(x,t) € Q" x [0,T),
with Q" = {x € Q : dist(z, 0Q) > n}.
Proof. Let ® = uy(x,t), ¥ = vy(x,t), since holds, we have
O~ AP =p(1—u) P 0+ q(1—0) 2N, (2,t) € Qx[0,T),
U, — AU = go(1 —v) 20 4 py(1 —u) P27 10, (2,t) € Qx[0,T),
O(x,t) =V (z,t) =0, (z,t) €00 x][0,T), (2.9)
O(2,0) = Aug + (1 —ug) P + (1 —wvp) ™ >0, z€Q,
U(z,0) = Avg+ (1 —ug) P>+ (1—v9) 2 >0, €9,
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so by the maximum principle, ® = w(x,t) > 0, ¥ = vi(x,t) > 0 for (z,t) €
Qx[0,7T).
Let (u*,v*) be the solution for the auxiliary problem
up =Au + (1 —up) ™+ (1—v)™ %, z€Q, t>0,
vy = AV + (1 —ug) ™4+ (1—vy)™®, 2€Q,t>0,
uw*(z,t) =0, v*(z,t)=0, =x€0Qt>0,
u*(z,0) = up(z), v*(x,0)=uvo(z), z€Q.
Let ®* = uj(x,t), ¥* = v{(x,t), Then by the abovewe deduce that uj,vy >0 .
Next, let w =u —u*,z =v —v* and ® = w, ¥ = z;. It is easy to obtain
O, —AD >0, (x,t)eQx][0,7),
U, — AU >0, (x,t)€Qx][0,T),
Oz, t) =U(x,t) =0, (x,t)€dQx[0,T),
B(x,0) = V(z,0)=0, z e,
so that u; > uy, vy > vf in Q x [0,T). Taking

(2.10)

¢ = min min |u}|, min |v}
{Q”x[n,T)| t‘7Q"’X[n,T)| t|}’

we have ug, vy > ¢ in Q7 x [, T). O

Lemma 2.4. Assume that Q is a conver domain and (L.5)) holds, then for any 7.
Then there exists a positive constant ( such that

u > C(l—uw)™ +(1—0v) "], nQ"x(nT), (2.11)
ve > C(l—uw)™+(1—0v) %], inQ"x(nT).
Proof. Let
I=u—([A—w)™ +(1-v)" "], (2,t) € Q" x (n,T),
J=v—C[1—uw)™+(1-0v)"2], (2,t)eQ"x (n,T).
Then we have
I, — AT = (uy — Au)y — Cp1(1—u) P 7wy — Au) — Cqi(1 —v) "2 (v, — Av)
+ Cpalpy + D)1 — u) P2 Vul? + Car(gr + 1)(1 — v) "2 Vof?
>pi(l—u) P +q(1—v) 21T,

(2.12)

Similarly,
Jo— AT > go(1—v)" 27 ] 4 po(1 —u) P21 (2.13)
In addition, by Lemma [2.3| and taking ¢ small enough, we have
Hz,t)=u — (1 —u)™ +(1—v) 1] >0, (z,t)€d”x(0,T),
Jx,t)=v —C[(1—u)™ 4+ (1—-v)""] >0, (x,t)€dN”x(0,T),
and the initial data

(2.14)

I(x,0), J(z,0) >0 z€Q7 (2.15)
By the maximum principle, we have I(x,t), J(x,t) > 0 for (z,¢) € Q" x (0,7). O

As a direct consequence of Lemma [2:4] we deduce time-derivatives blow up at
the quenching point.
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Theorem 2.5. If ) is a conver domain and (L.5) holds, then (ug,v;) blows up at
the quenching point.

3. SIMULTANEOUS AND NON-SIMULTANEOUS QUENCHING
In this section, we deal with radial solutions of ([1.1)) with Q@ = Bgr(z*) = {x €
RY : |z — 2*| < R}, and non-increasing initial data satisfying (1.5). By the maxi-
mum principle [T1, Lemma 3.2], we have u,.(r,t),v,(r,t) < 0. At first, we give the
sufficient condition for finite-time quenching of radical solutions in Br(z*) x (0,T).

Lemma 3.1. Assume (u,v) is the global solution of with (ug,vp) = (0,0), in
other words, there exists a constant ¢ € [0,1) such that u,v < ¢ < 1 on Br(z*) x
[0,00). Then (u,v) approaches uniformly from below to a solution (U, V') of the
steady-state problem

AU=—-(1-U)" —-(1-V)"" ze Bgr(z"),
AV =—-1-U)""-(1-V)"%, ze Bgr(z"), (3.1)
U=V =0, z¢€dBgr(z").
Proof. By [19, Lemma 4.1], we define
W)= [ Gl ody 2= [ Gy,
Br(z*) Br(z*)

for (z,t) € Br(x*) x [0,00), where G(x,y) is Green’s function associated with the
operator —A on Bgr(z*) under Dirichlet boundary conditions. then

Wile.) = 1—uw)+ [ G-t [ Gl -0,
Br(z*) Br(z*)

Zi(z,t) =1 —v(x,t) +/

Gz, y)(1 - u)P2dy + / Gz, y)(1 - v) "y,
BR(I*)

BR(I*)
Combining Lemma 2.3 and the monotone convergence theorem, we have
tlgrolo W)
~1-U@+ [ Gapu-0) Tyt [ G- )

tlgrolo Zi(@,t)

=1-V(x) +/B - G(z,y)(1 —U) P2dy +/B G(z,y)(1 — V)" %dy,

Rr(z*)

where ¢ > U(x) = limy_ oo u(x,t), ¢ > V(x) = limy_ oo v(z,t). In addition, since
W, Z are bounded and Wy, Z; > 0, we have

tli>r£o Wiz, t) =0, tliglo Zy(x,t) =0, (3.2)

which imply

1+ /BR(E*) G(z,y)(1 —U) Prdy +/ G(z,y)(1 = V)" “dy,
)G( y)(1

Br(z*)
1+ |
Br(z*

Ul(z)
(3.3)
V(z)

Uy Py + / Gx,y)(1 — V)~ dy,
Br(z)
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which is the solution of (3.1), and by Dini’s theorem, we can get the uniform
convergence. ([

Inspired by [20, Theorem 1.3], with Lemma at hand, we obtain the following
theorem.

Theorem 3.2. If R > /N, then the radial solution of (I.1)) will quench in finite
time for any initial data.

Proof. Considering the auxiliary system
w=Au+1-u) "+ 1-v)"", (2,1) € Br(z") x[0,T),
v=Av+(1-u) ™+ (1-v)"*®, (2,t) € Br(z") x[0,7T).
u(z,t) =0, w(x,t)=0, z€dBgr(z*),t>0,
u(z,0) =0, v(z,0)=0, =z ¢& Bgr(x*),

(3.4)

by the comparison principle, we have u > u,v > v. Now we introduce the problem
—Au* =2, —Av*=2, re€ Bp(z"),

3.5
H*:y*:(L T‘GaBR(x*), ( )

with solution denoted as

oo 2oma PR e ) 56

2N 2N
So we have max{u*,v*} = R?/N. Clearly, (u*,v*) is a sub-solution of (I.I). By
Lemma the solution (u,v) is global only if u*,v* < 1. Therefore, if u* or
v* > 1, namely R > VN , then the solution of quenches in finite time for any

initial data. U

Remark 3.3. Theorem [3.2] indicates that the solution quenches in finite time for
R > +/N. However, for radical solutions of with Q = Bg = {z € RY : ||z]| <
R} and assuming and that ug(r), v)(r) < 0, by [20], we can obtain that the
solution quenches in finite time without the condition R > v/N. Also we obtain
that r = 0 is the only quenching point.

Next, we will focus on the simultaneous and non-simultaneous quenching quench-
ing of solutions for . To simplify our work, we deal with the radical solu-
tions of with Q@ = Br = {z € RY : || < R}, and assume that
holds and wuy(r),vp(r) < 0. It is easy to see that maxo<,<pru(r,t) = u(0,t),
maxo<,<gr v(r,t) = v(0,t) by Remark In addition, ¢, ¢;, C, C; denote positive
constants independents of ¢, which are different from line to line. First, we give a
necessary condition for the non-simultaneous quenching.

Theorem 3.4. Ifv(0,t) <c<1 forte0,T), then p2 < p1 + 1.

Proof. Since u,., v, < 0, by the Hopf’s lemma, we can see that w,..(0, ), v,..(0,t) < 0.
Then by Lemma, we have

T =w) ™ + (1 =0)7")(0,) <uy(0,8) < (L —w)™ + (1 —v)""(0,1),
(L —=u)™ + (1 =0)"")(0,8) < v:(0,8) < (1 —u)™ + (1 —v)"*(0,1)
Combing (??) with v(0,t) < ¢ < 1, we have
ue(0,t) < C(1 —uw)7P(0,1). (3.8)

(3.7)
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Integrating on (¢,T) gives
1—u(0,t) < O(T — t)7ie. (3.9)
So by Lemma and (?7), we have
0(0,) 2 ¢(1 = u(0,0) 72 = O(T — ) 7.

Integrating on (0,7"), we have

(0, T) — v(0,0) > C/T(T — ) mT gL, (3.10)
If po > p1 + 1, this integral diverges. The p(r)oof is complete. O
Corollary 3.5. Ifpo > p1 +1 and 1 > g2 + 1, then quenching is simultaneous.

Next, we give a sufficient condition for non-simultaneous quenching.

Theorem 3.6. Ifps >p1+1, ¢1 <1, then u(0,t) <ec <1 forte[0,T).

Proof. Define (u(t),v(t)) := (u(0,t),v(0,t)). By (?7?), there exist two positive con-
stants cg, ¢; such that

(L= + (1 =) [ T —7) " +(1—7) ]

o e (3.11)
<all—a) "+ 1 -v)" "],
Multiplying the second inequality by (1 — @)?* (1 — ¥)%, we have
(1 —u) PPt < (1 —0) 2. (3.12)
Integrating on (0,7, if po > p1 + 1,q1 < 1, we have
(1 —a(T)) PP < ¢g — (1 —o(T)) 2, (3.13)
if po =p1 +1,q1 <1, we have
—In(1 —a(T)) < co — (1 =(T))* "%,
a contradiction, if u quenches. O

Theorem 3.7. Ifps <p1 +1 (g1 < g2+ 1), then there exist the initial data such
that u(v) quenches while v(u) < ¢y < 1.

Proof. By Lemma we have

u(0,8) > (1 — u(0,t)) 7P, (3.14)
Integrating (??) on (¢,7"), we have there exists a positive constant C' such that
1—u(0,t) > C(T — t)e. (3.15)
Similarly,
1—v(0,t) > C(T — t)=+r. (3.16)
Combining (?7?), (??) and (??), we obtain
0:(0,t) < O(T — )" 1 + C(T — ) T (3.17)

Integrating on (0,7"), we obtain
1+py —pa J
v(0,T) <v(0,0) + 1T 1 + T ez, (3.18)
By Lemma we have ug, vy > ¢. By integrating on (0,¢) and letting ¢ — T, we
have T' < 1 min{1 — uo(0),1 — vo(0)}. We take up(z) =1 —¢, then T < Le. If ¢,
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and hence T, are small enough, we can conclude from (??) that v(0,7) < ¢p < 1.
The proof is complete. ([

Next we show that if po < p1 + 1 and g1 < g2 + 1, then both non-simultaneous
and simultaneous quenching also may occur for proper initial data. At first, we
give the following lemma.

Lemma 3.8 ([T9, Lemma 4.5]). Ifps <p1+1, 1 < g2 + 1, then the set of initial
data such that one of the components quenching alone is open.

Theorem 3.9. Ifps < p1 + 1 and q1 < g2 + 1, then both simultaneous and non-
simultaneous quenching may occur for proper initial data.

Proof. Step 1. We prove non-simultaneous quenching. Assume for contradiction
that u and v quenches simultaneously for every initial data. Since u;(0,t) < (1 —
u(0,¢)) 7Pt 4+ (1 —v(0,¢)) "% by (??), integrating on (0,t) gives

t
v(0,t) < vp(0) +/ (1 —u(0,8)7P* + (1 —v(0,s))"ds, (3.19)
0
introducing (??) and (??) in (3.8)), letting ¢ — T, we obtain that
_1 p1—p2+1
v(0,T) <wvo(0) + Taztt 4+ T mf1 . (3.20)

As in Theorem We take vo(xz) =1 — €, then T' < %e. if €, and hence T, are
small enough, we can conclude from (3.9) that v(0,7") < ¢ < 1, a contradiction.

Step II. We prove simultaneous quenching. Since po < p1 +1, ¢1 < g2 + 1, From
(?7), we have

1+py —pa 1
v(0,T) <v(0,0) + ;T 1Fr1 4 T ez, (3.21)
Similarly,
1tga—qg 1
uw(0,T) < u(0,0) + 3T N (3.22)

Denote (uq,vq) as a solution of with initial data (1 — aug,1 — (1 — a)vy),
where a € (0,1). Let T, be the quenching time, we have u,(0,7) < ¢ < 1 for
a — 1 and v,(0,T) < ¢ < 1 for @« — 0. Define ¥,, = {a € (0,1) : us(0,T) < 1},
U, ={a€(0,1): v4(0,T) < 1}, it is easy to see that

o, NT, =0,

however by Lemma [3.8] we have that &, and Psi, are open. Hence u,v quench
simultaneously for some initial data. The proof complete. O

4. SIMULTANEOUS AND NON-SIMULTANEOUS QUENCHING RATES

The notation f ~ g means that there exist positive constants c;, ¢y such that
c19 < f < cog. At first, we give a lemma which needs two additional assumptions.
H) pp>pr+1, 1 > q+1, ¢1 > qo, and £(1 —ug)?>~' > (1 — v)? " with
p2—1 .
§ > (J12—;v2’
(H2) p2 >pi+1, 1 > @2+ 1, 1 < goand n(l —up)”>~! < (1 —wp)®~! with
N 52—_1012 ’
Lemma 4.1. Let (u,v) be the solution of problem (1.1)). Then £(1 — u)P2~t >
(1—v)2 =1 under assumption (H1), and n(1—u)P2~! < (1—v)2~1 under assumption

(H2), for (r,t) € (0,R) x (0,T).
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Proof. Let ¢ = £(1—u)P2~t — (1 —v)B=1 o = (1 —u)P>~1 — (1 —v)9* L. We have
Pt — @rr — hopr + g
=P - DA - P g -1 —w) (L —o)7
(@ = DA =022 —g(py = 1)(1 )21 —v) ™%
+ (g = p2)(1 = )71 = 0)" Py,
> &g —p2)(L—u) (A=)t =E(p2 - (L — w2 (1 —w) "
+ (g = p2)(1 = )71 = 0)" Pu0,
=&@—p2)A-u) 1 =0) = (2~ DL —uw) (L —0) T L+ (L —v)' ")
+ (g1 — p2)

(1—wu)” ( U)ql_zurvr

where
N -1 —1 —1
h = (@1 =2)(1 =) vz + (p2 — 2)(1 —w) ™ uy, (4.1)
L= (1~ D)1 =) (1= 0)" — (pr — D~ D0~ (1= o)
pr = prr —hor + (L4 (p2 = D)1 —u) (1 —v)"M)p
> (& —p2) —p2+ (1 —w) (1 —v)"! (4.2)
+ (g1 — p2)(1 — ) (1 — 0) " 2,0,

Since { > P2=—-, we have

@1 — orr — hior + (14 (p2 — (1 —u) 7 (1 —v) ") > 0. (4.3)
In addition,
o(r,0) =¢(1 — uo)p2_1 —(1- vo)‘“_l >0, re€[0,R],

©r(0,t) = o (R,t) =0, te(0,T) 44
By the maximum principle,

o= (1wl = (1= )8l >0 (4.5
Similarly, if (H2) holds, we can obtain v = n(1 — u)P2~! — (1 — v)®*=1 < 0. The
proof is complete. O

Next, we give bounds for the non-simultaneous quenching rate.

Theorem 4.2. If quenching is non-simultaneous and u is the quenching component,
then fort — T~ , we have

1 —u(0,t) ~ (T — t) .

The proof of the above theorem is a direct consequence of (??) and (??). Next,
we give bounds for the simultaneous quenching rate.

Theorem 4.3. Assume that (H1) or (H2) hold. Then quenching is simultaneous,
and fort — T,

-1 p1—1

1-— u(O,t) ~ (T — t)PZlf{ll—l’ 1 71)(0,15) ~ (T _ t)qul—l.
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Proof. Without loss of generality, consider the case of (H1) only. Since (1 —

u)P2=t > (1 —v)2~1 by (??), we obtain

v:(0,t) < (1 —u(0,t))7P2 4+ (1 —v(0,t)) "%

—pa(g3—1)

< (171}(0315)) B +(17v(0’t))7tm
—p2(q1—1)
< (1l —w(0,t))" P21
by p2 > p1 + 1 and ¢1 > g2 + 1. Integrating (4.6) on (0,7), we have

1— 0(0,4) < C(T — t)7shi=t,

By Lemma [2.4] we have

—a1(p2—1)

ug(0,8) > (1 —v)79(0,¢) > (T —t) #p2ar-T |
Integrating on (0,7, we have

qp—1

1—u(0,t) > C(T — t) 72T,
by Lemma [2.4] again, we have

v:(0,8) > ¢(1 —uw)7P2(0,1).
Integrating on (¢,7") we have

T
1= 0(0,8) > c/t (1= u(0,7)"P2dt > (1 — u(0,£)~P*(T — 1),

by (?7?), we have
u(0,1) < (1 —w(0,t) 7P 4+ C(1 —u(0,t))P2 (T —¢t)~ ¢
combining (??) and (??), we have
u(0,%) < C(1 —u(0,t))P29 (T —¢)~ 9.
Integrating (??) on (¢,7T), we have

;-1

1—u(0,t) > C(T — t)miT,

from Lemma [2.4] we have

—p2(q1—-1)

wl0,8) > ¢(1 - u) ™ > OT — ) 85
Integrating on (¢,7T), we have

po—1

1—v(0,t) > C(T —t)rp2ai1,

(4.6)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
O

Theorem 4.4. Assume ps <p1+1, ¢1 < g2+ 1. Then quenching is simultaneous,

and fort — T,
1—u(0,8) ~ (T — )" @1 — 0(0,t) ~ (T — )@,
p1(g2 +1) q2(p1 + 1)
T < <qtlpp< B
oL+ 1 >q1 <42 2] ot 1

1= w(0,8) ~ (T — )" 35,1 — 0(0,8) ~ (T — )@, g1 < go + 1,

g2(p1 +1) <pp < 2 ’
g2 +1 @+1—q
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1—u(0,) ~ (T — )77, 1 — v(0,£) ~ (T — ) 7T,

emt) e pnlet]
g2 +1 @+1—q pr+1
1= u(0,) ~ (T — )7077 1 — 0(0,£) ~ (T — t)' 7177,
pi(g2 +1) D1
<p+1, /2L << —F
br=h p1+1 M= ri—p

1—u(0,t) ~ (T — )77, 1 — v(0,t) ~ (T — t) BT

< p1(q2 + 1)’ < q2(p1 +1).
p1+1 ge+1

Note that Theorem gives the simultaneous quenching rate under ps > p; + 1
and ¢; > ¢ + 1, while Theorem [£.4] gives the simultaneous quenching rate under
p2 < p1+1and ¢; < g2 + 1. The proof is similar to [I7], so we omit it.
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